新北师大九年级上册数学导学案
北师大版九年级数学上精品导学案(可打印)1.1.3菱形综合导学单
![北师大版九年级数学上精品导学案(可打印)1.1.3菱形综合导学单](https://img.taocdn.com/s3/m/ca58b51b172ded630a1cb68a.png)
九年级数学导学案班级:姓名: 【学习课题】§1.1 菱形的性质与判定(三)【学习目标】1.能灵活运用菱形的性质定理及判定定理解决一些相关问题,并掌握菱形面积的求法.2.经历菱形性质定理及判定定理的应用过程,体会数形结合、转化等思想方法.【学习重点】能灵活运用菱形的性质定理及判定定理解决一些相关问题,并掌握菱形面积的求法. 【学习难点】能灵活运用菱形的性质定理及判定定理解决一些相关问题,并掌握菱形面积的求法. 【学习过程】一、温故知新1.菱形的两条对角线长分别为10cm和24cm,则菱形的周长是_____.2.如图所示:(1)在□ABCD中添加一个条件使其成为菱形:添加方式1: .添加方式2: .(2)在四边形ABCD中添加条件使其成为菱形:添加方式1: .添加方式2: .3.平行四边形的面积= .二、探究新知:菱形的面积:S菱形== = .三、应用提升1、已知:如图,四边形ABCD是周长为52cm的菱形,其中对角线BD长为10cm.求:(1)对角线AC的长度;(2)菱形ABCD的面积.2、直击中考(陕西2014)如图,在菱形ABCD中,AB=5,对角线AC=6,若过点A作AE⊥BC,垂足为E,则AE的长为() A、4 B、512C、524D、53、菱形ABCD的面积为96,对角线AC长为16 ,此菱形的周长为 .4、在菱形ABCD中,对角线AC,BD相交于点O, ∠BAC=30°,BD=6.求菱形的周长和面积。
CBDA OCBDA O五、课后作业3、P9:习题1.3第4题1、P9:习题1.3第1题2、P9:习题1.3第3题*4、P10:习题1.3第5题(尺规作图)。
北师大版九年级数学上册导学案
![北师大版九年级数学上册导学案](https://img.taocdn.com/s3/m/e0ec4459856a561253d36f79.png)
北师大版九年级数学上册课程纲要平陌镇初级中学►课程类型:国家课程,必修课►设计教师:九年级数学组►适用年级:九年级►授课时间:48—53课时【课程目标】第一章证明(二)1.了解作为证明基础的几条公理的内容,掌握证明的基本步骤和书写格式;2.结合实例体会反证法的含义;3.能够用综合法证明等腰三角形的两条腰上的中线(高)、两底角的平分线相等,并由特殊结论归纳出一般结论;4.能够用综合法证明等腰三角形的判定定理;5.会运用“等角对等边”解决实际应用问题及相关证明问题;6.掌握证明与等边三角形、直角三角形有关的性质定理和判定定理;7.结合具体例子了解逆命题的概念,会识别两个互逆命题,知道原命题成立其逆命题不一定成立;8.能够证明直角三角形全等的“HL”判定定理既解决实际问题;9.能够证明线段垂直平分线的性质定理、判定定理及其相关结论;10.能够利用尺规作已知线段的垂直平分线;已知底边及底边上的高,能利用尺规作出等腰三角形;11.能够证明角平分线的性质定理、判定定理及相关结论;12.能够利用尺规作已知角的平分线;13.根据中垂线判定定理证明三角形三边中垂线共一点;根据角平分线判定定理证明三角形三内角角平分线共一点;第二章一元二次方程14.会用开平方法解形如(x+m)2=n (n≥0)的方程;15.理解配方法,会用配方法解简单的数字系数的一元二次方程;16.体会转化的数学思想,用配方法解一元二次方程的过程;17.利用配方法解数字系数的一般一元二次方程;18.经历到方程解决实际,问题的过程,体会一元二次方程是刻画现实世界中数量关系的一个有效数学模型,培养学生数学应用的意识和能力;19.进一步掌握用配方法解题的技能;20.通过推导求根公式,加强推理技能训练,进一步发展逻辑思维能力;21.会用公式法解一元二次方程;22.会用分解因式法解系数简单的一元二次方程;23.掌握黄金分割中黄金比的来历;24.通过列方程解应用题,进一步提高逻辑思维能力和分析问题、解决问题的能力;第三章证明(三)25.体会在证明过程中所运用的归纳、类比、转化等数学思想方法;26.能运用综合法证明平行四边形的性质定理,及其它相关结论;27.能运用综合法证明平行四边形的判定定理;28.能运用综合法证明矩形性质定理和判定定理;29.能运用综合法证明菱形的性质定理和判定定理;30.能运用综合法证明正方形的性质定理和判定定理以及其他相关结论;第四章视图与投影31.通过具体活动,积累数学活动经验,进一步增强学生的动手实践能力和数学思维能力,发展学生的空间观念;32.通过学习和实践活动,激发学生对视图与投影学习的好奇心,体会数学与生活的联系;33.通过实例能够判断简单物体的三视图,能根据三种视图描述基本几何体或实物原型,实现简单物体与其三种视图之间的相互转化;34.会画圆柱、三棱柱、四棱柱、圆锥、球的三视图;35.通过实例了解中心投影和平行投影的含义及其简单应用,初步进行物体与其投影之间的相互转化;36.通过实例了解视点、视线、盲区的含义及其在生活中的应用;第五章反比例函数37.经历在具体问题中探索数量关系和变化规律的过程,抽象出反比例函数的概念,并结合具体情境领会反比例函数作为一种数学模型的意义;38.能画出反比例函数的图象,根据图像和解析表达式探索并理解反比例函数的主要性质;39.逐步提高观察和归纳分析能力,体验数形结合的数学思想方法;40.能依据已知条件确定反比例函数,领悟用函数观点解决某些实际问题的基本思路;第六章频率与概率41.经历实验、统计等活动过程,在活动中进一步发展学生合作交流的意识和能力;42.通过实验等活动,理解事件发生的频率与概率之间的关系,加深学会对概率的理解,进一步体会概率是描述随机现象的数学模型;43.能运用树状图和列表法计算简单事件发生的概率,能用试验或模拟试验的方法估计一些复杂的随机事件发生的概率;44.结合具体情境,初步感受统计推断的合理性,进一步体会概率与统计之间的关系。
新北师大版九年级上册数学导学案
![新北师大版九年级上册数学导学案](https://img.taocdn.com/s3/m/35670acf02768e9950e73823.png)
新北师大版九年级上册数学导学案TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】第二章一元二次方程第一节认识一元二次方程(1)学习目标:1.探索一元二次方程及其相关概念,能够辨别各项系数,能够从实际问题中抽象出方程知识.2.在探索问题的过程中使学生感受到方程是刻画现实世界的一个模型,体会方程与实际生活的联系.3.通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用.学习重点:一元二次方程的概念.学习难点:如何把实际问题转化为数学方程.预习案一、预习教材二、感知填空先阅读教材“议一议”前面的内容,然后完成下面问题:1.在第一个问题中,地毯的长可以表示为_____________,宽可以表示为_____________,由矩形的面积公式可以列出方程为_________________________.2.在第二个问题中,如果设五个连续整数中间的一个数为x,你又能列出怎样的方程呢?答:设五个连续整数中间的一个数为x,由题意可列方程,得_________________________.三、自主提问探究案一、探究一:一元二次方程的概念例1:问题1:有一块矩形铁皮,长100cm,宽50cm.在它的四个角分别切去一个面积相同的正方形,然后将四周突出的部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积是3600cm2,那铁皮各角应切去多大的正方形你能设出未知数,列出相应的方程吗归纳结论:方程的等号两边都是整式,只含有一个未知数,且未知数的最高次数是2的方程叫做一元二次方程.一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式:ax2+b x+c=0(a、b、c为常数,a≠0)这种形式叫做一元二次方程的一般形式.其中ax2是二次项,a是二次项的系数;b x是一次项,b是一次项系数;c是常数项.跟踪练习:1.下列方程中,是一元二次方程的是()A.x2+2y-1=0B.x+2y2=5C.2x2=2x-1D.x2+1x-2=02.将方程(x+3)2=8x化成一般形式为_______,其二次项系数为___,一次项系数是___,常数项是____.二、探究二:一元二次方程有关概念的应用例2:关于x的方程mx2-3x=x2-mx+2是一元二次方程,m应满足什么条件?跟踪练习:1.关于x的方程(a-1)x2+3x=0是一元二次方程,则a的取值范围是______.2.已知方程(m +2)x 2+(m +1)x -m =0,当m 满足______时,它是一元一次方程;当m 满足________时,它是一元二次方程.作业案一、过关习题1.在下列方程中,是一元二次方程的有( )①2x 2-1=0;②ax 2+b x +c =0;③(x +2)(x -3)=x 2-3;④2x 2-1x =0.A .1个B .2个C .3个D .4个2.把方程(x -5)(x +5)+(2x -1)2=0化成一元二次方程的一般形式为( ) A .5x 2-4x -4=0 B .x 2-5=0 C .5x 2-2x +1=0 D .5x 2-4x +6=03.下列方程是一元二次方程的是( )A. 12=-y xB. 2560x x ++=C. ()()230x x ++=D. 122,3x x =-=- 4.方程2354x x -=中,关于a 、b 、c 的说法正确的是( ) A. 3,4,5a b c ===- B. 3,5,4a b c ==-= C. 3,4,5a b c =-=-=- D. 3,4,5a b c ==-=-二、能力提升1.阅读材料,解答问题:有一块长80cm ,宽60cm 的薄钢片,在四个角上截去四个相同的正方形,然后做成底面积为1500cm 2的无盖盒子,想一想,应该怎样求出截去的小正方形的边长?问题:(1)如果设小正方形的边长为x cm ,那么盒子底面的长为____________;宽为__________,根据题意,所列方程为____________________.(2)所列方程的一般形式是什么是哪一种方程并指出其各项的系数.2.已知关于x的方程(m-2)x|m|+3x-4=0是一元二次方程,那么m的值是()A.2B.±2C.-2D.1第一节认识一元二次方程(2)学习目标:1.会进行简单的一元二次方程的试解.2.根据题意判定一个数是否是一元二次方程的根及利用试解方法解决一些具体问题.3.理解方程的解的概念,培养有条理的思考与表达的能力.学习重点:判定一个数是否是方程的根.学习难点:会在简单的实际问题中估算方程的解,理解方程解的实际意义.预习案一、预习教材二、感知填空请同学独立完成下列问题.问题1:如图,一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m,那么梯子的底端距墙多少米?设梯子底端距墙为xm,那么,根据题意,可得方程为___________列表:x0 1 2 3 4 5 6 7 8 x2-问题2:一个面积为120m2的矩形苗圃,它的长比宽多2m,苗圃的长和宽各是多少?设苗圃的宽为x m,则长为_________.根据题意,得________.整理,得______________.列表:三、自主提问探究案一、探究一:探索一元二次方程的近似解例1:(1)问题1中一元二次方程的解是多少问题2中一元二次方程的解是多少(2)如果抛开实际问题,问题1中还有其他解吗问题2呢跟踪练习:1.已知关于x的方程x2-k x-6=0的一个根为x=3,则实数k的值为() A.1B.-1C.2D.-22.下面哪些数是方程2x2+10x+12=0的根?-4,-3,-2,-1,0,1,2,3,4.二、探究二:一元二次方程根的判定及应用例2:若x=1是关于x的一元二次方程ax2+b x+c=1(a≠0)的一个根,求代数式2016(a+b+c)的值.跟踪练习:1.若x=1是一元二次方程ax2+b x+c=0的解,则a+b+c=___;若x=-1是一元二次方程ax2+b x+c=0的解,则a-b+c=____.2.如果x=1是方程ax2+b x+3=0的一个根,求(a-b)2+4a b的值.作业案一、过关习题1.已知长方形宽为xcm,长为3xcm,面积为24cm2,则x最大不超过() A.1B.2C.3D.42.根据关于x的一元二次方程x2+p x+q=0,可列表如下:则方程x2+p x+q=0的正数解满足( )A.0<x< B.<x<1 C.1<x< D.<x<二、能力提升1.根据下表得知,方程x2+2x-10=0的一个近似解为x≈_________.(精确到2.输入一组数据,按下列程序进行计算(x+8)2﹣826,输出结果如表:分析表格中的数据,估计方程(x+8)2﹣826=0的一个正数解x的大致范围为()A. <x< B. <x< C. <x< D. <x<3.若关于x的一元二次方程为ax2+bx+5=0(a≠0)的解是x=1,则2013﹣a﹣b的值是()A. 2018B. 2008C. 2014D. 2012第二节用配方法求解一元二次方程(1)学习目标:1.会用开平方法解形如(x+m)2=n(n≥0)的方程.2.理解一元二次方程的解法——配方法.3.会用配方法解二次项系数为1的一元二次方程.学习重点:会用配方法解二次项系数为1的一元二次方程.学习难点:用配方法解二次项系数为1的一元二次方程的一般步骤.预习案一、预习教材二、感知填空1.如果一个数的平方等于4,则这个数是________.2.已知x2=9,则x=______.3.填上适当的数,使下列等式成立.(1)x2+12x+____=(x+6)2;x2-6x+_____=(x-3)2.三、自主提问探究案一、探究一:应用配方法求解二次项系数为1的一元二次方程例1:用配方法解方程x2-2x-3=0归纳结论:通过配成完全平方式的方法,将一元二次方程转化成(x+m)2=n(n≥0)的形式,进而得到一元二次方程的根,这种解一元二次方程的方法称为配方法.跟踪练习:用配方法解方程:x2+2x-1=0.作业案一、过关习题1.用配方法解方程x22x1=0,原方程应变形为()A. (x?1)2=2B. (x+1)2=2C. (x?1)2=1D. (x+1)2=12.用配方法解方程x2+4x-5=0,则x2+4x+____=5+____,所以x1=______,x2=________.3.若三角形的两边长分别是6和8,第三边的长是一元二次方程(x-8)2=4的一个根,则此三角形的周长为________.4.下列解方程的过程中,正确的是( )A.x2=-2,解方程,得x=±2B.(x-2)2=4,解方程,得x-2=2,x=4C.4(x-1)2=9,解方程,得4(x-1)=±3,x1=74,x2=14D.(2x+3)2=25,解方程,得2x+3=±5,x1=1,x2=-45.解下列方程:(1)()2590x--=(2)4(x+6) 2-9=0(3)x2-10x+25=7 (4)x2-14x=8(5)x2+3x=1 (6)x2+2x+2=8x+4二、能力提升1.若2246130a ab b++-+=,则a b+=()A. 1B. 1-C. 5D. 5-2.若a,b,c是△ABC的三条边,且a2+b2+c2+50=6a+8b+10c,试判断这个三角形的形状.第二节用配方法解一般一元二次方程(2)学习目标:1.理解配方法的意义,会用配方法解一般一元二次方程.2.通过探索配方法的过程,让学生体会转化的数学思想方法.3.学生在独立思考和合作探究中感受成功的喜悦,并体验数学的价值,增强学生学习数学的兴趣.学习重点:用配方法解一般一元二次方程.学习难点:用配方法解一元二次方程的一般步骤.预习案一、预习教材二、感知填空1.用配方法解一元二次方程x2-3x=5,应把方程两边同时()A.加上32B.加上94C.减去32D.减去942.解方程(x-3)2=8,得方程的根是()A.x=3+2 2 B.x=3-2 2 C.x=-3±2 2 D.x=3±2 23.方程x2-3x-4=0的两个根是____________.