文氏电桥振荡电路原理详解及Multisim仿真

合集下载

文氏桥振荡电路(multisim仿真)-推荐下载

文氏桥振荡电路(multisim仿真)-推荐下载

高频电子线路课程设计题目:院(系、部):学生姓名:指导教师:年月日河北科技师范学院教务处制摘要无论是从数学意义上还是从实际的意义上,正弦波都是最基本的波形之一——在数学上,任何其他波形都可以表示为基本正弦波的傅里叶组合;从实际意义上来讲,它作为测试信号、参考信号以及载波信号而被广泛的应用。

在运算放大电路中,最适于发生正弦波的是文氏电桥振荡器和正交振荡器。

本文中介绍了一种基于运算放大器的文氏电桥正弦波发生器。

文氏桥振荡电路由两部分组成:即放大电路和选频网络。

由集成运放组成的电压串联负反馈放大电路,取其输入电阻高、输出电阻低的特点。

经测试,该发生器能产生频率为100-1000Hz的正弦波,且能在较小的误差范围内将振幅限制在2.5V以内。

关键词:正弦波;振荡器;文氏电桥目录摘要 (I)1设计任务及要求 (1)1.1 (1)1.2 *** (1)2 方案论证 (1)3 单元电路设计 (2)4 电路原理图及PCB版图 (2)5 总结 (3)附录及参考文献 (3)目录1 设计任务及要求1.1 课程设计的任务1. 培养理论联系实际的正确设计思想,训练综合运用已经学过的理论和生产实际知识去分析和解决工程实际问题的能力。

2. 学习较复杂的电子系统设计的一般方法,提高基于模拟、数字电路等知识解决电子信息方面常见实际问题的能力,由学生自行设计、自行制作和自行调试。

3. 进行基本技能训练,如基本仪器仪表的使用,常用元器件的识别、测量、熟练运用的能力,掌握设计资料、手册、标准和规范以及使用仿真软件、实验设备进行调试和数据处理等。

1.2 课程设计的要求(1)熟悉multisim的使用方法,掌握文氏电桥正弦波振荡原理,以此为基础在软件中画出电路图。

(2)绘制出文氏电桥正弦波振荡的波形,观察其波形,通过对分析结果来加强对其原理的理解。

(3)在老师的指导下,独立完成课程设计的全部内容,并按要求编写课程设计论文,文中能正确阐述和分析设计和实验结果。

文氏电桥振荡器的工作原理

文氏电桥振荡器的工作原理

文氏电桥振荡器的工作原理
文氏电桥振荡器是一种基于电桥平衡的振荡器电路,常用于产生稳定的正弦波信号。

其工作原理如下:
1. 电桥平衡状态
文氏电桥振荡器的基本原理是利用电桥的平衡状态来产生振荡。

电桥是由两个电阻和两个电容组成的电路,当电桥平衡时,电路中的电流为零。

为了产生振荡,需要在电桥中加入一个外部信号源,如一个交流电源或一个射频信号。

2. 振荡过程
当电桥中加入外部信号源后,电桥的平衡状态会被打破,电桥中的电流不再为零。

这个电流会通过电桥中的电阻和电容产生电压,从而改变电桥的平衡状态。

如果电桥中的电阻和电容的值可以使得电桥再次达到平衡状态,那么就可以产生稳定的振荡。

在文氏电桥振荡器中,通常使用两个可变电阻和两个固定电容组成电桥。

当电桥平衡时,振荡器处于稳态。

当加入一个外部信号源后,电桥会失去平衡,产生电流。

这个电流会通过电桥中的电阻和电容产生电压,从而改变电桥的平衡状态。

如果电桥中的电阻和电容的值可以使得电桥再次达到平衡状态,那么就可以产生稳定的振荡。

3. 输出信号
文氏电桥振荡器产生的输出信号为正弦波,其频率由电桥中的电容和电阻的值决定。

在振荡过程中,电桥的平衡状态会不断被打破和重新建立,从而产生周期性的电流和电压波动,最终形成稳定的正弦波输出信号。

综上所述,文氏电桥振荡器的工作原理基于电桥平衡状态和振荡过程,利用电桥中的电阻和电容的值来产生稳定的正弦波信号。

文氏电桥振荡电路工作原理

文氏电桥振荡电路工作原理

文氏电桥振荡电路工作原理1. 引言文氏电桥振荡电路是一种常用于产生稳定振荡信号的电路,它在许多实际应用中都起到重要作用。

本文将深入探讨文氏电桥振荡电路的工作原理,并分享我对这一原理的观点和理解。

2. 文氏电桥简介文氏电桥是一种基于有源电感元件的电桥,由振荡放大器和文氏电桥组成。

它具有简单的电路结构,稳定的频率响应和较高的频率稳定性,因此被广泛应用于信号发生器、频率计和无线电通信等领域。

3. 文氏电桥振荡电路结构文氏电桥振荡电路由文氏电桥、振荡放大器和反馈网络组成。

文氏电桥由一个有源电感元件和电容元件构成。

振荡放大器通过放大器和反馈网络来提供正反馈,从而使电路产生振荡信号。

4. 文氏电桥振荡电路工作原理文氏电桥振荡电路的工作原理基于正反馈,当电路中的输出信号经过放大器和反馈网络之后,反馈信号与输入信号在相位和幅度上具有一致性。

这种一致性会导致振荡现象的发生,使电路产生稳定的振荡信号。

5. 文氏电桥振荡电路的频率稳定性文氏电桥振荡电路具有较高的频率稳定性,这是由于文氏电桥中的有源电感元件和电容元件等被精确选择和设计,以使其在特定的电路参数范围内能够提供稳定的反馈信号。

