2016-2017学年新人教A版必修1高中数学 1.2.2 函数的表示法2教案(精品)
人教A版必修一数学课件:1.2.2函数的表示法(第2课时分段函数及映射)
研修班
3
x+2,x≤-1 2 已知函数 f(x)=x ,-1<x<2 ,求 f(f(f(-3))) 2x,x≥2 【思路点拨】 由题目可获取以下主要信息: ①函数 f(x)是分段函数; ②本例是求值问题. 解答本题需确定 f(f(-3))的范围,为此又需 确定 f(-3)的范围,然后根据所在定义域代入相 应解析式逐步求解.
2018/12/1 研修班 8
对含有绝对值的函数,要作出其图象,首先应根据绝对值
的意义去掉绝对值符号,将函数转化为分段函数,然后分段作 出函数图象.由于分段函数在定义域的不同区间内解析式不一
样,因此画图时要特别注意区间端点处对应点的实虚之分.
2.写出下列函数的解析式并作出函数图象: (1)设函数y=f(x),当x<0时,f(x)=0;当x≥0时,f(x)=2; (2)设函数y=f(x),当x≤-1时,f(x)=x+1;当-1<x<1时,f(x)
2018/12/1
研修班
2
1.分段函数是一个函数还是几个函数?其定义域、值域各
是什么? 【提示】 分段函数是一个函数而非几个函数,其定义域是
各段定义域的并集,值域是各段值域的并集.
2.函数是映射吗? 【提示】 对比函数定义与映射定义可知,函数是特殊的映
射,是从非空数集到非空数集的映射.
2018/12/1
2018/12/1
研修班
4
【解析】 ∵-3≤-1,∴f(-3)=-3+2=-1 ∴f(f(-3))=f(-1)=1,
∵-1<1<2,
∴f(f(f(-3)))=f(1)=1.
(1)分段函数求值,一定要注意所给自变量的值所在的范围,代入相
应的解析式求得. (2)像本题中含有多层“f”的问题,要按照“由里到外”的顺序,层层
高中数学人教版A版必修一课时作业及解析:第一章1-2函数及其表示
高中数学人教版A版必修一第一章集合与函数概念§1.2函数及其表示1.2.1 函数的概念课时目标 1.理解函数的概念,明确函数的三要素.2.能正确使用区间表示数集,表示简单函数的定义域、值域.3.会求一些简单函数的定义域、值域.1.函数(1)设A、B是非空的数集,如果按照某种确定的__________,使对于集合A中的____________,在集合B中都有________________和它对应,那么就称f:________为从集合A到集合B的一个函数,记作__________________.其中x 叫做________,x的取值范围A叫做函数的________,与x的值相对应的y值叫做________,函数值的集合{f(x)|x∈A}叫做函数的________.(2)值域是集合B的________.2.区间(1)设a,b是两个实数,且a<b,规定:①满足不等式__________的实数x的集合叫做闭区间,表示为________;②满足不等式__________的实数x的集合叫做开区间,表示为________;③满足不等式________或________的实数x的集合叫做半开半闭区间,分别表示为______________.(2)实数集R可以用区间表示为__________,“∞”读作“无穷大”,“+∞”读作“__________”,“-∞”读作“________”.我们把满足x≥a,x>a,x≤b,x<b的实数x的集合分别表示为________,________,________,______.一、选择题1.对于函数y=f(x),以下说法正确的有()①y 是x 的函数②对于不同的x ,y 的值也不同③f (a )表示当x =a 时函数f (x )的值,是一个常量 ④f (x )一定可以用一个具体的式子表示出来 A .1个B .2个 C .3个D .4个2.设集合M ={x |0≤x ≤2},N ={y |0≤y ≤2},那么下面的4个图形中,能表示集合M 到集合N 的函数关系的有( )A .①②③④B .①②③C .②③D .②3.下列各组函数中,表示同一个函数的是( ) A .y =x -1和y =x 2-1x +1B .y =x 0和y =1C .f (x )=x 2和g (x )=(x +1)2D .f (x )=(x )2x 和g (x )=x(x )24.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,那么函数解析式为y =2x 2-1,值域为{1,7}的“孪生函数”共有( )A .10个B .9个C .8个D .4个 5.函数y =1-x +x 的定义域为( )A .{x |x ≤1}B .{x |x ≥0}C .{x |x ≥1或x ≤0}D .{x |0≤x ≤1} 6.函数y =x +1的值域为( ) A .[-1,+∞) B .[0,+∞) C .(-∞,0] D .(-∞,-1]二、填空题7.已知两个函数f (x )和g (x )的定义域和值域都是{1,2,3},其定义如下表:8.如果函数f (x )满足:对任意实数a ,b 都有f (a +b )=f (a )f (b ),且f (1)=1,则f (2)f (1)+f (3)f (2)+f (4)f (3)+f (5)f (4)+…+f (2011)f (2010)=________. 9.已知函数f (x )=2x -3,x ∈{x ∈N |1≤x ≤5},则函数f (x )的值域为______________.10.若函数f (x )的定义域是[0,1],则函数f (2x )+f (x +23)的定义域为________. 三、解答题11.已知函数f (1-x1+x )=x ,求f (2)的值.能力提升12.如图,该曲线表示一人骑自行车离家的距离与时间的关系.骑车者9时离开家,15时回家.根据这个曲线图,请你回答下列问题:(1)最初到达离家最远的地方是什么时间?离家多远?(2)何时开始第一次休息?休息多长时间?(3)第一次休息时,离家多远?(4)11∶00到12∶00他骑了多少千米?(5)他在9∶00~10∶00和10∶00~10∶30的平均速度分别是多少?(6)他在哪段时间里停止前进并休息用午餐?13.如图,某灌溉渠的横断面是等腰梯形,底宽为2m,渠深为1.8m,斜坡的倾斜角是45°.(临界状态不考虑)(1)试将横断面中水的面积A(m2)表示成水深h(m)的函数;(2)确定函数的定义域和值域;(3)画出函数的图象.1.函数的判定判定一个对应关系是否为函数,关键是看对于数集A 中的任一个值,按照对应关系所对应数集B 中的值是否唯一确定,如果唯一确定,就是一个函数,否则就不是一个函数.2.由函数式求函数值,及由函数值求x ,只要认清楚对应关系,然后对号入座就可以解决问题.3.求函数定义域的原则:①当f (x )以表格形式给出时,其定义域指表格中的x 的集合;②当f (x )以图象形式给出时,由图象范围决定;③当f (x )以解析式给出时,其定义域由使解析式有意义的x 的集合构成;④在实际问题中,函数的定义域由实际问题的意义确定.§1.2 函数及其表示 1.2.1 函数的概念知识梳理1.(1)对应关系f 任意一个数x 唯一确定的数f (x ) A →B y =f (x ),x ∈A 自变量 定义域 函数值 值域 (2)子集2.(1)①a ≤x ≤b [a ,b ] ②a <x <b (a ,b ) ③a ≤x <b a <x ≤b [a ,b ),(a ,b ] (2)(-∞,+∞) 正无穷大 负无穷大 [a ,+∞) (a ,+∞) (-∞,b ] (-∞,b ) 作业设计1.B [①、③正确;②不对,如f (x )=x 2,当x =±1时y =1;④不对,f (x )不一定可以用一个具体的式子表示出来,如南极上空臭氧空洞的面积随时间的变化情况就不能用一个具体的式子来表示.]2.C [①的定义域不是集合M ;②能;③能;④与函数的定义矛盾.故选C.] 3.D [A 中的函数定义域不同;B 中y =x 0的x 不能取0;C 中两函数的对应关系不同,故选D.]4.B [由2x 2-1=1,2x 2-1=7得x 的值为1,-1,2,-2,定义域为两个元素的集合有4个,定义域为3个元素的集合有4个,定义域为4个元素的集合有1个,因此共有9个“孪生函数”.]5.D [由题意可知⎩⎨⎧1-x ≥0,x ≥0,解得0≤x ≤1.]6.B 7.3 2 1解析 g [f (1)]=g (2)=3,g [f (2)]=g (3)=2, g [f (3)]=g (1)=1. 8.2010解析 由f (a +b )=f (a )f (b ),令b =1,∵f (1)=1, ∴f (a +1)=f (a ),即f (a +1)f (a )=1,由a 是任意实数,所以当a 取1,2,3,…,2010时,得f (2)f (1)=f (3)f (2)=…=f (2011)f (2010)=1.故答案为2010. 9.{-1,1,3,5,7}解析 ∵x =1,2,3,4,5,∴f (x )=2x -3=-1,1,3,5,7. 10.[0,13]解析 由⎩⎪⎨⎪⎧0≤2x ≤1,0≤x +23≤1,得⎩⎪⎨⎪⎧0≤x ≤12,-23≤x ≤13,即x ∈[0,13].11.解 由1-x 1+x=2,解得x =-13,所以f (2)=-13.12.解 (1)最初到达离家最远的地方的时间是12时,离家30千米. (2)10∶30开始第一次休息,休息了半小时. (3)第一次休息时,离家17千米. (4)11∶00至12∶00他骑了13千米.(5)9∶00~10∶00的平均速度是10千米/时;10∶00~10∶30的平均速度是14千米/时.(6)从12时到13时停止前进,并休息用午餐较为符合实际情形.13.解 (1)由已知,横断面为等腰梯形,下底为2m ,上底为(2+2h )m ,高为h m ,∴水的面积A=[2+(2+2h)]h2=h2+2h(m2).(2)定义域为{h|0<h<1.8}.值域由二次函数A=h2+2h(0<h<1.8)求得.由函数A=h2+2h=(h+1)2-1的图象可知,在区间(0,1.8)上函数值随自变量的增大而增大,∴0<A<6.84.故值域为{A|0<A<6.84}.(3)由于A=(h+1)2-1,对称轴为直线h=-1,顶点坐标为(-1,-1),且图象过(0,0)和(-2,0)两点,又考虑到0<h<1.8,∴A=h2+2h的图象仅是抛物线的一部分,如下图所示.1.2.2 函数的表示法 第1课时 函数的表示法课时目标 1.掌握函数的三种表示方法——解析法、图象法、列表法.2.在实际情境中,会根据不同的需要选择恰当方法表示函数.函数的三种表示法(1)解析法——用____________表示两个变量之间的对应关系; (2)图象法——用______表示两个变量之间的对应关系; (3)列表法——列出______来表示两个变量之间的对应关系.一、选择题1.一个面积为100cm 2的等腰梯形,上底长为x cm ,下底长为上底长的3倍,则把它的高y 表示成x 的函数为( ) A .y =50x (x >0) B .y =100x (x >0)C .y =50x (x >0)D .y =100x (x >0)2.