三、自主提问探究案一、探究一:用配方法解二次项系数不为1的一元二次方程例1:用配方法解方程2x2-6x+1=0用配方法求解一般一元二次方程的步骤是什么?归纳结论:(1)把二次项系数化为1,方程的两边同时除以二次项系数;(2)移项,使方程左边为二次项和一次项,右边为常数项;(3)配方,方程的两边都加上一次项系数一半的平方,把方程化为(x +h)2=k 的形式;(4)用直接开平方法解变形后的方程.跟踪练习:一小球以15m /s 的初速度竖直向上弹出,它在空中的高度h(m )与时间t(s )满足关系:h =15t -5t 2,小球何时能达到10米的高度?作业案一、过关习题1.要使方程x 2-72x =-32左边配方成完全平方式,应在方程两边同时加上() A.2)27( B .72 D.2)47(-2.用配方法解下列方程时,配方有错误的是( )A. x 2-2x-99=0化为(x-1)2=100B. x 2+8x+9=0化为(x+4)2=25C. 2t 2-7t-4=0化为2781416t ⎛⎫-= ⎪⎝⎭D. 3y 2-4y-2=0化为221039y ⎛⎫-= ⎪⎝⎭3.把方程21503x x --=,化成(x +m)2=n 的形式得 ( ) A. 232722x ⎛⎫-= ⎪⎝⎭ B. 232924x ⎛⎫-= ⎪⎝⎭ C. 236924x ⎛⎫-= ⎪⎝⎭ D. 235124x ⎛⎫-= ⎪⎝⎭4.用配方法解方程:(1)4x 2+8x -3=0 (2)3x 2-9x +2=0 (3)2x 2+6=7x二、能力提升先化简,再求值: 2352362m m m m m -⎛⎫÷+- ⎪--⎝⎭,其中m 是方程2310x x +-=的根.第三节 用公式法求解一元二次方程学习目标:1.理解求根公式的推导过程和判别公式.2.使学生能熟练地运用公式法求解一元二次方程.3.通过由配方法推导求根公式,培养学生推理能力和由特殊到一般的数学思想.学习重点:求根公式的推导和公式法的应用.学习难点:理解求根公式的推导过程及判别公式的应用.预习案一、预习教材二、感知填空1.方程3x2-x=2化成一般形式后,式中()A.a=3,b=-1,c=2 B.a=2, b=1,c=-2C.a=3,b=-1,c=-2 D.a=3,b=1,c=-22.用配方法解下列方程:(1)x2-x-1=0 (2)2x2-4x=1三、自主提问探究案一、探究一:探索一元二次方程的求根公式例1:用配方法解方程:ax2+b x+c=0(a≠0).归纳总结:由上可知,一元二次方程ax2+b x+c=0(a≠0)的根由方程的系数a、b、c而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax2+b x+c=0,当b2-4a c≥0时,将a、b、c代入式子x=-b±b2-4ac2a,就可求出方程的根;(2)这个式子叫做一元二次方程的求根公式;(3)利用求根公式解一元二次方程的方法叫公式法;(4)由求根公式可知,一元二次方程最多有两个实数根.二、探究二:用公式求解一元二次方程例2:用公式法解下列方程,根据方程根的情况你有什么结论?(1)2x2-3x=0 (2)3x2-23x+1=0(3)4x2+x+1=0.归纳总结:(1)当Δ=b2-4a c>0时,一元二次方程ax2+b x+c=0(a≠0)有两个不相等的实数根,即x1=-b+b2-4ac2a,x2=-b-b2-4ac2a;(2)当Δ=b2-4a c=0时,一元二次方程ax2+b x+c=0(a≠0)有两个相等实数根即x1=x2=-b2a;(3)当Δ=b2-4a c<0时,一元二次方程ax2+b x+c=0(a≠0)没有实数根.作业案一、过关习题1.下列一元二次方程中,有两个不相等的实数根的方程是( )A.x2-3x+1=0B.x2+1=0 C.x2-2x+1=0 D.x2+2x+3=0 2.关于x的一元二次方程2x+(k-4)x2+6=0没有实数根,则k的最小整数值是() A. -1 B. 2 C. 3 D. 53.把一元二次方程x2=3(2x-3)化为一般形式是_________,b2-4a c=0,则该方程根的情况为___________.4.方程2x2-5x=7的两个根分别为x1=________,x2=__________.二、能力提升1.已知关于x的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根,求实数k的取值范围.2.已知关于x的一元二次方程(x-3)(x-4)=a2(1)求证:对于任意实数a,方程总有两个不相等的实数根;(2)若方程有一个根是1,求a的值及方程的另一个根.第四节用因式分解法求解一元二次方程学习目标:1.会用分解因式(提公因式法、公式法)解某些简单的数字系数的一元二次方程.2.能根据具体的一元二次方程的特征,灵活选择方程的解法,体会解决问题方法的多样性.学习重点:用因式分解法解一元二次方程.学习难点:理解因式分解法解一元二次方程的基本思想.预习案一、预习教材二、感知填空1.将下列各式分解因式:(1)x2-2x (2)x2-4x+4 (3)x2-16 (4)x(x-2)-(x-2) 2.分解因式法解一元二次方程的根据是:若a·b=0,则a=____或b=_____.如:若(x+2)(x-3)=0,那么x+2=0或者________.这就是说,求一元二次方程(x+2)(x-3)=0的解,就相当于求一次方程x+2=0或x-3=0的解.三、自主提问探究案一、探究一:用因式分解法解下列方程(1)5x 2+3x =0 (2)7x (3-x )=4(x -3) (3)9(x -2)2=4(x +1)2. 跟踪练习:解下列方程:x 2-5x +6=0作业案一、过关习题1.如果(x -1)(x +2)=0,那么以下结论正确的是( )A .x =1或x =-2B .必须x =1C .x =2或x =-1D .必须x =1且x =-22.方程x 2-3x =0的解为( )A .x =0B .x =3C .x 1=0,x 2=-3D .x 1=0,x 2=33.方程29180x x -+=的两个根分别是一个等腰三角形的底和腰的长,则这个等腰三角形的周长为 .4.解下列方程(1) x 2=2x+35 (2)2(1)160x --= (3) 3(1=22x x x --)二、能力提升1.已知(a 2+b 2)2-(a 2+b 2)-6=0,求a 2+b 2的值.2.阅读下面的例题:解方程220x x --=的过程如下:(1)当0x ≥时,原方程化为220x x --=,解得: 12x =, 21x =-(不合题意,舍去).(2)当0x <时,原方程可化为220x x +-=,解得: 12x =-, 21x =(不合题意,舍去).所以,原方程的解是: 12x =, 22x =-.请参照例题解方程: 2110x x ---=第五节 一元二次方程的根与系数的关系学习目标:1.掌握一元二次方程两根的和、两根的积与系数的关系.2.能根据根与系数的关系式和已知一个根的条件下,求出方程的另一根,以及方程中的未知系数.3.会利用根与系数的关系求关于两根代数式的值.学习重点:根与系数的关系及运用.学习难点:定理发现及运用.预习案一、预习教材二、感知填空1.一元二次方程ax2+b x+c=0(a≠0)的求根公式是_________________________________.2.一元二次方程3x2-6x=0的两个根是_______________3.一元二次方程x2-6x+9=0的两个根是________________三、自主提问探究案一、探究一:一元二次方程的根与系数的关系例1:解下列方程,将得到的解填入下面的表格中,观察表中x1+x2,x1·x2的值,它们与对应的一元二次方程的各项系数之间有什么关系从中你能发现什么规律归纳总结:一般地,对于关于x 的一元二次方程ax 2+b x +c =0(a ≠0),用求根公式求出它的两个根x 1、x 2,由一元二次方程ax 2+b x +c =0的求根公式知x 1=-b +b 2-4ac2a ,x 2=-b -b 2-4ac2a ,能得出以下结果:x 1+x 2=-b a ,x 1·x 2=c a. 二、探究二:一元二次方程根与系数关系定理的应用例2;已知方程5x 2+k x -6=0的一个根为2,求它的另一个根及k 的值.例3:若一元二次方程2x 2+3x -1=0的两个根为212221211121,,x x x x x x ++)()( 跟踪练习:1.设一元二次方程x 2-6x +4=0的两实根分别为x 1和x 2,则(x 1+x 2)-x 1·x 2=( )A .-10B .10C .2D .-22.设a ,b 是方程x 2+x -2016=0的两个不相等的实数根,则a 2+2a +b 的值为_________.作业案一、过关习题1.已知一元二次方程x 2-6x +c =0有一个根为2,则另一个根为( )A .2B .3C .4D .82.若α,β是方程x 2-2x -3=0的两个实数根,则α2+β2的值为( )A .10B .9C .7D .53.菱形的两条对角线长分别是方程x 2-14x +48=0的两实根,则菱形的面积为_______.4.已知x 1、x 2是一元二次方程3x 2=6﹣2x 的两根,则x 1﹣x 1x 2+x 2的值是( )A. B. C. D.二、能力提升1. 已知x 的方程x 2+(2k +1)x +k 2-2=0的两实根的平方和等于11,则k =_______.2.已知关于x 的一元二次方程()28170x m x m --+-=.(1)m 为何值时,方程有一根为零?(2)m 为何值时,方程的两个根互为相反数?(3)是否存在m ,使方程的两个根互为倒数?若存在,请求出m 的值;不存在,请说明理由.第六节 应用一元二次方程(1)学习目标:1.使学生会用一元二次方程解应用题.2.进一步培养学生将实际问题转化为数学问题的能力和分析问题、解决问题的能力,培养学生运用数学的意识.3.通过列方程解应用题,进一步体会运用代数中方程的思想方法解应用题的优越性.学习重点:运用面积和速度等公式建立数学模型并运用它们解决实际问题. 学习难点:寻找等量关系,用一元二次方程解决实际问题.预习案一、预习教材二、感知填空1.在Rt△ACB中,∠C=90°,AC=5cm,BC=12cm,则AB=_____cm. 2.在△ABC中,D、E分别是AB,AC的中点,若BC=10cm,则DE=_____cm.三、自主提问探究案一、探究一:利用一元二次方程求解几何问题例1:用一根长40cm的铁丝围成一个面积为91cm2的矩形,问这个矩形长是多少?跟踪练习:一个直角三角形的斜边长为7cm,一条直角边比另一条直角边长1cm,那么这个直角三角形的面积是多少?作业案一、过关习题1.用长为100cm的金属丝制成一个矩形框子,框子的面积不可能是( ) A.375cm2 B.500cm2 C.625cm2 D.700cm22.一块矩形耕地大小尺寸如图所示,要在这块耕地上沿东西和南北方向分别挖两条和四条水渠,如果水渠的宽相等,而且要保证余下的可耕地面积为9600m2,那么水渠的宽为()A.2m B.4m C.1m D.3m3.一个矩形的面积是48平方厘米,它的长比宽多8厘米,设矩形的宽x厘米,应满足方程_____________.解方程求得x=______.二、能力提升1.如图所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪ABCD.求该矩形草坪BC边的长.2.在宽为20m,长为32m的矩形耕地上,修筑同样宽的三条道路(两条纵向,一条横向,横向与纵向互相垂直),把耕地分成大小相等的六块作试验田,要使试验田面积为570平方米,问道路应为多宽?3.如图,A、B、C、D为矩形的四个顶点,AB=16cm,AD=6cm,动点P、Q分别从点A、C同时出发,点P以3cm/s的速度向点B移动,一直到达B为止,点Q以2 cm/s 的速度向D移动.(1)P、Q两点从出发开始到几秒?四边形PBCQ的面积为33cm2;(2)P、Q两点从出发开始到几秒时?点P和点Q的距离是10cm.第六节应用一元二次方程(2)学习目标:1.会用一元二次方程解决销量随销售单价变化而变化的市场营销类应用题.2.通过列方程解应用题,进一步认识方程模型的重要性,提高逻辑思维能力和分析问题、解决问题的能力.学习重点:会用一元二次方程求解营销类问题.学习难点:将实际问题抽象为一元二次方程的模型,寻找等量关系,用一元二次方程解决实际问题.预习案一、预习教材二、感知填空1.利润=_____________;2商品的利润率=_______________3.商品的总利润=一件商品的利润×销售商品的数量.三、自主提问.探究案一、探究一:利用一元二次方程求解营销类问题例1:某商场将销售成本为30元的台灯以40元的价格售出,平均每月销售600个.市场调查表明:这种台灯的售价每上涨1元,每月平均销售数量将减少10个.若销售利润率不得高于100%,那么销售这种台灯每月要获利10000元,台灯的售价应定为多少元?跟踪练习:某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经试销发现,如果每件衬衫每降价1元,商场平均每天可多售出2件,若商场平均每天要盈利1200元,每件衬衫应降价多少元?二、探究二:利用一元二次方程求解增长率问题例2:某公司今年10月的营业额为2500万元,按计划12月的营业额要达到3600万元,求该公司11,12两个月营业额的月均增长率。
北师大版九年级数学上册全册导学案
![北师大版九年级数学上册全册导学案](https://img.taocdn.com/s3/m/fd8efee7c8d376eeaeaa31d0.png)
北师大版九年级数学上册全册导学案第一章 证明(二)§1.1 你能证明它们吗(1)撰稿人 王可 审稿人 龚敏林 日期教学目标1.了解作为证明基础的几条公理的内容,掌握证明的基本步骤和书写格式2.经历“探索—发现—猜想—证明”的过程,能够用综合法证明等腰三角形的有关性质定理3.运用等腰三角形的性质定理及其推论证明与等腰三角形有关的角相等或线段相等 教学重点、难点:1.了解作为证明基础的几条公理的内容2.掌握证明的基本步骤和书写格式教学过程一、预习反馈 明确目标1.等腰三角形知识回顾1) 如图1,在△ABC 中,AB = AC ,则顶角为 ,底角为 ,腰为 ,底边为 。
2) AD 是△ABC 的中线,则 ;AD 是△ABC 的角平分线,则 ;AD 是△ABC 的垂线,则 ; 3) 如图,在△ABC 中,AB = AC ,点D 在AC 上,且BD = BC = AD 。
找出所有的等腰三角形 。
2.说出学过的公理及推论3.已知∠D =∠C ,∠A =∠B ,且AE = BF 。
求证:AD = BC 。
二、创设情境 自主探究1. 议一议 等腰三角形的性质 等腰三角形的两个底角相等 (等边对等角)我们如何验证这个命题成立呢?我们以前是用度量、折纸的方法得到的,但要说明一个结论成立,仅仅依靠观察或度量是不够的,证明是必要的。
那么,我们应该如何证明呢? 2.讲解例题 已知,如图,在△ABC 中,AB = AC 。
求证:∠B =∠C 。
分析:要想证明∠B=∠C ,根据以前所学的证明方法,只需证明分别包括∠B 和∠C 的两个三角形全等。
但图中只有一个三角形。
我们应该如何作辅助线呢?引导学生作出辅导线,得出证明过程。
发散学生思维,让学生找出其它的证明方法。
除了作顶角的平分线还可以怎样作辅助线?顶角的平分线 底边上的中线 底边上的高ABCDDCBAABCA A A ABCA BCDE F三、展示交流 点拨提高如图,在△ABC 中,D 为AC 上一点,并且AB = AD ,DB = DC ,若∠C = 29°,求∠A 。
最新北师大版九年级上册1.2 矩形的性质与判定导学案及答案
![最新北师大版九年级上册1.2 矩形的性质与判定导学案及答案](https://img.taocdn.com/s3/m/c792233758f5f61fb636666c.png)
