【百强校】2018年中国科学技术大学自主招生笔试数学真题图片版(含答案)
2018年XXX第二批次自主招生(实验班)考试数学学科试卷和答案
2018年XXX第二批次自主招生(实验班)考试数学学科试卷和答案2018年XXX第二批次自主招生(实验班)数学考试试卷考试时间:90分钟,满分100分一、选择题(本大题共10小题,每小题3分,共30分。
每小题只有一个正确答案)1.化简 (2-m)/(m-2) 的结果是:A。
m-2B。
2-mC。
-m-2D。
-2/(m-2)2.表达式 abc+abc+abc 的所有可能值的个数是:A。
2个B。
3个C。
4个D。
无数个3.某班50名学生可在音乐、美术、体育三门选修课中选择,每位学生至少选择一门。
选择音乐的有21人,选择美术的有28人,选择体育的有16人,既选择音乐又选择美术的有7人,既选择美术又选择体育的有6人,既选择体育又选择音乐的有5人,则三项都参加的人数是:A。
2B。
3C。
4D。
54.已知二次函数 y=x^2-2x-6,当m≤x≤4 时,函数的最大值为2,最小值为-7,则满足条件的 m 的取值范围是:A。
m≤1B。
-2<m<1C。
-2≤m<1D。
-2≤m≤15.适合不等式 2/(3x-y) ≤ 1,且满足方程 3x+y=1 的 x 的取值范围是:A。
x≤1/3B。
-1≤x<1/3C。
x≤1D。
-1≤x≤16.已知 A、B 两点在一次函数 y=x 的图像上,过 A、B 两点分别作 y 轴的平行线交双曲线 y=1/x (x>0) 于 M、N 两点,O 为坐标原点。
若 BN=3AM,则 9OM^2-ON^2 的值为:A。
8B。
16C。
32D。
367.在直角三角形 ABC 中,∠BAC=90°,M、N 是 BC 边上的点,BM=MN=CN/2,如果 AM=8,AN=6,则 MN 的长为:A。
4√3B。
2√3C。
10D。
10/38.将正奇数按如图所示的规律排列下去,若有序实数对(n,m) 表示第 n 排,从左到右第 m 个数,如 (4,2) 表示奇数 15,则表示奇数 2017 的有序实数对是:A。
2018年___自主招生数学试卷(含答案解析)
2018年___自主招生数学试卷(含答案解析)2018年___自主招生数学试卷一、选择题(本大题共6小题,共24.0分)1.√16的平方根是()A.4B.±4C.22.若√(1−x)2=x−1成立,则x满足()A.x≥1B.x≥C.x≤1D.±23.已知x=√5−1,则x2+2x的值是()A.2B.3C.4D.54.如图所示的四条直线a、b、c、d,直线a、b与水平线平行,以其中一条为x轴,d与水平线垂直,取向右为正方向;直线c、以其中一条为y轴,取向上为正方向.某同学在此坐标平面上画了二次函数x=xx2+2xx+2(x≠0)的图象如图,则下面结论正确的是()A.a为x轴,c为y轴B.a为x轴,d为y轴C.b为x轴,c 为y轴D.b为x轴,d为y轴5.如图,已知AB为圆的直径,C为半圆上一点,D为半圆的中点,xx⊥xx,垂足为H,HM平分∠xxx,HM交AB于x.若xx=3,xx=1,则MH长为()A.1B.1.5C.0.5D.0.76.如图,△xxx中,∠x=90°,D是BC边上一点,∠xxx=3∠xxx,xx=8,xx=7.则AB的值为()A.15B.20C.2√2+7D.2√2+√7二、填空题(本大题共10小题,共40.0分)7.已知实数x、y满足x+2x=5,则x−x=3.8.分解因式:x2+4xx+4x2+x+2x−2=(x+2x+1)2−3.9.在平面直角坐标系中,点A,B的坐标分别为(x,3),(3x−1,3),若线段AB与直线x=2x+1相交,则m的取值范围为(0,1)。
10.若一个圆锥的侧面展开图是半径为18cm,圆心角为240°的扇形,则这个圆锥的底面半径长是9cm。
11.如图,已知在矩形ABCD中,点E在边BC上,BE=2CE,将矩形沿着过点E的直线翻折后,点C、D、N处,B在同一直线上,分别落在M、F与BE交于点G.设AB=√3,那么△xxx的周长为4+4√3.12.如图,已知点x1,x2,…,xx均在直线x=x−1上,点x1,x2,…,xx均在双曲线x=−x上,x1x1⊥x并且满足:x1x2⊥x轴,x2x2⊥x轴,…,xx−1xx⊥x轴,xxxx⊥x轴,且x1x2=x2x3=…=xx−1xx,则n的最小值为2.1.由题意可知,点B在x轴负半轴,点A在x轴正半轴,且AB垂直于x轴,因此AB的斜率为0,即AB为x轴,所以B的纵坐标为0.又因为B在x轴负半轴,所以其横坐标为负数,设为-a。
2018年高中自主招生必做试卷习题数学含答案
长方形的每条边都与大长方形的一边平行,并且每个小长方形的长与宽之比也都为3:1,尔后把它们
剪下,这时,所剪得的两张小长方形纸片的周长之和有最大值.求这个最大值.
18、(15分)如图,在以O为圆心的圆中,弦CD垂直于直径AB,垂足为H,弦BE与半径OC订交于点
2x + y≤5,
A、
3x + 4y≥9,
、
3x + 4y≥9,
C、3x + 4y≥9,
D、3x + 4y≤9,
B
y≥0
x≥0
x≥0
y≥0
订
D
C
G
F
装
A
E
B
第3题图
第6题图
第7题图
S四边形AGCD
第9题图
等于
(
)
校
7、如图,点E、F分别是矩形ABCD的边AB、BC的中点,连AF、CE交于点G,则
S矩形ABCD
4
:
(1)如 (
1),其周 和= 2
(2
1
2
1)
51.
⋯⋯⋯⋯3 分
3
3
(2)如 (
2),其周 和=2( x
3x)
2
(1
x) 3(1
x)
8.
⋯⋯⋯⋯6 分
(3)如 (
3),其周 和= 8.
