§5.3(5)一元一次方程的应用(工程问题)

合集下载

5.3实际问题与一元一次方程1(课件)2004-2025学年-人教版(2024)七年级上册

5.3实际问题与一元一次方程1(课件)2004-2025学年-人教版(2024)七年级上册

习题解析
3.某糕点厂中秋节前要制作一批盒装月饼,每盒中装2块大月饼和4块小月饼,
制作1块大月饼要用面粉0.05 kg,制作1块小月饼要用面粉0.02 kg,现共有
面粉4500 kg,制作两种月饼应各用多少面粉,才能生产最多的盒装月饼?
解:设制作大月饼用 kg面粉,制作小月饼用(4500 – ) kg面粉,才能
好能如期完成任务?
【分析】设甲加工天,两人如期完成任务.
效率
时间
工作量

1
20
x
1
x
20

1
10
8
8
10
习题解析
解:设甲加工x天,两人如期完成任务,则在甲加入之前,乙先工作了
(8 − )天.
依题意,得
1
8
x 1.
20
10
解得 = 4,则8 − = 4.
答:乙需加工4天后,甲加入合作加工才可正好按期完成任务.
●商品售价、进价、利润率的关系:
商品售价= 商品进价 ×(1+利润率)
课程讲授
2.销售中存在盈亏,说一说销售盈亏中存在哪几种可能情况,并分别说明在
该种情况下,售价与进价的大小.
(1)盈利:售价
利润
进价(填“>”、“<”或“=”),此时,
0(填“>”、“<”或“=”);
(2)亏损:售价
利润
进价(填“>”、“<”或“=”),此时,
习题解析
3.某商品的零售价是900元,为适应竞争,商店按零售价打9折 (即原价的
90%),并再让利40元销售,仍可获利10%,求该商品的进价.
解:设该商品的进价为每件 元,
依题意,得 900 × 0.9-40=10% +,

一元一次方程应用题——工程问题

一元一次方程应用题——工程问题

一元一次方程应用题----工程问题1.一项工程,甲单独做20天完成,乙单独做10天完成,现在由乙先独做几天后,剩下的部分由甲独做,先后共话12天完成,问乙做了几天2.一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,需要几天完成?3.某工程由甲、乙两队完成,甲队单独完成需16天,乙队单独完成需12天。

如先由甲队做4天,然后两队合做,问再做几天后可完成工程的六分之五?4. 已知某水池有进水管与出水管一根,进水管工作15小时可以将空水池放满,出水管工作24小时可以将满池的水放完;(1)如果单独打开进水管,每小时可以注入的水占水池的几分之几?(2)如果单独打开出水管,每小时可以放出的水占水池的几分之几?(3)如果将两管同时打开,每小时的效果如何?如何列式?(4)对于空的水池,如果进水管先打开2小时,再同时打开两管,问注满水池还需要多少时间?5. 有一个水池,用两个水管注水。

如果单开甲管,2小时30分注满水池,如果单开乙管,5小时注满水池。

①如果甲、乙两管先同时注水20分钟,然后由乙单独注水。

问还需要多少时间才能把水池注满?②假设在水池下面安装了排水管丙管,单开丙管3小时可以把一满池水放完。

如果三管同时开放,多少小时才能把一空池注满水?6.检修某场区的自来水管,甲独做需14天完成,乙独做18天完成,丙独做12天完成。

前7天由甲乙两人一起合作,但乙中途离开了一段时间;后一部分甲乙合作2天完成,问乙中途离开了几天?7.某项工程计划用300人在若干天内完成,为了缩短工期,实际施工时,实行了承包责任制,工作效率提高50%因此只用了250人,还提前20天完成任务,问原计划多少天完成这项工程?8.汛期到来之前某水利部门利用挖掘机挖掘土方,甲机单独做12天挖完,乙机单独做15天可以挖完,现在两机合作若干天后,再由乙机单独挖6天完成任务,问甲机挖了几天9.一组割草人去割两块草地,大的一块是小的一块的2倍,上午全部人都在大的一块草地割草,下午一半人留在大草地上,到傍晚时把草割完,另一半人去割小草地的草,到傍晚还剩一块,这一块由一个割草人在用一天时间刚好割完,问,这组割草人共有多少人?(按习惯,从早晨到傍晚算一天工作,上午、下午各占一半)10.整理一批数据,由一个人做需80小时完成。