第1课时矩形的性质1.掌握矩形的的定义,理解矩形与平行四边形的关系.2.理解并掌握矩形的性质定理;会用矩形的性质定理进行推导证明;3.会初步运用矩形的定义、性质来解决有关问题,进一步培养学生的分析能力.自学指导:阅读课本P11~14,完成下列问题.1.有一个角是直角的平行四边形叫做矩形.2.生活中你见到过的矩形有五星红旗、毛巾.3.矩形是特殊的平行四边形,具有平行四边形的一切性质.4.矩形的四个角都是直角.5.矩形的对角线相等.6.直角三角形斜边上的中线等于斜边的一半.知识探究1.在一个平行四边形活动框架上,用两根橡皮筋分别套在相对的两个顶点上(作出对角线),拉动一对不相邻的顶点,改变平行四边形的形状.(1)随着∠α的变化,两条对角线的长度分别是怎样变化的?(2)当∠α是直角时,平行四边形变成矩形,此时它的其他内角是什么样的角?它的两条对角线的长度有什么关系?操作、思考、交流、归纳后得到矩形的性质.矩形性质1 矩形的四个角都是直角.矩形性质2 矩形的对角线相等.2.如图,在矩形ABCD中,AC、BD相交于点O,OB与AC是什么关系?解:由矩形性质2得:AC=BD,再由平行四边形性质得:AO=OC,BO=OD,所以AO=BO=CO=DO=12AC=12BD.因此可得直角三角形的一个性质:直角三角形斜边上的中线等于斜边的一半.3.请同学们拿出准备好的矩形纸片,折一折,观察并思考。
(1)矩形是不是中心对称图形? 如果是,那么对称中心是什么?(2)矩形是不是轴对称图形?如果是,那么对称轴有几条?解:矩形是轴对称图形,它有两条对称轴.自学反馈1.矩形是轴对称图形吗?如果是的话它有几条对称轴?2.请用所学的知识诊断下面的语句,若正确请在括号里打“√”,若“有病”请开药方:(1).矩形是特殊的平行四边形,特殊之处就是有一个角是直角.( )(2).平行四边形是矩形.( )(3).平行四边形具有的性质(如平行四边形的对边平行且相等;平行四边形的对角相等;平行四边形的对角线互相平分)矩形也具有.( )3.已知△ABC 是Rt △,∠ABC=90°,BD 是斜边AC 上的中线.若BD=3㎝,则AC =_____㎝;活动1 小组讨论例1 如图,在矩形ABCD 中,两条对角线相交于点O ,∠AOD=120°,AB=2.5cm ,求矩形对角线的长.证明:∵四边形ABCD 是矩形,∴ AC=BD(矩形的对角线相等),OA=OC=21AC ,OB=OD=21BD. ∴OA=OD.∵∠AOD=120°,∴∠ODA=∠OAD=21(180°-120°)= 30°. 又∵∠DAB=90°(矩形的四个角都是直角),∴BD=2AB =2×2.5=5.活动2 跟踪训练1.矩形具有一般平行四边形不具有的性质是( )A .对边相互平行B .对角线相等C .对角线相互平分D .对角相等2.如果矩形的两条对角线所成的钝角是120°,那么对角线与矩形短边的长度之比为( )A.3∶2B.2∶1C.1.5∶1D.1∶13.如图,在矩形ABCD 中,AB <BC ,AC ,BD 相交于点O ,则图中等腰三角形的个数是( )A.8B.6C.4D.24.在Rt △ABC 中,∠ACB =90°,D 、E 为AB 、AC 的中点.则下列结论中错误的是( )A.CD =ADB.∠B =∠BCDC.∠AED =90°D.AC =2DEA B CDE5.在直角三角形中,两条直角边的长分别为12和5,则斜边上中线长为 .6.矩形的一条对角线长10cm ,且两条对角线的一个夹角为60°,则矩形的宽为 cm .7.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若AB=6cm ,BC=8cm ,则△AEF 的周长= cm .8.如图,矩形ABCD 中,E 为AD 上一点,EF ⊥CE 交AB 于F ,若DE =2,矩形的周长为16,且CE =EF ,则AE =_______.A BCDEF9.在矩形ABCD 中,点E 是BC 上一点,AE=AD ,DF ⊥AE ,垂足为F.求证:DF=DC .课堂小结1.矩形的定义及性质.2.矩形是角特殊的平行四边形,决定了矩形的四个角都是直角,对角线相等.3.直角三角形斜边上的中线等于斜边的一半.教学至此,敬请使用《名校课堂》相应课时部分.【预习导学】自学反馈1.解:既是轴对称图形,也是中心对称图形,对称轴有两条.2.(1)√ (2)× (3)√3.6【合作探究】活动2 跟踪训练1.B2.B3.C4.D5.6.5 6.57.98.39.解:连接DE.∵AD=AE,∴∠AED=∠ADE.∵矩形ABCD,∴AD∥BC,∠C=90°.∴∠ADE=∠DEC,∴∠DEC=∠AED.又∵DF⊥AE,∴∠DFE=∠C=90°.∵DE=DE,∴△DFE≌△DCE.∴DF=DC.第2课时矩形的判定1.能够运用综合法和严密的数学语言证明矩形的性质和判定定理以及其他相关结论;2.经历探索、猜测、证明的过程,发展学生的推理论证能力,培养学生找到解题思路的能力,使学生进一步体会证明的必要性以及计算与证明在解决问题中的作用;3.学生通过对比前面所学知识,体会证明过程中所运用的归纳、概括以及转化等数学思想方法;4.通过学生独立完成证明的过程,让学生体会数学是严谨的科学,增强学生对待科学的严谨治学态度,从而养成良好的习惯。
新北师大版九年级数学上册1.3.2正方形的判定导学案
![新北师大版九年级数学上册1.3.2正方形的判定导学案](https://img.taocdn.com/s3/m/d6b9e07bf524ccbff021847a.png)
新北师大版九年级数学上册1.3.2正方形的判定导学案【教学目标】知识与技能1.能进一步理解掌握正方形的判定定理.2.进一步体会证明的必要性以及计算与证明在解决问题中的作用.过程与方法1.经历探索、猜想、证明的过程,进一步发展推理论证能力.2.进一步体会证明的必要性以及计算与证明在解决问题中的作用. 3.体会证明过程中所运用的归纳概括以及转化等数学思想方法.情感、态度与价值观1.通过知识的迁移、类比、转化,激发学生探索新知识的积极性和主动性. 2.体会数学与生活的联系.【教学重难点】教学重点特殊四边形―― 正方形的判定定理的灵活应用.教学难点特殊四边形―― 正方形的判定定理的灵活应用.【导学过程】【创设情景,引入新课】回顾正方形有哪些性质【自主探究】:自学,明确正方形的性质定理和判定定理的灵活应用.Ⅱ.解决问题:下面大家来猜一猜,想一想依次连接任意四边形各边的中点可以得到一个平行四边形.那么,依次连接正方形各边的中点.(如图)能得到―个怎样的图形呢?先猜一猜,再证明.依次连结正方形各边的中点得到的四边形是正方形.证明:∵四边形ABCD是正方形.∴∠A=∠B=∠C=∠D=90°, AB=BC=CD=DA.又∵A1、B1、C1、D1分别是边AB、BC、CD、DA的中点。
∴AA1=BA=BB1=B1C =CC1=C1D=DD1=D1A.∴△AD1A1≌△BA1B1≌△CB1C1≌△DC1D1.∴A1B1=B1C1=C1D1=D1A1.∵∠A=∠B=90°, AA1=AD1,A1B=BB1,∴∠AA1D1=∠BA1B1=45°.∴∠D1A1B1=90°.∴四边形A1B1C1D1是正方形.这个题是先证明了四边形A1B1C1D1的四条边相等,即是菱形,然后又证明了这个四边形的一个角是直角,即有一个角为直角的菱形是正方形,从而得证四边形A1B1C1D1是正方形.【课堂探究】已知:如图,点E,F,G,H分别是正方形ABCD四条边上的点,并且AF= BG= CH= DE。
BS北师版 初三九年级数学 上册第一学期秋(导学案)第三章 概率的进一步认识(全章导学案 分课时)
![BS北师版 初三九年级数学 上册第一学期秋(导学案)第三章 概率的进一步认识(全章导学案 分课时)](https://img.taocdn.com/s3/m/95fce0295f0e7cd18525362e.png)
BS北师版初三九年级数学上册第一学期秋(导学案)第三章概率的进一步认识第三章概率的进一步认识3.1 用树状图或表格求概率第1课时用树状图或表格求概率学习目标:1.学会用树状图和列表法计算涉及两步试验的随机事件发生的概率。
2.进一步经历用树状图、列表法计算两步以上随机实验的概率的过程.【探究案】活动一列举事件发生的所有可能各同学思考下列问题,小组长组织交流1.同时掷两枚质地均匀的硬币有几种可能的结果?2.同时掷两枚质地均匀的骰子有几种可能的结果?问题2与问题1相比,可能产生的结果数目增多了,列举时很容易造成重复或遗漏。
怎样避免这个问题呢?活动二运用列表法求概率各同学自主完成例1的解题过程,小组交流、订正,并完成题后小结例1:同时掷两个质地均匀的骰子,计算下列事件的概率:(1) 两个骰子的点数相同;(2) 两个骰子的点数的和是9;(3) 至少有一个骰子的点数为2。
1 2 3 4 5 61234解:思考 :将题中的“同时掷两个骰子”改为“把一个骰子掷两次”,所得的结果有变化吗?(就本例的3个问题而言,“同时掷两个骰子”与“把一个骰子掷两次”可以取同样的试验的所有可能的结果,因此作此改动对所得结果没有影响。
)题后小结:当一个事件涉及两个因素且可能出现的结果数目较多时,通常采用 法。
其步骤如下:① ② ③活动三 运用树状图法求概率问题:甲口袋中装有2个相同的小球,它们分别写有字母A 和B ;乙口袋中装有3个相同的小球,它们分别写有字母C 、D 和E ;从两个口袋中各随机地取出1个小球。
用列表法写出所有可能的结果如果还有丙口袋中装有2个相同的小球,它们分别写有字母H 和I 。
从甲、乙、丙三个口袋中各随机地取出1个小球。
你能写出所有可能的结果吗?与你的同伴交流一下。
当一次试验涉及两个因素时,且可能出现的结果较多时,为不重复不遗漏地列出所有可能的结果,通常用列表法。
当一次试验涉及三个因素时,列表法就不方便了,那么为不重不漏地列出所有可能的结果,我们该怎么办呢?5 6填写表格过程中,注意数对的有序性。
北师大版九年级数学上册导学案反比例函数
![北师大版九年级数学上册导学案反比例函数](https://img.taocdn.com/s3/m/ae4d7064360cba1aa811dae8.png)
北师大版九年级数学上册导学案年级九班级学科数学课题 6.1反比例函数第 1 课时总课时编制人审核人使用时间第周星期使用者课堂流程具体内容学习目标1. 理解反比例函数的概念,领会反比例函数的意义。
2. 能根据实际问题中的条件确定反比例函数的关系式。
3. 能判断一个给定函数是否为反比例函数.通过探索现实生活中数量间的反比例关系,体会和认识反比例函数是刻画现实世界中特定数量关系的一种数学模型;进一步理解常量与变量的辩证关系和反映在函数概念中的运动变化观点。
学法指导温故知新1.什么是函数?2.什么是正比例函数?3.什么是一次函数?(5分钟)1.课前自己独立完成,学科长检查。
教学一.自学1.某村有耕地200hm2,人口数量x逐年发生变化,该村人均占有的耕地面积yhm2与人口数量x之间有怎样的关系? .2. 汽车从南京出发开往上海(全程约300km),汽车行驶全程所用时间t(h)与行驶的平均速度v(km/h)之间有怎样的关系? .3.电流I、电阻R、电压U之间满足关系式U=IR,当U=220V时,(1)你能用含有R的代数式表示I吗?(2)利用写出的关系式完成下表:R/Ω20 40 60 80 100I/A当R越来越大时,I怎样变化?当R越来越小呢?(3)变量I是R的函数吗?为什么?二、交流上面的函数表达式都具有的形式,两个变量之间的关系,就是小学学过的反比例关系。
一般地,叫做反比例函数. 其中x是自变量,y是x的函数,k是比例系数.从y=xk中可知x作为分母,所以自变量x的取值范围是反比例函数的表达式还可以表示为:(10分钟)2.自己阅读课本,把看不明白得用红笔画出来,然后对子之间相互交流。
(10分钟)3.自己独立完成,完成有困难得与本组成员合作完成。
1-=kxy kxy=O10003000 -2000 - 4000 - 0.1 ︳ ︳0.2 0.3 0.4P/Pa 流 程4.在压力不变的情况下,某物体承受的压强P Pa 是它的受力面积Sm 2的反比例函数,其图像如图所示.(1)求P 与s 之间的函数关系式.(2)当S=0.5m 2时,求物体承受的压强P .(10分钟) 4.学科长带领本组成员审题并分析该题的解题思路,达到共同完成得目的。
最新北师大版九年级上册全册教案(教学设计)及导学
![最新北师大版九年级上册全册教案(教学设计)及导学](https://img.taocdn.com/s3/m/4c3be86931126edb6f1a108b.png)
2019年下九(1)、(2)班学期数学教学计划学期教学进度靖边第五中学九年级数学备课组第1课时2019 年8 月15 日星期一靖边第五中学九年级数学备课组靖边第五中学九年级数学备课组第2 课时2019 年8 月16 日星期二第3 课时2019 年8 月17 日星期三第4 课时2019 年8 月18 日星期四本节课所学的内容比较多,证明三角形是等边三角形时要抓住它的判定定理;证明线段的两倍或一半关系时,往往要用到直角三角形的这个性质。
这个定理成立的条件有两个:其一,必须是直角三角形;其二,有一个锐角等于30.在这两个条件同时具备的前提下,结论才能成立。
我们以前都是证明两线段相等或平行,而这个定理就可以用来证明一条线段是另一条线段的两倍或一半。
因此,我们以后若遇到要证明两线段不是相等,而是两倍或一半关系时,我们就要很自然地想到用这个定理来证明.第5课时2019 年8 月19 日星期五靖边第五中学九年级数学备课组第6 课时2019年8 月22日星期一(1)若∠A=∠D,BC=EF,则Rt△ABC≌Rt△DEF的依据是__________.靖边第五中学九年级数学备课组靖边第五中学九年级数学备课组靖边第五中学九年级数学备课组第7 课时2019年8月23日星期二靖边第五中学九年级数学备课组靖边第五中学九年级数学备课组靖边第五中学九年级数学备课组第8 课时2019年8 月24 日星期三靖边第五中学九年级数学备课组如右上图,∠BAC=120°,AB=AC,AC的垂直平分线交,则∠AD B=__________度.靖边第五中学九年级数学备课组靖边第五中学九年级数学备课组第9 课时2019 年8 月25日星期四靖边第五中学九年级数学备课组靖边第五中学九年级数学备课组靖边第五中学九年级数学备课组第10 课时2019年8 月26日星期五靖边第五中学九年级数学备课组靖边第五中学九年级数学备课组靖边第五中学九年级数学备课组第11 课时2019 年8 月27日星期六靖边第五中学九年级数学备课组靖边第五中学九年级数学备课组第12 课时2019年8 月28日星期日靖边第五中学九年级数学备课组cm.靖边第五中学九年级数学备课组靖边第五中学九年级数学备课组第13 课时2019 年8 月29 日星期一靖边第五中学九年级数学备课组靖边第五中学九年级数学备课组靖边第五中学九年级数学备课组第14课时2019年8 月30 日星期二靖边第五中学九年级数学备课组靖边第五中学九年级数学备课组靖边第五中学九年级数学备课组第15 课时2019 年8 月31 日星期三靖边第五中学九年级数学备课组靖边第五中学九年级数学备课组靖边第五中学九年级数学备课组第16 课时2019 年9 月1 日星期四靖边第五中学九年级数学备课组。
新北师大版九年级上册数学导学案
![新北师大版九年级上册数学导学案](https://img.taocdn.com/s3/m/5678d52aaef8941ea66e0554.png)