⋯⋯⋯⋯9 分
(4)如 (
4),其周 和= 2(3x
x)
2
(3
3
x
16
8.
x)
x
3
3
∵0 3x
自主招生数学试卷(含解析)
实验高中自主招生数学试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确答案的选项填到二卷答题纸的指定位置处)1.如图,数轴上点A表示数a,则|a﹣1|是()A.1B.2C.3D.﹣22.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则实数k的取值范围是()A.k>﹣1B.k>﹣1且k≠0C.k<﹣1D.k<﹣1或k=03.在公园内,牡丹按正方形种植,在它的周围种植芍药,如图反映了牡丹的列数(n)和芍药的数量规律,那么当n=11时,芍药的数量为()A.84株B.88株C.92株D.121株4.某校美术社团为练习素描,他们第一次用120元买了若干本资料,第二次用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本.求第一次买了多少本资料?若设第一次买了x本资料,列方程正确的是()A.﹣=4B.﹣=4C.﹣=4D.﹣=45.如图,某工厂有甲、乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度h与注水时间t之间的函数关系图象可能是()A.B.C.D.6.如图在水平地面上有一幢房屋BC与一棵树DE,在地面观测点A处测得屋顶C与树稍的仰角分别是45°与60°,∠DCA=90°,在屋顶C处测得∠DCA=90°,若房屋的高BC=5米,则高DE的长度是()A.6米B.6米C.5米D.12米7.某单位组织职工开展植树活动,植树量与人数之间关系如图,下列说法不正确的是()A.参加本次植树活动共有30人B.每人植树量的众数是4棵C.每人植树量的中位数是5棵D.每人植树量的平均数是5棵8.如图,在矩形ABCD中,AB=4,AD=2,分别以点A、C为圆心,AD、CB为半径画弧,交AB 于点E,交CD于点F,则图中阴影部分的面积是()A.4﹣2πB.8﹣C.8﹣2πD.8﹣4π9.如图,是由若干个相同的小立方体搭成的几何体的俯视图和左视图.则小立方体的个数可能是()A.5或6B.5或7C.4或5或6D.5或6或710.如图,在平面直角坐标系中,△ABC的顶点坐标为A(﹣1,1)、B(0,﹣2)、C(1.0),点P(0,2)绕点A旋转180得到点P1,点P1绕点B旋转180°得到点P2,点P2绕点C旋转180°得到点P3,点P3绕点A旋转180°得到点P4,…,按此作法进行下去,则点P2018的坐标为()A.(2,﹣4)B.(0,4)C.(﹣2,﹣2)D.(2,﹣2)二、填空题(本大题共5小题,每小题5分,共25分,把答案填到二卷答题纸的指定位置处)11.若实数a满足a2﹣2a﹣1=0,则2a3﹣7a2+4a﹣2018=12.学校“百变魔方”社团准备购买A、B两种魔方.已知购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同,则购买一套魔方(A、B两种魔方各1个)需元.13.如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,其边长为2,点A、点C 分别在x 轴、y 轴的正半轴上,函数y =2x 的图象与CB 交于点D ,函数y =(k 为常数,k ≠0)的图象经过点D ,与AB 交于点E ,与函数y =2x 的图象在第三象限内交于点F ,连接AF 、EF ,则△AEF 的面积为 .14.如图,已平行四边形OABC 的三个顶点A 、B 、C 在以O 为圆心的半圆上,过点C 作CD ⊥AB ,分别交AB 、AO 的延长线于点D 、E ,AE 交半圆于点F ,连接CF ,若半圆O 的半径为12,则阴影部分的周长为 .15.庄子说:“一尺之椎,日取其半,万世不竭”.这句话(文字语言)表达了古人将事物无限分割的思想,用图形语言表示为图1,按此图分割的方法,可得到一个等式(符号语言):1=+++…++….图2也是一种无限分割:在△ABC 中,∠C =90°,∠B =30°,过点C 作CC 1⊥AB 于点C 1,再过点C 1作C 1C 2⊥BC 于点C 2,又过点C 2作C 2C 3⊥AB 于点C 3,如此无限继续下去,则可将利△ABC 分割成△ACC 1、△CC 1C 2、△C 1C 2C 3、△C 2C 3C 4、…、△C n ﹣2C n ﹣1∁n 、….假设AC =2,这些三角形的面积和可以得到一个等式是 .三、解答题(共7道题,合计65分,解答应写出文字说明、证明过程或推演步骤,并把答案写在二卷答题纸的指定位置处)16.(7分)先简化,再求值:(),其中x=2,y=.17.(8分)从共享单车,共享汽车等共享出行到共享充电宝,共享雨伞等共享物品,各式各样的共享经济模式在各个领域迅速普及应用,越来越多的企业与个人成为参与者与受益者.根据国家信息中心发布的《中国分享经济发展报告2017》显示,2016年我国共享经济市场交易额约为34520亿元,比上年增长103%;超6亿人参与共享经济活动,比上年增加约1亿人.如图是源于该报告中的中国共享经济重点领域市场规模统计图:(1)请根据统计图解答下列问题:①图中涉及的七个重点领域中,2016年交易额的中位数是亿元.②请分别计算图中的“知识技能”和“资金”两个重点领域从2015年到2016年交易额的增长率(精确到1%),并就这两个重点领域中的一个分别从交易额和增长率两个方面,谈谈你的认识.(2)小宇和小强分别对共享经济中的“共享出行”和“共享知识”最感兴趣,他们上网查阅了相关资料,顺便收集到四个共享经济领域的图标,并将其制成编号为A,B,C,D的四张卡片(除编号和内容外,其余完全相同)他们将这四张卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张,请用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率(这四张卡片分别用它们的编号A,B,C,D表示)18.(9分)鄂州某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x元(x为偶数),每周销售量为y个.(1)直接写出销售量y个与降价x元之间的函数关系式;(2)设商户每周获得的利润为W元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?(3)若商户计划下周利润不低于5200元的情况下,他至少要准备多少元进货成本?19.