这种频率稳定性使得文氏电桥振荡电路在很多应用中都能够提供可靠的振荡信号。

6. 文氏电桥振荡电路的应用文氏电桥振荡电路在实际应用中有广泛的应用价值。

它可以用于产生精确的信号频率,例如信号发生器和频率计。

它还可以用于无线电通信中的调频发射机和接收机等设备上,以提供稳定的载波频率。

7. 对文氏电桥振荡电路工作原理的观点和理解在我的观点和理解中,文氏电桥振荡电路作为一种常见的振荡电路,其工作原理基于正反馈机制的产生振荡现象。

通过合理选择和设计电路元件,能够实现稳定的振荡信号输出。

文氏电桥振荡电路的频率稳定性使其在多个领域中都具有重要的应用价值。

总结:本文深入探讨了文氏电桥振荡电路的工作原理,并分享了对这一原理的观点和理解。

文氏电桥振荡电路以其简单的结构、稳定的频率响应和较高的频率稳定性在实际应用中得到广泛应用。

文氏电桥振荡电路仿真实验报告

文氏电桥振荡电路仿真实验报告

模拟电子技术课程文氏电桥振荡器电路仿真实验报告学号:515021910574 姓名:梁奥一、 本仿真实验的目的1.理解RC桥式正弦波震荡电路的原理和功能。

2.能够调节反馈电阻使电路产生正弦波振荡。

3.能够选择适当的RC参数选出特定频率。

4.能够选择适当的稳幅网络,实现稳幅功能,且失真较小。

二、 仿真电路图2.1注:集成运放使用LM324,其电源电压为±15V,图中Multisim默认为电源端4、11已接电源。

XSC1示波器观察输出电压。

三、 仿真内容(1)设计电路参数使 f0=500Hz。

(2)计算RC串并联选频网络的频响特性。

(3)使用二极管稳幅电路,使输出振荡波形稳幅,且波形失真较小。

四、 仿真结果选择RF1=1kΩ,RF2=1.8kΩ,电路产生正弦波,起振过程如图4.1。

由于二极管存在动态电阻,因此RF2与RF1的比值小于2。

图4.1(1)由选频网络特性可知:f=12πRC因此,选择电阻R=31.8kΩ,电容C=0.01µF,经计算可得 f0理论值为500.7Hz。

实验结果为:f=1T=498.0Hz。

图4.2(2)已知RC 串并联网络的幅频特性为:F i相频特性为:ϕF =−arctan 13f f 0−f 0f ⎛⎝⎜⎞⎠⎟当 f =f 0时, F i=13,U f i =13U 0i , ϕF =00如图4.3所示图4.3通过一个电路图测试RC串并联电路的频率响应:图4.4输入为1kHz,1V的正弦信号,由XBP1可以看出:图4.5当 f=f0时,Uf为0.333mV。

图4.6当 f=f0时, ϕF=00。

(3)使用二极管稳幅网络,输出失真较小,见图4.2和图4.3。

因为电流增大时,二极管动态电阻减小、电流减小时,二极管动态电阻增大。

输出电压稳定。

五、 结论及体会1.在最开始连接电路时,因为没有注意运放的同向反向输入端的位置,导致仿真不成功,经过检查才发现并得以解决。

文氏电桥振荡电路原理

文氏电桥振荡电路原理

文氏电桥振荡电路原理一、引言文氏电桥振荡电路是一种常见的正弦波振荡电路,其原理是通过文氏电桥的平衡条件,使得反馈网络中的信号形成正反馈,从而实现振荡。

本文将详细介绍文氏电桥振荡电路的原理。

二、文氏电桥简介文氏电桥是由美国物理学家奥斯汀·福特·文氏于1920年发明的一种用于测量电阻和容抗值的仪器。

它由四个分别为R1、R2、C1和C2的元件组成,如图1所示。

图1 文氏电桥当该电桥中两个对角线上的节点具有相同的电势时,即满足平衡条件时,可以得到以下公式:R1C1 = R2C2三、文氏振荡器原理文氏振荡器由放大器和反馈网络组成。

放大器将输入信号进行放大后,送入反馈网络中。

在反馈网络中,信号会经过一个相位移动,并与放大器输出信号相加。

如果反馈网络中的相位移动为360度,则输出信号与输入信号相位差为0度,即形成了正反馈。

图2 文氏振荡器在文氏电桥振荡电路中,反馈网络由两个电容C3和C4组成,如图3所示。

图3 文氏电桥振荡电路当文氏电桥平衡时,有:R1C1 = R2C2又因为:C3 + C4 = C1 + C2所以可以得到:R1R2 = (C1 + C2)(C3 + C4)当文氏电桥不平衡时,输出信号将会被放大并送回反馈网络中。

如果反馈网络中的相位移动为360度,则输出信号与输入信号相位差为0度,即形成了正反馈。

在这种情况下,输出信号将会继续增大,直到放大器达到饱和状态或者其他非线性效应出现。

四、工作原理文氏电桥振荡电路的工作原理可以分为以下几个步骤:1. 初始状态:文氏电桥处于平衡状态,没有输入信号。

2. 扰动状态:当有微小的扰动输入时,文氏电桥将不再平衡。

这个扰动可以来自于任何一个元件的微小变化。

3. 放大器放大:扰动信号被放大器放大,并送入反馈网络中。

4. 相位移动:扰动信号在反馈网络中经过一个相位移动。

5. 正反馈:如果反馈网络中的相位移动为360度,则输出信号与输入信号相位差为0度,即形成了正反馈。

RC文氏电桥振荡电路原理分析

RC文氏电桥振荡电路原理分析

RC文氏电桥振荡电路原理分析这有个例子,如下:咋一看有点傻眼了,这2个二极管是干啥的,莫大疑问,需要仔细分析原理,首先既然是振荡电路需满足起振条件如图(图中都为向量):图中向量A=Uo/Ui ;F=Uf/Uo起振条件:|AF|>1且Ui 与Uf同相位,这样才能自激励当起振后又需要|AF|=1,才能稳定振荡(也就是Ui =Uf),而UA741CD是个高增益运放,把电路先做简化然后推导分析,简化如下:当此网络发生谐振时虚部为零即:此为谐振角频率如果取R1=R2=R,C1=C2=C,那么F的模如下:F的相角如下:当选频正反馈网络谐振时正反馈系数|F|=1/3,由起振条件|AF|>1 ,需要负反馈网络组成的闭环增益大于3即而起振后应该Au=3,所以需要R3/R4分别是负温度系数热敏电阻和正温度系数热敏电阻,如果不用热敏电阻,有啥办法到稳定后让放大倍数减小呢?我们先把例子中的电路改成这样:这时Au=11倍看波形已经限幅了如图,而且很容易起振:如果把R3改成30k,Au=4倍看看波形如何:如果把R3改成21k,Au=3.1倍看看波形如何:如果把R3改成20k,Au=3倍看看波形永远不会起振的,如果我们想个办法起振时候为4倍,而起振完成后变成稍稍小于3倍,不就不在限幅也能起振如下图:很明显起振时候Au=4,而起振后由于二极管导通R2//R3=18.9K,得Au≈2.89倍,得到波形如下:而例子中也是这个原理,如果运放是单电源又该咋办呢,就需要抬一下直流电平更改如下:R4//R7=R5的值,交流通路就是把V2和C3短路即可原理:V2通过R7和R4分压由于2个阻值相等,又由于运放正端输入阻抗无穷大,那么可以认为运放正端的直流电平为V2/2,而负端"虚短"缘故则也为V2/2,从而输出处也为V2/2的直流电平(也可以看出一个电压跟随器,所以负端和输出都为V2/2的直流电平),交流通路就是把R7和R1接地,由于R4//R7=R5,交流通路没变,所以还是满足振荡条件的。