一水池有2个进水口,1个出水口,进出水速度如图甲、乙所示.某天0点到6点,该水池的蓄水量如图丙所示.(至少打开一个水口)给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水.则正确论断的个数是( ) A .0B .1C .2D .33.如果f (1x )=x1-x,则当x ≠0时,f (x )等于( )A.1xB.1x -1C.11-xD.1x-1 4.已知f (x )=2x +3,g (x +2)=f (x ),则g (x )等于( )A .2x +1B .2x -1C .2x -3D .2x +75.若g (x )=1-2x ,f [g (x )]=1-x 2x 2,则f (12)的值为( ) A .1B .15C .4D .306.在函数y =|x |(x ∈[-1,1])的图象上有一点P (t ,|t |),此函数与x 轴、直线x =-1及x =t 围成图形(如图阴影部分)的面积为S ,则S 与t 的函数关系图可表示为( )二、填空题7.一个弹簧不挂物体时长12cm ,挂上物体后会伸长,伸长的长度与所挂物体的质量成正比例.如果挂上3kg 物体后弹簧总长是13.5cm ,则弹簧总长y (cm)与所挂物体质量x (kg)之间的函数关系式为________________________________________________________________________.8.已知函数y =f (x )满足f (x )=2f (1x )+x ,则f (x )的解析式为____________. 9.已知f (x )是一次函数,若f (f (x ))=4x +8,则f (x )的解析式为__________________.三、解答题10.已知二次函数f (x )满足f (0)=f (4),且f (x )=0的两根平方和为10,图象过(0,3)点,求f (x )的解析式.11.画出函数f (x )=-x 2+2x +3的图象,并根据图象回答下列问题: (1)比较f (0)、f (1)、f (3)的大小;(2)若x 1<x 2<1,比较f (x 1)与f (x 2)的大小; (3)求函数f (x )的值域.能力提升12.某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于..6·时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y =[x ]([x ]表示不大于x 的最大整数)可以表示为( )A .y =[x10] B .y =[x +310]C .y =[x +410]D .y =[x +510]13.设f (x )是R 上的函数,且满足f (0)=1,并且对任意实数x ,y ,有f (x -y )=f (x )-y (2x -y +1),求f (x )的解析式.1.如何作函数的图象一般地,作函数图象主要有三步:列表、描点、连线.作图象时一般应先确定函数的定义域,再在定义域内化简函数解析式(可能有的要表示为分段函数),再列表描出图象,并在画图象的同时注意一些关键点,如与坐标轴的交点、分段函数的区间端点等. 2.如何求函数的解析式求函数的解析式的关键是理解对应关系f 的本质与特点(对应关系就是对自变量进行对应处理的操作方法,与用什么字母表示无关),应用适当的方法,注意有的函数要注明定义域.主要方法有:代入法、待定系数法、换元法、解方程组法(消元法).1.2.2 函数的表示法 第1课时 函数的表示法知识梳理(1)数学表达式 (2)图象 (3)表格 作业设计1.C [由x +3x2·y =100,得2xy =100.∴y =50x (x >0).]2.B [由题意可知在0点到3点这段时间,每小时进水量为2,即2个进水口同时进水且不出水,所以①正确;从丙图可知3点到4点水量减少了1,所以应该是有一个进水口进水,同时出水口也出水,故②错;当两个进水口同时进水,出水口也同时出水时,水量保持不变,也可由题干中的“至少打开一个水口”知③错.]3.B [令1x =t ,则x =1t ,代入f (1x )=x1-x,则有f (t )=1t 1-1t=1t -1,故选B.] 4.B [由已知得:g (x +2)=2x +3,令t =x +2,则x =t -2,代入g (x +2)=2x +3,则有g (t )=2(t -2)+3=2t -1,故选B.]5.B [令1-2x =12,则x =14,∴f (12)=1-(14)2(14)2=15.] 6.B [当t <0时,S =12-t 22,所以图象是开口向下的抛物线,顶点坐标是(0,12);当t >0时,S =12+t 22,开口是向上的抛物线,顶点坐标是(0,12).所以B 满足要求.]7.y =12x +12解析 设所求函数解析式为y =kx +12,把x =3,y =13.5代入,得13.5=3k+12,k =12.所以所求的函数解析式为y =12x +12.8.f (x )=-x 2+23x (x ≠0)解析 ∵f (x )=2f (1x )+x ,①∴将x 换成1x ,得f (1x )=2f (x )+1x .②由①②消去f (1x ),得f (x )=-23x -x3,即f (x )=-x 2+23x (x ≠0).9.f (x )=2x +83或f (x )=-2x -8 解析 设f (x )=ax +b (a ≠0), 则f (f (x ))=f (ax +b )=a 2x +ab +b .∴⎩⎨⎧a 2=4ab +b =8,解得⎩⎪⎨⎪⎧a =2b =83或⎩⎨⎧a =-2b =-8.10.解 设f (x )=ax 2+bx +c (a ≠0).由f (0)=f (4)知⎩⎨⎧f (0)=c ,f (4)=16a +4b +c ,f (0)=f (4),得4a +b =0.① 又图象过(0,3)点, 所以c =3.②设f (x )=0的两实根为x 1,x 2,则x 1+x 2=-b a ,x 1·x 2=ca . 所以x 21+x 22=(x 1+x 2)2-2x 1x 2=(-b a)2-2·c a=10.即b 2-2ac =10a 2.③由①②③得a =1,b =-4,c =3.所以f (x )=x 2-4x +3.11.解 因为函数f (x )=-x 2+2x +3的定义域为R ,列表:x … -2 -1 0 1 2 3 4 … y … -5 0 3 4 3 0 -5 …连线,描点,得函数图象如图:(1)根据图象,容易发现f (0)=3,f (1)=4,f (3)=0, 所以f (3)<f (0)<f (1).(2)根据图象,容易发现当x 1<x 2<1时,有f (x 1)<f (x 2). (3)根据图象,可以看出函数的图象是以(1,4)为顶点,开口向下的抛物线,因此,函数的值域为(-∞,4].12.B [方法一 特殊取值法,若x =56,y =5,排除C 、D ,若x =57,y =6,排除A ,所以选B.方法二 设x =10m +α(0≤α≤9),0≤α≤6时, [x +310]=[m +α+310]=m =[x 10],当6<α≤9时,[x +310]=[m +α+310]=m +1=[x10]+1, 所以选B.]13.解 因为对任意实数x ,y ,有 f (x -y )=f (x )-y (2x -y +1), 所以令y =x ,有f (0)=f (x )-x (2x -x +1),即f (0)=f (x )-x (x +1).又f (0)=1, ∴f (x )=x (x +1)+1=x 2+x +1.第2课时分段函数及映射课时目标 1.了解分段函数的概念,会画分段函数的图象,并能解决相关问题.2.了解映射的概念.1.分段函数(1)分段函数就是在函数定义域内,对于自变量x的不同取值范围,有着不同的____________的函数.(2)分段函数是一个函数,其定义域、值域分别是各段函数的定义域、值域的______;各段函数的定义域的交集是空集.(3)作分段函数图象时,应_____________________________________.2.映射的概念设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A 中的任意一个元素x,在集合B中____________确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的__________.一、选择题1.已知,则f(3)为()A.2B.3C.4D.52.下列集合A到集合B的对应中,构成映射的是()3.一旅社有100间相同的客房,经过一段时间的经营实践,发现每间客房每天的定价与住房率有如下关系:A.100元B.90元C.80元D.60元4.已知函数,使函数值为5的x的值是()A.-2B.2或-5 2C.2或-2D.2或-2或-5 25.某单位为鼓励职工节约用水,作出了如下规定:每位职工每月用水不超过10立方米的,按每立方米m元收费;用水超过10立方米的,超过部分按每立方米2m元收费.某职工某月缴水费16m元,则该职工这个月实际用水为() A.13立方米B.14立方米C.18立方米D.26立方米6.已知集合P={x|0≤x≤4},Q={y|0≤y≤2},下列不能表示从P到Q的映射的是()A.f:x→y=12x B.f:x→y=13xC.f:x→y=23x D.f:x→y=x二、填空题7.已知,则f(7)=____________.8.设则f {f [f (-34)]}的值为________,f (x )的定义域是______________.9.已知函数f (x )的图象如下图所示,则f (x )的解析式是__________________.三、解答题 10.已知,(1)画出f (x )的图象; (2)求f (x )的定义域和值域.11.如图,动点P从边长为4的正方形ABCD的顶点B开始,顺次经C、D、A绕周界运动,用x表示点P的行程,y表示△APB的面积,求函数y=f(x)的解析式.能力提升12.设f:x→x2是集合A到集合B的映射,如果B={1,2},则A∩B一定是() A.∅B.∅或{1}C.{1}D.∅13.在交通拥挤及事故多发地段,为了确保交通安全,规定在此地段内,车距d是车速v(公里/小时)的平方与车身长S(米)的积的正比例函数,且最小车距不得小于车身长的一半.现假定车速为50公里/小时,车距恰好等于车身长,试写出d关于v的函数关系式(其中S为常数).1.全方位认识分段函数(1)分段函数是一个函数而非几个函数.分段函数的定义域是各段上“定义域”的并集,其值域是各段上“值域”的并集.(2)分段函数的图象应分段来作,特别注意各段的自变量取区间端点处时函数的取值情况,以决定这些点的实虚情况.2.对映射认识的拓展映射f:A→B,可理解为以下三点:(1)A中每个元素在B中必有唯一的元素与之对应;(2)对A中不同的元素,在B中可以有相同的元素与之对应;(3)A中元素与B中元素的对应关系,可以是:一对一、多对一,但不能一对多.3.函数与映射的关系映射f:A→B,其中A、B是两个“非空集合”;而函数y=f(x),x∈A为“非空的实数集”,其值域也是实数集,于是,函数是数集到数集的映射.