(9分)在四边形ABCD中,∠B+∠D=180°,对角线AC平分∠BAD.(1)如图1,若∠DAB=120°,且∠B=90°,试探究边AD、AB与对角线AC的数量关系并说明理由.(2)如图2,若将(1)中的条件“∠B=90°”去掉,(1)中的结论是否成立?请说明理由.(3)如图3,若∠DAB=90°,探究边AD、AB与对角线AC的数量关系并说明理由.20.(10分)服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元;乙种每件进价60元,售价90元,计划购进两种服装共100件,其中甲种服装不少于65件.(1)若购进这100件服装的费用不得超过7500,则甲种服装最多购进多少件?(2)在(1)条件下,该服装店在5月1日当天对甲种服装以每件优惠a(0<a<20)元的价格进行优惠促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?21.(10分)(1)阅读理解:如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.中线AD的取值范围是;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.22.(12分)如图,抛物线y=(x﹣3)2﹣1与x轴交于A,B两点(点A在点B的左侧),与y 轴交于点C,顶点为D.(1)求点A,B,D的坐标;(2)连接CD,过原点O作OE⊥CD,垂足为H,OE与抛物线的对称轴交于点E,连接AE,AD,求证:∠AEO=∠ADC;(3)以(2)中的点E为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P,过点P作⊙E的切线,切点为Q,当PQ的长最小时,求点P的坐标,并直接写出点Q的坐标.2018年山东省枣庄实验高中自主招生数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确答案的选项填到二卷答题纸的指定位置处)1.【分析】根据数轴上A点的位置得出a表示的数,利用绝对值的意义计算.【解答】解:根据数轴得:a=﹣2,∴|a﹣1|=|﹣2﹣1|=|﹣3|=3,故选:C.【点评】此题考查了数轴,以及绝对值,熟练掌握绝对值的意义是解本题的关键.2.【分析】利用一元二次方程的定义和判别式的意义得到k≠0且△=(﹣2)2﹣4k•(﹣1)>0,然后其出两个不等式的公共部分即可.【解答】解:根据题意得k≠0且△=(﹣2)2﹣4k•(﹣1)>0,解得k>﹣1且k≠0.故选:B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.3.【分析】根据题目中的图形,可以发现其中的规律,从而可以求得当n=11时的芍药的数量.【解答】解:由图可得,芍药的数量为:4+(2n﹣1)×4,∴当n=11时,芍药的数量为:4+(2×11﹣1)×4=4+(22﹣1)×4=4+21×4=4+84=88,故选:B.【点评】本题考查规律型:图形的变化类,解答本题的关键是明确题意,发现题目中图形的变化规律.4.【分析】由设第一次买了x本资料,则设第二次买了(x+20)本资料,由等量关系:第二次比第一次每本优惠4元,即可得到方程.【解答】解:设他上月买了x本笔记本,则这次买了(x+20)本,根据题意得:﹣=4.故选:D.【点评】此题考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.5.【分析】根据特殊点的实际意义即可求出答案.【解答】解:因为该做水池就是一个连通器.开始时注入甲池,乙池无水,当甲池中水位到达与乙池的连接处时,乙池才开始注水,所以A、B不正确,此时甲池水位不变,所有水注入乙池,所以水位上升快.当乙池水位到达连接处时,所注入的水使甲乙两个水池同时升高,所以升高速度变慢.在乙池水位超过连通部分,甲和乙部分同时升高,但蓄水池底变小,此时比连通部分快.故选:D.【点评】主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.6.【分析】首先解直角三角形求得表示出AC,AD的长,进而利用直角三角函数,求出答案.【解答】解:如图,在Rt△ABC中,∠CAB=45°,BC=6m,∴AC==5(m);在Rt△ACD中,∠CAD=60°,∴AD==10(m);在Rt△DEA中,∠EAD=60°,DE=AD•sin60°=5,答:树DE的高为5米.故选:C.【点评】此题主要考查了解直角三角形的应用,熟练应用锐角三角函数关系是解题关键.7.【分析】A、将人数进行相加,即可得出结论A正确;B、由种植4棵的人数最多,可得出结论B 正确;C、由4+10=14,可得出每人植树量数列中第15、16个数为5,即结论C正确;D、利用加权平均数的计算公式,即可求出每人植树量的平均数约是4.73棵,结论D错误.此题得解.【解答】解:A、∵4+10+8+6+2=30(人),∴参加本次植树活动共有30人,结论A正确;B、∵10>8>6>4>2,∴每人植树量的众数是4棵,结论B正确;C、∵共有30个数,第15、16个数为5,∴每人植树量的中位数是5棵,结论C正确;D、∵(3×4+4×10+5×8+6×6+7×2)÷30≈4.73(棵),∴每人植树量的平均数约是4.73棵,结论D不正确.故选:D.【点评】本题考查了条形统计图、中位数、众数以及加权平均数,逐一分析四个选项的正误是解题的关键.8.【分析】用矩形的面积减去半圆的面积即可求得阴影部分的面积.【解答】解:∵矩形ABCD,∴AD=CB=2,∴S阴影=S矩形﹣S半圆=2×4﹣π×22=8﹣2π,故选:C.【点评】本题考查了扇形的面积的计算及矩形的性质,能够了解两个扇形构成半圆是解答本题的关键,难度不大.9.【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由左视图可得第二层最多和最少小立方体的个数,相加即可.【解答】解:由俯视图易得最底层有4个小立方体,由左视图易得第二层最多有3个小立方体和最少有1个小立方体,那么小立方体的个数可能是5个或6个或7个.故选:D.【点评】本题考查了由三视图判断几何体,也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.注意俯视图中有几个正方形,底层就有几个小立方体.10.【分析】画出P1~P6,寻找规律后即可解决问题.