文氏桥振荡电路仿真分析

文氏桥振荡电路仿真分析

模电大作业文氏桥振荡电路仿真分析报告一、任务要求文氏电桥振荡器是一种常用的RC 振荡器,用来产生低频正弦信号。

图6是一个典型电路,它由运算放大器和RC 串并联选频网络组成。

电阻F1R ,F2R 组成负反馈网络,电压增益约为F1F2F1()/R R R +。

(1)设计电路参数使0500Hz f =。

(2)计算RC 串并联选频网络的频响特性。

(3)使用二极管稳幅电路,使输出振荡波形稳幅,且波形失真较小。

图6 文氏电桥震荡电路二、 仿真软件搭建的电路与仿真分析过程(1) 选取R 1=R 2=R ,C 1=C 2=C ,从RC 串并联选频网络的选频特性可知,f 0=12πRC=500Hz 。

所以可以选取R=1.6k Ω,C=200nF 。

(2) 令R 1、C 1并联的阻抗为Z 1,R 2、C 2串联的阻抗为Z 2及ωo =RC1,则Z 1=RCj Rω+1,Z 2=R Cj ω1+,反馈系数为)//(j 31211...ωωωωo o oZ Z Z f UU F-+=+==。

由此可得RC 串并联选频网络的幅频特性与相频特性分别是22.)//(31ωωωωO O F-+=3)//(arctanωωωωϕO O F --=图形如图6-1,6-2.当f=f 0,即ω=ω0,|U f |=13|U o |,φf =0o 。

当ω=ω0时,即f=f 0时,F =13,所以A =A u =3,只要为RC 串并联选频网络配一个电压放大倍数等于3的放大电路就可以构成正弦波振荡电路。

考虑到起振条件,所选放大电路的电压放大倍数应该略大于3。

根据起振条件和幅值平衡条件,A u =U o U p=1+RF2R F1≥3,即R F2≥2R F1。

一般R F2取值略大于2R F1。

根据上述原理,可以用Multisim 搭建出如图1的电路:图1(3) 在R F2回路串联两个并联的二极管和电阻R F3,利用电流增大时二极管动态电阻减小、电流减小时二极管动态电阻增大的特点,加入非线性环节,从而使输出电压稳定。

文氏桥式rc振荡电路 振幅可调-概述说明以及解释

文氏桥式rc振荡电路 振幅可调-概述说明以及解释

文氏桥式rc振荡电路振幅可调-概述说明以及解释1.引言1.1 概述概述部分的内容:文氏桥式RC振荡电路是一种常见的电路结构,通过使用电阻和电容元件,实现了信号的振荡输出。