第二章一元二次方程第一节认识一元二次方程(1)学习目标:1.探索一元二次方程及其相关概念,能够辨别各项系数,能够从实际问题中抽象出方程知识.2.在探索问题的过程中使学生感受到方程是刻画现实世界的一个模型,体会方程与实际生活的联系.3.通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用.学习重点:一元二次方程的概念.学习难点:如何把实际问题转化为数学方程.预习案一、预习教材二、感知填空先阅读教材“议一议”前面的内容,然后完成下面问题:1.在第一个问题中,地毯的长可以表示为_____________,宽可以表示为_____________,由矩形的面积公式可以列出方程为_________________________.2.在第二个问题中,如果设五个连续整数中间的一个数为x ,你又能列出怎样的方程呢? 答:设五个连续整数中间的一个数为x ,由题意可列方程,得_________________________.三、自主提问探究案一、探究一:一元二次方程的概念例1:问题1:有一块矩形铁皮,长100cm ,宽50cm .在它的四个角分别切去一个面积相同的正方形,然后将四周突出的部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积是3600cm 2,那铁皮各角应切去多大的正方形?你能设出未知数,列出相应的方程吗?归纳结论:方程的等号两边都是整式,只含有一个未知数,且未知数的最高次数是2的方程叫做一元二次方程.一般地,任何一个关于x 的一元二次方程,经过整理,都能化成如下形式:ax 2+b x +c =0(a 、b 、c 为常数,a ≠0)这种形式叫做一元二次方程的一般形式.其中ax 2是二次项,a 是二次项的系数;b x 是一次项,b 是一次项系数;c 是常数项. 跟踪练习:1.下列方程中,是一元二次方程的是( )A .x 2+2y -1=0B .x +2y 2=5C .2x 2=2x -1D .x 2+1x-2=0 2.将方程(x +3)2=8x 化成一般形式为_______,其二次项系数为___,一次项系数是___,常数项是____.二、探究二:一元二次方程有关概念的应用例2:关于x 的方程mx 2-3x =x 2-mx +2是一元二次方程,m 应满足什么条件?跟踪练习:1.关于x 的方程(a -1)x 2+3x =0是一元二次方程,则a 的取值范围是______.2.已知方程(m +2)x 2+(m +1)x -m =0,当m 满足______时,它是一元一次方程;当m 满足________时,它是一元二次方程.作业案一、过关习题1.在下列方程中,是一元二次方程的有( )①2x 2-1=0;②ax 2+b x +c =0;③(x +2)(x -3)=x 2-3;④2x 2-1x=0. A .1个 B .2个 C .3个 D .4个2.把方程(x -5)(x +5)+(2x -1)2=0化成一元二次方程的一般形式为( )A .5x 2-4x -4=0B .x 2-5=0C .5x 2-2x +1=0D .5x 2-4x +6=03.下列方程是一元二次方程的是( )A. 12=-y xB. 2560x x ++=C. ()()230x x ++=D. 122,3x x =-=-4.方程2354x x -=中,关于a 、b 、c 的说法正确的是( )A. 3,4,5a b c ===-B. 3,5,4a b c ==-=C. 3,4,5a b c =-=-=-D. 3,4,5a b c ==-=-二、能力提升1.阅读材料,解答问题:有一块长80cm ,宽60cm 的薄钢片,在四个角上截去四个相同的正方形,然后做成底面积为1500cm 2的无盖盒子,想一想,应该怎样求出截去的小正方形的边长?问题:(1)如果设小正方形的边长为x cm ,那么盒子底面的长为____________;宽为__________,根据题意,所列方程为____________________.(2)所列方程的一般形式是什么?是哪一种方程?并指出其各项的系数.2.已知关于x 的方程(m -2)x |m |+3x -4=0是一元二次方程,那么m 的值是( )A .2B .±2C .-2D .1第一节认识一元二次方程(2)学习目标:1.会进行简单的一元二次方程的试解.2.根据题意判定一个数是否是一元二次方程的根及利用试解方法解决一些具体问题.3.理解方程的解的概念,培养有条理的思考与表达的能力.学习重点:判定一个数是否是方程的根.学习难点:会在简单的实际问题中估算方程的解,理解方程解的实际意义.预习案一、预习教材二、感知填空请同学独立完成下列问题.问题1:如图,一个长为10m 的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m ,那么梯子的底端距墙多少米?设梯子底端距墙为xm ,那么,根据题意,可得方程为___________列表:x0 1 2 3 4 5 6 7 8 x 2-36 设苗圃的宽为x m ,则长为_________.根据题意,得________.整理,得______________.列表:探究案一、探究一:探索一元二次方程的近似解例1:(1)问题1中一元二次方程的解是多少?问题2中一元二次方程的解是多少?(2)如果抛开实际问题,问题1中还有其他解吗?问题2呢?跟踪练习:1.已知关于x的方程x2-k x-6=0的一个根为x=3,则实数k的值为() A.1B.-1C.2D.-22.下面哪些数是方程2x2+10x+12=0的根?-4,-3,-2,-1,0,1,2,3,4.二、探究二:一元二次方程根的判定及应用例2:若x=1是关于x的一元二次方程ax2+b x+c=1(a≠0)的一个根,求代数式2016(a+b +c)的值.跟踪练习:1.若x=1是一元二次方程ax2+b x+c=0的解,则a+b+c=___;若x=-1是一元二次方程ax2+b x+c=0的解,则a-b+c=____.2.如果x=1是方程ax2+b x+3=0的一个根,求(a-b)2+4a b的值.作业案一、过关习题1.已知长方形宽为xcm,长为3xcm,面积为24cm2,则x最大不超过()A.1B.2C.3D.422则方程x+p x+q=0的正数解满足( )A.0<x<0.5 B.0.5<x<1 C.1<x<1.1 D.1.1<x<1.2二、能力提升1.2+2x-10=0的一个近似解为x≈_________.(精确到0.1)分析表格中的数据,估计方程(x+8)﹣826=0的一个正数解x的大致范围为()A. 20.5<x<20.6B. 20.6<x<20.7C. 20.7<x<20.8D. 20.8<x<20.93.若关于x的一元二次方程为ax2+bx+5=0(a≠0)的解是x=1,则2013﹣a﹣b的值是()A. 2018 B. 2008 C. 2014 D. 2012第二节用配方法求解一元二次方程(1)学习目标:1.会用开平方法解形如(x +m )2=n(n≥0)的方程.2.理解一元二次方程的解法——配方法.3.会用配方法解二次项系数为1的一元二次方程. 学习重点:会用配方法解二次项系数为1的一元二次方程.学习难点:用配方法解二次项系数为1的一元二次方程的一般步骤.预习案一、预习教材二、感知填空1.如果一个数的平方等于4,则这个数是________.2.已知x 2=9,则x =______.3.填上适当的数,使下列等式成立.(1)x 2+12x +____=(x +6)2;x 2-6x +_____=(x -3)2.三、自主提问探究案一、探究一:应用配方法求解二次项系数为1的一元二次方程例1:用配方法解方程x 2-2x -3=0归纳结论:通过配成完全平方式的方法,将一元二次方程转化成(x +m )2=n(n≥0)的形式,进而得到一元二次方程的根,这种解一元二次方程的方法称为配方法.跟踪练习:用配方法解方程:x 2+2x -1=0.作业案一、过关习题1.用配方法解方程,原方程应变形为( ) A. B. C. D.2.用配方法解方程x 2+4x -5=0,则x 2+4x +____=5+____,所以x 1=______,x 2=________.3.若三角形的两边长分别是6和8,第三边的长是一元二次方程(x -8)2=4的一个根,则此三角形的周长为________.4.下列解方程的过程中,正确的是( )A .x 2=-2,解方程,得x =±2B .(x -2)2=4,解方程,得x -2=2,x =4C .4(x -1)2=9,解方程,得4(x -1)=±3,x 1=74,x 2=14D .(2x +3)2=25,解方程,得2x +3=±5,x 1=1,x 2=-45.解下列方程:(1)()2590x --=(2)4(x +6) 2-9=0(3)x 2-10x +25=7 (4)x 2-14x =8(5)x 2+3x =1 (6)x 2+2x +2=8x +4二、能力提升1.若2246130a a b b ++-+=,则a b +=()A. 1B. 1-C. 5D. 5-2.若a ,b ,c 是△ABC 的三条边,且a 2+b 2+c 2+50=6a +8b +10c ,试判断这个三角形的形状.第二节 用配方法解一般一元二次方程(2)学习目标:1.理解配方法的意义,会用配方法解一般一元二次方程.2.通过探索配方法的过程,让学生体会转化的数学思想方法.3.学生在独立思考和合作探究中感受成功的喜悦,并体验数学的价值,增强学生学习数学的兴趣.学习重点:用配方法解一般一元二次方程.学习难点:用配方法解一元二次方程的一般步骤.预习案一、预习教材二、感知填空1.用配方法解一元二次方程x 2-3x =5,应把方程两边同时( )A .加上32B .加上94C .减去32D .减去942.解方程(x -3)2=8,得方程的根是( )A .x =3+22B .x =3-22C .x =-3±22D .x =3±2 23.方程x 2-3x -4=0的两个根是____________.三、自主提问探究案一、探究一:用配方法解二次项系数不为1的一元二次方程例1:用配方法解方程2x 2-6x +1=0用配方法求解一般一元二次方程的步骤是什么?归纳结论:(1)把二次项系数化为1,方程的两边同时除以二次项系数;(2)移项,使方程左边为二次项和一次项,右边为常数项;(3)配方,方程的两边都加上一次项系数一半的平方,把方程化为(x +h)2=k 的形式;(4)用直接开平方法解变形后的方程.跟踪练习:一小球以15m /s 的初速度竖直向上弹出,它在空中的高度h(m )与时间t(s )满足关系:h =15t -5t 2,小球何时能达到10米的高度?作业案一、过关习题1.要使方程x 2-72x =-32左边配方成完全平方式,应在方程两边同时加上( ) A.2)27( B .72 C.32 D.2)47(- 2.用配方法解下列方程时,配方有错误的是( )A. x 2-2x-99=0化为(x-1)2=100B. x 2+8x+9=0化为(x+4)2=25C. 2t 2-7t-4=0化为2781416t ⎛⎫-= ⎪⎝⎭D. 3y 2-4y-2=0化为221039y ⎛⎫-= ⎪⎝⎭3.把方程21503x x --=,化成(x +m)2=n 的形式得() A. 232722x ⎛⎫-= ⎪⎝⎭ B. 232924x ⎛⎫-= ⎪⎝⎭ C. 236924x ⎛⎫-= ⎪⎝⎭ D. 235124x ⎛⎫-= ⎪⎝⎭ 4.用配方法解方程:(1)4x 2+8x -3=0 (2)3x 2-9x +2=0 (3)2x 2+6=7x二、能力提升先化简,再求值: 2352362m m m m m -⎛⎫÷+- ⎪--⎝⎭,其中m 是方程2310x x +-=的根. 第三节 用公式法求解一元二次方程学习目标:1.理解求根公式的推导过程和判别公式.2.使学生能熟练地运用公式法求解一元二次方程.3.通过由配方法推导求根公式,培养学生推理能力和由特殊到一般的数学思想. 学习重点:求根公式的推导和公式法的应用.学习难点:理解求根公式的推导过程及判别公式的应用.预习案一、预习教材二、感知填空1.方程3x 2-x =2化成一般形式后,式中( )A .a =3,b =-1,c =2B .a =2, b =1,c =-2C .a =3,b =-1,c =-2D .a =3,b =1,c =-22.用配方法解下列方程:(1)x 2-x -1=0 (2)2x 2-4x =1三、自主提问探究案一、探究一:探索一元二次方程的求根公式例1:用配方法解方程:ax 2+b x +c =0(a ≠0).归纳总结:由上可知,一元二次方程ax 2+b x +c =0(a ≠0)的根由方程的系数a 、b 、c 而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax 2+b x +c =0,当b 2-4a c≥0时,将a 、b 、c 代入式子x =-b±b 2-4ac 2a,就可求出方程的根;(2)这个式子叫做一元二次方程的求根公式;(3)利用求根公式解一元二次方程的方法叫公式法;(4)由求根公式可知,一元二次方程最多有两个实数根.二、探究二:用公式求解一元二次方程例2:用公式法解下列方程,根据方程根的情况你有什么结论?(1)2x 2-3x =0 (2)3x 2-23x +1=0 (3)4x 2+x +1=0.归纳总结:(1)当Δ=b 2-4a c >0时,一元二次方程ax 2+b x +c =0(a ≠0)有两个不相等的实数根,即x 1=-b +b 2-4ac 2a ,x 2=-b -b 2-4ac 2a;(2)当Δ=b 2-4a c =0时,一元二次方程ax2+b x+c=0(a≠0)有两个相等实数根即x1=x2=-b2a;(3)当Δ=b2-4a c<0时,一元二次方程ax2+b x+c=0(a≠0)没有实数根.作业案一、过关习题1.下列一元二次方程中,有两个不相等的实数根的方程是()A.x2-3x+1=0B.x2+1=0 C.x2-2x+1=0 D.x2+2x+3=0 2.关于x的一元二次方程2x+(k-4)x2+6=0没有实数根,则k的最小整数值是()A. -1B. 2C. 3D. 53.把一元二次方程x2=3(2x-3)化为一般形式是_________,b2-4a c=0,则该方程根的情况为___________.4.方程2x2-5x=7的两个根分别为x1=________,x2=__________.二、能力提升1.已知关于x的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根,求实数k的取值范围.2.已知关于x的一元二次方程(x-3)(x-4)=a²(1)求证:对于任意实数a,方程总有两个不相等的实数根;(2)若方程有一个根是1,求a的值及方程的另一个根.第四节用因式分解法求解一元二次方程学习目标:1.会用分解因式(提公因式法、公式法)解某些简单的数字系数的一元二次方程.2.能根据具体的一元二次方程的特征,灵活选择方程的解法,体会解决问题方法的多样性.学习重点:用因式分解法解一元二次方程.学习难点:理解因式分解法解一元二次方程的基本思想.预习案一、预习教材二、感知填空1.将下列各式分解因式:(1)x2-2x(2)x2-4x+4(3)x2-16(4)x(x-2)-(x-2)2.分解因式法解一元二次方程的根据是:若a·b=0,则a=____或b=_____.如:若(x+2)(x-3)=0,那么x+2=0或者________.这就是说,求一元二次方程(x+2)(x-3)=0的解,就相当于求一次方程x+2=0或x-3=0的解.三、自主提问探究案一、探究一:用因式分解法解下列方程(1)5x2+3x=0(2)7x(3-x)=4(x-3)(3)9(x-2)2=4(x+1)2.跟踪练习:解下列方程:x2-5x+6=0作业案一、过关习题1.如果(x-1)(x+2)=0,那么以下结论正确的是()A.x=1或x=-2B.必须x=1 C.x=2或x=-1 D.必须x=1且x=-2 2.方程x2-3x=0的解为()A .x =0B .x =3C .x 1=0,x 2=-3D .x 1=0,x 2=33.方程29180x x -+=的两个根分别是一个等腰三角形的底和腰的长,则这个等腰三角形的周长为.4.解下列方程(1) x 2=2x+35 (2)2(1)160x --= (3) 3(1=22x x x --)二、能力提升1.已知(a 2+b 2)2-(a 2+b 2)-6=0,求a 2+b 2的值.2.阅读下面的例题:解方程220x x --=的过程如下:(1)当0x ≥时,原方程化为220x x --=,解得: 12x =, 21x =-(不合题意,舍去).(2)当0x <时,原方程可化为220x x +-=,解得: 12x =-, 21x =(不合题意,舍去).所以,原方程的解是: 12x =, 22x =-.请参照例题解方程: 2110x x ---= 第五节 一元二次方程的根与系数的关系学习目标:1.掌握一元二次方程两根的和、两根的积与系数的关系.2.能根据根与系数的关系式和已知一个根的条件下,求出方程的另一根,以及方程中的未知系数.3.会利用根与系数的关系求关于两根代数式的值.学习重点:根与系数的关系及运用.学习难点:定理发现及运用.预习案一、预习教材二、感知填空1.一元二次方程ax 2+b x +c =0(a ≠0)的求根公式是_________________________________.2.一元二次方程3x 2-6x =0的两个根是_______________3.