【解答】解:如图所示,P1(﹣2,0),P2(2,﹣4),P3(0,4),P4(﹣2,﹣2),P5(2,﹣2),P6(0,2),发现6次一个循环,∵2018÷6=336…2,∴点P2018的坐标与P2的坐标相同,即P2018(2,﹣4),故选:A.【点评】本题考查坐标与图形的性质、点的坐标等知识,解题的关键是循环探究问题的方法,属于中考常考题型.二、填空题(本大题共5小题,每小题5分,共25分,把答案填到二卷答题纸的指定位置处)11.【分析】由题意可得a2=2a+1,代入代数式可求值.【解答】解:∵a2﹣2a﹣1=0∴a2=2a+1∴2a3﹣7a2+4a﹣2018=2a(2a+1)﹣7(2a+1)+4a﹣2018=4a2+2a﹣14a﹣7+4a﹣2018=4(2a+1)﹣8a﹣2025=﹣2021故答案为:﹣2021【点评】本题考查了代数式求值,个体代入是本题的关键.12.【分析】设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据“购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据题意得:,解得:.答:购买一套魔方(A、B两种魔方各1个)需35元.故答案为:35.【点评】本题考查了二元一次方程组的应用,解题的关键是找准等量关系,列出关于x、y的二元一次方程组.13.【分析】根据正方形的性质,以及函数上点的坐标特征可求点D的坐标为(1,2),根据待定系数法可求反比例函数表达式,进一步得到E、F两点的坐标,过点F作FG⊥AB,与AB的延长线交于点G,根据两点间的距离公式可求AE=1,FG=3,再根据三角形面积公式可求△AEF的面积.【解答】解:∵正方形OABC的边长为2,∴点D的纵坐标为2,即y=2,将y=2代入y=2x,得x=1,∴点D的坐标为(1,2),∵函数y=的图象经过点D,∴2=,解得k=2,∴反比例函数的表达式为y=,∴E(2,1),F(﹣1,﹣2);过点F作FG⊥AB,与BA的延长线交于点G,∵E(2,1),F(﹣1,﹣2),∴AE=1,FG=2﹣(﹣1)=3,∴△AEF的面积为:AE•FG=×1×3=,故答案为.【点评】本题主要考查了待定系数法求函数解析式,以及正方形的性质,解题的关键是求得D、E、F点的坐标.14.【分析】根据菱形的判定定理得到四边形OABC为菱形,得到∴△COF为等边三角形,求出∠OCF=60°,根据弧长公式求出的长,根据直角三角形的性质求出EF、CE,得到答案.【解答】解:∵四边形OABC为平行四边形,OA=OC,∴四边形OABC为菱形,∴BA=BC,∴∠CFA=∠COA,∵BC∥AF,∴∠A=∠CFA,∴∠A=∠COA,又∠A+∠COA=180°,∴∠A=60°,∴∠COF=60°,∴△COF为等边三角形,∴∠OCF=60°,∴的长==4π,∵CD⊥AB,∠BDC=60°,∴∠BCD=30°,∴∠ECO=90°,又∠COE=60°,∴∠E=30°,∴OE=2OC=24,∴EF=12,EC==12,∴阴影部分的周长=12+12+4π,故答案为:12+12+4π.【点评】本题考查的是弧长的计算,掌握弧长公式:l=是解题的关键.15.【分析】先根据AC=2,∠B=30°,CC1⊥AB,求得S=;进而得到=△ACC1×,=×()2,=×()3,根据规律可知=×()n﹣1,再根据S=AC×BC=×2×2=2,即可得到等式.△ABC【解答】解:如图2,∵AC=2,∠B=30°,CC1⊥AB,∴Rt△ACC1中,∠ACC1=30°,且BC=2,∴AC1=AC=1,CC1=AC1=,=•AC1•CC1=×1×=;∴S△ACC1∵C1C2⊥BC,∴∠CC1C2=∠ACC1=30°,∴CC2=CC1=,C1C2=CC2=,∴=•CC2•C1C2=××=×,同理可得,=×()2,=×()3,…∴=×()n﹣1,又∵S=AC×BC=×2×2=2,△ABC∴2=+×+×()2+×()3+…+×()n﹣1+…∴2=.故答案为:2=.【点评】本题主要考查了图形的变化类问题,解决问题的关键是找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.三、解答题(共7道题,合计65分,解答应写出文字说明、证明过程或推演步骤,并把答案写在二卷答题纸的指定位置处)16.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x、y的值代入计算可得.【解答】解:原式=[﹣]÷=(﹣)•=[﹣]•=•=﹣,当x=2,y=时,原式=﹣=﹣=﹣.【点评】本题主要考查分式的混合运算﹣化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.17.【分析】(1)根据图表将2016年七个重点领域的交易额从小到大罗列出来,根据中位数的定义即可得;(2)将(2016年的资金﹣2015年的资金)÷2015年的资金可分别求得两领域的增长率,结合增长率提出合理的认识即可;(3)画树状图列出所有等可能结果,根据概率公式求解可得.【解答】解:(1)由图可知,2016年七个重点领域的交易额分别为70、245、610、2038、3300、7233、20863,2016年交易额的中位数是2038亿元,故答案为:2038;(2)“知识技能”的增长率为:×100%=205%,“资金”的增长率为:≈109%,由此可知,“知识技能”领域交易额较小,其增长率最高,达到200%以上,其发展速度惊人.(3)画树状图为:共有12种等可能的结果数,其中抽到“共享出行”和“共享知识”的结果数为2,所以抽到“共享出行”和“共享知识”的概率==.【点评】本题主要考查条形统计图、折线统计图和列表法与树状图法求概率,根据条形图得出解题所需数据及画树状图列出所有等可能结果是解题的关键.18.【分析】(1)根据题意,由售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个,可得销售量y个与降价x元之间的函数关系式;(2)根据题意结合每周获得的利润W=销量×每个的利润,进而利用二次函数增减性求出答案;(3)根据题意,由利润不低于5200元列出不等式,进一步得到销售量的取值范围,从而求出答案.【解答】解:(1)依题意有:y=10x+160;(2)依题意有:W=(80﹣50﹣x)(10x+160)=﹣10(x﹣7)2+5290,因为x为偶数,所以当销售单价定为80﹣6=74元或80﹣8=72时,每周销售利润最大,最大利润是5280元;(3)依题意有:﹣10(x﹣7)2+5290≥5200,解得4≤x≤10,则200≤y≤260,200×50=10000(元).