一元一次方程的应用-工程问题

一元一次方程的应用-工程问题
分辨题型,明确解题思路
一元一次方程在工程问题中通常涉及工作效率、工作时间和工作量等概念。根 据题目的具体描述,可以判断出题目的类型,从而明确解题思路。
善于归纳总结,形成自己知识体系
总结一元一次方程在工程问题中的常见应用
例如,工程进度问题、工程合作与分工问题等。通过总结这些常见应用,可以形 成自己的知识体系,更好地掌握解题技巧。
学员自我评价与反思
知识掌握情况
学员应对自己的知识掌握情况进行自我评价,包括是否理解了一元 一次方程在工程问题中的应用,是否能够独立分析并解决问题等。
学习方法与态度
学员应反思自己的学习方法是否得当,是否积极主动参与课堂讨论 和练习,是否善于总结归纳知识点等。
不足之处与改进方向
学员应诚实地反映自己的不足之处,如对某些知识点理解不够深入、 解题速度较慢等,并提出相应的改进方向。
都是未知数或已知数。
02
多个主体完成同一项工作
当有多个主体(如多个工人或多个机器)共同完成同一项工作时,需要
分别计算每个主体完成的工作量,然后将它们相加得到总工作量。
03
工作分配问题
在分配工作时,需要考虑每个主体的能力和效率,以确保工作能够按时
完成。
如何将实际问题转化为一元一次方程
确定未知数和已知数
逻辑思维能力和数学素养。
02 典型工程问题解析
工作效率、时间与总量关系问题
工作效率、时间和总量之间的基本关系
01
工作效率=总量/时间,时间=总量/工作效率,总量=工作效率×
时间。这些关系是解决工程问题的基础。
单一工作量的计算
02
当已知工作效率和时间时,可以直接使用公式计算出完成的总
量。
比较不同工作效率下的完成情况

七年级-人教版-数学-上册-第2课时-一元一次方程的应用——工程问题

七年级-人教版-数学-上册-第2课时-一元一次方程的应用——工程问题

例2 某项工作,甲单独做需要 4 小时,乙单独做需要 6 小 时,甲先做 30分钟,然后甲、乙合作.甲、乙合作还需要多少 小时才能完成全部工作?
解法1:设甲、乙合作还需要x小时才能完成全部工作.
根据题意,得
1 4
1 2Βιβλιοθήκη x1 6x
1.
解方程,得 x=2.1.
答:甲、乙合作还需要2.1小时才能完成全部工作.
归纳
工程问题中的等量关系 (1)在工作总量不明确、不具体的情况下,通常把工作总量看 成单位____1__. (2)工作总量=_工__作__效__率__×__工__作__时__间__. (3)甲、乙合作的工作效率=_甲__的__工__作__效__率_+_乙__的__工__作__效__率__. (4)所有人工作量的和等于__总__工__作__量__.
为 8(x+2) .
40
40
思考 根据前面的分析,完成表格:
项目
人均效率 人数 时间/h 工作量
第一阶段工作
1
40
第二阶段工作
1 40
x
4
x+2
8
4x 40
8(x 2) 40
问题 列出方程,对本题进行解答.
解:设安排 x 人先做 4 h. 根据先后两个时段的工作量之和应等于总工作量,列出方程
4x 8(x 2)=1.
第2课时 一元一次方程的 应用——工程问题
上节课,我们学习了如何运用一元一次方程来解决实际问 题中的配套问题,本节课,我们来探究一元一次方程与实际问 题——工程问题.
在学习新课之前,先完成下面的填空: 工作量=__工__作__效__率__×__工__作__时__间__; 工作效率=_工___作__量__÷__工__作__时__间__; 工作时间=__工__作__量__÷__工__作__效__率__.

用一元一次方程解决实际问题—工程问题

用一元一次方程解决实际问题—工程问题

用一元一次方程解决实际问题——工程问题学习目标1.能利用线性示意图、表格、扇形示意图等手段分析实际问题中的等量关系列方程;2.经历和体验运用方程解决实际问题的过程,提高分析问题、解决问题的能力;3.培养学生敢于面对挑战和勇于克服困难的意志,鼓励学生大胆尝试,从中获得成功的经验,激发学生的学习热情.学习重、难点借助线性示意图、表格、扇形示意图等手段分析实际问题中的等量关系.学习过程一、问题导向1、观看大国基建的视频,感悟每一项工程都是由不同团队合作完成的。