由此可知,映射是函数的推广,函数是一种特殊的映射.第2课时 分段函数及映射知识梳理1.(1)对应关系 (2)并集 (3)分别作出每一段的图象 2.都有唯一 一个映射 作业设计 1.A [∵3<6,∴f (3)=f (3+2)=f (5)=f (5+2)=f (7)=7-5=2.] 2.D3.C [不同的房价对应着不同的住房率,也对应着不同的收入,因此求出4个不同房价对应的收入,然后找出最大值对应的房价即可.] 4.A [若x 2+1=5,则x 2=4,又∵x ≤0,∴x =-2, 若-2x =5,则x =-52,与x >0矛盾,故选A.]5.A [该单位职工每月应缴水费y 与实际用水量x 满足的关系式为y =⎩⎨⎧mx , 0≤x ≤10,2mx -10m ,x >10. 由y =16m ,可知x >10.令2mx -10m =16m ,解得x =13(立方米).]6.C [如果从P 到Q 能表示一个映射,根据映射的定义,对P 中的任一元素,按照对应关系f 在Q 中有唯一元素和它对应,选项C 中,当x =4时,y =23×4=83∉Q ,故选C.] 7.6解析 ∵7<9,∴f (7)=f [f (7+4)]=f [f (11)]=f (11-3)=f (8). 又∵8<9,∴f (8)=f [f (12)]=f (9)=9-3=6. 即f (7)=6.8.32 {x |x ≥-1且x ≠0}解析 ∵-1<-34<0,∴f (-34)=2×(-34)+2=12.而0<12<2,∴f (12)=-12×12=-14.∵-1<-14<0,∴f (-14)=2×(-14)+2=32.因此f {f [f (-34)]}=32.函数f (x )的定义域为{x |-1≤x <0}∪{x |0<x <2}∪{x |x ≥2}={x |x ≥-1且x ≠0}.9.f (x )=⎩⎨⎧ x +1, -1≤x <0,-x ,0≤x ≤1解析 由图可知,图象是由两条线段组成,当-1≤x <0时,设f (x )=ax +b ,将(-1,0),(0,1)代入解析式,则⎩⎨⎧ -a +b =0,b =1.∴⎩⎨⎧a =1,b =1.当0<x <1时,设f (x )=kx ,将(1,-1)代入,则k =-1. 10.解 (1)利用描点法,作出f (x )的图象,如图所示.(2)由条件知,函数f (x )的定义域为R .由图象知,当-1≤x ≤1时,f (x )=x 2的值域为[0,1],当x >1或x <-1时,f (x )=1,所以f (x )的值域为[0,1].11.解 当点P 在BC 上运动,即0≤x ≤4时,y =12×4x =2x ;当点P 在CD 上运动,即4<x ≤8时,y =12×4×4=8;当点P 在DA 上运动,即8<x ≤12时,y =12×4×(12-x )=24-2x .综上可知,f (x )=⎩⎨⎧ 2x , 0≤x ≤4,8,4<x ≤8,24-2x ,8<x ≤12.12.B [由题意可知,集合A 中可能含有的元素为:当x 2=1时,x =1,-1;当x 2=2时,x =2,- 2. 所以集合A 可为含有一个、二个、三个、四个元素的集合.无论含有几个元素,A ∩B =∅或{1}.故选B.]13.解 根据题意可得d =k v 2S .∵v =50时,d =S ,代入d =k v 2S 中,解得k =12500.∴d =12500v 2S .当d =S 2时,可解得v =25 2.∴d =⎩⎪⎨⎪⎧ S 2 (0≤v <252)12500v 2S (v ≥252).§1.2习题课课时目标 1.加深对函数概念的理解,加深对映射概念的了解.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.通过具体实例,理解简单的分段函数,并能简单应用.1.下列图形中,不可能作为函数y=f(x)图象的是()2.已知函数f:A→B(A、B为非空数集),定义域为M,值域为N,则A、B、M、N的关系是()A.M=A,N=B B.M⊆A,N=BC.M=A,N⊆B D.M⊆A,N⊆B3.函数y=f(x)的图象与直线x=a的交点()A.必有一个B.一个或两个C.至多一个D.可能两个以上4.已知函数,若f(a)=3,则a的值为()A.3B.- 3C.±3D.以上均不对5.若f(x)的定义域为[-1,4],则f(x2)的定义域为()A.[-1,2]B.[-2,2]C.[0,2]D.[-2,0]6.函数y=xkx2+kx+1的定义域为R,则实数k的取值范围为() A.k<0或k>4B.0≤k<4C.0<k<4D.k≥4或k≤0一、选择题1.函数f (x )=xx 2+1,则f (1x )等于( )A .f (x )B .-f (x )C.1f (x )D.1f (-x )2.已知f (x 2-1)的定义域为[-3,3],则f (x )的定义域为( )A .[-2,2]B .[0,2]C .[-1,2]D .[-3,3]3.已知集合A ={a ,b },B ={0,1},则下列对应不是从A 到B 的映射的是()4.与y =|x |为相等函数的是( )A .y =(x )2B .y =x 2C .D .y =3x 35.函数y =2x +1x -3的值域为( )A .(-∞,43)∪(43,+∞)B .(-∞,2)∪(2,+∞)C .RD .(-∞,23)∪(43,+∞)6.若集合A ={x |y =x -1},B ={y |y =x 2+2},则A ∩B 等于( )A .[1,+∞)B .(1,+∞)C .[2,+∞)D .(0,+∞)二、填空题7.设集合A=B={(x,y)|x∈R,y∈R},点(x,y)在映射f:A→B的作用下对应的点是(x-y,x+y),则B中点(3,2)对应的A中点的坐标为____________.8.已知f(x+1)=x+2x,则f(x)的解析式为___________________________________.9.已知函数,则f(f(-2))=______________________________.三、解答题10.若3f(x-1)+2f(1-x)=2x,求f(x).11.已知,若f(1)+f(a+1)=5,求a的值.能力提升12.已知函数f(x)的定义域为[0,1],则函数f(x-a)+f(x+a)(0<a<12)的定义域为()A.∅B.[a,1-a] C.[-a,1+a]D.[0,1]13.已知函数(1)求f(-3),f[f(-3)];(2)画出y=f(x)的图象;(3)若f(a)=12,求a的值.1.函数的定义域、对应关系以及值域是构成函数的三个要素.事实上,如果函数的定义域和对应关系确定了,那么函数的值域也就确定了.两个函数是否相同,只与函数的定义域和对应关系有关,而与函数用什么字母表示无关.求函数定义域时,要注意分式的字母不能为零;偶次根式内的被开方式子必须大于或等于零.2.函数图象是描述函数两个变量之间关系的一种重要方法,它能够直观形象地表示自变量、函数值的变化趋势.函数的图象可以是直线、光滑的曲线,也可以是一些孤立的点、线段或几段曲线等.3.函数的表示方法有列举法、解析法、图象法三种.根据解析式画函数的图象时,要注意定义域对函数图象的制约作用.函数的图象既是研究函数性质的工具,又是数形结合方法的基础.§1.2习题课双基演练1.C[C选项中,当x取小于0的一个值时,有两个y值与之对应,不符合函数的定义.]2.C[值域N应为集合B的子集,即N⊆B,而不一定有N=B.]3.C[当a属于f(x)的定义域内时,有一个交点,否则无交点.]4.A[当a≤-1时,有a+2=3,即a=1,与a≤-1矛盾;当-1<a<2时,有a2=3,∴a=3,a=-3(舍去);当a≥2时,有2a=3,∴a=32与a≥2矛盾.综上可知a = 3.]5.B [由-1≤x 2≤4,得x 2≤4,∴-2≤x ≤2,故选B.]6.B [由题意,知kx 2+kx +1≠0对任意实数x 恒成立,当k =0时,1≠0恒成立,∴k =0符合题意.当k ≠0时,Δ=k 2-4k <0,解得0<k <4,综上,知0≤k <4.]作业设计1.A [f (1x )=1x 1x 2+1=x 1+x 2=f (x ).] 2.C [∵x ∈[-3,3],∴0≤x 2≤3,∴-1≤x 2-1≤2,∴f (x )的定义域为[-1,2].]3.C [C 选项中,和a 相对应的有两个元素0和1,不符合映射的定义.故答案为C.]4.B [A 中的函数定义域与y =|x |不同;C 中的函数定义域不含有x =0,而y =|x |中含有x =0,D 中的函数与y =|x |的对应关系不同,B 正确.]5.B [用分离常数法.y =2(x -3)+7x -3=2+7x -3. ∵7x -3≠0,∴y ≠2.] 6.C [化简集合A ,B ,则得A =[1,+∞),B =[2,+∞).∴A ∩B =[2,+∞).]7.(52,-12)解析 由题意⎩⎨⎧ x -y =3x +y =2,∴⎩⎪⎨⎪⎧ x =52y =-12.8.f (x )=x 2-1(x ≥1)解析 ∵f (x +1)=x +2x=(x )2+2x +1-1=(x +1)2-1,∴f (x )=x 2-1. 由于x +1≥1,所以f (x )=x 2-1(x ≥1).9.4解析 ∵-2<0,∴f (-2)=(-2)2=4,又∵4≥0,∴f (4)=4,∴f (f (-2))=4.10.解 令t =x -1,则1-x =-t ,原式变为3f (t )+2f (-t )=2(t +1),①以-t 代t ,原式变为3f (-t )+2f (t )=2(1-t ),②由①②消去f (-t ),得f (t )=2t +25. 即f (x )=2x +25.11.解 f (1)=1×(1+4)=5,∵f (1)+f (a +1)=5,∴f (a +1)=0.当a +1≥0,即a ≥-1时,有(a +1)(a +5)=0,∴a =-1或a =-5(舍去).当a +1<0,即a <-1时,有(a +1)(a -3)=0,无解.综上可知a =-1.12.B [由已知,得⎩⎨⎧ 0≤x +a ≤1,0≤x -a ≤1⇒⎩⎨⎧-a ≤x ≤1-a ,a ≤x ≤1+a . 又∵0<a <12,∴a ≤x ≤1-a ,故选B.]13.解 (1)∵x ≤-1时,f (x )=x +5,∴f (-3)=-3+5=2,∴f [f (-3)]=f (2)=2×2=4.(2)函数图象如右图所示.(3)当a ≤-1时,f (a )=a +5=12,a =-92≤-1; 当-1<a <1时,f (a )=a 2=12,a =±22∈(-1,1); 当a ≥1时,f (a )=2a =12,a =14∉[1,+∞),舍去. 故a 的值为-92或±22.。
人教A版数学必修一1.2.2函数的表示法(二)映射
(5)集合A={x|x是三角形}, 集合B={x|x是圆}, 对应关系f:每一个圆都对应它的一个内
接三角形; f:B--->A
(6)集合A={x|x是新华中学的班级},
集合B={x|x是新华中学的学生},
对应关系f:每一个新华中学的学生都对
应一个班级.