一元二次方程x 2-6x +9=0的两个根是________________三、自主提问探究案一、探究一:一元二次方程的根与系数的关系例1:解下列方程,将得到的解填入下面的表格中,观察表中x 1+x 2,x 1·x 2的值,它们与对归纳总结:一般地,对于关于x 的一元二次方程ax 2+b x +c =0(a ≠0),用求根公式求出它的两个根x 1、x 2,由一元二次方程ax 2+b x +c =0的求根公式知x 1=-b +b 2-4ac2a ,x 2=-b -b 2-4ac2a ,能得出以下结果:x 1+x 2=-b a ,x 1·x 2=c a. 二、探究二:一元二次方程根与系数关系定理的应用例2;已知方程5x 2+kx -6=0的一个根为2,求它的另一个根及k 的值.例3:若一元二次方程2x 2+3x -1=0的两个根为212221211121,,x x x x x x ++)()( 跟踪练习:1.设一元二次方程x 2-6x +4=0的两实根分别为x 1和x 2,则(x 1+x 2)-x 1·x 2=( )A .-10B .10C .2D .-22.设a ,b 是方程x 2+x -2016=0的两个不相等的实数根,则a 2+2a +b 的值为_________.作业案一、过关习题1.已知一元二次方程x 2-6x +c =0有一个根为2,则另一个根为( )A .2B .3C .4D .82.若α,β是方程x 2-2x -3=0的两个实数根,则α2+β2的值为( )A .10B .9C .7D .53.菱形的两条对角线长分别是方程x 2-14x +48=0的两实根,则菱形的面积为_______.4.已知x 1、x 2是一元二次方程3x 2=6﹣2x 的两根,则x 1﹣x 1x 2+x 2的值是( )A. B. C. D.二、能力提升1. 已知x 的方程x 2+(2k +1)x +k 2-2=0的两实根的平方和等于11,则k =_______.2.已知关于x 的一元二次方程()28170x m x m --+-=. (1)m 为何值时,方程有一根为零?(2)m 为何值时,方程的两个根互为相反数?(3)是否存在m ,使方程的两个根互为倒数?若存在,请求出m 的值;不存在,请说明理由.第六节 应用一元二次方程(1)学习目标:1.使学生会用一元二次方程解应用题.2.进一步培养学生将实际问题转化为数学问题的能力和分析问题、解决问题的能力,培养学生运用数学的意识.3.通过列方程解应用题,进一步体会运用代数中方程的思想方法解应用题的优越性. 学习重点:运用面积和速度等公式建立数学模型并运用它们解决实际问题.学习难点:寻找等量关系,用一元二次方程解决实际问题.预习案一、预习教材二、感知填空1.在Rt△ACB中,∠C=90°,AC=5cm,BC=12cm,则AB=_____cm.2.在△ABC中,D、E分别是AB,AC的中点,若BC=10cm,则DE=_____cm.三、自主提问探究案一、探究一:利用一元二次方程求解几何问题例1:用一根长40cm的铁丝围成一个面积为91cm2的矩形,问这个矩形长是多少?跟踪练习:一个直角三角形的斜边长为7cm,一条直角边比另一条直角边长1cm,那么这个直角三角形的面积是多少?作业案一、过关习题1.用长为100cm的金属丝制成一个矩形框子,框子的面积不可能是()A.375cm2B.500cm2C.625cm2D.700cm22.一块矩形耕地大小尺寸如图所示,要在这块耕地上沿东西和南北方向分别挖两条和四条水渠,如果水渠的宽相等,而且要保证余下的可耕地面积为9600m2,那么水渠的宽为()A.2m B.4m C.1m D.3m3.一个矩形的面积是48平方厘米,它的长比宽多8厘米,设矩形的宽x厘米,应满足方程_____________.解方程求得x=______.二、能力提升1.如图所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪ABCD.求该矩形草坪BC边的长.2.在宽为20m,长为32m的矩形耕地上,修筑同样宽的三条道路(两条纵向,一条横向,横向与纵向互相垂直),把耕地分成大小相等的六块作试验田,要使试验田面积为570平方米,问道路应为多宽?3.如图,A、B、C、D为矩形的四个顶点,AB=16cm,AD=6cm,动点P、Q分别从点A、C同时出发,点P以3cm/s的速度向点B移动,一直到达B为止,点Q以2 cm/s的速度向D移动.(1)P、Q两点从出发开始到几秒?四边形PBCQ的面积为33cm2;(2)P、Q两点从出发开始到几秒时?点P和点Q的距离是10cm.第六节应用一元二次方程(2)学习目标:1.会用一元二次方程解决销量随销售单价变化而变化的市场营销类应用题.2.通过列方程解应用题,进一步认识方程模型的重要性,提高逻辑思维能力和分析问题、解决问题的能力.学习重点:会用一元二次方程求解营销类问题.学习难点:将实际问题抽象为一元二次方程的模型,寻找等量关系,用一元二次方程解决实际问题.预习案一、预习教材二、感知填空1.利润=_____________;2商品的利润率=_______________3.商品的总利润=一件商品的利润×销售商品的数量.三、自主提问.探究案一、探究一:利用一元二次方程求解营销类问题例1:某商场将销售成本为30元的台灯以40元的价格售出,平均每月销售600个.市场调查表明:这种台灯的售价每上涨1元,每月平均销售数量将减少10个.若销售利润率不得高于100%,那么销售这种台灯每月要获利10000元,台灯的售价应定为多少元?跟踪练习:某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经试销发现,如果每件衬衫每降价1元,商场平均每天可多售出2件,若商场平均每天要盈利1200元,每件衬衫应降价多少元?二、探究二:利用一元二次方程求解增长率问题例2:某公司今年10月的营业额为2500万元,按计划12月的营业额要达到3600万元,求该公司11,12两个月营业额的月均增长率。
最新北师大版九年级上册数学导学案(全册共)
![最新北师大版九年级上册数学导学案(全册共)](https://img.taocdn.com/s3/m/56aa0deea32d7375a5178061.png)
最新北师大版九年级上册数学导学案(全册共119页)目录第一章特殊平行四边形1.1菱形的性质与判定第1课时菱形的性质第2课时菱形的判定1.2矩形的性质与判定第1课时矩形的性质第2课时矩形的判定1.3正方形的性质与判定第1课时正方形的性质第2课时正方形的判定第二章一元二次方程2.1 认识一元二次方程第1课时一元二次方程第2课时一元二次方程的解及其估算2.2 用配方法求解一元二次方程第1课时用配方法求解简单的一元二次方程第2课时用配方法求解较复杂的一元二次方程2.3 用公式法求解一元二次方程第1课时用公式法求解一元二次方程第2课时利用一元二次方程解决面积问题2.4 用因式分解法求解一元二次方程2.5一元二次方程的根与系数的关系2.6 应用一元二次方程第1课时几何问题及数字问题与一元二次方程第2课时第三章概率的进一步认识3.1 用树状图或表格求概率第1课时用树状图或表格求概率第2课时概率与游戏的综合运用3.2 用频率估计概率第四章图形的相似4.1 成比例线段第1课时线段的比和成比例线段第2课时比例的性质4.2 平行线分线段成比例4.3 相似多边形4.4 探索三角形相似的条件第1课时利用两角判定三角形相似第2课时利用两边及夹角判定三角形相似第3课时利用三边判定三角形相似第4课时黄金分割4.5 相似三角形判定定理的证明4.6 利用相似三角形测高4.7 相似三角形的性质第1课时相似三角形中的对应线段之比第2课时相似三角形的周长和面积之比4.8 图形的位似第1课时位似多边形及其性质第2课时平面直角坐标系中的位似变换第五章投影与视图5.1 投影第1课时投影的概念与中心投影第2课时平行投影与正投影5.2 视图第1课时简单图形的三视图第2课时复杂图形的三视图第六章反比例函数6.1 反比例函数6.2 反比例函数的图象与性质第1课时反比例函数的图象第2课时反比例函数的性质第一章 特殊平行四边形1.1 菱形的性质与判定第1课时 菱形的性质学习目标:①通过折、剪纸张的方法,探索菱形独特的性质。
学年九年级上下册数学导学案北师大版(供参考)
![学年九年级上下册数学导学案北师大版(供参考)](https://img.taocdn.com/s3/m/8a844444a76e58fafab003d3.png)
第一章特殊平行四边形E F D C B A F ED C BA 第一章 特殊平行四边形课题1.1菱形的性质与判定(第二课时)教师二备一、问题引入1、 叫做菱形.2、菱形的四条边 ,对角线 .3、除了菱形的定义可以判断一个平行四边形是菱形外,还有什么条件可以判断? 二、基础训练1、要使□ABCD 为菱形,下列添加条件中正确的是( )A.AB ⊥BCB.AC ⊥BDC.AC=BDD.∠ABC=∠CDA 2、如图所示,在□ABCD 中,AE,CF 分别是∠BAD 和∠BCD 的平分线,若添加一个条件,仍无法判断四边形AECF 为菱形的是( )A.AE=AFB.EF ⊥ACC.∠B=60°D.AC 是∠EAF 的平分线三、例题展示 例1:如图所示,ABCD 的对角线AC 的垂直平分线与边AD 、BC 分别交于E 、F .求证:四边形AFCE 是菱形.例2:如图所示,AD 是△ABC 的角平分线,DE ∥AC 交AB 于点E,DF ∥AB 交AC 于F,试判断四边形AEDF 的形状,并证明你的结论.第一章特殊平行四边形HEF GCBAD 例2:如图,已知:两条等宽的长纸条倾斜地重叠着,求证:重叠部分为菱形.四、课堂检测1、下列条件中,能判定一个四边形为菱形的条件是( )A.对角线互相平分的四边形B.对角线互相垂直且平分的四边形C.对角线相等的四边形D.对角线相等且互相垂直的四边形2、菱形的边长是2 cm ,一条对角线的长是23 cm ,则另一条对角线的长是( ) A .4cmB .3cmC .2cmD .23cm3、 菱形的周长为16,两邻角度数的比为1∶2,此菱形的面积为( ) A. 43B. 83C. 103D. 1234、如图,菱形ABCD 的对角线AC 、BD 交于点O ,且AC =16cm ,BD =12cm ,求菱形ABCD 的高DH.5、如图,已知在四边形ABCD 中,AD=BC,点E,F,G ,H 分别是AB,CD,AC,BD 的中点,求证:四边形EGFH 是菱形.教学反思C DA B 第4题第一章特殊平行四边形Q P D C B A例2:如图所示,四边形ABCD 是矩形,△PBC 和△QCD 都是等边三角形,且点P 在矩形上方,点Q 在矩形内. (1) 求证:∠PBA=∠PCQ=30°;(2)求证:PA=PQ 四.课堂检测 1 1、矩形ABCD 的边AD=3cm ,对角线AC 、BD 的夹角∠AOB=120°,则AC= . 2 2、 Rt △ABC 的两直角边长分别为3和4,则斜边上的中线是 ,斜边上的高是 . 3 3、矩形的面积为12cm 2,一条边长为3cm ,则矩形的对角线长为_______ 4 4、已知点E 是矩形ABCD 的边BC 的中点,那么S △AED =(_)ABCD S 矩形A.21B.41C.51D.615 5、矩形ABCD 沿AC 折叠,使点B 落在点E 处, 求证:EF=DF. 66、已知:在矩形ABCD 中,E 为DC 边上一点,BF ⊥AE 于点F ,且BF =BC .求证:AE =AB.7、如图,在矩形ABCD 中,对角线AC 和BD 相交于点O,过顶点C 作BD 的平行线与AB 的延长线相交于点E,求证:△ACE 是等腰三角形教学反思 第5题 第6题F B D C A E 第7题O ED CBA第一章特殊平行四边形第一章 特殊平行四边形课题 1.2矩形的性质与判定(第三课时)教师二备一、问题引入1、矩形的性质定理:除了具有与平行四边形一样的性质之外,矩形所具有的特殊性质是:①矩形的____________________都是直角; ②矩形的对角线___________.2、矩形的判定定理:①有一个角是直角的________________是矩形(定义); ②有_____________________ 是直角的四边形...是矩形; ③对角线_________ ___的平行四边形是矩形. 二、基础训练1、在矩形ABCD 中,对角线AC 、BD 交于点O ,若∠AOB=60°,AB=4㎝,则AC=_______㎝.2、如图所示,已知ABCD ,下列条件:①AC=BD ,②AB=AD ,③∠1=∠2,④AB ⊥BC 中,能说明ABCD 是矩形的有(填写序号).3、如图,矩形的对角线交于点O ,过点O 的直线交AD 、BC 于点E 、F ,AB=2,BC=3,则图中阴影部分的面积为___ _______.三、例题展示例1:在矩形ABCD 中,对角线AC 与BD 相交于点O,AE ⊥BD 于点E,ED=3BE,求AE 的长.第2题 21DCBAO ED CBA四、课堂检测1、如上图1,在矩形ABCD 中,AB=3,AD=4,P 是AD 上一动点,PF ⊥AC 于F,PE ⊥BD 于E,则PE+PF 的值为( )A .125B .135C .52 D .22、已知:如图,在△ABC 中,AB=AC ,D 为BC 的中点,四边形ABDE 是平行四边形, 求证:四边形ADCE 是矩形.3、如图,以△ABC 的三边为边,在BC 的同侧分别作3个等边三角形,即△ABD 、△BCE 、△ACF .请回答问题并说明理由: (1)四边形ADEF 是什么四边形?(2)当△ABC 满足什么条件时,四边形ADEF 是矩形?教学反思E D C B A 第2题图 BA CED F 第3题图第1题图第一章特殊平行四边形第一章特殊平行四边形第一章 特殊平行四边形单元检测一、选择题1、如图,四边形ABCD 的对角线互相平分,要使它变为矩形, 需要添加的条件是( ) A.AB=CD B.AD=BC C.AB=BC D.AC=BD2、在菱形ABCD 中,对角线AC=4,∠BAD=120°,则菱形ABCD 的周长为( ) A.20 B.18 C.16 D.153、(2014•广西玉林市)下列命题是假命题的是( )A.四个角相等的四边形是矩形B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形D.对角线垂直的平行四边形是菱形 4、如图,两张宽度相等的纸条交叉重叠,重合部分是( ) A .平行四边形 B .菱形 C .矩形 D .正方形 5、下列条件 中,不能判定四边形ABCD 为矩形的是( ) A .AB ∥CD ,AB=CD,AC=BD B.∠A=∠B=∠D=90° C.AB=BC,AD=CD,∠C=90° D.AB=CD,AD=BC,∠A=906、如图,菱形ABCD 中,对角线AC 、BC 相交于点O ,H 为AD 边中点, 菱形ABCD 的周长为28,则OH 的长等于( ) A3.5 B. 4 C. 7 D. 147、正方形具有而矩形不一定具有的性质是( ) A .四个角都是直角 B .对角线互相平分 C .对角相等 D .对角线互相垂直8、(2014•孝感)如图,正方形OABC 的两边OA 、OC 分别在x 轴、y 轴上, 点D (5,3)在边AB 上,以C 为中心,把△CDB 旋转90°, 则旋转后,点D 的对应点D′的坐标是( ) A .(2,10) B.(-2,0) C.(2,10)或(-2,0) D.(10,2)或(-2,0)二、填空题 9、(2014•江苏苏州)已知正方形ABCD 的对角线AC=,则正方形ABCD 的周长为 . 10、(2014•山东淄博)已知□ABCD ,对角线AC ,BD 相交于点O ,请你添加一个适当的条件,使□ABCD 成为一个菱形,你添加的条件是 .11、已知矩形ABCD 的两条对角线相交于点O,∠AOB=60°,AB=4㎝,则矩形的对角线长为 .12、( 2014•福建泉州)如图,Rt △ABC 中,∠ACB =90°,D 为斜边AB 的中点,AB =10cm ,则CD 的长为 cm .第1题图ODC BA第6题图第8题图 第12题图第4题图13、(2014•四川宜宾)菱形的周长为20cm,两个相邻的内角的度数之比为1:2,则较长的对角线长度是 cm .14、(2014年四川资阳)如图,在边长为4的正方形ABCD 中,E 是AB 边上的一点,且AE =3,点Q 为对角线AC 上的动点, 则△BEQ 周长的最小值为 . 三.解答题15、( 2014•福建泉州)已知:如图,在矩形ABCD 中,点E ,F 分别在AB ,CD 边上,BE =DF ,连接CE ,AF .