2、将一批资料录入电脑,甲单独做需18h完成,乙单独做需12h完成.现在先由甲单独做8h,剩下的部分由甲、乙合做完成,甲、乙两人合做了多少时间?1.问题中的已知量、未知量分别是什么?2.怎样理清其中的数量关系?(1)若把全部工作量看作1,设甲、乙两人合做的时间是x小时,则可以列出表格:全部工作量甲单独做的工作量甲、乙合做的工作量1问题中的相等关系是:,根据等量关系,可列出方程:.(2)若把全部工作量看作1,设甲、乙两人合做的时间是x小时,还可以列出这样的表格吗?全部工作量甲做的工作量乙做的工作量1问题中的相等关系是:,根据等量关系,可列出方程:.(3)若把全部工作量看作1,我们还能用扇形示意图来表示其中的数量关系吗?总结:利用表格或圆形示意图来分析工程类的问题,常见数量关系:工作总量=工作效率×工作时间.分析时,常需抓住其中的一个量——工作总量(或时间或效率)来找出相等关系.二、自主学习例1、将一批会计报表输入电脑,甲单独做需20h 完成,乙单独做需12h 完成,现在先由甲单独做4h,剩下的部分由甲、乙合做完成,甲、乙两人合做了多长时间?解:设两人合作了x 小时由题意得11212014201=⎪⎭⎫ ⎝⎛++⨯x 解得x=6答:甲乙两人合作了6个小时。

例2、整理一批图书,由一个人做要40h 完成.现在计划由一部分人先做4h,再增加2人和他们一起做8h 完成这项工作.假设这些人的工作效率相同,那么应先安排多少人工作? 解:设应先安排x 人工作由题意得140)2(8404=++x x 解得x=2答:应先安排2人工作三、成果展示1、一个水池装有一根进水管和一根排水管,单开进水管10分钟可住满水池,单开排水管20分钟可将满池水排完,若池中无水,两管同时打开,则几分钟可注满水池?2、一项工程,甲单独做要10天,乙单独做要15天,丙单独做20天,三人合作期间,甲因故请假,工程6天完工,请问甲请了几天假?3、甲能在12天内完成某项工作,乙的工作效率比甲高20%,那么乙完成这项工作的天数为( )A .6B .8C .10D .114、加工1500个零件,甲单独做需要 12 小时,乙单独做需要 15 小时,若甲、乙两人合作 x 小时可以完成,依题意可列方程为( ) A. 1500151121=⎪⎭⎫ ⎝⎛+x B.1500151500121500=⎪⎭⎫ ⎝⎛+x C. 1500151500121=⎪⎭⎫ ⎝⎛+x D.1151500121500=⎪⎭⎫ ⎝⎛+x5. 某项工作,甲单独做要a天完成,乙单独做要b天完成.现在甲单独做2天后,剩下工作由乙单独做,则乙单独完成剩下的工作所需的天数是( )A.2ab-B.1(1)2b-C.2ba-D.⎪⎭⎫⎝⎛-ab216. 一项工程,甲单独做需15天完成,乙单独做需 10 天完成,由甲、乙合作完成需要多少天?四、拓展延伸1、某项工作,甲、乙两人单独完成分别需要 3 小时、5小时,则两人合作此项工作的 80% 需要几小时?2、一项工作,甲单独做12天完成,乙单独做8天完成.现在先由甲、乙合做3天,剩下的部分由乙单独完成,剩下的部分还需几天完成?3、将一批会计报表输入电脑,甲单独做20小时完成,乙单独做12小时完成.现在先由甲、乙合做4小时,再由甲单独做4小时,剩下的部分再由甲、乙合做,剩下的部分还需几小时完成?4、用甲、乙、丙三部抽水机从矿井里抽水,单独用一部抽水机抽尽,用甲需要24小时,用乙需30小时,用丙需40小时,现甲、丙同抽了6小时后,把乙机加入,问从开始到结束,一共用多少小时才能把井里的水抽完?5、某地为了打造风光带,将一段长为360 米的河道整治任务分配给甲、乙两个工程队,他们先后接力完成,共用时20天.已知甲工程队每天整治24 米,乙工程队每天整治16 米,求甲、乙两个工程队分别整治了多长的河道?五、教学反思通过本节课的学习,学生不仅掌握了如何利用扇形图解决实际问题,更是对于工程问题有了更深的了解,体会到了数学问题来源于生活,并能用之于生活。

一元一次方程实际应用-工程问题讲课用

一元一次方程实际应用-工程问题讲课用

折扣与利润率
分析商品打折销售或加价出售时 的利润变化情况。
成本与定价策略
考虑商品生产或销售过程中的成 本控制和定价策略。
其他典型工程问题
工程进度问题
01
解决工程建设中时间、进度和费用等方面的规划和管理问题。
资源分配问题
02
分析如何合理分配人力、物力和虑如何在满足工程要求和约束条件下,实现工程效益最大化。