f:B--->A
例4. 下列对应关系(A到B)中,其中x∈A,y∈B. (1)A B N , f : x y x 3 ;
P
M
-1 f 1/2 -2
1/3 -3
A
P
1
集合P:任何一个 4
P
M
1 f0
多对一
2
3
3
一对多
5
4
B
M
f 3
P 0 1
M
f0
3
5
2
5
集合M:唯一确定
C
D
新知识
映射的定义: 一般地,设A、B是两个非空集合,如果 按照某种对应法则f,对于集合A中的任 一个元素,在集合B中都有唯一的元素和 它对应,那么这样的对应(包括A、B 以及A到B的对应法则f)叫做集合A到集 合B的一个映射.
记作:f:x y, x A, y B 或者f:A B,其中x称为原象,y称为象
象与原象的定义:
给定一个集合A到B的映射,且a∈A, b∈B,若a与b对应,则把元素b叫做a在 B中的象,而a叫做b的原象.
③求正弦 1
2
30
2
45
2
60
3
90
2
1
④乘以2 1
1
2 3
2
4
3
5
6
函数与映射之间的异同: 1)函数是一个特殊的映射; 2)函数:数集A数集都是数集, 映射:A和B不一定是数集.
人教A版必修一1.2.2.2函数的表示法
x 2, x 0, 因此y= 5 x 2,0 x 1, x 2, x 1.
依上述解析式作出图象,如图.
由图象可以看出:所求值域为
规律方法:对含有绝对值的函数,要作出其图象,首先应根据绝对值 的意义去掉绝对值符号,将函数转化为分段函数,然后分段作出函数 图象.由于分段函数在定义域的不同区间内解析式不一样,因此画图时 要特别注意区间端点处对应点的实虚之分. 变式训练2-1:已知函数f(x)=1+ (1)用分段函数的形式表示该函数; (2)画出该函数的图象; (3)写出该函数的值域. 解:(1)当0≤x≤2时,f(x)=1+ 当-2<x<0时,f(x)=1+
类型一:分段函数及其应用
思路点拨:由题目可获取以下主要信息: ①函数f(x)是分段函数; ②本例是求值问题. 解答本题需确定f(f(-3))的范围,为此又需确定 f(-3)的范围,然后根据所在定义域代入相应解析式逐步求解.
解:∵-3<0,∴f(-3)=0, ∴f(f(-3))=f(0)=π , 又π >0,∴f(f(f(-3)))=f(π )=π +1, 即f(f(f(-3)))=π +1.
(4)是映射,因为A中每一个元素在 符合映射定义.
作用下对应的元素构成的集合
规律方法:(1)给定两集合A,B及对应关系f,判断是否是从集合A到集合B的映 射,主要利用映射的定义.用通俗的语言讲:A→B的对应有“多对一”、“一对 一”、“一对多”,前两种对应是A到B的映射,而最后一种不是A到B的映射. (2)理解映射这个概念,应注意以下几点: ①集合A到B的映射,A、B必须是非空集合(可以是数集,也可以是其他集合); ②对应关系有“方向性”,即强调从集合A到集合B的对应,它与从B到A的对应关系一 般是不同的; ③与A中元素对应的元素构成的集合是集合B的子集. 变式训练3-1:如图中各图表示的对应构成映射的个数是( )
人教版高一年级数学必修课程《函数的表示法》(第一课时)优质教案
1.2.2函数的表示法(第一课时)学习目标:1.了解函数的一些基本表示法(列表法、图象法、解析法)2.会根据不同实际情境选择合适的方法表示函数,树立应用数形结合的思想. 学习重点:函数的三种表示方法学习难点:对函数解析法的理解学习过程:(一)导入新课我们前面已经学习了函数的定义,函数的定义域的求法,函数值的求法,两个函数是否相同的判定方法,那么函数的表示方法常用的有哪些呢?这节课我们就来研究这个问题(二)师生互动,新课讲解(1)解析法:用数学表达式表示两个变量之间的函数关系,这种表示方法叫做解析法,这个数学表达式叫做函数的解析式.(2)图象法:以自变量x的取值为横坐标,对应的函数值y为纵坐标,在平面直角坐标系中描出各个点,这些点构成了函数的图象,这种用图象表示两个变量之间函数关系的方法叫做图象法.(3)列表法:列一个两行多列的表格,第一行是自变量的取值,第二行是对应的函数值,这种用表格来表示两个变量之间的函数关系的方法叫做列表法.例1.某种笔记本的单价是5元,买x(x∈{1,2,3,4,5})个笔记本需要y元,试用三种表示法表示函数y=f(x).分析:学生思考函数的表示法的规定.注意本例的设问,此处“y=f(x)”有三种含义,它可以是解析表达式,可以是图象,也可以是对应值表.本题的定义域是有限集,且仅有5个元素.解:这个函数的定义域是数集{1,2,3,4,5},用解析法可将函数y=f(x)表示为y=5x,x∈{1,2,3,4,5}.用列表法可将函数y=f(x)表示为笔记本数x 1 2 3 4 5 钱数y 5 10 15 20 25用图象法可将函数y=f(x)表示为图1-2-2-1.图1-2-2-1点评:本题主要考查函数的三种表示法.解析法的特点是:简明、全面地概括了变量间的关系;可以通过解析式求出任意一个自变量的值所对应的函数值,便于用解析式来研究函数的性质,还有利于我们求函数的值域;图象法的特点是:直观形象地表示自变量的变化,相应的函数值变化的趋势,有利于我们通过图象来研究函数的某些性质,图象法在生产和生活中有许多应用,如企业生产图,股市走势图等;列表法的特点是:不需要计算就可以直接看出与自变量的值对应的函数值,列表法在实际生产和生活中也有广泛的应用,如银行利率表、列车时刻表等等.但是并不是所有的函数都能用解析法表示,只有函数值随自变量的变化发生有规律的变化时,这样的函数才可能有解析式,否则写不出解析式,也就不能用解析法表示.例如:张丹的年龄n(n∈N*)每取一个值,那么他的身高y(单位:cm)总有唯一确定的值与之对应,因此身高y是年龄n的函数y=f(n),但是这个函数的解析式不存在,函数y=f(n)不能用解析法来表示.注意:①函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等;②解析法:必须注明函数的定义域,否则使函数解析式有意义的自变量的取值范围是函数的定义域;③图象法:根据实际情境来决定是否连线;④列表法:选取的自变量要有代表性,应能反映定义域的特征.例 2.下表是某校高一(1)班三位同学在高一学年度几次数学测试的成绩及班级平均分表:第一次第二次第三次第四次第五次第六次王伟98 87 91 92 88 95张城90 76 88 75 86 80 赵磊68 65 73 72 75 82 班平均分88.2 78.3 85.4 80.3 75.7 82.6 请你对这三位同学在高一学年度的数学学习情况做一个分析.分析:学生思考做学情分析,具体要分析什么?怎么分析?借助什么工具?本题利用表格给出了四个函数,它们分别表示王伟、张城、赵磊的考试成绩及各次考试的班级平均分.由于表格区分三位同学的成绩高低不直观,故采用图象法来表示.做学情分析,具体要分析学习成绩是否稳定,成绩变化趋势.解:把“成绩”y看成“测试序号”x的函数,用图象法表示函数y=f(x),如图1-2-2-3所示.图1-2-2-3由图1-2-2-3可看到:王伟同学的数学成绩始终高于班级平均分,学习情况比较稳定而且成绩优秀; 张城同学的数学成绩不稳定,总是在班级平均分水平上下波动,而且波动幅度较大;赵磊同学的数学学习成绩呈上升趋势,表明他的数学成绩稳步提高.点评:本题主要考查根据实际情境需要选择恰当的函数表示法的能力,以及应用函数解决实际问题的能力.通过本题可见,图象法比列表法和解析法更能直观反映函数值的变化趋势.注意:本例为了研究学生的学习情况,将离散的点用虚线连接,这样便于研究成绩的变化特点.例3.将长为a 的铁丝折成矩形,求矩形面积y 关于一边长x 的函数关系式,并求定义域和值域,作出函数的图象.分析:解此题的关键是先把实际问题转化成数学问题,即把面积y 表示为x 的函数,用数学的方法解决,然后再回到实际中去. 解:设矩形一边长为x,则另一边长为21(a-2x),则面积y=21(a-2x)x=-x 2+21ax. 又⎩⎨⎧>>0,2x -a 0,x 得0<x<2a ,即定义域为(0,2a).由于y=-(x 4a -)2+161a 2≤161a 2, 如图1-2-2-4所示,结合函数的图象得值域为(0,161a 2].图1-2-2-4例4.已知2f(x)+f(-x)=3x+2,则f(x)=________.分析:由题意得⎩⎨⎧+=++=+2,-3x f(x)2f(-x)2,3x f(-x)2f(x)把f(x)和f(-x)看成未知数,解方程即得. (三)课堂练习1.向高为H 的水瓶中注水,注满为止,如果注水量V 与水深h 的函数关系的图象如图1-2-2-5所示,那么水瓶的形状是( )图1-2-2-5 图1-2-2-6答案:B2.2007宁夏银川一模,理14已知f(x x +-11)=2211x x +-,则f(x)=________.分析:可设x x +-11=t,则有x=tt+-11, 所以f(t)=22)11(1)11(1t t t t +-++--=212t t +, 所以f(x)=212x x+.答案:212xx+ 3.已知函数f(x)=273++x x ,写出函数的定义域和值域.(换元法)注意:讨论函数的值域要先考虑函数的定义域,换元后马上写出新元的取值范围 (四)课堂小结:本节课学习了函数的三种表示方法,在具体的实际问题中能够选用恰当的表示法来表示函数. (五)作业:1.车管站在某个星期日保管的自行车和电动车共有3 500辆次,其中电动车保管费是每辆一次0.5元,自行车保管费是每次一辆0.3元.(1)若设自行车停放的辆次数为x,总的保管费收入为y 元,试写出y 关于x 的函数关系式;(2)若估计前来停放的3 500辆次自行车中,电动车的辆次不小于25%,但不大于40%,试求该保管站这个星期日收入保管费总数的范围.2.水池有2个进水口,1个出水口,每个水口进出水的速度如图1-2-2-9甲、乙所示.某天0点到6点,该水池的蓄水量如图1-2-2-9丙所示(至少打开一个水口).图1-2-2-9给出以下三个论断: ①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水;其中一定正确的论断是( )A.①B.①②C.①③D.①②③3.求值域y=x4+ x2-2(六)教学反思:。
人教版高中数学必修一1.2.2_函数的表示法_第二课时ppt课件
考点一
课堂互动讲练
考点突破 分段函数图象的画法
根据分段区间及各段解析式.常用描点法画图,注意区间 端点的虚实.