求证:AF =CE .16、(2014•四川巴中)如图,在四边形ABCD 中,点H 是BC 的中点,作射线AH ,在线段AH 及其延长线上分别取点E ,F ,连结BE ,CF .(1)请添加一个条件,使得△BEH ≌△CFH ,你添加的条件是 ,并证明. (2)在问题(1)中,当BH 与EH 满足什么关系时,四边形BFCE 是矩形,请说明理由.第14题图第15题图第16题第二章一元二次方程第二章一元二次方程第二章一元二次方程第二章一元二次方程第二章一元二次方程第二章一元二次方程5、(2014德州)方程01222=+++k k kx x 的两个实数根足42221=+x x ,则的值为第二章 一元二次方程课题 2.6 应用一元二次方程(一)教师二备一、问题引入:1、列方程解应用题的一般步骤: (1)“审”,即审题,分清题意,明确题目要求,弄清已知数、未知数以及它们之间的关系; (2)“设”,即设 ,设未知数的方法有直接设未知数和间接设未知数两种; (3)“列”,即根据题中的 关系列方程;(4)“解”,即求出所列方程的 ; (5)“检验”,即验证是否符合题意;(6)“答”,即回答题目中要解决的问题. 重点:找出相等关系的关键是审题,审题是列方程(组)的基础,找出 是列方程(组)解应用题的关键. 二、基础检测:1、(2014年天津市)要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x 个队参赛,则x 满足的关系式为( ) A .()28121=+x x B . ()28121=-x xC .()281=+x xD .()281=-x x2、(2014丽水)如图,某小区规划在一个长m 30、宽m 20的长方形ABCD 上修建三条同样宽的通道,使其中两条与AB 平行,另一条与AD 平行,其余部分种花草.要使每一块花草的面积都为278cm ,那么通道的宽应设计成多少m ?设通道的宽为xm ,由题意列得方程第2题图三、例题展示:例:如图:某海军基地位于A处,在其正南方向200海里处有一重要目标B,在B的正东方向200海里处有一重要目标C,小岛D位于AC的中点,岛上有一补给码头.小岛F位于BC中点.一艘军舰从A 出发,经B到C匀速巡航,一艘补给船同时从D出发,沿南偏西方向匀速直线航行,欲将一批物品送达军舰.已知军舰的速度是补给船的2倍,军舰在由B到C的途中与补给船相遇,那么相遇时补给船航行了多少海里?(结果精确到0.1海里)分析:(1)图形中线段长表示的量:已知AB= = 海里,DE表示的路程,表示军舰的路程.(2)找出题目中的等量关系即:速度等量:V军舰= 时间等量:t军舰=t补给船根据分析正确设出未知数,写出解题过程.四、课堂检测:1、(2014年山东泰安)某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x株,则可以列出的方程是()A.(3+x)(4﹣0.5x)=15 B.(x+3)(4+0.5x)=15 C.(x+4)(3﹣0.5x)=15 D.(x+1)(4﹣0.5x)=152、一个矩形的面积是48平方厘米,它的长比宽多8厘米,则矩形的宽x(厘米),应满足方程______ ___ _.3、如图,某小区规划在长32米,宽20米的矩形场地ABCD上修建三条同样宽的小路,使其中两条与AD平行,一条与AB平行,其余部分种草,若使草坪的面积为566米2,问小路应为多宽?4、(2014新疆,)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?教学反思第二章一元二次方程课题 2.6 应用一元二次方程(二)教师二备一、问题引入:常见应用题类型1、增长率问题:增长率问题分正增长率问题与负增长率问题.台元 元 降价前 降价后根据分析正确设出未知数,在练习本上写出解题过程.四、课堂检测:1、(2014•湖南衡阳)学校去年年底的绿化面积为5000平方米,预计到明年年底增加到7200平方米,求这两年的年平均增长率.2、2、(2013山东泰安)某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个;第二周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x 元销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出,如果这批旅游纪念品共获利1250元,问:第二周每个旅游纪念品的销售价格为多少元?教学反思第二章 一元二次方程单元检测题(总分100分)一、选择题:(每小题4分,共32分)1、若方程013)2(||=+++mx x m m 是关于x 的一元二次方程,则( )A .2±=mB .2=mC .2-=mD .2±≠m2、已知m 是方程012=--x x 的一个根,则代数式m m -2的值等于( )A.-1B.0C.1D.2 3、方程x x 22=的解为( )A.2=xB.21-=x ,02=xC. 21=x ,02=xD. 0=x 4、解方程)15(3)15(2-=-x x 的适当方法是( )A.开平方法B.配方法C.公式法D.因式分解法 5、用配方法解下列方程时,配方有错误的是( )A.09922=--x x 化为()10012=-x B.0982=++x x 化为()2542=+xC.04722=--t t 化为1681)47(2=-t D.02432=--y y 化为910)32(2=-y6、如果关于x 的一元二次方程02=++q px x 的两根分别为31=x ,12=x ,那么这个一元二次方程是( )A.0432=++x xB.0342=-+x xC.0342=+-x xD. 0432=-+x x7、一元二次方程0624)2(2=-+--m mx x m 有两个相等的实数根,则m 等于 ( )A. 6- B. 1 C. 2 D. 6-或18、某型号的手机连续两次降价,每个售价由原来的1225元降到了625元,设平均每次降价的百分率为x ,列出方程正确的是( ) A .()122516252=+x B. ()625112252=+xC. ()122516252=-x D.()625112252=-x二、填空题:(每小题4分,共20分)9、一元二次方程x x 71322=-的二次项系数为: ,一次项系数为: ____ ,常数项为: ___.10、请写出一个一元二次方程使它有一个根为-3, . 11、关于x 的一元二次方程022=+-m mx x 的一个根为1,则方程的另一根为 .12、关于x 的一元二次方程0322=-+k x x 有实数根,则k 的取值范围是 . 13、实数范围内定义一种运算“*”,其规则为22b a b a -=*,根据这个规则, 方程()031=*+x 的解为 . 三、解答题:14、解下列方程:(每小题6分,共12分)(1) 01862=--x x (2) 752652x x x15、已知关于的方程(的两根之和为,两根之差为1,其中是△的三边长(1)求方程的根;(2)试判断△的形状.(每小题12分)16、团委准备举办学生绘画展览,在长30cm、宽为20cm的矩形画面的四周镶上宽度相等的彩纸,并使彩纸的面积恰好与原画面面积相等,求彩纸的宽度.(每小题12分)17、果批发商场经销一种高档水果,如果每千克盈利15元,每天可售出500kg,经市场调查发现,在进货价不变的情况下,每涨价1元,日销售量将减少30kg,现该商场要保证每天盈利8250元,同时又要使顾客得到实惠,那么每千克应涨价多少元?(每小题12分)第三章概率的进一步认识课题 3.1用树状图或表格求概率(一)教师二备一、问题引入:A.61B.31C.21D.652、一次抽奖活动中,印发奖券1000张,其中一等奖20张,二等奖80张,三等奖200张,那么第一位抽奖者(仅买一张奖券)中奖的概率是( ).A.501B.252C.51D.1033、三个人站成一排,通过试验可得,甲站在中间的概率为().A.61B.31C.21D.414、甲、乙两人赛跑,则开始起跑时都迈出左腿的概率是()A.1B.21C.31D.415、某校决定从两名男生和两名女生中选出两名同学作为2014年元旦联欢晚会的主持人,则恰好选出一男一女的概率是.6、如图是某地的灌溉系统,一个漂浮物A流到B处的概率为.7、小明说:“我投均匀的一枚硬币2次,会出现两次都为反、一正一反和两次都为正三种情况,所以出现一正一反这种情况的概率是31”,你觉得他的说法有道理吗?说明你的理由.8、有两组卡片,第一组两张卡片上都写着A、B,第二组三张卡片上都写着A、B、C.试用树状图和列表法求出从每组卡片中各抽取一张,两张都是B的概率.教学反思第三章概率的进一步认识课题 3.1用树状图或表格求概率(二)教师二备一、问题引入:有1到6的点数,掷得面朝上的点数之和是3的倍数的概率是.3、一个盒子内装有大小、形状相同的三个球,其中红球、绿球、白球各1个,小明摸出一个球再放回,再摸出一个球,则两次都摸到白球的概率是()A.21B.41C.61D.914、学校团委在“五四青年节”举行“感动校园十大人物”颁奖活动,九(4)班决定从甲、乙、丙、丁四人中随机派两名代表参加此活动,则甲乙两人恰有一人参加此活动的概率是()A.32B.65C.61D.215、在一个口袋中有4个完全相同的小球,它们的标号分别为1,2,3,4,从中随机摸出一个小球记下标号后放回,再从中随机摸出一个小球,则两次摸出的小球的标号之和大于4的概率是()A.83B.21C.85D.436、从分别标有﹣1,1,2的三张卡片中一次抽取2张,卡片上的两个数的乘积为负数的概率是.7、如图,有A、B、C、D 四张卡片,其正面分别写有“寸、又、日”四个偏旁部首,有的能独立成字,有的能组合成字.现四张卡片背面朝上.(1)任意翻过一张卡片,能独立成字的概率为;(2)先任意翻过一张卡片作为左部偏旁,再任意翻过一张与其组合,请用列表或画树状图的方法求翻过的两张卡片恰好能组合成字的概率.教学反思第三章概率的进一步认识课题 3.1用树状图或表格求概率(三)教师二备一、问题引入:1、同时抛掷硬币三次,一共有 种可能出现的结果?求三枚硬币全部正面朝上的概率 .2、用树状图和列表的方法求概率应注意各种结果出现的可能性 . 二、基础训练:1、(1)一个口袋中有4粒糖,1粒红色,1粒黄色,2粒白色,今从中任取一粒,再放回,又取一粒,两粒都是白色的概率为_________.(2)一个口袋中有4粒糖,1粒红色,1粒黄色,2粒白色,今从中任取一粒,不放回,又取一粒,两粒都是白色的概率为_________.2、有6张写有数字的卡片,它们的背面都相同,现将它们背面朝上 (如右图),从中任意一张是数字3的概率是( ) A.61 B.31 C.21 D.323、有长度分别为2cm 、5cm 、7cm 、10cm 的四条线段,从中任取三条线段能够组成三角形的概率是( )A.14 B.12 C.23 D.34三、例题展示:例1、小英和小丽用两个转盘做“配紫色”游戏,配成紫色小英胜,否则小丽胜,用树状图或表格说明这个游戏对双方公平吗?例2:小明准备今年五一到上海参观世博会,但只需要一名家长陪同前往,爸爸、妈妈都很愿意陪同,于是决定用抛掷硬币的方法决定由谁陪同.每次掷一枚硬币,连掷三次.(1)用树状图列举三次抛掷硬币的所有结果;(2)若规定:有两次或两次以上正面向上,由爸爸陪同前往上海;有两次或两次以上反面向上,则由妈妈陪同前往上海.分别求由爸爸陪同小明前往上海和由妈妈陪同小明前往上海的概率. 四、课堂检测:1、一个家庭有3个小孩.这个家庭有3个男孩的概率是 ;2、如图是两个可以自由转动的转盘,转盘均被等分成三个扇形,并分别标上1,2,3和6,7,8这6个数字.如果同时转动两个转盘各一次(指针落在等分线上重转),红 黄蓝蓝红 红 黄则转盘停止后指针指向的数字之和为偶数的概率是.3、一布袋中有红、黄、白三种颜色的球各一个,它们除颜色外其它都一样.小亮从布袋中摸出一个球后放回去摇匀,再摸出一个球.请你利用(列表或画树状图)分析并求出小亮两次都能摸到白球的概率.4、有四张不透明的卡片(如图),除正面的数字不同外,其余都相同,现将它们背面向上洗匀,从中任意抽取两张,上面的数字之和恰好为零的概率为().A.15B.14C.13D.125、随机掷一枚均匀的硬币三次,三次正面都朝上的概率是.6、利用下面的转盘做“配紫色”的游戏,用树状图求出“配紫色”的概率.7、在一个不透明的盒子中,放入2个白球和1个红球,这些球除颜色外都相同.(1)搅匀后从中任意摸出2个球,请通过列表或树状图求摸出2个球都是白球的概率;(2)搅匀后从中任意摸出1个球,记录下颜色后放回袋中,再次搅匀后从中任意摸出1个球,则2次摸出的球都是白色的概率为;(3)现有一个可以自由转动的转盘,转盘被等分成60个相等的扇形,这些扇形除颜色外完全相同,其中40个扇形涂上白色,20个扇形涂上红色,转动转盘2次,指针2次都指向白色区域的概率为.教学反思第三章概率的进一步认识课题 3.2用频率估计概率教师二备一、问题引入:能有()A.16个B.15个C.13个D.12个2、随机抛掷一枚图钉10000次,其中针尖朝上的次数为2500次,则抛掷这枚图钉1次,针尖朝上的概率是.3、从一本书中随机抽取若干页,其中“的”出现的频率为0.03,由此可估计这本书中“的”字出现的频率为.4、一水塘里有鲤鱼、鲢鱼共10000尾,一渔民通过多次捕捞实验后发现,鲤鱼出现的频率为31%,则水塘大约有鲢鱼尾.5、一箱灯泡的合格率是87.5%,小刚由箱中任意买一个,则他买到次品的概率是()A.124B.87.5%C.14D.186、小鸡孵化场孵化出1000只小鸡,在60只上做记号,再放入鸡群中让其充分跑散,再任意抓出50只,其中做有记号的大约是()A.40只B.25只C.15只D.3只7、一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有3、4、5、x,甲、乙两人每次同时从袋中各随机摸出1个小球,并计算摸出的这2个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复实验,实验数据如表:摸球总次数10 20 30 60 90 120 180 240 330 450“和为8”出现的频数 2 10 13 24 30 37 58 82 110 150“和为8”出现的频率0.20 0.50 0.43 0.40 0.33 0.31 0.32 0.34 0.33 0.33解答下列问题:(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率将稳定在它的概率附近,估计出现“和为8”的概率是_________.(2)如果摸出的这两个小球上数字之和为9的概率是,那么x的值可以取7吗?请用列表法或画树状图说明理由;如果x的值不可以取7,请写出一个符合要求的x值.教学反思课题第三章概率的进一步认识单元测试教师二备10、在一个不透明的袋子中有10个除颜色外均相同的小球,通过多次摸球实验后,发教学反思现摸到白球的频率约为40%,估计袋中白球有_________个.11、一个口袋里放有三枚除颜色外都相同的棋子,其中有两枚是白色的,一枚是红色的.从中随机摸出一枚记下颜色,放回口袋搅匀,再从中随机摸出一枚记下颜色,两次摸出棋子颜色不同的概率是.12、抛一枚均匀的硬币100次,若出现正面的次数为45次,那么出现正面的频率是_________.13、小亮与小明一起玩“石头、剪刀、布”的游戏,两同学同时出“剪刀”的概率是.14、纸箱里有两双拖鞋,除颜色不同外,其它都相同,从中随机取一只(不放回),再取一只,则两次取出的鞋颜色恰好相同的概率为.三、解答题15、如图所示,有一张“太阳”和两张“月亮”共三张精美卡片,它们除花形外,其余都一样.(1)从三张卡片中一次抽出两张卡片,请通过列表或画树状图的方法,求出两张卡片都是“月亮”的概率;(2)若再添加几张“太阳”卡片后,任意抽出一张卡片,使得抽出“太阳”卡片的概率为2,那么应添加多少张“太阳”卡片?请说明理由.316、小伟和小欣玩一种抽卡片游戏:将背面完全相同,正面分别写有1,2,3,4的四张卡片混合后,小伟从中随机抽取一张.记下数字后放回,混合后小欣再随机抽取一张,记下数字.如果所记的两数字之和大于4,则小伟胜;如果所记的两数字之和不大于4,则小欣胜.(1)请用列表或画树形图的方法.分别求出小伟,小欣获胜的概率;(2)请修改两人获胜的规则,使两人获胜的可能性一样大.