检验解的合理性
将求得的解代入原方程进行检 验,确保解符合问题的实际要
求。
03 典型工程问题解析
路程、速度、时间问题
路程=速度×时间
解决车辆行驶、人员行走 等直线运动的路程问题。
相遇与追及问题
分析两物体同向或相向运 动时的路程、速度和时间 关系。
流水行船问题
考虑水流速度对船只实际 速度和行驶路程的影响。
工作效率问题
1 2
工作总量=工作效率×工作时间 解决人员或机器完成某项工作的效率问题。
合作与分工问题
分析多人或多机器合作完成同一工作或分工完成 不同工作的效率关系。
3
工作效率变化问题
考虑工作过程中效率变化对完成工作所需时间的 影响。
利润、折扣、成本问题
利润=售价-进价
解决商品买卖中的盈利和亏损问 题。
求。
建模方法
根据题目中的条件,设出未知 数,建立等量关系,列出方程 。
解方程技巧
利用等式的性质,对方程进行 变形和化简,求出未知数的值 。
检验与反思
将求得的解代入原方程进行检 验,确保解的合理性;同时反 思解题过程,总结经验教训。
课程学习建议与展望
学习建议 掌握一元一次方程的基本概念和解法;
理解工程问题中的基本量和基本关系;

一元一次方程应用——工程问题含答案

一元一次方程应用——工程问题含答案

一元一次方程应用——工程问题含答案(总13页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除一元一次方程应用——工程问题1.一份文件需要打印,小李独立做需要6小时完成,小王独立做需要8小时完成.如果他们两人共同做,需要多长时间完成?2.一项工程,甲单独做要10天完成,乙单独做要15天完成,两人合做4天后,剩下的部分由乙单独做,还需要几天完成?3.现加工一批机器零件,甲单独完成需4天,乙单独完成需6天,现由乙先做1天,然后两人合作完成,共付给报酬600元,若按个人完成的工作量付给报酬,该如何分配?4.机械厂加工车间有27名工人,平均每人每天加工小齿轮12个或大齿轮10个,2个大齿轮和3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?5.整理一批图书,如果由一个人单独做要花60小时.现先由一部分人用一小时整理,随后增加15人和他们一起又做了两小时,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少人?6.某工厂计划26小时生产一批零件,后因每小时多生产5件,用24小时,不但完成了任务,而且还比原计划多生产了60件,问原计划生产多少零件?7.某地为了打造风光带,将一段长为360m的河道整治任务由甲、乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治24m,乙工程队每天整治16m.求甲、乙两个工程队分别整治了多长的河道.8.政府准备修建一条公路,若由甲工程队单独修需3个月完成,每月耗资12万元;若由乙工程队单独修建需6个月完成,每月耗资5万元.若由甲工程队先做一段时间,剩下的由乙工程队单独完成,一共用了4个月完成修建任务,这样安排共耗资多少万元(时间按整月计算)9.某蔬菜公司收购某种蔬菜116吨,准备加工后上市销售.该公司加工该种蔬菜的能力是:每天可以精加工4吨或粗加工8吨.(1)问能否在14天以内完成加工任务?说明理由.(2)现计划用20天正好完成加工任务,则该公司应安排几天精加工,几天粗加工?10.某工程交由甲、乙两个工程队来完成,已知甲工程队单独完成需要60天,乙工程队单独完成需要40天(1)若甲工程队先做30天后,剩余由乙工程队来完成,还需要用时天(2)若甲工程队先做20天,乙工程队再参加,两个工程队一起来完成剩余的工程,求共需多少天完成该工程任务?11.2018元旦,王东和吴童相约一起去登香山.王东比吴童早18分钟到香山山脚,并以每分钟登高8米的速度直接开始登山;吴童到达香山山脚后没有休息,也直接以每分钟登高12米的速度开始登山,最后两人同时到达山顶.你能据此计算出香山山高多少米吗?12.一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管6小时可注满水池;单独开乙管8小时可注满水池,单独开丙管9小时可将满池水排空,若先将甲、乙管同时开放2小时,然后打开丙管,问打开丙管后几小时可注满水池?13.在某一城市美化工程招标时,有甲、乙两个工程队投标.经测算:甲队单独完成这项工程需要60天,乙队单独完成这项工程需要90天;若由甲队先做20天,剩下的工程由甲、乙两队合做完成.(1)甲、乙两队合作多少天?(2)甲队施工一天需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱还是由甲乙两队全程合作完成该工程省钱14.抗震救灾重建家园,为了修建在地震中受损的一条公路,若由甲工程队单独修需3个月完成,每月耗资12万元;若由乙工程队单独修建需6个月完成,每月耗资5万元.(1)请问甲、乙两工程队合作修建需几个月完成共耗资多少万元(2)若要求最迟4个月完成修建任务,请你设计一种方案,既保证按时完成任务,又最大限度节省资金.(时间按整月计算)15.【背景资料】一棉花种植区的农民研制出采摘棉花的单人便携式采棉机(如图),采摘效率高,能耗低,绿色环保.