答:他至少要准备10000元进货成本.【点评】此题主要考查了二次函数的应用以及一元二次方程的应用等知识,正确利用销量×每个的利润=W得出函数关系式是解题关键.19.【分析】(1)结论:AC=AD+AB,只要证明AD=AC,AB=AC即可解决问题;(2)(1)中的结论成立.以C为顶点,AC为一边作∠ACE=60°,∠ACE的另一边交AB延长线于点E,只要证明△DAC≌△BEC即可解决问题;(3)结论:.过点C作CE⊥AC交AB的延长线于点E,只要证明△ACE是等腰直角三角形,△DAC≌△BEC即可解决问题;【解答】解:(1)AC=AD+AB.理由如下:如图1中,在四边形ABCD中,∠D+∠B=180°,∠B=90°,∴∠D=90°,∵∠DAB=120°,AC平分∠DAB,∴∠DAC=∠BAC=60°,∵∠B=90°,∴,同理.∴AC=AD+AB.(2)(1)中的结论成立,理由如下:以C为顶点,AC为一边作∠ACE=60°,∠ACE的另一边交AB延长线于点E,∵∠BAC=60°,∴△AEC为等边三角形,∴AC=AE=CE,∵∠D+∠ABC=180°,∠DAB=120°,∴∠DCB=60°,∴∠DCA=∠BCE,∵∠D+∠ABC=180°,∠ABC+∠EBC=180°,∴∠D=∠CBE,∵CA=CE,∴△DAC≌△BEC,∴AD=BE,∴AC=AD+AB.(3)结论:.理由如下:过点C作CE⊥AC交AB的延长线于点E,∵∠D+∠B=180°,∠DAB=90°,∴DCB=90°,∵∠ACE=90°,∴∠DCA=∠BCE,又∵AC平分∠DAB,∴∠CAB=45°,∴∠E=45°.∴AC=CE.又∵∠D+∠ABC=180°,∠D=∠CBE,∴△CDA≌△CBE,∴AD=BE,∴AD+AB=AE.在Rt△ACE中,∠CAB=45°,∴,∴.【点评】本题考查四边形综合题、等边三角形的性质、等腰直角三角形的判定和性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.20.【分析】(1)设甲种服装购进x件,则乙种服装购进(100﹣x)件,然后根据购进这100件服装的费用不得超过7500元,列出不等式解答即可;(2)首先求出总利润W的表达式,然后针对a的不同取值范围进行讨论,分别确定其进货方案.【解答】解:(1)设购进甲种服装x件,由题意可知:80x+60(100﹣x)≤7500 解得:x≤75答:甲种服装最多购进75件.(2)设总利润为w元,因为甲种服装不少于65件,所以65≤x≤75,W=(40﹣a)x+30(100﹣x)=(10﹣a)x+3000方案1:当0<a<10时,10﹣a>0,w随x的增大而增大,所以当x=75时,w有最大值,则购进甲种服装75件,乙种服装25件;方案2:当a=10时,所有方案获利相同,所以按哪种方案进货都可以;方案3:10<a<20时,10﹣a<0,w随x的增大而减小,所以当x=65时,w有最大值,则购进甲种服装65件,乙种服装35件.【点评】本题考查了一元一次方程的应用,不等式组的应用,以及一次函数的性质,正确利用x 表示出利润是关键.21.【分析】(1)延长AD至E,使DE=AD,由SAS证明△ACD≌△EBD,得出BE=AC=6,在△ABE中,由三角形的三边关系求出AE的取值范围,即可得出AD的取值范围;(2)延长FD至点M,使DM=DF,连接BM、EM,同(1)得△BMD≌△CFD,得出BM=CF,由线段垂直平分线的性质得出EM=EF,在△BME中,由三角形的三边关系得出BE+BM>EM即可得出结论;(3)延长AB至点N,使BN=DF,连接CN,证出∠NBC=∠D,由SAS证明△NBC≌△FDC,得出CN=CF,∠NCB=∠FCD,证出∠ECN=70°=∠ECF,再由SAS证明△NCE≌△FCE,得出EN=EF,即可得出结论.【解答】(1)解:延长AD至E,使DE=AD,连接BE,如图①所示:∵AD是BC边上的中线,∴BD=CD,在△BDE和△CDA中,,∴△BDE≌△CDA(SAS),∴BE=AC=6,在△ABE中,由三角形的三边关系得:AB﹣BE<AE<AB+BE,∴10﹣6<AE<10+6,即4<AE<16,∴2<AD<8;故答案为:2<AD<8;(2)证明:延长FD至点M,使DM=DF,连接BM、EM,如图②所示:同(1)得:△BMD≌△CFD(SAS),∴BM=CF,∵DE⊥DF,DM=DF,∴EM=EF,在△BME中,由三角形的三边关系得:BE+BM>EM,∴BE+CF>EF;(3)解:BE+DF=EF;理由如下:延长AB至点N,使BN=DF,连接CN,如图3所示:∵∠ABC+∠D=180°,∠NBC+∠ABC=180°,∴∠NBC=∠D,在△NBC和△FDC中,,∴△NBC≌△FDC(SAS),∴CN=CF,∠NCB=∠FCD,∵∠BCD=140°,∠ECF=70°,∴∠BCE+∠FCD=70°,∴∠ECN=70°=∠ECF,在△NCE和△FCE中,,∴△NCE≌△FCE(SAS),∴EN=EF,∵BE+BN=EN,∴BE+DF=EF.【点评】本题考查了三角形的三边关系、全等三角形的判定与性质、角的关系等知识;本题综合性强,有一定难度,通过作辅助线证明三角形全等是解决问题的关键.22.【分析】(1)根据二次函数性质,求出点A、B、D的坐标;(2)如何证明∠AEO=∠ADC?如答图1所示,我们观察到在△EFH与△ADF中:∠EHF=90°,有一对对顶角相等;因此只需证明∠EAD=90°即可,即△ADE为直角三角形,由此我们联想到勾股定理的逆定理.分别求出△ADE三边的长度,再利用勾股定理的逆定理证明它是直角三角形,由此问题解决;(3)依题意画出图形,如答图2所示.由⊙E的半径为1,根据切线性质及勾股定理,得PQ2=EP2﹣1,要使切线长PQ最小,只需EP长最小,即EP2最小.利用二次函数性质求出EP2最小时点P的坐标,并进而求出点Q的坐标.【解答】方法一:(1)解:顶点D的坐标为(3,﹣1).令y=0,得(x﹣3)2﹣1=0,解得:x1=3+,x2=3﹣,∵点A在点B的左侧,∴A(3﹣,0),B(3+,0).(2)证明:如答图1,过顶点D作DG⊥y轴于点G,则G(0,﹣1),GD=3.令x=0,得y=,∴C(0,).∴CG=OC+OG=+1=,∴tan∠DCG=.设对称轴交x轴于点M,则OM=3,DM=1,AM=3﹣(3﹣)=.由OE⊥CD,易知∠EOM=∠DCG.∴tan∠EOM=tan∠DCG==,解得EM=2,∴DE=EM+DM=3.在Rt△AEM中,AM=,EM=2,由勾股定理得:AE=;在Rt△ADM中,AM=,DM=1,由勾股定理得:AD=.