第四章图形的相似课题 4.1成比例线段(第1课时)教师二备一、问题引入:(1)如果选用同一个长度单位量得两条线段AB,CD的长度分别是m,n,那么就说这两条线段的比AB:CD=m:n,或写成nmCDAB=其中, ________ 叫做这个线段比的前项;________ 叫做这个线段比的后项.如果把nm表示成比值k,那么kCDAB=,或AB=k·CD.两条线段的比实际上就是两个数的比.(2)如图,设小方格的边长为1,四边形ABCD与四边形EFGH的顶点都在格点上,那么AB,CD,EH,EF的长度分别是多少?分别计算.你发现了什么?上图中________________ 是成比例线段,_______________ 也是成比例线段.四条线段a,b,c,d中,如果_______________,那么这四条线段a,b,c,d叫做成比例线段,简称比例线段.如果a:b=b:c,则b2=ac,线段b叫做线段a、c的比例中项;归纳比例的基本性质___________________________________________.二、基础训练:1、一条线段的长度是另一条线段长度的5倍,则这两条线段之比是___ ___.2、线段AB=10cm,CD=15cm,则AB:CD=;a=2m,b=10cm,则a:b=.3、已知a、b、c、d是成比线段,a=4cm,b=6cm,d=9cm,则c=____ .4、如果2x=5y,那么yx= .EFEHADABEFADEHAB,,,5、下面四条线段中,不能成比例的是( )A . a =3, b =6, c =2, d =4B . a =4, b =8, c =5, d =10C . a =2, b =22,c= 32 , d=3D . a=2, b=52 , c= 15 ,d=32三、例题展示: 例题1: 如图,一块矩形绸布的长AB=am,AD=1m ,按照图中所示的方式将它裁成相同的三面矩形彩旗,且使裁出的每面彩旗的长与宽的比与原绸布的长与宽的比相同,即AB AD AD AE = ,那么a 的值应当是多少?四、课堂检测:1、若四条线段中a =2,b =6,c =6,且满足dcb a =,那么d =_ ____. 2、线段x 、y 满足5x =3y ,那么x :y = . 3、等腰Rt ΔABC 的直角边与斜边之比是 . 4、若917=+y y x ,则y x =__ ___.5、如图,已知d c b a ==3,则b b a += , dd c += . 6、若41=b a ,则b b a 23+的值为 .7、若532zy x ==,x +y +z =5,那么x = ,y = ,z = . 8、如果754z y x ==,那么zz y x ++= .教学反思a cbd。
北师大版九年级数学上册导学案 第二章第1节认识一元二次方程
![北师大版九年级数学上册导学案 第二章第1节认识一元二次方程](https://img.taocdn.com/s3/m/98479811e87101f69e31951d.png)
2.1认识一元二次方程【教学目标】知识与技能一元二次方程的概念及它的一般形式及求一元二次方程的近似解过程与方法经历由具体问题抽象出一元二次方程的概念的过程,进一步体会方程是刻画现实世界的一个有效数学模型.经历方程解的探索过程,增进对方程解的认识。
情感、态度与价值观1.激励学生积极参与教学活动,提高大家学习数学的热情.2.引导学生充分进行交流,讨论与探索等教学活动,培养他们的合作与钻研精神.3经历方程解的探索过程,增进对方程解的认识,发展估算意识和能力鼓励学生大胆质疑,培养他们为真理而奋斗的献身精神.发展估算意识和能力【教学重难点】教学重点:一元二次方程的概念:a≠0教学难点:理解一元二次方程的概念:a≠0【导学过程】【创设情景,引入新课】什么是一元一次方程、什么是二元一次方程?【自主探究】阅读课本P31,回答问题:1、什么是一元二次方程?2、什么是一元二次方程的一般形式?二次项及二次项系数、一次项及一次项系数、常数项?【课堂探究案】阅读课本P31-33,回答问题:1、什么是一元二次方程?2、什么是一元二次方程的一般形式?二次项及二次项系数、一次项及一次项系数、常数项?元二次方程应用举例:(1)一块四周镶有宽度相等的花边的地毯,如图所示,它的长为8m,宽为5m,如果地毯中央长方形图案的面积为18m2,那么花边有多宽?如果设花边的宽为xm,那么地毯中央长方形图案的长为__________m,宽为___________m,根据题意,可得方程________________________.化成一般形式得_______________ .(2)求五个连续整数,使前三个数的平方和等于后两个数的平方和.列出方程并化简. 如果设五个连续整数中第一个数为x ,那么后面四个数依次表示为 , , , .根据题意,可得方程 . 化成一般形式得_______________ .(3)如图2,一个长为10m 的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m ,如果梯子的顶端下滑1m ,那么梯子的底端滑动多少米? 列出方程并化简.由勾股定理可知,滑动前梯子底端距墙 m ,如果设梯子底端滑动xm ,那么滑动后梯子底端距墙 m ,根据题意,可得方程 . 化成一般形式得_______________:在前一节的问题中,梯子底端滑动的距离x (m )满足(x+6)2+72=102一般形式是: 。
新版本 新教材 北师大数学九年级上册第二章导学案
![新版本 新教材 北师大数学九年级上册第二章导学案](https://img.taocdn.com/s3/m/31612b5e767f5acfa1c7cd82.png)
装订线§2.1一元二次方程(1)学习目标:1、理解掌握一元二次方程的定义,会判断满足一元二次方程的条件。
2、经历由具体问题抽象出一元二次方程的概念的过程,进一步体会方程是刻画现实世界的一个有效数学模型。
学习重点:1、掌握一元二次方程的定义2、理解一元二次方程的解或近似解学习难点:1、掌握一元二次方程的定义2、理解一元二次方程的解或近似解学习方法:自主探索合作交流学习过程知识点一:问题一:幼儿园活动教室矩形地面的长为8米,宽为5米,现准备在地面的正中间铺设一块面积为18m2的地毯,四周未铺地毯的条形区域的宽度都相同,根据这一情境,结合已知量你想求哪些量?你能根据条件列出关于这个量的什么关系式?问题二:你能找到关于102、112、122、132、142这五个数之间的等式吗?得到等式102+112+122=132+142之后你的猜想是什么?根据猜想继续找五个连续整数,使前三个数的平方和等于后两个数的平方和。
问题三:如图,一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m.如果梯子的顶端下滑1m.那么梯子的底端滑动多少米?归纳与小结: 1、一元二次方程的概念:只含有未知数,并且未知数的最高次数是的方程叫做一元二次方程.2、.一元二次方程的一般形式其中2ax是,a是;bx是,b是;c是【例1】判断下列方程是不是一元二次方程,并说明理由:①22230x xy y++=②()2323x x x x x-=+-③20x=④()()()221143x x x-=-+⑤()231x-=-⑥211xx+=课内练习:1、下列关于x的方程:(1)20ax bx c++=;(2)212xx+=;(3);(4)()()23121x x+=+;(5)(x+1)2=x2+2其中是一元二次方程的是()A、1个 B、2个 C、3个 D、4个2、方程()()22831x x x-+=-的一般形式为,二次项系数为,一次项系数为,常数项为.3、把下列各式化成一元二次方程的一般形式;写出它们的二次项系数与一次项系数①x-(x-1)2=-2x②(x+1)(x-1)=2(x-1)③x(1-2x)=(x+2)2④(()2210x x x-++-=知识点二:【例2 】方程()221230m x mx-+-=是一个关于x的一元二次方程,则m的取值是 .归纳与小结:特别注意的条件是:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新北师大版九年级上册数学导学案————————————————————————————————作者:————————————————————————————————日期:第二章一元二次方程第一节 认识一元二次方程(1)学习目标:1.探索一元二次方程及其相关概念,能够辨别各项系数,能够从实际问题中抽象出方程知识.2.在探索问题的过程中使学生感受到方程是刻画现实世界的一个模型,体会方程与实际生活的联系.3.通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用. 学习重点:一元二次方程的概念.学习难点:如何把实际问题转化为数学方程.预习案一、预习教材 二、感知填空先阅读教材“议一议”前面的内容,然后完成下面问题:1.在第一个问题中,地毯的长可以表示为_____________,宽可以表示为_____________,由矩形的面积公式可以列出方程为_________________________.2.在第二个问题中,如果设五个连续整数中间的一个数为x ,你又能列出怎样的方程呢? 答:设五个连续整数中间的一个数为x ,由题意可列方程,得_________________________. 三、自主提问探究案一、探究一:一元二次方程的概念例1:问题1:有一块矩形铁皮,长100cm ,宽50cm .在它的四个角分别切去一个面积相同的正方形,然后将四周突出的部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积是3600cm 2,那铁皮各角应切去多大的正方形?你能设出未知数,列出相应的方程吗?归纳结论:方程的等号两边都是整式,只含有一个未知数,且未知数的最高次数是2的方程叫做一元二次方程.一般地,任何一个关于x 的一元二次方程,经过整理,都能化成如下形式:ax 2+b x +c =0(a 、b 、c 为常数,a ≠0)这种形式叫做一元二次方程的一般形式.其中ax 2是二次项,a 是二次项的系数;b x 是一次项,b 是一次项系数;c 是常数项. 跟踪练习:1.下列方程中,是一元二次方程的是( )A .x 2+2y -1=0B .x +2y 2=5C .2x 2=2x -1D .x 2+1x-2=02.将方程(x +3)2=8x 化成一般形式为_______,其二次项系数为___,一次项系数是___,常数项是____.二、探究二:一元二次方程有关概念的应用例2:关于x 的方程mx 2-3x =x 2-mx +2是一元二次方程,m 应满足什么条件?跟踪练习:1.关于x 的方程(a -1)x 2+3x =0是一元二次方程,则a 的取值范围是______. 2.已知方程(m +2)x 2+(m +1)x -m =0,当m 满足______时,它是一元一次方程;当m 满足________时,它是一元二次方程.作业案一、过关习题1.在下列方程中,是一元二次方程的有( )①2x 2-1=0;②ax 2+b x +c =0;③(x +2)(x -3)=x 2-3;④2x 2-1x =0.A .1个B .2个C .3个D .4个2.把方程(x -5)(x +5)+(2x -1)2=0化成一元二次方程的一般形式为( )A .5x 2-4x -4=0B .x 2-5=0C .5x 2-2x +1=0D .5x 2-4x +6=0 3.下列方程是一元二次方程的是( )A. 12=-y x B. 2560x x ++= C. ()()230x x ++= D. 122,3x x =-=-4.方程2354x x -=中,关于a 、b 、c 的说法正确的是( ) A. 3,4,5a b c ===- B. 3,5,4a b c ==-= C. 3,4,5a b c =-=-=- D. 3,4,5a b c ==-=-二、能力提升1.阅读材料,解答问题:有一块长80cm ,宽60cm 的薄钢片,在四个角上截去四个相同的正方形,然后做成底面积为1500cm 2的无盖盒子,想一想,应该怎样求出截去的小正方形的边长?问题:(1)如果设小正方形的边长为x cm ,那么盒子底面的长为____________;宽为__________,根据题意,所列方程为____________________.(2)所列方程的一般形式是什么?是哪一种方程?并指出其各项的系数.2.已知关于x 的方程(m -2)x |m |+3x -4=0是一元二次方程,那么m 的值是( )A .2B .±2C .-2D .1第一节认识一元二次方程(2)学习目标:1.会进行简单的一元二次方程的试解.2.根据题意判定一个数是否是一元二次方程的根及利用试解方法解决一些具体问题.3.理解方程的解的概念,培养有条理的思考与表达的能力.学习重点:判定一个数是否是方程的根.学习难点:会在简单的实际问题中估算方程的解,理解方程解的实际意义.预习案一、预习教材二、感知填空请同学独立完成下列问题.问题1:如图,一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m,那么梯子的底端距墙多少米?设梯子底端距墙为xm,那么,根据题意,可得方程为___________列表:x0 1 2 3 4 5 6 7 8 x2-36问题2:一个面积为120m2的矩形苗圃,它的长比宽多2m,苗圃的长和宽各是多少?设苗圃的宽为x m,则长为_________.根据题意,得________.整理,得______________.列表:x 5 6 7 8 9 10 11x2+2x-120三、自主提问探究案一、探究一:探索一元二次方程的近似解例1:(1)问题1中一元二次方程的解是多少?问题2中一元二次方程的解是多少?(2)如果抛开实际问题,问题1中还有其他解吗?问题2呢?跟踪练习:1.已知关于x的方程x2-k x-6=0的一个根为x=3,则实数k的值为() A.1B.-1C.2D.-22.下面哪些数是方程2x2+10x+12=0的根?-4,-3,-2,-1,0,1,2,3,4.二、探究二:一元二次方程根的判定及应用例2:若x=1是关于x的一元二次方程ax2+b x+c=1(a≠0)的一个根,求代数式2016(a+b+c)的值.跟踪练习:1.若x=1是一元二次方程ax2+b x+c=0的解,则a+b+c=___;若x=-1是一元二次方程ax2+b x+c=0的解,则a-b+c=____.2.如果x=1是方程ax2+b x+3=0的一个根,求(a-b)2+4a b的值.作业案一、过关习题1.已知长方形宽为xcm,长为3xcm,面积为24cm2,则x最大不超过()A.1B.2C.3D.42.根据关于x的一元二次方程x2+p x+q=0,可列表如下:x0 0.5 1 1.1 1.2 1.3 x2+p x+q -15 -8.75 -2 -0.59 0.84 2.29则方程x2+p x+q=0的正数解满足( )A.0<x<0.5 B.0.5<x<1 C.1<x<1.1 D.1.1<x<1.2二、能力提升1.根据下表得知,方程x2+2x-10=0的一个近似解为x≈_________.(精确到0.1)x-4.2 -4.3 -4.4 -4.5 -4.6x2+2x-10 -0.76 -0.11 0.56 1.25 1.962.输入一组数据,按下列程序进行计算(x+8)2﹣826,输出结果如表:x 20.5 20.6 20.7 20.8 20.9输出﹣13.75 ﹣8.04 ﹣2.31 3.44 9.21分析表格中的数据,估计方程(x+8)2﹣826=0的一个正数解x的大致范围为()A. 20.5<x<20.6B. 20.6<x<20.7C. 20.7<x<20.8D. 20.8<x<20.93.若关于x的一元二次方程为ax2+bx+5=0(a≠0)的解是x=1,则2013﹣a﹣b的值是()A. 2018 B. 2008 C. 2014 D. 2012第二节用配方法求解一元二次方程(1)学习目标:1.会用开平方法解形如(x+m)2=n(n≥0)的方程.2.理解一元二次方程的解法——配方法.3.会用配方法解二次项系数为1的一元二次方程.学习重点:会用配方法解二次项系数为1的一元二次方程.学习难点:用配方法解二次项系数为1的一元二次方程的一般步骤.预习案一、预习教材二、感知填空1.