经测试,一个人操作该采棉机的采摘效率为35公斤/时,大约是一个人手工采摘的3.5倍,购买一台采棉机需900元.雇人采摘棉花,按每采摘1公斤棉花a元的标准支付雇工工资,雇工每天工作8小时.【问题解决】(1)一个雇工手工采摘棉花,一天能采摘多少公斤?(2)一个雇工手工采摘棉花7.5天获得的全部工钱正好购买一台采棉机,求a 的值;(3)在(2)的前提下,种植棉花的专业户张家和王家均雇人采摘棉花,王家雇用的人数是张家的2倍.张家雇人手工采摘,王家所雇的人中有的人自带采棉机采摘,的人手工采摘.两家采摘完毕,采摘的天数刚好都是8天,张家付给雇工工钱总额为14400元.王家这次采摘棉花的总重量是多少?16.某牛奶厂现有鲜奶9吨,若在市场上直接销售鲜奶,每吨可获取利润500元;若制成酸奶销售,每吨可获取利润1200元;若制成奶片销售,每吨可获取利润2000元.该工厂的生产能力是,如果制成酸奶,每天可加工3吨;制成奶片,每天可加工1吨,受人员限制,两种加工方式不可同时进行;受气温限制这批牛奶必须4天内全部销售或加工完毕.为此该厂设计了三种方案:方案一:将鲜奶全部制成酸奶销售;方案二:尽可能地制成奶片,其余的直接销售鲜奶;方案三:将一部分制成奶片,其余的制成酸奶销售,并恰好4天完成.你认为选择哪种方案获利最多?参考答案与试题解析1.【分析】设他们两人共同做,需要x小时完成,根据工作效率×工作时间=总工作量,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设他们两人共同做,需要x小时完成,根据题意得:(+)x=1,解得:x=.答:他们两人共同做,需要小时完成.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.2.【分析】设工作量为1,根据甲单独做需要10天完成,乙单独做需要15天完成,即可求出甲乙的效率;等量关系为:甲的工作量+乙的工作量=1,列出方程,再求解即可.【解答】解:设乙还需x天完成,由题意得4×(+)+=1,解得x=5.答:乙还需5天完成.【点评】本题考查了一元一次方程的应用,解决问题的关键是找到所求的量的等量关系.当题中没有一些必须的量时,为了简便,可设其为1.3.【分析】在工程问题中,应把工作总量看作单位1,首先求出各自的工作量,再进一步求出报酬.【解答】解:设然后两人合作x天完成.则列方程:+=1,解得:x=2,则甲、乙各做了工作量的.故甲、乙平分300元.故若按个人完成的工作量付给报酬,甲、乙各分300元.【点评】本题考查一元一次方程的应用,关键在于找出题目中的等量关系,根据等量关系列出方程解答.4.【分析】设需安排x名工人加工大齿轮,安排(27﹣x)名工人加工小齿轮,根据“平均每人每天加工小齿轮12个或大齿轮10个,2个大齿轮和3个小齿轮配成一套”可列成方程求解.【解答】解:设需安排x名工人加工大齿轮,安排(27﹣x)名工人加工小齿轮,依题意得:12×(27﹣x)×2=10x×3解得x=12,则27﹣x=15.答:安排12名工人加工大齿轮,安排15名工人加工小齿轮.【点评】本题考查理解题意能力,关键是能准确2个大齿轮和3个小齿轮配成一套,根据此正确列出方程.5.【分析】等量关系为:所求人数1小时的工作量+所有人2小时的工作量=1,把相关数值代入即可求解.【解答】解:设先安排整理的人员有x人,依题意得:.解得:x=10.答:先安排整理的人员有10人.【点评】解决本题的关键是得到工作量1的等量关系;易错点是得到相应的人数及对应的工作时间.6.【分析】设原计划每小时生产x个零件,则实际生产26x+60件.题目中的相等关系是:实际24小时生产的件数=计划26小时生产的件数+60.根据相等关系就可以列出方程求解.【解答】解:设原计划每小时生产x个零件,由题意得:26x+60=24(x+5),解得:x=30,所以原计划生产零件个数为:26x=780,答:原计划生产780零件.【点评】此题主要考查了一元一次方程的应用,解题的关键是找到等量关系并列出方程.7.【分析】设甲队整治了x天,则乙队整治了(20﹣x)天,由两队一共整治了360m为等量关系建立方程求出其解即可.【解答】解:设甲队整治了x天,则乙队整治了(20﹣x)天,由题意,得24x+16(20﹣x)=360,解得:x=5,∴乙队整治了20﹣5=15天,∴甲队整治的河道长为:24×5=120m;乙队整治的河道长为:16×15=240m.答:甲、乙两个工程队分别整治了120m,240m.【点评】本题是一道工程问题,考查了列一元一次方程解实际问题的运用,设间接未知数解应用题的运用,解答时设间接未知数是解答本题的关键.8.【分析】根据题意可以列出相应的方程,求出甲队和乙队分别做了几个月,从而可以解答本题.【解答】解:设甲队做了x个月,则乙做了(4﹣x)个月,=1,解得,x=2,∴4﹣x=2.∴这样安排共耗资:12×2+5×2=34(万元),答:这样安排共耗资34万元.【点评】本题考查一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程.9.【分析】(1)根据每天可以粗加工8吨,得出8×14=112,故比较得出答案;(2)利用现计划用20天正好完成加工任务,表示出总的加工吨数得出等式求出答案.