∵AE2+AD2=6+3=9=DE2,∴△ADE为直角三角形,∠EAD=90°.设AE交CD于点F,∵∠AEO+∠EFH=90°,∠ADC+∠AFD=90°,∠EFH=∠AFD(对顶角相等),∴∠AEO=∠ADC.(3)解:依题意画出图形,如答图2所示:由⊙E的半径为1,根据切线性质及勾股定理,得PQ2=EP2﹣1,要使切线长PQ最小,只需EP长最小,即EP2最小.设点P坐标为(x,y),由勾股定理得:EP2=(x﹣3)2+(y﹣2)2.∵y=(x﹣3)2﹣1,∴(x﹣3)2=2y+2.∴EP2=2y+2+(y﹣2)2=(y﹣1)2+5当y=1时,EP2有最小值,最小值为5.将y=1代入y=(x﹣3)2﹣1,得(x﹣3)2﹣1=1,解得:x1=1,x2=5.又∵点P在对称轴右侧的抛物线上,∴x1=1舍去.∴P(5,1).∵△EQ2P为直角三角形,∴过点Q2作x轴的平行线,再分别过点E,P向其作垂线,垂足分别为M点和N点.由切割线定理得到Q2P=Q1P=2,EQ2=1设点Q2的坐标为(m,n)则在Rt△MQ2E和Rt△Q2NP中建立勾股方程,即(m﹣3)2+(n﹣2)2=1①,(5﹣m)2+(n ﹣1)2=4②①﹣②得n=2m﹣5③将③代入到①得到m1=3(舍,为Q1)m2=再将m=代入③得n=,∴Q2(,)此时点Q坐标为(3,1)或(,).方法二:(1)略.(2)∵C(0,),D(3,﹣1),∴KCD=,∵OE⊥CD,∴K CD×K OE=﹣1,∴K OE=,∴l OE:y=x,把x=3代入,得y=2,∴E(3,2),∵A(3﹣,0),D(3,﹣1),∴K EA==,∵K AD=,∴K EA×K AD=﹣1,∴EA⊥AD,∠EHD=∠EAD,∵∠EFH=∠AFD,∴∠AEO=∠ADC.(3)由⊙E的半径为1,得PQ2=EP2﹣1,要使切线长PQ最小,只需EP长最小,即EP2最小,设点P坐标为(x,y),EP2=(x﹣3)2+(y﹣2)2,∵y=(x﹣3)2﹣1,∴(x﹣3)2=2y+2,∴EP2=2y+2+(y﹣2)2=(y﹣1)2+5,∴当y=1时,EP2有最小值,将y=1代入y=(x﹣3)2﹣1得:x1=1,x2=5,又∵点P在对称轴右侧的抛物线上,∴x1=1舍去,∴P(5,1),显然Q1(3,1),∵Q1Q2被EP垂直平分,垂足为H,∴K Q1Q2×K EP=﹣1,∴K EP==﹣,K Q1Q2=2,∵Q1(3,1),∴l Q1Q2:y=2x﹣5,∵l EP:y=﹣x+,∴x=,y=,∴H(,),∵H为Q1Q2的中点,∴H x=,H Y=,∴Q2(x)=2×﹣3=,Q2(Y)=2×﹣1=,∴Q2(,).【点评】本题是二次函数压轴题,涉及考点众多,难度较大.第(2)问中,注意观察图形,将问题转化为证明△ADE为直角三角形的问题,综合运用勾股定理及其逆定理、三角函数(或相似形)求解;第(3)问中,解题关键是将最值问题转化为求EP2最小值的问题,注意解答中求EP2最小值的具体方法.。
2018年普通高等学校招生全国统一考试-理科数学-(新课标-III-卷)-Word版含答案
2018年普通高等学校招生全国统一考试-理科数学-(新课标-III-卷)-Word版含答案2018年普通高等学校招生全国统一考试理 科 数 学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本题共12小题,每小题5分,共60分.在每小题给的四个选项中,只有一项符合) 1.已知集合{}|10A x x =-≥,{}012B =,,,则AB =( )A .{}0B .{}1C .{}12,D .{}012,,2.()()12i i +-=( )A .3i --B .3i -+C .3i -D .3i +3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫棒头,凹进部分叫卯眼,图中木构件右边的小长方体是棒头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )4.若1sin 3α=,则cos2α=( ) A .89B .79C .79- D .89- 5.522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为( )A .10B .20C .40D .806.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP ∆面积的取值范围是( )A .[]26,B .[]48,C .232⎡⎤⎣⎦,D .2232⎡⎤⎣⎦,此卷只装订不密封班级 姓名 准考证号 考场号 座位号7.函数422y xx =-++的图像大致为( )8.某群体中的每位成品使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,()()46P X P X =<=,则p =( )A .0.7B .0.6C .0.4D .0.39.ABC △的内角A B C ,,的对边分别为a ,b ,c ,若ABC ∆的面积为2224a b c +-,则C =( )A .2πB .3πC .4πD .6π10.设A B C D ,,,是同一个半径为4的球的球面上四点,ABC∆为等边三角形且其面积为93则三棱锥D ABC -体积的最大值为( )A .123B .183C .243D .54311.设12F F ,是双曲线22221xy C ab-=:(00a b >>,)的左,右焦点,O是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P.若16PFOP=,则C 的离心率为( )A 5B .2C 3D 212.设0.2log0.3a =,2log 0.3b =,则( )A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+二、填空题(本题共4小题,每小题5分,共20分)13.已知向量()=1,2a ,()=2,2-b ,()=1,λc .若()2∥c a +b ,则λ=________.14.曲线()1xy ax e =+在点()01,处的切线的斜率为2-,则a =________.第二种生产方式⑶根据⑵中的列表,能否有99%的把握认为两种生产方式的效率有差异?附:()()()()()22n ad bc Ka b c d a c b d -=++++,()20.0500.0100.0013.8416.63510.828P K k k ≥.19.(12分)如图,边长为2的正方形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.