例1 已知函数 f(x)=1+|x|- 2 x(-2<x≤2). (1)用分段函数的形式表示该函数; (2)画出该函数的图象; (3)写出该函数的值域. 【思路点拨】 讨论x的取值范围
→ 化简fx的解析式
例2 从甲同学家到乙同学家的途中有一个公园 甲、乙两家到该公园的距离都是 2 km,甲 10 点钟 发前往乙家,如图表示甲从自家出发到乙家为止 过的路程 y(km)与时间 x(分钟)的关系.依图象回 下列问题:
(1)甲在公园休息了吗?若休息了,休息了多 长时间? (2)甲到达乙家是几点钟? (3)写出函数 y=f(x)的解析式. (4)计算当 x=50 分钟时,甲所走的路程.
x →y=12x.
【思路点拨】 解答本题可由映射定义出发,观察A中任何一 个元素在B中是否都有唯一元素与之对应. 【解】 (1)由于A中元素3在对应关系f作用下其与3的差的绝对 值为0,而0∉B,故不是映射. (2)因为一个圆有无数个内接矩形,即集合A中任何一个元素在 集合B中有无数个元素与之对应,故不是映射.
问题探究
x x≥0 1.y=|x|=-x x<0 可以说 y=|x|是两 个函数吗? 提示:y=|x|,x∈R,仍是一个函数,只是 x ∈[0,+∞)与 x∈(-∞,0)的对应关系不同, 对于具体 x 值,所用的对应关系是唯一的.
2.从定义上看,函数与映射有什么关系? 提示:对比函数定义与映射定义可知,函数是特殊的映射, 是从非空数集到非空数集的映射.并非所有映射都为函数.
将(60,4),(40,2)分别代入,得 k2=110,b=- 2.
【高中数学必修一】1.2.2 函数的表示法-高一数学人教版(必修1)(解析版)
第一章 集合与函数概念1.2.2 函数的表示法一、选择题1.若()()20(0)x x f x x x ⎧≥=⎨-<⎩,,,则f [f (–2)]=A .2B .3C .4D .5【答案】C【解析】∵–2<0,∴f (–2)=–(–2)=2.又∵2>0,∴f [f (–2)]=f (2)=22=4,故选C .2.“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓缓爬行的乌龟,骄傲起来,睡了一觉.当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到了终点.用S 1和S 2分别表示乌龟和兔子经过时间t 所行的路程,则下列图象中与故事情节相吻合的是A .B .C .D .【答案】D3.已知函数f (x +1)=3x +2,则f (x )的解析式是A.f(x)=3x+2 B.f(x)=3x+1C.f(x)=3x–1 D.f(x)=3x+4【答案】C【解析】设t=x+1,∵函数f(x+1)=3x+2=3(x+1)–1,∴函数f(t)=3t–1,即函数f(x)=3x–1,故选C.4.已知映射f:A→B,其中A={a,b},B={1,2},已知a的象为1,则b的象为A.1,2中的一个B.1,2 C.2 D.无法确定【答案】A【解析】映射f:A→B,其中A={a,b},B={1,2},已知a的象为1,可得b的象为1或2,故选A.5.若f(x)满足关系式f(x)+2f(1x)=3x,则f(2)的值为A.1 B.–1 C.–32D.32【答案】B【解析】∵f(x)满足关系式f(x)+2f(1x)=3x,分别令x=2,和x=12,得()()12262132222f ff f⎧⎛⎫+=⎪⎪⎪⎝⎭⎨⎛⎫⎪+=⎪⎪⎝⎭⎩①②,①–②×2得–3f(2)=3,∴f(2)=–1,故选B.6.甲、乙两人在一次赛跑中,路程s与时间t的函数关系如图所示,则下列说法正确的是A.甲比乙先出发B.乙比甲跑的路程多C.甲、乙两人的速度相同D.甲先到达终点【答案】D7.已知f(x–2)=x2–4x,那么f(x)=A .x 2–8x –4B .x 2–x –4C .x 2+8xD .x 2–4【答案】D【解析】由于f (x –2)=x 2–4x =(x 2–4x +4)–4=(x –2)2–4,从而f (x )=x 2–4.故选D . 8.国内某快递公司规定:重量在1000 g 以内的包裹快递邮资标准如下表:运送距离x (km ) 0<x ≤500 500<x ≤10001000<x ≤15001500<x ≤2000… 邮资y (元)5.006.007.008.00如果某人从北京快递900 g 的包裹到距北京1300 km 的某地,他应付的邮资是 A .5.00元B .6.00元C .7.00元D .8.00元【答案】C【解析】邮资y 与运送距离x 的函数关系式为 5.00(0500)6.00(5001000)7.00(10001500)8.00(15002000)x x y x x <≤⎧⎪<≤⎪=⎨<≤⎪⎪<≤⎩,∵1300∈(1000,1500],∴y =7.00,故选C .9.已知函数()()()32121x x f x x x x ⎧>⎪=⎨-+≤⎪⎩.若()54f a =-,则a 的值为A .12-或52B .12或52C .12-D .12【答案】C【解析】当a >1时,f (a )=3514a >≠-,此时a 不存在,当a ≤1,f (a )=–a 2+2a =–54,即4a 2–8a –5=0,解可得a =–12或a =52(舍),综上可得a =12-,故选C .10.已知函数f (x )=()20(0)x x x x ⎧≥⎨<⎩,,,则f (f (–2))的值是A .2B .–2C .4D .–4【答案】C【解析】∵已知函数()()20(0)x x f x x x ⎧≥=⎨<⎩,,,∴f (–2)=(–2)2,∴f (f (–2))=f (4)=4,故选C .二、填空题11.已知f+1)=x,则f (x )=__________.【答案】x 2–1,(x ≥1)【解析】∵()12fx x x +=+=x +2x +1–1=(x +1)2–1,∴则f (x )=x 2–1,(x ≥1).故答案为:x 2–1,(x ≥1).12.已知f (x +1)=2x 2+1,则f (x –1)=__________.【答案】2x 2–8x +9【解析】设x +1=t ,则x =t –1,f (t )=2(t –1)2+1=2t 2–4t +3,f (x –1)=2(x –1)2–4(x –1)+3=2x 2–4x +2–4x +4+3=2x 2–8x +9.故答案为:2x 2–8x +9. 13.已知f (x +1)=x 2,则f (x )=__________.【答案】(x –1)2【解析】由f (x +1)=x 2,得到f (x +1)=(x +1–1)2,故f (x )=(x –1)2.故答案为:(x –1)2. 14.已知函数f (x )=ax –b (a >0),f (f (x ))=4x –3,则f (2)=__________.【答案】3三、解答题15.()()()11032f x kx b f f =+==-,,,求f (4)的值. 【解析】∵()()()11032f x kx b f f =+==-,,,∴0132k b k b +=⎧⎪⎨+=-⎪⎩,解得k =–14,b =14, ∴f (x )=–14x +14,∴f (4)=–14×4+14=–34.16.二次函数f (x )满足f (x +1)–f (x )=2x 且f (0)=1.(1)求f (x )的解析式;(2)当x ∈[–1,1]时,不等式f (x )>2x +m 恒成立,求实数m 的取值范围. 【解析】(1)由题意,设f (x )=ax 2+bx +c , 则f (x +1)=a (x +1)2+b (x +1)+c .从而f (x +1)–f (x )=[a (x +1)2+b (x +1)+c ]–(ax 2+bx +c )=2ax +a +b , 又f (x +1)–f (x )=2x ,∴220a a b =⎧⎨+=⎩即11a b =⎧⎨=-⎩,又f (0)=c =1, ∴f (x )=x 2–x +1.17.已知函数f (x )=()()221(12)22x x x x x x ⎧+≤-⎪-<<⎨⎪≥⎩(1)在坐标系中作出函数的图象; (2)若f (a )=12,求a 的取值集合. 【解析】(1)函数f (x )=()()221(12)22x x x x x x ⎧+≤-⎪-<<⎨⎪≥⎩的图象如下图所示:(2)当a ≤–1时,f (a )=a +2=12,可得:a =32-;当–1<a <2时,f (a )=a 2=12,可得:a =22±;当a ≥2时,f(a )=2a =12,可得:a =14(舍去); 综上所述,a 的取值构成集合为{32-,22-,22}.18.(1)已知3311f x x x x ⎛⎫+=+ ⎪⎝⎭,求f (x ). (2)已知21f lgx x ⎛⎫+=⎪⎝⎭,求f (x ). (3)已知f (x )是一次函数,且满足3f (x +1)–2f (x –1)=2x +17,求f (x ). (4)已知f (x )满足()123f x f x x ⎛⎫+=⎪⎝⎭,求f (x ). 【解析】(1)∵3331111()3f x x x x x x x x ⎛⎫⎛⎫+=+=+-+ ⎪ ⎪⎝⎭⎝⎭, ∴f (x )=x 3–3x (x ≥2或x ≤–2).(2)令21t x +=(t >1), 则21x t =-,∴()21f t lg t =-,∴()()211f x lg x x =->.19.已知函数f (x )=1+2x x -(–2<x ≤2),用分段函数的形式表示该函数.【解析】f (x )=1+1021202x x x x x ≤≤-⎧=⎨--<<⎩,,.。
(新)人教版高中数学必修一1.2.2《函数的表示法》课件(共23张PPT)
的一种“程序”或“方法”.因此要把“2x + 1”及“ x + 1”看成一个整体来求解.