在该电路中,通过反馈网络的作用,信号可以循环地输入和输出,形成稳定的振荡波形。

本文旨在介绍文氏桥式RC振荡电路的原理,并探讨如何通过调节电路元件来实现振幅的可调性。

通过对其特性和工作原理的分析,我们将深入了解这一电路结构的工作机制,以及如何通过合理的调整可以实现振幅的可调。

在正文部分,我们将详细介绍文氏桥式RC振荡电路的原理。

我们将从电路结构和基本元件开始,逐步解释电路中各个部分的功能。

此外,我们还将介绍文氏桥式RC振荡电路的工作原理和其特点。

在振幅可调的方法部分,我们将探讨如何通过调节电路中的元件来实现振幅的可调。

通过调整电阻或电容的数值,我们可以改变电路中的反馈系数,从而达到调节振幅的目的。

我们将介绍一些常用的调节方法,并对其原理进行解释。

最后,我们将在结论部分对文氏桥式RC振荡电路的特点进行总结,并展望未来的发展方向。

同时,我们将对本文的主要观点和结论进行回顾,并对读者进行进一步的思考和探索的启发。

通过本文的阅读,读者将能够全面了解文氏桥式RC振荡电路的工作原理和特点,以及如何通过调节电路元件实现振幅的可调性。

同时,读者还能够对该领域的研究进行一定的展望,并为未来的实际应用提供一些思考和指导。

文章结构部分的内容可以描述整篇文章的组织结构和各个部分的主要内容,以便读者可以更好地了解文章的框架和内容安排。

例如:1.2 文章结构本文分为引言、正文和结论三个部分。

在引言部分,我们将概述文氏桥式RC振荡电路的基本原理、目的和研究背景。

接下来的正文部分将详细介绍文氏桥式RC振荡电路的原理和振幅可调的方法,包括相关的理论知识和实验验证。

最后,在结论部分,我们将总结文氏桥式RC振荡电路的特点,并提出进一步研究的展望。

在正文部分的2.1节,我们将详细介绍文氏桥式RC振荡电路的原理。

文氏电桥振荡电路原理

文氏电桥振荡电路原理

文氏电桥振荡电路原理一、引言文氏电桥振荡电路是一种常用的电子振荡器电路,广泛应用于通信、无线电和电子测量等领域。

它基于文氏电桥原理,并通过反馈放大器实现自激振荡。

本文将详细介绍文氏电桥振荡电路的原理和工作原理。

二、文氏电桥原理文氏电桥是由法国物理学家恩斯特·文氏于1851年提出的一种电桥测量方法。

它基于电桥平衡原理,通过改变电桥的4个阻抗的比例关系来实现测量。

文氏电桥由一个桥臂接入一个电阻、电感和电容并联的串联电路,另外三个桥臂接入相等的参考电阻。

当电桥平衡时,即当输入信号频率与电感和电容并联串联电路的固有频率相等时,电桥中不会有电流通过,相当于桥路上的电阻为无穷大。

根据电桥平衡条件,可以得出与输入信号频率相等时的电容和电感的比例关系。

三、文氏电桥振荡电路文氏电桥振荡电路是将文氏电桥的原理应用于电子振荡器电路中。

它基于文氏电桥原理,通过调节电容和电感的比例关系,使得电桥处于平衡状态并产生振荡信号。

1. 电路结构文氏电桥振荡电路包括文氏电桥和反馈放大器两部分组成。

文氏电桥的四个桥臂由电阻、电感和电容并联串连而成,另外三个桥臂接入相等的参考电阻。

反馈放大器将电桥的输出信号放大并反馈至文氏电桥中,保持文氏电桥处于平衡状态。

2. 工作原理文氏电桥振荡电路的工作原理是通过反馈放大器实现自激振荡。

当输入信号频率与电感和电容并联串联电路的固有频率相等时,电桥处于平衡状态,反馈放大器放大并输出同频振荡信号。

该信号经反馈回文氏电桥,使其保持平衡。

由于反馈放大器的放大作用,振荡信号不断增强,形成稳定的自激振荡。

3. 调节频率为了使文氏电桥处于平衡状态,需要调节电容和电感的比例关系,使其与输入信号频率相等。

一种常用的调节方法是通过改变电容或电感的值来实现。

另外,也可以通过改变参考电阻的值来调节电桥的平衡频率。

四、文氏电桥振荡电路的应用文氏电桥振荡电路在通信、无线电和电子测量等领域有广泛的应用。

1. 无线电发射器文氏电桥振荡电路可以用作无线电发射器的基础电路。

模拟电子技术期末仿真题-文氏电桥振荡器电路仿真分析报告_图文

模拟电子技术期末仿真题-文氏电桥振荡器电路仿真分析报告_图文
f ,运行并双击示波器图表XSC1,可以看到电路慢慢地振荡起来,逐渐产生越来
越大的振荡输出。由于在反馈电路中增加了反并联二极管,利用二极管电流增大动态电阻减小的特性构成稳幅环节,从而得到稳定的正弦波输出。同时选取未加二极管的电路图,测试对照组。
三、仿真结果:
对于选频特性分析过程,经过multisim仿真得出频响特性如图4、5所示。
模电大作业
文氏电桥振荡器电路仿真分析报告
一、任务要求及原理图:
文氏电桥振荡器是一种常用的RC振荡器,用来产生低频正弦信号。图1是一个典型电路,它由运算放大器和RC串并联选频网络组成。电阻F1
R ,
F2
R组成负反馈网络,
电压增益约为
F1F2F1
( /R R R +。
(1设计电路参数使
0500Hz
f =。
运用multisim仿真使得模拟电子技术更加形象生动,更好的掌握所学的知识内容,提高了自己的动手能力、思考能力以及解决问题的能力。
感谢赖老师的谆谆教诲以及助教老师的不辞辛劳,在此表示深深的感谢!
图2选频网络电路图
图3测试电路
2、起振过程分析:
选取LM324AJ集成运放、1BH62二极管、两个波特图仪,连接测试电路图如图3所示。根据起振条件|AF|>1
,选频网络的反馈系数
=Hale Waihona Puke ,只要负反馈系数A大于3,即
>3,由于二极管存在动态电阻,因此与的比值小于2,故时,

, ,这样就可以产生正弦波振荡,振荡频率又RC选频网络决定,即0500Hz
对于起振分析过程,起振波形与稳定振荡时各点波形分别如图6、图7所示(加二极管。对于未加二极管电路,稳定振荡波形如图8所示,发现产生输出波形失真。

文氏电桥振荡电路原理详解及Multisim仿真

文氏电桥振荡电路原理详解及Multisim仿真
r6ac2rr2vccuoopr1c1r44d1cc3r33r5d2在单电源供供电系统中我们增加了电电阻r6与电电容c3电阻阻r6的值通常常与r1相同同这样两两者对直流正正电源vcc分分压则有a点的电位为vcc2再再利用电容cc3的隔直直流通可关注电子制作站入直交流流特性更更多精彩文章子微微信订阅号ddzzzzcn使r4r5引流全全负反馈此此时相当于一个电压跟随器器因此输出出静态时输出出电压为vccc2此时电路的直流流通路等效如如下图所示
4
5 10nF 10kΩ
R3
3
2
0
LM358D
Au uthor: Jackie Lo ong
可以看到,输出正弦波 波是以 6V(即 即 12V 的一半 半)作为中点 点的。 也有如下图 图所示相似的电路,读者 可自行仿真, ,原理是一致 致的。
2 C1 C 1 10nF R2 47kΩ Ω C C2 10 0nF VCC V 12.0V VCC
4
LM358D V VEE VEE -12.0V V R4 30kΩ D1 D2
4
-12.0V
1 11
All rights reserved, NO Spreading without Authorization
其中,R1、R2、C1、C2 组成的 RC 串并网络将输出正反馈至同相输入端,R3、R4 则将 输出负反馈至运放的反相输入端,电路的行为取决于正负反馈那一边占优势(为便于分析, 通常都假设 R1=R2=R 且 C1=C2=C,当然这并不是必须的) 。 可以将该电路看作对 A 点输入(即同相端电压)的同相放大器,因此该电路的放大倍 数如下:
10
All rights reserved, NO Spreading without Authorization

文氏桥电路仿真

文氏桥电路仿真

文氏桥振荡电路的设计与测试一.实验目的1.掌握文氏桥振荡电路的设计原理。

2.掌握文氏桥振荡电路性能的测试方法。

二.实验原理图:起振条件:Af=1+Rf/R1>=3调节Rw,可改变输出幅度,改变R4. C1和R5和C2,可调节振荡频率。

三.仿真实验及分析1.文氏桥电路的实现输出从有到无:输出正弦波到失真:起振时,R1=15KΏ, Rf=35KΏ, 比理论值30KΏ要大,输出波形如下:调节最大不失真为:此时Rf为38.5KΏ.最大不失真输出幅度为12.704V.2.研究RC参数对振荡频率的影响C=1uF,R=5KΏ时,输出波形如下:C=1uF,R=10KΏ时,输出波形如下:振荡频率减小。