【解答】解:(1)由题意可得:8×14=112<116,即使每天安排粗加工也无法完成加工任务;(2)设精加工x天,则粗加工(20﹣x)天,由题意可得:4x+8(20﹣x)=116,解得:x=11,则20﹣x=9,答:精加工11天,则粗加工9天.【点评】此题主要考查了一元一次方程的应用,正确得出等式是解题关键.10.【分析】(1)总的工作量是“1”,甲的工作效率是,乙的工作效率是,根据题意,利用甲的工作量+乙的工作量=1列出方程并解答;(2)设共需x天完成该工程任务,根据“甲的工作量+乙的工作量=1”列出方程并解答.【解答】解:(1)设剩余由乙工程队来完成,还需要用时x天,依题意得:+=1解得x=20.即剩余由乙工程队来完成,还需要用时20天故答案是:20;(2)设共需x天完成该工程任务,根据题意得+=1解得x=36答:共需36天完成该工程任务.【点评】考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.11.【分析】设香山山高x米,根据时间=路程÷速度结合王东比吴童多用18分钟,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设香山山高x米,根据题意得:﹣=18,解得:x=432.答:香山山高432米.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.12.【分析】设打开丙管后x小时可注满水池.等量关系为:甲注水量+乙注水量﹣丙排水量=1.据此列出方程并解答.【解答】解:设打开丙管后x小时可注满水池,由题意得,(+)(x+2)﹣=1,解这个方程,(x+2)﹣=1,21x+42﹣8x=72,13x=30,解得x=.答:打开丙管后小时可注满水池.【点评】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.13.【分析】(1)设甲、乙两队合作t天,甲队单独完成这项工程需要60天,乙队单独完成这项工程需要90天,所以乙队单独完成这项工程的速度是甲队单独完成这项工程的,由题意可列方程60﹣20=t(1+),解答即可;(2)把在工期内的情况进行比较即可;【解答】解:(1)设甲、乙两队合作t天,由题意得:乙队单独完成这项工程的速度是甲队单独完成这项工程的,∴60﹣20=t(1+)解得:t=24(2)(2)设甲、乙合作完成需y天,则有(+)×y=1.解得,y=36,①甲单独完成需付工程款为60×3.5=210(万元).②乙单独完成超过计划天数不符题意,③甲、乙合作完成需付工程款为36×(3.5+2)=198(万元).答:在不超过计划天数的前提下,由甲、乙合作完成最省钱.【点评】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.14.【分析】(1)设甲、乙两工程队合作需x个月完成,根据若请甲工程队单独做此项工程需3个月完成,若请乙工程队单独做此项工程需6个月完成可列方程求解,并求出钱数;(2)由于这项工程最迟4个月完成,并且最大限度节省资金,乙队省钱,但是乙队4个月只能做全部的,剩下,所以应该让甲参与其中的,所以甲,乙合做一段时间,剩下的乙来做,就可以.【解答】解:(1)设甲、乙两工程队合作需x个月完成,(+)x=1,解得x=2.(12+5)×2=34万元.答:甲、乙两工程队合作修建需要两个月完成,共耗资34万元;(2)设甲乙合做y个月,剩下的由乙来完成.(+)y+=1,解得y=1.故甲乙合作1个月,剩下的由乙来做3个月就可以.【点评】本题考查一元一次方程的应用,关键是根据工作量=工作时间×工作效率列方程求解.15.【分析】(1)先根据一个人操作采棉机的采摘效率为35公斤/时,大约是一个人手工采摘的3.5倍,求出一个人手工采摘棉花的效率,再乘以工作时间8小时,即可求解;(2)根据一个雇工手工采摘棉花7.5天获得的全部工钱正好购买一台采棉机,列出关于a的方程,解方程即可;(3)设张家雇人x人,则王家雇人2x人,其中机械采摘的有人,手工采摘的有人,由“采摘的天数刚好都是8天,张家付给雇工工钱总额为14400元”列出方程解答.【解答】解:(1)35÷3.5×8=80(公斤);(2)7.5×8×10×a=900解得a=1.5(元);(3)设张家雇人x人,则王家雇人2x人,其中机械采摘的有人,手工采摘的有人,∵张家付给雇工工钱总额为14400元∴8×10×1.5×x×8=14400解得x=15王家这次采摘棉花的总重量是:8×35××8+8×10××8=35200(公斤).【点评】本题考查了一元一次方程及列代数式在实际生产与生活中的应用,抓住关键语句,找出等量关系是解题的关键,本题难度适中.16.【分析】设方案三中有x天生产酸奶,(4﹣x)天生产奶片,根据共有9吨,以及获利情况分别求出这三种方案的利润,找出获利最多的一种方案.【解答】解:方案一获利:9×1200=10800(元);方案二:由题意得,可以制成4吨奶片,剩余5吨直接销售,则获利为:4×2000+5×500=10500(元);方案三:设有x天生产酸奶,(4﹣x)天生产奶片,3x+(4﹣x)=9,x=2.5,则获利为:1200×2.5×3+2000×(4﹣2.5)=12000(元),综上可得,第三种方案获利最多.【点评】本题考查了一元一次方程的应用以及理解题意的能力,由已知设出x 天生产酸奶,(4﹣x)天生产奶片,共生产9吨,列出方程是解决问题的关键.。