1 1 (2)设f( +1)= 2-1,则f(x)=________. x x (3)若对任意x∈R,都有f(x)-2f(-x)=9x+2,则f(x)= ________.
[答案]
(1)D (2)x2-2x(x≠1)
6.(2012· 全国高考数学文科试题江西卷)设函数f(x)= x2+1 x≤1 2 ,则f(f(3))=( x>1 x 1 A.5 2 C. 3 B.3 13 D. 9 )
[答案] D
7.已知函数f(x)=
2 x -4,0≤x≤2, 2x,x>2,
,则f(2)=
2.作图时忘记去掉不在函数定义域内的点 [例5] 数的值域. [错解]
x,-1≤x≤1, 由题意,得y= -x,x<-1或x>1.
x|1-x2| 画出函数y= 2 的图象,并根据图象指出函 1-x
[例 5]
(1)已知 f(x)=x2,求 f(2x+1);
(2)已知 f( x+1)=x+2 x,求 f(x). 1 (3)设函数 f(x)满足 f(x)+2f(x )=x (x≠0),求 f(x). [分析] 我们前面指出,对应法则“f”实际上是对“x”计算
5.(山东冠县武的高2012~2013月考试题)已知函数f(x)
x+1x≥0 = fx+2x<0
则f(-3)的值为( B.-1 D.2
)
A.5 C.-7
[答案] D
如图,在边长为4的正方形ABCD的边上有一点P,沿折 线BCDA由点B(起点)向点A(终点)运动,设点P运动的路程为 x,△APB的面积为y. (1)求y关于x的函数关系式y=f(x); (2)画出y=f(x)的图象; (3)若△APB的面积不小于2,求x的取值范围.
高中数学 1.2.2函数的表示法(二)映射的概念学案 新人教A版
河北省石家庄市2012-2013年高中数学 1.2.2函数的表示法(二)映射的概念学案 新人教A 版课前预习案使用说明与学法指导: 1.用15分钟的时间阅读探究课本上的基础知识,自主高效预习,提升自己的阅读理解能力.2.完成教材助读设置的问题,然后结合课本的基础知识和例题,完成预习自测题.3.将预习中不能解决的问题标出来,并写到“我的疑惑”处。
一、相关知识1.构成函数三个要素是什么?2.请同学们回忆分段函数及其表示法?学习建议:请同学们回忆上一节的知识并作出回答。
二、教材助读1.什么是映射?2.映射与函数有什么关系?3.如何判断一个对应是不是映射?三、预习自测学习建议:自测题体现一定的基础性,又有一定的思维含量,只有“细心才对,思考才会”.1.判断下列给出的对应是不是从集合A 到集合B 的映射?(1)集合={}A P P 是数轴上的点,集合=B R ,对应关系f :数轴上的点与它所代表的实数对应;(2)集合={}A P P 是平面直角坐标系中的点,集合={(,),}B x y x R y R ∈∈,对应关系f :平面直角坐标系中的点与它的坐标对应;(3)集合={}A x x 是三角形,集合={}B x x 是圆,对应关系f :每一个三角形都对应它的内切圆;(4) 集合={42}A x x 是石家庄市中学的班级,集合2. 画出函数|2|y x =-的图象.我的疑惑:请你将预习中未能解决的问题和有疑惑的问题写下来,待课堂上与老师和同学探究解决.课堂探究案一、学始于疑-------我思考,我收获1.函数与映射的联系是什么?区别是什么?2.如何判断一个对应是不是映射?是不是函数?学习建议:请同学们用2分钟的时间认真思考这些问题,并结合预习中自己的疑惑开始下面的探究学习。
二、质疑探究——质疑解疑、合作探究(一)基础知识探究 探究点:映射的概念请同学们探究下面的问题,并在题目的横线上填出正确答案:1.一般地,设A,B 是两个______的集合,如果按某一个对应关系f ,使对于集合A 中的________一个元素x ,在集合____中___有 ____________的元素y 与之对应,那么就称对应__________为从_______到_______的一个映射.2.分别举出映射、函数的例子各一个.(二)知识综合应用探究探究点一 函数与映射的概念(重点)例1.如图,有一块边长为a 的正方形铁皮,将其四个角各截去一个边长为x 的小正方形,然后折成一个无盖的盒子,写出体积V 以x 为自变量的函数式是_____,这个函数的定义域为_______.例2. 判断下列给出的对应是不是从集合B 到集合A 的映射? ①集合={}A x x 是三角形,集合={}B x x 是圆,对应关系f :每一个圆都对应它的内接三角形;②集合={42}A x x 是石家庄市中学的班级,集合级. ③集合={}A x x 是锐角,集合=(0,1)B ,对应关系f :B 中的每一个数都对应以它为正弦值的锐角.思考. 题目中要求判断从哪个集合到哪个集合的映射?如何判断?学习建议:自主探究后谈谈你的映射概念的理解.归纳总结;探究点二 映射的应用(重点)例 3.设:f A B →是A 到B 的一个映射,其中{(,),}A B x y x y R ==∈,:(,)(,)f x y x y xy →+,求(1)A 中元素(2,3)-在B 中的对应元素;(2)求与B 中元素(2,3)-对应的A 中的元素.思考:集合A 中的元素与B 中的元素有怎样的对应关系?学习建议:自主探究后谈谈你的分析思路.规律方法总结:拓展提升:已知集合{,,},{1,A a b c B ==-,映射:f A B →满足()=()(f a f b f c +,问这样的映射有多少个? 思考1:你能说出(),(),()f a f b f c 的意义吗?思考2:(),(),()f a f b f c 可以取哪些値?探究点三:分段函数问题(重点)例4.画出函数|1||24|y x x =-++.的图象:学习建议:探究后谈谈你的解题思路.拓展提升:①函数()[]f x x =的函数值表示不超过x 的最大整数,例如[ 3.5]4-=-,[2.1]2=,当( 2.5,3]x ∈-时,写出()f x 的解析式,并作出函数的图象.②某市“招手即停”公共汽车的票价按下列规则制定:(1)5公里以内(含5公里),票价2元;(2)5公里以上,每增加5公里,票价增加1元(不足5公里的按5公里计算).如果某条线路的总里程为20公里,请根据题意,写出票价与里程的函数解析式,并画出函数的图象.三、我的知识网络图--------归纳梳理、整合内化⎧⎨⎩映射的概念映射映射与函数的关系四、当堂检测——有效训练、反馈矫正下列给出的对应是不是从集合A 到B 集合的映射?1.=,=A N B Z ,对应关系:=-,,f x y x x A y B →∈∈.2. ++=,=A R B R ,且满足1:=,,f x y x A y B x→∈∈ 3. +=,={0,1}A N B ,对应关系f :除以2得的余数.4. ={1,4},={-2,-1,1,2}A B ,对应关系f :开平方.有错必改我的收获(反思静悟、体验成功):课后训练案学习建议:完成课后训练案需定时训练,时间不超过20分钟,独立完成,不要讨论交流,全部做完后再参考答案查找问题.【基础知识检测】1.下列对应是从集合A 到集合B 的映射的是( ) A.=R,={>0}A B x x ,对应关系f :取绝对值 B.={>0},=R A x x B ,对应关系f :开平方. C. 1={>0},=R :+3A x xB f x x →, D. =Q,={}:A B x x f 是偶数,平方.2.拟定从甲地到乙地通话m 分钟电话费由()=1.06(0.05[])+1f m m ⨯⨯给出,其中>0,[]m m 是不小于m 的最小整数(【3】=3,【3.7】=4,【3.1】=4),则从甲地到乙地通话时间为5.5分钟的电话费为( ).A.3.71B. 3.97C.4.24D. 4.773.某同学从家里到学校,为了不迟到,先跑,跑累了再走余下的路,设在途中花的时4.已知映射:f A B →,其中A=B=R ,对应关系2:=-+2f x y x x →.对于实数k B ∈,在集合A 中不存在对应元素,则k 的取值范围是( )A. >1kB. 1k ≥C. <1kD. 1k ≤5. 已知函数()f x 满足()()()f ab f a f b =+,且(2)f p =,(3)f q =,那么(12)f 等于( ).A. p q +B. 2p q +C. 2p q +D. 2p q +6.已知集合={,,},B={,,}A a b c d e ,则从集合A 到集合B 的不同映射有_______个,从集合B 到集合A 的不同映射有_______个.【能力题目训练】7.已知集合={04}3B={02}A x x y y ≤≤≤≤,按对应关系f ,不能建立从集合到集合的映射的是( )A. 1:=2f x y x → B. :=-2f x y x → C. :f x y →:=-2f x y x → 【拓展题目探究】 8.设集合=,=A R B R ,对应关系且2+1:=,,2x f x y x A y B →∈∈是从集合A 到B 集合的映射.(1)那么A 中元素+1a 对应于B 中哪个元素?(2)与B 中元素6相对应的A 中的元素是什么?9.画出下列函数的图象:(1)22||3y x x =-++; (2)2|23|y x x =-++.错误!未定义书签。
人教版高中数学A版高中数学必修一《函数的概念及其表示》函数的概念与性质(第二课时函数的表示法)
描点法作函数图象的三个关注点 1画函数图象时首先关注函数的定义域,即在定义域内作图. 2图象是实线或实点,定义域外的部分有时可用虚线来衬托整个图 象. 3要标出某些关键点,例如图象的顶点、端点、与坐标轴的交点等. 要分清这些关键点是实心点还是空心圈. 提醒:函数图象既可以是连续的曲线,也可以是直线、折线、离散的 点等.