如果一个数的平方等于4,则这个数是________.2.已知x2=9,则x=______.3.填上适当的数,使下列等式成立.(1)x2+12x+____=(x+6)2;x2-6x+_____=(x-3)2.三、自主提问探究案一、探究一:应用配方法求解二次项系数为1的一元二次方程例1:用配方法解方程x2-2x-3=0归纳结论:通过配成完全平方式的方法,将一元二次方程转化成(x+m)2=n(n≥0)的形式,进而得到一元二次方程的根,这种解一元二次方程的方法称为配方法.跟踪练习:用配方法解方程:x2+2x-1=0.作业案一、过关习题1.用配方法解方程,原方程应变形为()A. B. C. D.2.用配方法解方程x2+4x-5=0,则x2+4x+____=5+____,所以x1=______,x2=________.3.若三角形的两边长分别是6和8,第三边的长是一元二次方程(x -8)2=4的一个根,则此三角形的周长为________.4.下列解方程的过程中,正确的是( ) A .x 2=-2,解方程,得x =±2 B .(x -2)2=4,解方程,得x -2=2,x =4C .4(x -1)2=9,解方程,得4(x -1)=±3,x 1=74,x 2=14D .(2x +3)2=25,解方程,得2x +3=±5,x 1=1,x 2=-45.解下列方程: (1)()2590x --=(2)4(x +6)2-9=0(3)x 2-10x +25=7 (4)x 2-14x =8(5)x 2+3x =1 (6)x 2+2x +2=8x +4二、能力提升1.若2246130a a b b ++-+=,则a b +=( )A. 1B. 1-C. 5D. 5-2.若a ,b ,c 是△ABC 的三条边,且a 2+b 2+c 2+50=6a +8b +10c ,试判断这个三角形的形状.第二节 用配方法解一般一元二次方程(2)学习目标:1.理解配方法的意义,会用配方法解一般一元二次方程. 2.通过探索配方法的过程,让学生体会转化的数学思想方法.3.学生在独立思考和合作探究中感受成功的喜悦,并体验数学的价值,增强学生学习数学的兴趣.学习重点:用配方法解一般一元二次方程.学习难点:用配方法解一元二次方程的一般步骤.预习案一、预习教材 二、感知填空1.用配方法解一元二次方程x 2-3x =5,应把方程两边同时( ) A .加上32 B .加上94 C .减去32 D .减去942.解方程(x -3)2=8,得方程的根是( )A .x =3+2 2B .x =3-2 2C .x =-3±2 2D .x =3±2 23.方程x 2-3x -4=0的两个根是____________. 三、自主提问探究案一、探究一:用配方法解二次项系数不为1的一元二次方程 例1:用配方法解方程2x 2-6x +1=0用配方法求解一般一元二次方程的步骤是什么?归纳结论:(1)把二次项系数化为1,方程的两边同时除以二次项系数;(2)移项,使方程左边为二次项和一次项,右边为常数项;(3)配方,方程的两边都加上一次项系数一半的平方,把方程化为(x +h)2=k 的形式;(4)用直接开平方法解变形后的方程.跟踪练习:一小球以15m /s 的初速度竖直向上弹出,它在空中的高度h(m )与时间t(s )满足关系:h =15t -5t 2,小球何时能达到10米的高度?作业案一、过关习题1.要使方程x 2-72x =-32左边配方成完全平方式,应在方程两边同时加上( )A.2)27( B .72 C.32 D.2)47(-2.用配方法解下列方程时,配方有错误的是( )A. x 2-2x-99=0化为(x-1)2=100B. x 2+8x+9=0化为(x+4)2=25C. 2t 2-7t-4=0化为2781416t ⎛⎫-= ⎪⎝⎭D. 3y 2-4y-2=0化为221039y ⎛⎫-= ⎪⎝⎭3.把方程21503x x --=,化成(x +m)2=n 的形式得 ( ) A. 232722x ⎛⎫-= ⎪⎝⎭ B.232924x ⎛⎫-= ⎪⎝⎭C. 236924x ⎛⎫-=⎪⎝⎭D. 235124x ⎛⎫-= ⎪⎝⎭4.用配方法解方程:(1)4x 2+8x -3=0 (2)3x 2-9x +2=0 (3)2x 2+6=7x二、能力提升 先化简,再求值:2352362m m m m m -⎛⎫÷+- ⎪--⎝⎭,其中m 是方程2310x x +-=的根.第三节用公式法求解一元二次方程学习目标:1.理解求根公式的推导过程和判别公式.2.使学生能熟练地运用公式法求解一元二次方程.3.通过由配方法推导求根公式,培养学生推理能力和由特殊到一般的数学思想.学习重点:求根公式的推导和公式法的应用.学习难点:理解求根公式的推导过程及判别公式的应用.预习案一、预习教材二、感知填空1.方程3x2-x=2化成一般形式后,式中()A.a=3,b=-1,c=2B.a=2,b=1,c=-2C.a=3,b=-1,c=-2 D.a=3,b=1,c=-22.用配方法解下列方程:(1)x2-x-1=0(2)2x2-4x=1三、自主提问探究案一、探究一:探索一元二次方程的求根公式例1:用配方法解方程:ax2+b x+c=0(a≠0).归纳总结:由上可知,一元二次方程ax2+b x+c=0(a≠0)的根由方程的系数a、b、c而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax2+b x+c=0,当b2-4a c≥0时,将a、b、c代入式子x=-b±b2-4ac2a,就可求出方程的根;(2)这个式子叫做一元二次方程的求根公式;(3)利用求根公式解一元二次方程的方法叫公式法;(4)由求根公式可知,一元二次方程最多有两个实数根. 二、探究二:用公式求解一元二次方程例2:用公式法解下列方程,根据方程根的情况你有什么结论?(1)2x 2-3x =0 (2)3x 2-23x +1=0 (3)4x 2+x +1=0.归纳总结:(1)当Δ=b 2-4a c >0时,一元二次方程ax 2+b x +c =0(a ≠0)有两个不相等的实数根,即x 1=-b +b 2-4ac 2a ,x 2=-b -b 2-4ac2a ;(2)当Δ=b 2-4a c =0时,一元二次方程ax 2+b x +c =0(a ≠0)有两个相等实数根即x 1=x 2=-b2a ;(3)当Δ=b 2-4a c <0时,一元二次方程ax 2+b x +c =0(a ≠0)没有实数根.作业案一、过关习题1.下列一元二次方程中,有两个不相等的实数根的方程是( )A .x 2-3x +1=0B .x 2+1=0C .x 2-2x +1=0D .x 2+2x +3=0 2.关于x 的一元二次方程2x +(k -4)x 2+6=0没有实数根,则k 的最小整数值是( ) A. -1 B. 2 C. 3 D. 53.把一元二次方程x 2=3(2x -3)化为一般形式是_________,b 2-4a c =0,则该方程根的情况为___________.4.方程2x 2-5x =7的两个根分别为x 1=________,x 2=__________. 二、能力提升1.已知关于x 的一元二次方程(k -1)x 2-2x +1=0有两个不相等的实数根,求实数k 的取值范围.2.已知关于x 的一元二次方程(x-3)(x-4)=a²(1)求证:对于任意实数a ,方程总有两个不相等的实数根; (2)若方程有一个根是1,求a 的值及方程的另一个根.第四节用因式分解法求解一元二次方程学习目标:1.会用分解因式(提公因式法、公式法)解某些简单的数字系数的一元二次方程.2.能根据具体的一元二次方程的特征,灵活选择方程的解法,体会解决问题方法的多样性.学习重点:用因式分解法解一元二次方程.学习难点:理解因式分解法解一元二次方程的基本思想.预习案一、预习教材二、感知填空1.将下列各式分解因式:(1)x2-2x(2)x2-4x+4(3)x2-16(4)x(x-2)-(x-2)2.分解因式法解一元二次方程的根据是:若a·b=0,则a=____或b=_____.如:若(x+2)(x-3)=0,那么x+2=0或者________.这就是说,求一元二次方程(x+2)(x-3)=0的解,就相当于求一次方程x+2=0或x-3=0的解.三、自主提问探究案一、探究一:用因式分解法解下列方程(1)5x2+3x=0(2)7x(3-x)=4(x-3)(3)9(x-2)2=4(x+1)2.跟踪练习:解下列方程:x2-5x+6=0作业案一、过关习题1.如果(x-1)(x+2)=0,那么以下结论正确的是()A.x=1或x=-2B.必须x=1 C.x=2或x=-1 D.必须x=1且x=-22.方程x 2-3x =0的解为( )A .x =0B .x =3C .x 1=0,x 2=-3D .x 1=0,x 2=3 3.方程29180x x -+=的两个根分别是一个等腰三角形的底和腰的长,则这个等腰三角形的周长为 .4.解下列方程(1) x 2=2x+35 (2)2(1)160x --= (3) 3(1=22x x x --)二、能力提升1.已知(a 2+b 2)2-(a 2+b 2)-6=0,求a 2+b 2的值.2.阅读下面的例题:解方程220x x --=的过程如下:(1)当0x ≥时,原方程化为220x x --=,解得: 12x =, 21x =-(不合题意,舍去). (2)当0x <时,原方程可化为220x x +-=,解得: 12x =-, 21x =(不合题意,舍去).所以,原方程的解是: 12x =, 22x =-.请参照例题 解方程: 2110x x ---=第五节 一元二次方程的根与系数的关系学习目标:1.掌握一元二次方程两根的和、两根的积与系数的关系.2.能根据根与系数的关系式和已知一个根的条件下,求出方程的另一根,以及方程中的未知系数.3.会利用根与系数的关系求关于两根代数式的值. 学习重点:根与系数的关系及运用. 学习难点:定理发现及运用.预习案一、预习教材 二、感知填空1.一元二次方程ax 2+b x +c =0(a ≠0)的求根公式是_________________________________. 2.一元二次方程3x 2-6x =0的两个根是_______________ 3.一元二次方程x 2-6x +9=0的两个根是________________ 三、自主提问探究案一、探究一:一元二次方程的根与系数的关系例1:解下列方程,将得到的解填入下面的表格中,观察表中x 1+x 2,x 1·x 2的值,它们与对应的一元二次方程的各项系数之间有什么关系?从中你能发现什么规律?一元二次方程 x 1 x 2 x 1+x 2 x 1·x 2 x 2+3x -4=0 x 2-2x -5=0 2x 2-3x +1=0 6x 2+x -2=0归纳总结:一般地,对于关于x 的一元二次方程ax 2+b x +c =0(a ≠0),用求根公式求出它的两个根x 1、x 2,由一元二次方程ax 2+b x +c =0的求根公式知x 1=-b +b 2-4ac2a,x 2=-b -b 2-4ac2a,能得出以下结果:x 1+x 2=-b a ,x 1·x 2=ca.二、探究二:一元二次方程根与系数关系定理的应用例2;已知方程5x 2+k x -6=0的一个根为2,求它的另一个根及k 的值.例3:若一元二次方程2x 2+3x -1=0的两个根为212221211121,,x x x x x x ++)()(跟踪练习:1.设一元二次方程x 2-6x +4=0的两实根分别为x 1和x 2,则(x 1+x 2)-x 1·x 2=( )A .-10B .10C .2D .-22.设a ,b 是方程x 2+x -2016=0的两个不相等的实数根,则a 2+2a +b 的值为_________.作业案一、过关习题1.已知一元二次方程x 2-6x +c =0有一个根为2,则另一个根为( )A .2B .3C .4D .82.若α,β是方程x 2-2x -3=0的两个实数根,则α2+β2的值为( )A .10B .9C .7D .53.菱形的两条对角线长分别是方程x 2-14x +48=0的两实根,则菱形的面积为_______. 4.已知x 1、x 2是一元二次方程3x 2=6﹣2x 的两根,则x 1﹣x 1x 2+x 2的值是( ) A. B. C. D.二、能力提升1. 已知x 的方程x 2+(2k +1)x +k 2-2=0的两实根的平方和等于11,则k =_______. 2.已知关于x 的一元二次方程()28170x m x m --+-=.(1)m 为何值时,方程有一根为零?(2)m 为何值时,方程的两个根互为相反数?(3)是否存在m ,使方程的两个根互为倒数?若存在,请求出m 的值;不存在,请说明理由.第六节应用一元二次方程(1)学习目标:1.使学生会用一元二次方程解应用题.2.进一步培养学生将实际问题转化为数学问题的能力和分析问题、解决问题的能力,培养学生运用数学的意识.3.通过列方程解应用题,进一步体会运用代数中方程的思想方法解应用题的优越性.学习重点:运用面积和速度等公式建立数学模型并运用它们解决实际问题.学习难点:寻找等量关系,用一元二次方程解决实际问题.预习案一、预习教材二、感知填空1.在Rt△ACB中,∠C=90°,AC=5cm,BC=12cm,则AB=_____cm.2.在△ABC中,D、E分别是AB,AC的中点,若BC=10cm,则DE=_____cm.三、自主提问探究案一、探究一:利用一元二次方程求解几何问题例1:用一根长40cm的铁丝围成一个面积为91cm2的矩形,问这个矩形长是多少?跟踪练习:一个直角三角形的斜边长为7cm,一条直角边比另一条直角边长1cm,那么这个直角三角形的面积是多少?作业案一、过关习题1.用长为100cm的金属丝制成一个矩形框子,框子的面积不可能是( ) A.375cm2B.500cm2C.625cm2D.700cm22.一块矩形耕地大小尺寸如图所示,要在这块耕地上沿东西和南北方向分别挖两条和四条水渠,如果水渠的宽相等,而且要保证余下的可耕地面积为9600m2,那么水渠的宽为()A.2m B.4m C.1m D.3m3.一个矩形的面积是48平方厘米,它的长比宽多8厘米,设矩形的宽x厘米,应满足方程_____________.解方程求得x=______.二、能力提升1.如图所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪ABCD.求该矩形草坪BC边的长.2.在宽为20m,长为32m的矩形耕地上,修筑同样宽的三条道路(两条纵向,一条横向,横向与纵向互相垂直),把耕地分成大小相等的六块作试验田,要使试验田面积为570平方米,问道路应为多宽?3.如图,A、B、C、D为矩形的四个顶点,AB=16cm,AD=6cm,动点P、Q分别从点A、C 同时出发,点P以3cm/s的速度向点B移动,一直到达B为止,点Q以2 cm/s的速度向D 移动.(1)P、Q两点从出发开始到几秒?四边形PBCQ的面积为33cm2;(2)P、Q两点从出发开始到几秒时?点P和点Q的距离是10cm.第六节应用一元二次方程(2)学习目标:1.会用一元二次方程解决销量随销售单价变化而变化的市场营销类应用题.2.通过列方程解应用题,进一步认识方程模型的重要性,提高逻辑思维能力和分析问题、解决问题的能力.学习重点:会用一元二次方程求解营销类问题.学习难点:将实际问题抽象为一元二次方程的模型,寻找等量关系,用一元二次方程解决实际问题.预习案一、预习教材二、感知填空1.利润=_____________;2商品的利润率=_______________3.商品的总利润=一件商品的利润×销售商品的数量.三、自主提问.探究案一、探究一:利用一元二次方程求解营销类问题例1:某商场将销售成本为30元的台灯以40元的价格售出,平均每月销售600个.市场调查表明:这种台灯的售价每上涨1元,每月平均销售数量将减少10个.若销售利润率不得高于100%,那么销售这种台灯每月要获利10000元,台灯的售价应定为多少元?跟踪练习:某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经试销发现,如果每件衬衫每降价1元,商场平均每天可多售出2件,若商场平均每天要盈利1200元,每件衬衫应降价多少元?[来源:学二、探究二:利用一元二次方程求解增长率问题例2:某公司今年10月的营业额为2500万元,按计划12月的营业额要达到3600万元,求该公司11,12两个月营业额的月均增长率。