一元一次方程的应用(配套问题和工程问题)剖析

一元一次方程的应用(配套问题和工程问题)剖析

解:设用x张白铁皮制盒身,(36-x)张制盒底,则 共制盒身25x个,共制盒底40(36-x)个, 根据题意,得 盒身数量×2=盒底数量 2· 25x=40(36-x) 5x=4(36-x) 5x=144-4x 5x+4x=144 8x=144 制作盒底的白铁皮张数是: x=16 36-x=36-16=20
40 40
或1
例2
整理一批图书,由一个人做要40h完成.现在计划由一部分
人先做4h,再增加2人和他们一起做8h,完成这项工作.假设这些 人的工作效率相同,具体应先安排多少人工作?
解:设具体应先安排x人工作,则依题意可得:
4 x 8( x 2) 40 1 40 40 40
注意:
(1)、设未知数及作答时若有单位的 一定要带单位。
(2)、方程中数量单位要统一。
解一元一次方程应用 (一)
配套问题
1只青蛙,1张嘴,2只眼睛,4条腿, 扑通一声跳下水;
2只青蛙,2张嘴,4只眼睛,8条腿, 扑通扑通跳下水; 3只青蛙,3张嘴,6只眼睛,12条腿, 扑通扑通普通跳下水;
你会接下去吗? 1、嘴数=只数 2、眼睛数=只数×2
(5-x) 设用x立方米做桌面,__立方米做桌腿,则可做 50x 300(5-x) 桌面 __个,做桌腿 ____条
解:设用x立方米做桌面,(5-x)立方米做桌腿 根据题意,得 4· 50x=300(5-x) 2x=3(5-x) 2x=15-3x 2x+3x=15 x=3 桌腿所用的木料是: 5-x=5-3=2 答:用3立方米做桌面,2立方米做桌腿,恰能配 成方桌.共可做150张方桌.
即每天生产的螺母数量是螺钉数量的2倍时, 它们刚好配套 螺母数量=螺钉数量×2 (等量关系) 解:设分配 x名工人生产螺钉,则 22 x 名工人 生产螺母,则一天生产的总螺钉数为1200 x 个,生 产的总螺母数为 2000 (22 x) 个.