14
图象的画法及应用 【例 2】 作出下列函数的图象并求出其值域. (1)y=-x,x∈{0,1,-2,3};(2)y=2x,x∈[2,+∞);(3)y=x2+2x, x∈[-2,2).
15
[解] (1)列表
x
0
1
-2
3
y
0
-1
2
-3
函数图象只是四个点(0,0),(1,-1),(-2,2),(3,-3),其值域为{0,
20
函数解析式的求法 [探究问题] 已知 f(x)的解析式,我们可以用代入法求 f(g(x)),反之,若已知 f(g(x)), 如何求 f(x). 提示:若已知 f(g(x))的解析式,我们可以用换元法或配凑法求 f(x).
21
【例 3】 (1)已知 f( x+1)=x-2 x,则 f(x)=________; (2)已知函数 f(x)是一次函数,若 f(f(x))=4x+8,则 f(x)=________; (3)已知函数 f(x)对于任意的 x 都有 f(x)-2f(-x)=1+2x,则 f(x)= ________. [思路点拨] (1)用换元法或配凑法求解;(2)用待定系数法求解;(3) 用方程组法求解.
所以 f(x)=2x+83或 f(x)=-2x-8.
24
(3)由题意,在 f(x)-2f(-x)=1+2x 中,以-x 代 x 可得 f(-x)-2f(x) =1-2x,联立可得ffx--x2-f2-fxx= =11+ -22xx, , 消去 f(-x)可得 f(x)=23x-1.]
人教A版高中数学必修1《1.2 函数及其表示 阅读与思考 函数概念的发展历程》_2
函数概念的发展简史1、函数概念的萌芽时期(自然函数、代数函数时期)[1] 函数思想是随着数学开始研究事物的运动变化而出现的。
而事实上,早期的数学是不研究事物的运动变化的。
古希腊科学家亚里士多德曾经认为,数学研究的是抽象的概念,而抽象的概念来自事物静止不动的属性。
例如,数学中的数、线、形等数学对象都不包括运动,运动变化是物理学研究的对象等等。
受其影响,直至14世纪,数学家们才逐渐开始研究物体的运动问题。
到了16世纪,由于实践的需要,自然科学开始转向对运动的研究,自然中各种变化和各种变化着的物理量之间的关系也就成为数学家关注的对象。
伽利略就是最早开展这方面研究的科学家之一,在他的著作里多处使用比例的语言表达了量与量之间的依赖关系。
例如,从静止状态自由下落的物体所经过的距离与所用时间的平方成正比,这正是函数概念所表达的思想意义。
16世纪法国数学家笛卡尔在研究曲线问题时,发现了量的变化及量与量之间的依赖关系,并在数学中引进了变量思想,在他的《几何学》中指出:所谓变量是指:“不知的和未定的量”,成为数学发展的里程碑,也为函数概念的产生奠定了思想基础。
直到17世纪下半期,牛顿—莱布尼兹的微积分问世时,数学上还没有明确的函数概念。
把“函数”(function)一词最早用作数学术语的是莱布尼兹,当时,莱布尼兹用“函数”(function)一词表示幂,如都叫函数。
后来又用函数表示任何一个随着曲线上的点变动而变动的量。
例如曲线上的点的横坐标、纵坐标、切线的长度、垂线的长度等等。
从这个定义看出,莱布尼兹利用几何概念,在几何的范围内揭示了某些量之间的依存关系。
可以说出现了函数概念的一点端倪,但函数的一般定义仍没有诞生。
原因在于:数学家们一直在同具体的函数打交道,对具体函数或求导,或积分,讨论各种各样的具体问题,并没有感到有定义一般函数概念的需要。
2、函数概念的初步形成(解析函数时期)[2] 18世纪微积分的发展促进了函数概念“解析定义”的发展。
高中新课程数学(新课标人教A版)必修一《1.2.2 函数的表示法》课件
人 教 A
解:(1)∵f(x+1x)=x3+x13=(x+1x)3-3(x+1x), ∴f(x)=x3-3x(x≥2 或 x≤-2).
版
(2)设 f(x)=ax+b(a≠0),
必 修 一
则 3f(x+1)-2f(x-1)=3ax+3a+3b-2ax+2a-2b =ax+b+5a=2x+17,
·
∴a=2,b=7,∴f(x)=2x+7.
A
对应 关系,这种表示方法叫做解析法,这个数学
版
必 表达式叫做函数的解析式.
修
一
·
新 课 标
·
数 学
温馨提示:解析法有两个优点:一是简明、全面地概
人 教
括了变量间的变化规律,二是可以通过解析式求出任意一
A 个自变量所对应的函数值.缺点是并不是任意函数都可用
版 必 解析法表示,仅当两个变量间有变化规律时,才能用解析
A
版
()
必 修
A.同一函数
一
B.定义域相同的两个函数
·
新
C.值域相同的两个函数
课 标
D.图象相同的两个函数
·
数
解析:y=f(x)与y=f(x+1)的自变量发生变化,而函数
学 的值域却没发生变化,故选C.
答案:C
2.可作为函数y=f(x)的图象的是
()
人 教
解析:判断图象是否可以表示函数y=f(x)的图象,关
人
教
A
版
必
修
一
高中新课程数学(新课标人教A版)必修一《1.2.2 函数的 表示法》课件
新 课 标
·
·
数 学
人 教 A 版 必 修 一
·
新
高中数学 1.2.2函数表示法(二)课件 新人教A版必修1
1
30
2
2
45
2
60
3
90
2 1
h
2
A 求 平 方 B39-3来自24-2
1
1
-1
h
3
A 开 平 方 B
3
9
-3
4
2 -2
1
1 -1
h
4
A 乘 以 2 B
1
1
2
3
2
4
5
3
6
h
5
A乘 以 4B
0
1
4
2
3
12
4
5
20
h
6
映射f:A→B,可理解为以下4点:
函映数射
设A,B是两个非空的数集集合,如果按某一个 确定的对应关系f,使对于集合A中的任意一 个元素x,在集合B中都有唯一确定的元素y与 之对应,那么就称对应f:A→B为从集合A到集 合B的一个函映数射。
由此可知,映射是函数的推广,函 数是一种特殊的映射。
h
1
判断下列对应是不是映射?如果是,那这个映射 是函数吗?
若函数f(x)的定义域为[a,b],则f(g(x))的定义 域应由不等式a≤g(x)≤b解出即得。
练习 若函数f(x)的定义域为[1,4],则函数f(x+2)
的定义域为_[_-1_,_2_]_.
h
10
例 已知f(2x-1)的定义域是[0,3],求f(x)定义域。
已知f(g(x))的定义域,求f(x)定义域的方法: 已知f(g(x))的定义域为D,则f(x)的定义域为
h
17
1、A中每个元素在B中必有唯一的象 2、对A中不同的元素,在B中可以有相同的象 3、允许B中元素没有原象 4、A中元素与B中元素的对应关系,可以 是:一对一,多对一,但不能一对多
人教新课标版数学高一必修1学案 函数的表示法(二)
1.2.2 函数的表示法(二)自主学习1.了解分段函数的概念,会画分段函数的图象,并能解决相关问题. 2.了解映射的概念及含义,会判断给定的对应关系是否是映射.1.分段函数(1)分段函数就是在函数定义域内,对于自变量x 的不同取值范围,有着不同的对应关系的函数.(2)分段函数是一个函数,其定义域、值域分别是各段函数的定义域、值域的并集;各段函数的定义域的交集是空集.(3)作分段函数图象时,应分别作出每一段的图象. 2.映射的概念设A 、B 是两个非空的集合,如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射。
3.映射与函数由映射的定义可以看出,映射是函数概念的推广,函数是一种特殊的映射,要注意构成函数的两个集合A ,B 必须是非空数集.对点讲练分段函数的求值问题【例1】 已知函数f (x )=⎩⎪⎨⎪⎧x +2 (x ≤-1),x 2 (-1<x <2),2x (x ≥2).(1)求f [f (3)]的值; (2)若f (a .)=3,求a . 的值.分析 本题给出的是一个分段函数,函数值的取得直接依赖于自变量x 属于哪一个区间,所以要对x 的可能范围逐段进行讨论. 解 (1)∵-1<3<2,∴f (3)=(3)2=3. 而3≥2,∴f [f (3)]=f (3)=2×3=6.(2)当a .≤-1时,f (a .)=a .+2,又f (a .)=3,∴a .=1(舍去);当-1<a .<2时,f (a .)=a .2,又f (a .)=3,∴a .=±3,其中负值舍去,∴a .=3;当a .≥2时,f (a .)=2a .,又f (a .)=3, ∴a .=32(舍去).综上所述,a .= 3.规律方法 对于f (a .),究竟用分段函数中的哪一个对应关系,与a . 所在范围有关,因此要对a .进行讨论.由此我们可以看到: (1)分段函数的函数值要分段去求;(2)分类讨论不是随意的,它是根据解题过程中的需要而产生的.变式迁移1 设f (x )=⎩⎨⎧12x -1 (x ≥0),1x (x <0),若f (a .)>a .,则实数a .的取值范围是________.答案 a .<-1解析 当a .≥0时,f (a .)=12a .-1,解12a .-1>a .,得a .<-2与a .≥0矛盾,当a .<0时,f (a .)=1a ,解1a>a .,得a .<-1.∴a .<-1.分段函数的图象及应用【例2】 已知函数f (x )=1+|x |-x2(-2<x ≤2). (1)用分段函数的形式表示该函数; (2)画出该函数的图象; (3)写出该函数的值域. 化简f (x )的解析式 →化简f (x )的解析式 →把f (x )表示为分段函数形式→画出f (x )的图象→求f (x )的值域 解 (1)当0≤x ≤2时,f (x )=1+x -x2=1,当-2<x <0时,f (x )=1+-x -x2=1-x .∴f (x )=⎩⎨⎧1 (0≤x ≤2)1-x (-2<x <0).(2)函数f (x )的图象如图所示,(3)由(2)知,f (x )在(-2,2]上的值域为[1,3).规律方法 对含有绝对值的函数,要作出其图象,首先应根据绝对值的意义去掉绝对值符号,将函数转化为分段函数,然后分段作出函数图象.由于分段函数在定义域的不同区间内解析式不一样,因此画图时要特别注意区间端点处对应点的实虚之分.变式迁移 2 设函数f (x )=⎩⎪⎨⎪⎧|x +1| (x <1)-x +3 (x ≥1),使得f (x )≥1的自变量x 的取值范围是______________________. 