⑴证明:平面AMD ⊥平面BMC ;⑵当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值.20.(12分)已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点.线段AB 的中点为()()10M m m >,.⑴证明:12k <-; ⑵设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=.证明:FA,FP ,FB 成等差数列,并求该数列的公差.21.(12分)已知函数()()()22ln 12f x x ax x x =+++-.⑴若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >;⑵若0x =是()f x 的极大值点,求a .(二)选考题:共10分,请考生在第22、23题中任选一题作答。
全国各重点大学自主招生数学试题及答案分类汇总
全国各重点大学自主招生数学试题及答案分类汇总一.集合与命题 (2)二.不等式 (9)三.函数 (20)四.数列 (27)五.矩阵、行列式、排列组合,二项式定理,概率统计 (31)六.排列组合,二项式定理,概率统计(续)复数 (35)七.复数 (39)八.三角 (42)近年来自主招生数学试卷解读第一讲集合与命题第一部分近年来自主招生数学试卷解读一、各学校考试题型分析:交大:题型:填空题10题,每题5分;解答题5道,每题10分;考试时间:90分钟,满分100分;试题难度:略高于高考,比竞赛一试稍简单;考试知识点分布:基本涵盖高中数学教材高考所有内容,如:集合、函数、不等式、数列(包括极限)、三角、复数、排列组合、向量、二项式定理、解析几何和立体几何复旦:题型:试题类型全部为选择题(四选一);全考试时间:总的考试时间为3小时(共200道选择题,总分1000分,其中数学部分30题左右,,每题5分);试题难度:基本相当于高考;考试知识点分布:除高考常规内容之外,还附加了一些内容,如:行列式、矩阵等;考试重点:侧重于函数和方程问题、不等式、数列及排列组合等同济:题型:填空题8题左右,分数大约40分,解答题约5题,每题大约12分;考试时间:90分钟,满分100分;试题难度:基本上相当于高考;考试知识点分布:常规高考内容二、试题特点分析:1. 突出对思维能力和解题技巧的考查。
关键步骤提示:2. 注重数学知识和其它科目的整合,考查学生应用知识解决问题的能力。
关键步骤提示:()()()4243222342(2)(2)(1)(2)(1)f a x x a x x xx x x a x x x =--++-=+-+++-111(,),(,),(,)nnni i i ii i i i i i id u w a d v w b d u v a b a b a b ======-+≥-∑∑∑由绝对值不等式性质,三、 应试和准备策略1.注意知识点的全面数学题目被猜中的可能性很小,一般知识点都是靠平时积累,因此,要求学生平时要把基础知识打扎实。
XXX2018-2019年自招真题数学试卷(含答案)
XXX2018-2019年自招真题数学试卷(含答案)1.已知$a$、$b$、$c$是一个三角形的三边,则$a+b+c-2ab-2bc-2ca$的值是()。
A。
恒正 B。
恒负 C。
可正可负 D。
非负答案:选B根据三角形两边之和大于第三边的性质,可得$a+b-c>0$,$a-b+c>0$,$a+b+c>0$,$-a+b+c>0$。
将其代入原式,得$(a-b+c)(a+b-c)(-a+b+c)(a+b+c-2ab-2bc-2ca)<0$,因此原式恒为负数,选B。
2.设$m$,$n$是正整数,满足$m+n>mn$,给出以下四个结论:①$m$,$n$都不等于1;②$m$,$n$都不等于2;③$m$,$n$都大于1;④$m$,$n$至少有一个等于1,其中正确的结论是()。
A。
① B。
② C。
③ D。
④答案:选D将$m+n-mn>0$移项得$(m-1)(n-1)<1$。
因为$m$,$n$是正整数,所以只有$m=1$,$n=1$或$m=1$,$n=2$或$m=2$,$n=1$不满足条件,而$m=1$,$n$任意或$m$任意,$n=1$都满足条件,因此选D。
3.已知关于$x$的方程$2x+a=x+a$有一个根为1,则实数$a$的值为()。
A。
$\frac{-1\pm\sqrt{5}}{2}$ B。
$0$ C。
$1$ D。
以上答案都不正确答案:选A将$x=1$代入方程,得$2+a=1+a$,解得$a= \frac{-1\pm\sqrt{5}}{2}$。
当$a=\frac{-1-\sqrt{5}}{2}$时,方程化简后为$2x^2+2x+(1+\sqrt{5})=0$,无实根,舍去;当$a=\frac{-1+\sqrt{5}}{2}$时,方程化简后为$x^2-x-(1+\sqrt{5})=0$,有一个根为1,因此选A。
4.已知$a$,$b$,$c$是不完全相等的任意实数,若$x=a-2b+c$,$y=a+b-2c$,$z=-2a+b+c$,则关于$x$,$y$,$z$的值,下列说法正确的是()。
2019年中国科学技术大学自主招生数学试题及其详解
1. 满足 x + 2y + 3x + 4y ≤5 ( xꎬy∈R) 的点( xꎬy)
所构成的区域的面积是 .
2. 方程 sin2x + cos3x = 0(0 < x≤2π) 根的和是
.
3. 若△ABC 三个顶点的坐标分 别 是 A (0ꎬ1 ) ꎬB (1ꎬ
0) ꎬ C ç xꎬ
2019 年中国科学技术大学
自主招生数学试题及其详解
甘志国
( 北京市丰台二中 100071)
摘 要:2019 年中国科学技术大学自主招生数学试题共包含 8 道填空题和 3 道解答题ꎬ试题难度是中等.
解得由笔者给出.
关键词:2019 年科学技术大学自主招生数学试题ꎻ不定项选择题ꎻ回忆版ꎻ详解
中图分类号:G632 文献标识码:A 文章编号:1008 - 0333(2019)34 - 0046 - 04
4
注 由以BꎬCꎬD 的坐标分别是 (5ꎬ - 2. 5 ) ꎬ( - 10ꎬ
7. 5) ꎬ( - 5ꎬ2. 5) ꎬ(10ꎬ - 7. 5) . 可求得 AB = 5 13 ꎬ直
5
线 ABꎬCD 的距离是
ꎬ所以题中的区域的面积是 5 13
ï
î - 2x - 2y≤5ꎬ
C 的坐标分别是( - 10ꎬ7. 5) ꎬ( - 5ꎬ2. 5) ꎬ进而可求得其
1
5
25
面积是 5 2
= .