C=10uF,R=5kΏ时,输出波形如下:振荡频率减小。

C=10uF,R=10KΏ时,输出波形如下:(PS: 100ms/div),振荡频率减小。

所以,综上RC增大,振荡频率减小。

3.稳幅作用的分析最大不失真状态时,输出波形为:断开电路中的D1,D2,在图像中发现出现失真,所以得出D1,D2起稳幅作用。

利用的是二极管电流增大时,动态电阻减小;电流减小时,动态电阻增大的特点,使输出电压稳定四.实验结论与心得:在文氏桥振荡电路中,D1,D2起稳幅作用。

利用的是二极管电流增大时,动态电阻减电流减小时,动态电阻增大的特点,使输出电压稳定。

RC参数对振荡频率有影响。

若R,C下降,振荡频率升高;若R,C变大,振荡频率下降。

当Rf=38.5KΩ时,电路有最大不失真输出振幅:12.074V。

通过这次的仿真,了解到了二极管对文氏桥振荡电路的稳定作用;RC参数对振荡频率的影响。

实验八 文氏桥式振荡电路

实验八 文氏桥式振荡电路

实验八文氏桥式RC振荡电路
一、实验目的
1、了解正弦波振荡起振条件|AF|>1。

2、加深理解RC正弦波振荡器的工作原理。

3、学会信号频率测量的方法。

二、实验仪器
1、XST-7型电子技术综合实验装置一套
2、万用表一只
3、4320双踪示波器一台
三、实验内容及步骤
1、实验电路原理图如图8.1所示。

(根据实验电路图补充完整)
2、原理:文氏桥式RC振荡电路可以看做是由RC串并联选频网络和一个负反馈放大电路两大部分构成,对于振荡频率f0(f0=1/(2πRC),反馈系统F=1/3,根据起振条件,|AF|>1该电路的起振条件A vf >3,显然电路很容易满足。

可在基本放大电路中引入较强的负反馈,使输出波形很稳定。

3、调整实验线路最佳工作状态,测量实验数据。

调整R W,使A1点的波形为不失真的正弦波,用示波器观测波形,用实验装置的频率计测量振荡电路的振荡频率。

按下表要求进行实验并记录结果
表8.1互补对称功率放大电路的测量
电阻值电容值波形实测频率计算频率R1=1K C=0.01u
R1=1K C=0.1u
R1=5.1K C=0.01u
R1=5.1K C=0.1u
四、实验报告
1、整理实验数据,填写实验数据表格
2、分析实验结果,总结实验收获。

3、回答思考题。

五、思考题
1、文氏桥式振荡电路是由哪几部分组成?
2、文氏桥式振荡电路中RC网络有何作用?RW有何作用?。

基于Multisim12.0的RC文氏桥振荡器仿真分析

基于Multisim12.0的RC文氏桥振荡器仿真分析

电子技术与软件工程Electronic Technology & Software Engineering软件开发与应用Software Development And Application基于Multisim12.0的RC 文氏桥振荡器仿真分析先进进张涛李艳徐仁伯(南昌工学院 江西省南昌市 330108 )摘 要:本文使用了 Mulitisiml2. 0软件对RC 文氏桥振荡器原理进行了仿真分析,剖析检测振荡器输出的波形图,清晰完整地展示了 RC 文氏桥振荡器的相关性能,导出了电路的可创新应用之处,激发了学生对学习模拟电路的积极性,使得模拟电路的学习简单易理解, 操作程序简便且实验结果更加合理化,也能让学生在学习过程中减少学习负担和学习压力。

关键词:模拟电路;RC 文氏桥振荡器;Multisim 仿真分析模拟电子技术是电子、电气类专业必修课程,本课程理解性和 实践操作性较强,而且其内容丰富,且知识领域运用较为广泛。

该 课程基本内容包括:半导体器件及其电路分析、放大电路,信号的 产生与转换,低频功率放大电路等。

虽然书本上的理论知识全面, 但相对于初学者来说还是比较抽象,学习起来也比较复杂,难以理 解。

当学生学习理论知识,再实际做电路测试时,总感觉理论与实 际相差很大,不知如何下手,若加入学习模拟电路的新思路,将电子电路分析与设计仿真软件Multisim 教学结合,使电路中的问题变 得容易理解。

本文使用了 Mulitisiml2.0软件对RC 文氏桥振荡器原理进行仿真分析,清晰完整地展示了 RC 文氏桥振荡器的相关性能。

1 Multisim12.0 简介Multisim 12.0是美国N1公司开发的一款仿真软件,是目前 Multisim 前几代版本的升级和替代后的产品。

该软件功能强大,不 仅可以进行弱电,强电,低频,高频等诸多方面电路的仿真与设计, 而且仿真软件的虚拟仿真与现实电路功能也非常相似。

[详细讲解]文氏桥振荡电路(multisim仿真)

[详细讲解]文氏桥振荡电路(multisim仿真)

高频电子线课程设计题目:院(系、部):学生姓名:指导教师:年月日河北科技师范学院教务处制摘要无论是从数学意义上还是从实际的意义上,正弦波都是最基本的波形之一——在数学上,任何其他波形都可以表示为基本正弦波的傅里叶组合;从实际意义上来讲,它作为测试信号、参考信号以及载波信号而被广泛的应用。

在运算放大电路中,最适于发生正弦波的是文氏电桥振荡器和正交振荡器。

本文中介绍了一种基于运算放大器的文氏电桥正弦波发生器。

文氏桥振荡电路由两部分组成:即放大电路和选频网络。

由集成运放组成的电压串联负反馈放大电路,取其输入电阻高、输出电阻低的特点。

经测试,该发生器能产生频率为100-1000Hz的正弦波,且能在较小的误差范围内将振幅限制在2.5V以内。

关键词:正弦波;振荡器;文氏电桥目录摘要..................................................... 错误!未定义书签。

1设计任务及要求. (3)............................................................................................................. 错误!未定义书签。

1.2 ***............................................................................................... 错误!未定义书签。

2 方案论证 (4)3 单元电路设计 (5)4 电路原理图及PCB版图 (5)5 总结.................................................... 错误!未定义书签。