答案 (-∞,-2]∪[0,2] 解析在同一坐标系中分别作出f (x )及y =1的图象(如图所示),观察图象知,x 的取值范围是(-∞,-2]∪[0,2].映射概念及运用【例3】 判断下列对应关系哪些是从集合A 到集合B 的映射,哪些不是,为什么?(1)A={x|x 为正实数},B={y|y ∈R[},f :x →y=±x(2)A=R ,B={0,1},对应关系f :x,→y =⎩⎪⎨⎪⎧1, x ≥0;0, x<0;(3)A=Z ,B=Q ,对应关系f :x →y=1x;(4)A={0,1,2,9},B={0,1,4,9,64},对应关系f:a →b=()21a -解 (1)任一个x 都有两个y 与之对应,∴不是映射.(2)对于A 中任意一个非负数都有唯一的元素1和它对应,任意一个负数都有唯一的元素0和它对应, ∴是映射.(3)集合A 中的0在集合B 中没有元素和它对应,故不是映射. (4)在f 的作用下,A 中的0,1,2,9分别对应到B 中的1,0,1,64,∴是映射.规律方法 判断一个对应是不是映射,应该从两个角度去分析:(1)是否是“对于A 中的 每一个元素”;(2)在B 中是否“有唯一的元素与之对应”.一个对应是映射必须是这两个方面都具备;一个对应对于这两点至少有一点不具备就不是映射.说明一个对应不是映射,只需举一个反例即可. 变式迁移3 下列对应是否是从A 到B 的映射,能否构成函数? (1)A=R ,B=R,f:x →y =1x +1;(2)A ={a.|a.=n ,n ∈N +},B =⎩⎨⎧⎭⎬⎫b|b =1n ,n ∈N +,f :a.→b =1a;(3)A=[)0,+∞,B=R ,f:x→y 2=x ;(4)A ={x|x 是平面M 内的矩形},B ={x|x 是平面M 内的圆},f :作矩形的外接圆. 解 (1)当x =-1时,y 的值不存在, ∴不是映射,更不是函数.(2)是映射,也是函数,因A 中所有的元素的倒数都是B 中的元素.(3)∵当A 中的元素不为零时,B 中有两个元素与之对应,∴不是映射,更不是函数. (4)是映射,但不是函数,因为A ,B 不是数集.1.分段函数求值要先找准自变量所在的区间;分段函数的定义域、值域分别是各段函数的定义域、值域的并集.2.判断一个对应是不是映射,主要利用映射的定义:(1)集合A 到B 的映射,A 、B 必须是非空集合(可以是数集,也可以是其他集合); (2)对应关系有“方向性”,即强调从集合A 到集合B 的对应,它与从B 到A 的对应关系一般是不同的;(3)与A 中元素对应的元素构成的集合是集合B 的子集.课时作业一、选择题1.下列集合A 到集合B 的对应f 是映射的是( ) A .A ={-1,0,1},B ={-1,0,1},f :A 中的数平方 B .A ={0,1},B ={-1,0,1},f :A 中的数开方 C .A =Z ,B =N *,f :a .→b =(a .+1)2D .A =R ,B ={正实数},f :A 中的数取绝对值 答案 A2.设集合A ={x |0≤x ≤6},B ={y |0≤y ≤2},从A 到B 的对应法则f 不是映射的是( ) A . f:x→y =12x B. f:x→y =13xC. f:x→y =14xD. f:x→y =16x答案 A由f:x →y =12x ,集合A 中的元素6对应3∉{y |0≤y ≤2},故选项A 不是映射.3.已知f (x )=⎩⎪⎨⎪⎧x -5 (x ≥6)f (x +2) (x <6)(x ∈N ),那么f (3)等于( )A .2B .3C .4D .5 答案 A解析 由题意知f (3)=f (3+2)=f (5)=f (5+2)=f (7)=7-5=2.4.已知f (x )=⎩⎪⎨⎪⎧ x 2 (x ≥0)x (x <0),g (x )=⎩⎪⎨⎪⎧x (x ≥0)-x 2 (x <0),则当x <0时,f [g (x )]等于( )A .-xB .-x 2C .xD .x 2 答案 B解析 当x <0时,g (x )=-x 2<0, ∴f [g (x )]=-x 2. 二、填空题5.已知f (x )=⎩⎪⎨⎪⎧0 (x <0)π (x =0)x +1 (x >0),则f (f (f (-1)))的值是__________.答案 π+1解析 f (-1)=0,f (0)=π,f (π)=π+1 ∴f (f (f (-1)))=f (f (0))=f (π)=π+1.6.已知f (x )=⎩⎪⎨⎪⎧1,x ≥00,x <0,则不等式xf (x )+x ≤2的解集是__________.答案 {x |x ≤1}解析 当x ≥0时,f (x )=1,代入xf (x )+x ≤2, 解得x ≤1,∴0≤x ≤1;当x <0时,f (x )=0,代入xf (x )+x ≤2, 解得x ≤2,∴x <0. 综上可知x ≤1. 三、解答题7.若[x ]表示不超过x 的最大整数,画出y =[x ] (-3≤x <3)的图象. 解 作出y =[x ]的图象如下图所示.8.已知函数y =f (x )的图象是由图中的两条射线和抛物线的一部分组成,求函数的解析式.解 根据图象,设左侧射线对应的函数解析式为y =kx +b (x <1).∵点(1,1)、(0,2)在射线上,∴⎩⎪⎨⎪⎧ k +b =1,b =2, 解得⎩⎪⎨⎪⎧k =-1,b =2.∴左侧射线对应的函数解析式为y =-x +2 (x <1). 同理,x >3时,函数的解析式为y =x -2 (x >3). 又抛物线对应的二次函数的解析式为 y =a .(x -2)2+2 (1≤x ≤3,a .<0),∵点(1,1)在抛物线上,∴a .+2=1,a .=-1, ∴当1≤x ≤3时,函数的解析式为 y =-x 2+4x -2 (1≤x ≤3). 综上所述,函数的解析式为 y =⎩⎪⎨⎪⎧-x +2 (x <1),-x 2+4x -2 (1≤x ≤3),x -2 (x >3).【探究驿站】9.已知函数f (x )=⎩⎪⎨⎪⎧1, x ∈[0,1],x -3, x ∉[0,1],求使等式f [f (x )]=1成立的实数x 构成的集合.解 当x ∈[0,1]时,恒有f [f (x )]=f (1)=1, 当x ∉[0,1]时,f [f (x )]=f (x -3),若0≤x -3≤1,即3≤x ≤4时,f (x -3)=1, 若x -3∉[0,1],f (x -3)=(x -3)-3, 令其值为1,即(x -3)-3=1,∴x =7. 综合知:x 的值构成的集合为 {x |0≤x ≤1或3≤x ≤4或x =7}.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学 1.2.2 函数的表示法2教案新人教A版必修1
三维目标定向
〖知识与技能〗1、了解映射的概念。
2、能解决一些简单的函数解析式问题。
〖过程与方法〗1、结合函数的概念理解映射的概念,明白函数是一种特殊的映射。
2、通过丰富实例的探究过程,体会函数解析式在具体问题中的应用。
〖情感、态度与价值观〗体验数学的应用意识以及数形结合的数学思想的运用。
教学重难点
映射概念的理解以及函数在实际问题中的运用。
教学过程设计
一、映射
问题1:函数是两个非空数集间是一种确定的对应关系。
若将数集扩展到任意的集合时,会得到什么结论?
阅读课本P22 ~ 23。
映射的定义:设A、B是非空的集合,如果按照某一个确定的对应关系f,使对于集合A中
的任意一个元素x,在集合B中都有唯一确定的元素y和它对应,那么就称对应
B
A
f :
为从集合A到集合B的一个映射。
问题2:函数概念与映射概念之间有怎样的关系?有什么异同?
函数是从非空数集A到非空数集B的映射。
映射是从集合A到集合B的一种对应关系,这里的集合A、B可以是数集,也可以是其他集合。
函数是一种特殊的映射。
问题3:如何判断一个对应关系是不是映射?(举例说明)
说明:(1)映射有三要素:两个集合,一个对应法则,三者缺一不可;
(2)A中每个元素在B中必有唯一元素和它对应;
(3)A中元素与B中元素的对应关系,可以是:一对一,多对一,但不能是一对多。
例1、以下给出的对应是不是从集合A到B的映射?
(1)集合A = {P | P是数轴上的点},集合B = R,对应关系f:数轴上的点与它所代表的
实数对应;
(2)集合A = {P | P是平面直角坐标系中的点},集合B = {(x , y) | x∈R , y∈R},对应关系f:平面直角坐标系中的点与它的坐标对应;
(3)集合A = {x | x是三角形},集合B = {x | x是圆},对应关系f:每一个三角形都对应它的内切圆;
(4)集合A = {x | x是新华中学的班级},集合B = {x | x是新华中学的学生},对应关系f:每一个班级都对应班里的学生。
思考:对于例1,如果将(3)中的对应关系f改为:每一个圆都对应它的内接三角形;(4)中的对应关系f改为:每一个学生都对应它的班级,那么对应f:B→A是从集合B到A的映射吗?
巩固练习:课本P24,4。
补充练习:已知(x,y)在f下的对应元素是(x + y,x 2 – y),求:
(1)A中元素(– 3,2)在B中对应元素;
(2)B中元素(2,– 2)在A中与之对应的元素。
二、函数的简单应用
例2、已知函数
)
(x
f对任意的R
y
x∈
,,总有)
(
)
(
)
(y
f
x
f
y
x
f⋅
=
+,且3
2
)1(=
f
,求
)3(f
的值。
例3、某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个多订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元。
(1)当一次订购量为多少个时,零件的实际出厂单价恰降为51元?
(2)设一次订购量为x个,零件的实际出厂单价为P元,写出函数P = f (x)的表达式;(3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1000个,利润又是多少元?
三、作业:例2、例3、例4。
教学反思。