2
22 4
ìx + 2y≤0ꎬ
ïï
(3) í3x + 4y≤0ꎬ
ï
î - 4x - 6y≤5ꎬ
可得该区域即△OCDꎬ其中点 Cꎬ
1
5
25
面积是 5 13
( n∈N ∗ ) 有唯一的零
2019年北京大学、清华大学、浙江大学、中国科技大学自主招生数学试题及参考答案
2019年北京大学自主招生数学试题2019年清华大学自主招生数学试题2019年中国科学技术大学自主招生数学试题4.记3cos(),4cos()36x t y t =+-=++,则22x y +的最大值为__________。
5.设点0(1,0)P ,i OP (i =1,2,3…)绕原点按顺时针旋转θ得到向量i OQ , i Q 关于y 轴对称点记为1 i P +,则2019P 的坐标为__________。
.,且.已知,且9.将△D 1D 2D 3的各中点连线,折成四面体ABCD ,已知12233112,10,8D D D D D D ===,求四面体ABCD 的体积。
10.求证:对于任意的在R 上有仅有一个解0x =11.已知(1)求证:存在多项式()p x ,满足cos (cos )n p θθ=;(2)将()p x 在R [x ]上完全分解。
2019年中国科学技术大学自主招生数学试题参考答案2.B红色曲线为y =sin 2x ,蓝色曲线为y =-cos 3x综上,知:00100110cos sin cos sin 01sin cos sin cos x x x y y y θθθθθθθθ---⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭那么222(,)P x y 满足:200020002cos sin 10sin cos 01x x x x y y y y θθθθ--⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭这也就说明了20,P P 重合。
故2019P 坐标为(cos ,sin )θθ--6.首先将递推公式两侧取倒数,则:112(1)11112(1)n n n n nn x n x x x x ++++=⇔-=+累加,即:21122(1)n n n k k x x n n =-=⇒=+∑裂项求和,则:2019112019*********k k x ==-=∑7.如图所示,我们定义a ~b 表示复数a 和b之间的边11z z -+是纯虚数,表明0~(z-1)与0~(z+1)垂直,进而说明|z~(z-1)|=|0~z|=|z~(z+1)|=1故||1z =,进一步,我们设cos sin z i θθ=+则222222222|3|(cos 2cos 3)(sin 2sin )cos 2cos 96cos 6cos 22cos cos 2sin 2sin 2sin 2sin 116cos 2812cos 8cos 53z z cos θθθθθθθθθθθθθθθθθθ++=++++=++++++++=++=++≥等号成立条件为1cos 3θ=-8.9.简解:由题意,易知四面体ABCD为等腰四面体,将其嵌入长方体后割补法即可图示蓝色边框为等腰四面体,黑色为被嵌入的长方体答案:410.首先,我们定义()()n f x 代表函数()f x 的n 阶导数令0()!kn x k x f x e k ==-∑注意到()()1n x f x e =-在R 上单调递增,故其在R 上仅有一根x =0,从而(1)()1n x f x e x -=--在R 上有最小值,即(1)(1)()(0)0n n f x f --≥=进而2(2)()12n x x f x e x -=---在R 上单调递增以此类推,可知:(2)()n k f x -在R 上单调递增,仅有一根x =0(21)()n k f x --在R 先减后增,且恒为非负实数,且仅有一根x =0综上,不论n 取何值,0()!knx k x f x e k ==-∑在R 上仅有一根x =011.本题考察内容十分清晰,旨在考察Chebyshev 多项式(1)采取归纳法证明,若对于不同的n ,存在满足题设的多项式,则记其为()n p x 首先,当1n =时,存在多项式1()p x x=其次,当2n =时,存在多项式22()21p x x =-我们假定命题在2,1n n --的情形下成立,下面考察n 的情形cos cos[(1)]cos(1)cos sin(1)sin 1cos(1)cos [cos cos(2)]2n n n n n n n θθθθθθθθθθθ=-+=-⋅--⋅=-⋅+--进而有cos 2cos cos(1)cos(2)n n n θθθθ=---即12()2()()n n n p x xp x p x --=-因为12(),()n n p x p x --都是多项式,所以()n p x 也是多项式。
2018年清华大学自主招生数学真题选集
清华大学本试卷数学部分共有40道选择题.1.【真题】已知定义在R上的函数()fx={2x+a,x≤0lnx+a,x>0若方程f(x)=12有两个不相等的实数根,则a的取值范围是()A.−12≤a≤12B.0≤a<12C.0≤a<1D.−12<a≤04.【真题】已知抛物线C:y2=8x的焦点为F,准线为I,P是I上一点,Q是直线PF与C的一个交点,若FP=3FQ,则|QF|=()A.83B.52C.3D.27.【真题】我们把焦点相同,且离心率互为倒数的椭圆和双曲线称为一对“相关曲线”,已知F1、F2是一对相关曲线的焦点,P是它们在第一象限的交点,当∠F1PF2=30∘时,这一对相关曲线中椭圆的离心率是()A.7−4√3B.2−√3C.√3−1D.4−2√311.【真题】如图所示,为测一树的高度,在地面上选取A、B两点,从A、B两点分别测得树尖的仰角为30∘,45∘,且A、B两点之间的距离为60m,则树的高度为()A.(15+3√3)mB.(30+15√3)mC.(30+30√3)mD.(15+30√3)m14.【真题】在复平面内,复数z=2i(为虚数单位)的共轭复数对应的点位于()1+iA.第一象限B.第二象限C.第三象限D.第四象限15.【真题】设X−N(μ1,σ12),Y−N(μ2,σ22),这两个正态分布密度曲线如图所示.下列结论中正确的是()A.P(Y≥μ2)≥P(Y≥μ1)B.P(X≤σ2)≤P(X≤σ1)C.对任意正数t,P(X≤t)≥P(Y≤t) D对任意正数t,P(X≥t)≥P(Y≥t)20.【真题】如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器的厚度,则球的体积为()cm3A.500π3cm3B.866π3cm3C.1372π3D.2048π3 cm 321.【真题】已知x,y,z 为正实数,则xy+yz x 2+y 2+z 2的最大值为()A.1B.2C.√22D.√229.【真题】已知e 1,e 2为平面上的单位向量,e 1与e 2的起点均为坐标原点O,e 1与e 2夹角为π3.平面区域D 由所有满足OP ⃗⃗⃗⃗⃗ =λe 1+μe 2的点P 组成,其中{λ+μ≤10≤λ0≤μ,那么平面区域D 的面积为()A.12B.√3C.√32D.√3431.【真题】已知α是第二象限角,且sin (π2+α)=−√55,则cos 3α+sinαcos(α−π4)=() A.−11√215 B.−9√25 C.9√25 D.11√215)的图象,只需把函数y=sin2x的图象上所有的33.【真题】为了得到函数y=sin(2x−π3点()个单位长度A.向左平行移动π3B.向右平行移动π个单位长度3C.向左平行移动π个单位长度 6个单位长度D.向右平行移动π636.【真题】若a<b<c,则函数f(x)=(x−a)(x−b)+(x−b)(x−c)+(x−c)(x−a)两个零点分别位于区间()A.(a,b)和(b,c)内B.(−∞,a)和(a,b)内C.(b,c)和(c,+∞)内D.(−∞,a)和(c,+∞)内37.【真题】设A,B是有限集,定义d(A,B)=card(A∪B)−card(A∩B),其中card(A)表示有限集A中的元素个数,命题①:对任意有限集A,B,“A≠B”是“d(A,B)>0”的充分必要条件:命题②:对任意有限集A,B,C,d(A,C)≤d(A,B)+d(B,C)()A.命题①和命题②都成立B.命题①和命题②都不成立C.命题①成立,命题②不成立D.命题①不成立,命题②成立39.【真题】已知f(x)=x5+2x3+3x2+x+1,应用秦九韶算法计算x=3时的值时需要()次乘法运算A.9B.8C.5D.4。