附录及参考文献............................................ 错误!未定义书签。

晶体管文氏电桥振荡电路

晶体管文氏电桥振荡电路

晶体管文氏电桥振荡电路晶体管文氏电桥振荡电路是一种常见的振荡电路,由晶体管和电阻、电容等元件组成。

它的振荡频率可以通过调节电阻和电容的值来实现。

本文将从晶体管文氏电桥振荡电路的原理、特点和应用等方面进行详细介绍。

一、晶体管文氏电桥振荡电路的原理晶体管文氏电桥振荡电路是由晶体管和电阻、电容等元件组成的,其原理基于正反馈和RC振荡的特性。

在这个电路中,晶体管和电容构成一个RC网络,通过正反馈的作用使电路产生自激振荡。

具体来说,当电源接通时,晶体管的基极电流开始增大,使集电极电流也增大。

同时,电容开始充电,当电容电压达到某个阈值时,晶体管开始导通,导通后电容开始放电,使晶体管失去饱和状态。

随后,晶体管再次截止,电容再次开始充电,如此循环,形成振荡现象。

晶体管文氏电桥振荡电路具有以下几个特点:1. 稳定性好:由于晶体管的指数特性和电容的积分特性,使得振荡频率相对稳定。

2. 需要外部电源:晶体管文氏电桥振荡电路需要外部电源提供能量,才能产生振荡。

3. 可调节频率:通过调节电阻和电容的值,可以调节振荡电路的频率。

4. 输出波形正弦:由于RC网络的特性,晶体管文氏电桥振荡电路的输出波形为正弦波。

三、晶体管文氏电桥振荡电路的应用晶体管文氏电桥振荡电路在实际应用中具有广泛的用途,主要包括以下几个方面:1. 信号发生器:由于晶体管文氏电桥振荡电路输出波形为正弦波,可以作为信号发生器使用,用于实验室测试、无线通信等领域。

2. 频率调制解调器:振荡电路的频率可以通过调节电阻和电容的值来实现,因此可以用于频率调制解调器中。

3. 时钟电路:振荡电路可以产生稳定的振荡信号,因此可以用作时钟电路,用于计算机、通信设备等领域。

4. 音频放大器:振荡电路可以产生正弦波信号,因此可以作为音频放大器的输入信号源,用于音响设备等领域。

晶体管文氏电桥振荡电路是一种常见的振荡电路,通过晶体管和电阻、电容等元件的组合,实现了正弦波的产生。

它具有稳定性好、可调节频率等特点,并在信号发生器、频率调制解调器、时钟电路、音频放大器等领域有广泛的应用。

文氏电桥正弦波振荡电路1[精品]

文氏电桥正弦波振荡电路1[精品]

文氏电桥正弦波振荡电路1[精品] 文氏电桥正弦波振荡电路(2007.4.27总结)一、振荡原理如上图所示,信号Xi经过一个放大环节A放大后得到放大信号Xo=A*Xi。

如果在上图中加一个反馈环节,如下图所示:Xo经过反馈环节F后得到反馈信号Xf=A*F*Xi。

当反馈信号Xf与输入信号Xi 幅值和相位都相同时,即以Xf作为输入Xi,则可以在输出端维持原有的信号Xo,也就是自激。

所以,要使得上图中的系统平衡,则应有A*F=1。

即|A*F|=1(幅度平衡条件)且Ψa+Ψf=2*n*PI (n为整数) Ψa和Ψf分别为A、F的幅角,此式说明反馈环节F是一个正反馈。

A*F=1是振荡平衡的条件,也就是可维持等幅振荡输出;如果A*F<1,则电路的振荡输出将越来越小,直到停止振荡;如果A*F>1,振荡电路的输出将越来越大,直到电路中器件达到饱和或者截止。

所以电路维持等幅振荡的唯一条件是A*F=1。

二、振荡的建立和稳定前面讨论的自激振荡条件,是假设先给振荡电路的放大环节有一个外加的输入信号。

但实际振荡电路一般不会外加激励信号。

对于一个正弦波振荡器来说,有一个选频网络,所以振荡电路只可能在某一个频率f0下满足相位平衡的条件(在后面的内容中将会对此做详细的叙述)。

放大电路中存在噪声或干扰(例如接通直流电源时电路中就会产生电压或者电流的瞬变过程),它的频谱范围很广,必然包括振荡频率的分量。

这些噪声和干扰经过选频网络选频后,只有f0这一频率分量满足相位平衡条件,只要此时A*F>1则可以增幅振荡,将此信号放大,建立起振荡。

而除了f0之外的其他频率的分量则衰减。

所以电路起振的条件为A*F>1且Ψa+Ψf=2*n*PI(n为整数)。

除了要求电路的相位满足条件之外还要满足|A*F|>1。

从A*F>1到A*F=1:接通电源后,频率为f0的分量将逐渐增大,当幅值达到一定程度后,放大环节的非线性期间就会接近甚至进入非线性工作区(饱和区或者截止区),这时候放大增益A将逐渐下降,输出波形产生失真,所以经过选频网络后其输入也将随之下降。

文氏桥震荡原理

文氏桥震荡原理

原文地址:对文氏桥RC振荡电路的一点小实验作者:毒蛋RC振荡电路可以可以产生特定频率的正弦波,这在很多数字系统中用来产生时钟信号,最大的优点就是成本低,而且在低频时,他的体积优势也很明显,LC振荡电路在低频是体积和成本都是问题。

之前看过很多次资料一直不太理解这个振荡器的工作原理,今天又找到一点资料,顿时理解了一些,不过也只能算是基本了解了原理吧~上图就是文氏桥振荡电路的原理图,在一个运放上,分别有正反馈和负反馈,正反馈为一个RC串并联选频网络,这也就是这个电路能产生特定频率波形的原因,因此先分析选频网络图a为RC串并联选频网络,左端输入,右端输出。

当输入信号的频率足够低的时候,可以将该网络等效为中图(频率小,电容容抗远大于电阻),输出超前于输入,如果频率趋近于0,输出将为趋近于0,相位超前趋近于90°,当输入信号足够大的时候,网络等效为右图(频率大,电容容抗远小于电阻),输出将滞后于输入,如果频率趋近于无穷大,输出趋近于0,相位滞后趋近于90°。

两种情况下,信号都有衰减对这样一个网络,输出的相位总是在滞后90°和超前90°之前徘徊,那么显然,总存在一个频率,使得输出和输入同相位,而且此时信号衰减最低,为三分之一,下图为网络的幅频特性和相频特性如图,当频率在f0左右时,信号衰减小,而偏移这个频率的,衰减严重。

f0=1/2πRC对选频网络的仿真此时频率大于f0,很明显,输出的衰减已经超过1/3,而且相位滞后现在再看文氏桥振荡电路,负反馈上的反馈系数为1+Rf/R1,而正反馈系数就为该选频网络的衰减系数。

在这个运放没有输入信号的时候,会有很多干扰,这个干扰先被放大为1+Rf/R1倍,如果某个干扰的频率正好为f0时,他正好又会被衰减为1/3,所以设定1+Rf/R1=3,这样该信号就会被还原,而其他频率的信号经过这个过程后会被衰减,被抑制,这样,就选出了一个特定频率的干扰来放大,便得到了需要的正弦波。

文氏振荡器电路仿真

文氏振荡器电路仿真

文氏振荡器电路仿真
专业名称:电气自动化
班级:电气131
姓名:刘群
辅导老师:舒为清
文氏振荡电路仿真电路图
(一)、项目名称:文氏振荡仿真电路
(二)、产品仿真电路图:
产品效果图(完整自激振荡电路波形)
(红线表示输入端的波形淡黄色表示输出后反馈的波形)
(三),电路图原理概述
文氏振荡电路的必要条件由放大电路,反馈网络,选频网络和稳幅环节这四个组成部分,放大电路使之电压放大后经过反馈网络反馈给放大电路的输入端,当电路产生振荡时如果要组成正弦波信号必须要经过选频网络选频最后进行稳幅。

(四),数据分析
在仿真中发现文氏振荡器是由C1,R1,R2,R4这四个元件的大小进行改变而改变振幅的大小的,在C1为0.2UF,R4为20kΩ改变电阻R4时波形会改变当R4为6.9kΩ时波形最大并不失真当R4变小或大时波形会变小或失真,调节C1或R2时电路放大的时间会加长或放大小。

(五),实验总结
通过这次仿真实验让我知道了文氏振荡器是通过放大电路,反馈网络,选频网络和稳幅环节这四个组成部分进行放大的电路,让我了解了文氏振荡电路的工作原理,也增加了我的理论能力和分析能力,更科学的去分析电子产品和设计电路,让以后更好的学习专业技术和基础。

文氏电桥振荡器的工作原理

文氏电桥振荡器的工作原理

文氏电桥振荡器的工作原理运算放大器在组成放大电路时,都要引入深度负反馈,也就是把输出信号通过电阻分压电路构成的反馈网络返送到运算放大器的反相输入端,这样,放大电路的电压放大倍数就由反馈网络的参数来决定。

在这个电路中,由电阻R3、R4和R5构成了反馈网络,在(R4+R5)两端取得反馈电压。

这是一个同相放大器,它的闲环电压放大倍数是Af=1+R3/(R4+R5),算出来是3倍。

从电路图上看,输出电压U通过Rl、C1串联的支路和R2、C2并联的支路组成分压电路取出正反馈电压,返送到运算放大器的同相输入端,应该是正反馈可是,由电阻、电容串并联组成的正反馈网络是怎么起到正反馈作用。

由电阻、电容组成的RC串并联网络正是文氏电桥振荡器的核心。

这部分电路不仅用来提供正反馈信号,使振荡器产生振荡,还由它决定着振荡器的振荡频率fo,所以称它为Rc选频网络。

为什么能选频,关键是网络里接入了电容器。

电容器的容抗与频率成反比,也就是Xc=1/(2πfC)。

频率很高时,容抗很小;频率很低时,容抗很大。

RC选频网络(上图)网络中的电阻R是不变的,当频率很低时,Xc>>R,在RC串联支路上,起作用的是电容C,电阻R可以忽略;在RC并联部分,当频率很低时,电容C的作用可以忽略,起作用的是电阻R,这就可以画出网络的低频等效电路[图(b)]。

当频率很高时,Xc<<R,在RC串联部分,电容C的作用可以忽略;在RC并联部分,电阻R的作用可以忽略,又可以画出网络的高频等效电路[图(c)]。

可以看出,当网络输入电压 U不变时,频率行艮低或很高时,网络的输出电压U2都很小,也就是网络的电压传输系数F=U2/U1都很小。

由此可以推断,在频率他很低向很高的连续变化过程中,总会有某一中问频率fo使电压传输系数F达到最大,画出电压传输系数F与频率f的关系曲线(上图)就看得更清楚了。

由于网络的输出电压U2就是运放的正反馈信号,所以只有频率为fo的正反馈信号最强,才能使振荡器产生振荡。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
1
2π R R C C 2
也可以这样理解:电路刚上电时会包含频率丰富的扰动成分,这些扰动频率都将会被放 大 3 倍,随后再缩小 3 倍,依此循环,只有扰动成分的频率等于 f0 时,电路将一直不停地
1
All rights reserved, NO Spreading without Authorization
这里增加了 R5、D1、D2,当振荡信号比较小时,二极管没有导通,因此 R5、D1、D2 支路相当于没有,因此放大倍数大于 3,而当振荡信号比较大时,二极管导通,相当于 R5 与 R4 并联,这样放大倍数就会小一些(合理设置 R5 的阻值,可以使其放大倍数小于 3)。
我们用下图所示的电路参数进行仿真:
Author: Jackie Lቤተ መጻሕፍቲ ባይዱng
振荡下去,也就是说,频率为 f0 的成分既不会因衰减而最终消失,也不会因一直不停放大 而导致运放饱和而失真,相当于此时形成了一个平衡电桥。
但是这个电路的实际应用几乎没有,因为它对器件的要求非常高,即 R4/R3 必须等于 2 (也就是放大倍数必须为 3),只要有一点点的偏差,电路就不可能稳定地振荡下去,因为 元件不可能十分精确,就算可以做到,受到温度、老化等因素,电路也可会出现停振(放大 倍数小于 3)或失真(放大倍数大于 3)的情况。
1
可以证明,当放大倍数小于 3 时(即 R4/R3=2),负反馈支路占优势,电路不起振;当 放大倍数大于 3 时,正反馈支路占优势,电路开始起振并不是稳定的,振荡会不断增大,最 终将导致运放饱和,输出的波形是削波失真的正弦波。
只有当放大倍数恰好为 3 时,正负反馈处于平衡,振荡电路会持续稳定的工作,此时输 出波形的频率公式如下所示:
为了让电路更容易应用于实践,我们有必要对其进行优化,如下图所示:
C2
R2
R1
C1
+ OP

uo
R3
R4
D1
R5
D2
我们的修改思路是这样:当电路开始振荡时保证放大倍数大于 3,这样可以使得电路容 易起振,而当电路的振荡幅度增大到某个程度时,将其放大倍数自动切换为小于 3,这样就 能限制振荡的最大幅度,从而避免振荡波形出现削波失真。
5
All rights reserved, NO Spreading without Authorization
Author: Jackie Long
2
C1 R2 10nF 47kΩ
C2 3 R1
10nF
47kΩ
VCC 12.0V
VCC
8
0
R3
10kΩ
3
U1A
1
2
LM358D
4
VEE 4
VEE -12.0V R4
2
All rights reserved, NO Spreading without Authorization
Author: Jackie Long
当 R3=21K 时,放大倍数为 3.1 倍,输出波形如下图所示:
当 R3=20.1K 时,放大倍数为 3.01 倍,输出波形如下图所示:
3
All rights reserved, NO Spreading without Authorization
30kΩ
D1
其输出波形如下图所示:
R5 5
D2
1
47kΩ
下图为局部放大的波形图,可以看到,此时的输出波形不再有失真。
6
All rights reserved, NO Spreading without Authorization
Author: Jackie Long
实际应用中,我们也可能需要单电源供电的振荡电路,如下图所示:
10kΩ
3
U1A
1
2
LM358D
4
VEE
VEE -12.0V
R4
30kΩ D1 4 D2
VCC 12.0V VCC R5 20kΩ
6 R6 4.7kΩ
5 R7 4.7kΩ 7
R8 20kΩ
VEE
VEE -12.0V
11
All rights reserved, NO Spreading without Authorization
R6
A
C2
R2
VCC
R1
C1
C3
R3
+ OP
uo

R4
D1
R5
D2
在单电源供电系统中,我们增加了电阻 R6 与电容 C3,电阻 R6 的值通常与 R1 相同,这 样两者对直流正电源 VCC 分压,则有 A 点的电位为(VCC/2),再利用电容 C3 的“隔直流通 交流”特性,更多精彩文章可关注《电子制作站》微信订阅号 dzzzzcn,使 R4(R5)引入直 流全负反馈,此时相当于一个电压跟随器,因此输出静态时输出电压为 VCC/2,此时电路的 直流通路等效如下图所示:
其中,R1、R2、C1、C2 组成的 RC 串并网络将输出正反馈至同相输入端,R3、R4 则将 输出负反馈至运放的反相输入端,电路的行为取决于正负反馈那一边占优势(为便于分析, 通常都假设 R1=R2=R 且 C1=C2=C,当然这并不是必须的)。
可以将该电路看作对 A 点输入(即同相端电压)的同相放大器,因此该电路的放大倍 数如下:
7
All rights reserved, NO Spreading without Authorization
Author: Jackie Long
我们用下图所示的电路参数进行仿真:
VCC
12.0V R5
1
VCC 100kΩ
C2 4 R1
10nF
47kΩ
C1 R2 10nF 100kΩ
0
C3 5 R3
4
VEE
VEE
-12.0V
2
R4
19kΩ
7 C3
2µF
D1
R6 1MΩ
0
N 沟道 JFET 的阀值电压 VTH 为负压,当 VGS=0 时(即电路刚上电时),源‐漏导通而将 R5 短接到地,R5 与 R3 并联再与 R4 组成负反馈,此时电路的放大倍数约为 3.3(大于 3),电 路开始起振,振荡的幅度也会越来越大;当输出负压足以使 VGS<VTH 时,JFET 截止,此时电 路的放大倍数约为 2.9(小于 3),此电路的输出幅值约为 JFET 的阀值电压(负压)加一个二 极管压降,即 VTH+VD,其输出波形如下图所示:
Author: Jackie Long
文氏电桥振荡电路详解
文氏电桥振荡电路(Wien bridge oscillator circuit),简称“文氏电桥”,是一种适于产生 正弦波信号的振荡电路之一,此电路振荡稳定且输出波形良好,在较宽的频率范围内也能够 容易调节,因此应用场合较为广泛。
如下图所示为基本文氏电桥振荡电路:
我们用下图所示的电路参数进行仿真: 2
C1 R2 10nF 47kΩ
C2 3 R1
10nF
47kΩ
VCC 12.0V
VCC
8
0
R3
10kΩ
3
42
4
U1A
1
1
LM358D VEE
VEE -12.0V R4
30kΩ
当 R4=100K 时,放大倍数为 11,输出波形如下图:
当 R4=30K 时,放大倍数为 4,输出波形如下图:
10nF 10kΩ
VCC 12.0V
VCC
8
3
U1A
1
3
2
LM358D 0
4
其输出波形如下图所示:
2 R4
100kΩ
D1
R6
6
D2
24kΩ
8
All rights reserved, NO Spreading without Authorization
Author: Jackie Long
可以看到,输出正弦波是以 6V(即 12V 的一半)作为中点的。 也有如下图所示相似的电路,读者可自行仿真,原理是一致的。
Author: Jackie Long
注意纵轴单位为 mV(毫伏),此时电路起振后不断地放大导致幅度增加(此图只是一 部分),但由于放大倍数太小,因此达到大信号电平需要更长的时间。
当 R3=20K 时,放大倍数为 3 倍,输出波形如下图所示:
注意纵轴单位为 pV(皮伏),放大倍数太小,一直都处在小信号状态,什么时候达到大 信号状态也无从得知,因此这里就没图了,不好意思。
10
All rights reserved, NO Spreading without Authorization
Author: Jackie Long
下图也是一种稳幅电路,如下图所示,读者可自行分析:
2
C1 R2 10nF 47kΩ
C2 3 R1
10nF
47kΩ
VCC 12.0V
VCC
8
0 R3
当 R3=15K 时,放大倍数为 2.5 倍(负反馈占优势),如下图所示:
4
All rights reserved, NO Spreading without Authorization
Author: Jackie Long
把局部放大后如下图所示,注意纵轴单位
可以看到,电路的放大倍数越大,则电路越容易起振,但只要放大倍数超过 3,则输出 波形都将出现削波失真,如果放大倍数设置恰好为 3,则仿真时间要等很久才会有结果。实 际用器件搭电路时,要做到放大倍数为 3.00000XXXX 可真不是件容易的事.
2
C1 R2 10nF 47kΩ
C2 3 R1
相关文档
最新文档