一元一次方程应用——工程问题含答案

一元一次方程应用——工程问题含答案

一元一次方程应用——工程问题含答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN一元一次方程应用——工程问题1.一份文件需要打印,小李独立做需要6小时完成,小王独立做需要8小时完成.如果他们两人共同做,需要多长时间完成2.一项工程,甲单独做要10天完成,乙单独做要15天完成,两人合做4天后,剩下的部分由乙单独做,还需要几天完成3.现加工一批机器零件,甲单独完成需4天,乙单独完成需6天,现由乙先做1天,然后两人合作完成,共付给报酬600元,若按个人完成的工作量付给报酬,该如何分配4.机械厂加工车间有27名工人,平均每人每天加工小齿轮12个或大齿轮10个,2个大齿轮和3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套5.整理一批图书,如果由一个人单独做要花60小时.现先由一部分人用一小时整理,随后增加15人和他们一起又做了两小时,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少人6.某工厂计划26小时生产一批零件,后因每小时多生产5件,用24小时,不但完成了任务,而且还比原计划多生产了60件,问原计划生产多少零件7.某地为了打造风光带,将一段长为360m的河道整治任务由甲、乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治24m,乙工程队每天整治16m.求甲、乙两个工程队分别整治了多长的河道.8.政府准备修建一条公路,若由甲工程队单独修需3个月完成,每月耗资12万元;若由乙工程队单独修建需6个月完成,每月耗资5万元.若由甲工程队先做一段时间,剩下的由乙工程队单独完成,一共用了4个月完成修建任务,这样安排共耗资多少万元(时间按整月计算)9.某蔬菜公司收购某种蔬菜116吨,准备加工后上市销售.该公司加工该种蔬菜的能力是:每天可以精加工4吨或粗加工8吨.(1)问能否在14天以内完成加工任务说明理由.(2)现计划用20天正好完成加工任务,则该公司应安排几天精加工,几天粗加工10.某工程交由甲、乙两个工程队来完成,已知甲工程队单独完成需要60天,乙工程队单独完成需要40天(1)若甲工程队先做30天后,剩余由乙工程队来完成,还需要用时天(2)若甲工程队先做20天,乙工程队再参加,两个工程队一起来完成剩余的工程,求共需多少天完成该工程任务11.2018元旦,王东和吴童相约一起去登香山.王东比吴童早18分钟到香山山脚,并以每分钟登高8米的速度直接开始登山;吴童到达香山山脚后没有休息,也直接以每分钟登高12米的速度开始登山,最后两人同时到达山顶.你能据此计算出香山山高多少米吗12.一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管6小时可注满水池;单独开乙管8小时可注满水池,单独开丙管9小时可将满池水排空,若先将甲、乙管同时开放2小时,然后打开丙管,问打开丙管后几小时可注满水池13.在某一城市美化工程招标时,有甲、乙两个工程队投标.经测算:甲队单独完成这项工程需要60天,乙队单独完成这项工程需要90天;若由甲队先做20天,剩下的工程由甲、乙两队合做完成.(1)甲、乙两队合作多少天(2)甲队施工一天需付工程款万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱还是由甲乙两队全程合作完成该工程省钱14.抗震救灾重建家园,为了修建在地震中受损的一条公路,若由甲工程队单独修需3个月完成,每月耗资12万元;若由乙工程队单独修建需6个月完成,每月耗资5万元.(1)请问甲、乙两工程队合作修建需几个月完成共耗资多少万元(2)若要求最迟4个月完成修建任务,请你设计一种方案,既保证按时完成任务,又最大限度节省资金.(时间按整月计算)15.【背景资料】一棉花种植区的农民研制出采摘棉花的单人便携式采棉机(如图),采摘效率高,能耗低,绿色环保.经测试,一个人操作该采棉机的采摘效率为35公斤/时,大约是一个人手工采摘的倍,购买一台采棉机需900元.雇人采摘棉花,按每采摘1公斤棉花a元的标准支付雇工工资,雇工每天工作8小时.【问题解决】(1)一个雇工手工采摘棉花,一天能采摘多少公斤(2)一个雇工手工采摘棉花天获得的全部工钱正好购买一台采棉机,求a的值;(3)在(2)的前提下,种植棉花的专业户张家和王家均雇人采摘棉花,王家雇用的人数是张家的2倍.张家雇人手工采摘,王家所雇的人中有的人自带采棉机采摘,的人手工采摘.两家采摘完毕,采摘的天数刚好都是8天,张家付给雇工工钱总额为14400元.王家这次采摘棉花的总重量是多少16.某牛奶厂现有鲜奶9吨,若在市场上直接销售鲜奶,每吨可获取利润500元;若制成酸奶销售,每吨可获取利润1200元;若制成奶片销售,每吨可获取利润2000元.该工厂的生产能力是,如果制成酸奶,每天可加工3吨;制成奶片,每天可加工1吨,受人员限制,两种加工方式不可同时进行;受气温限制这批牛奶必须4天内全部销售或加工完毕.为此该厂设计了三种方案:方案一:将鲜奶全部制成酸奶销售;方案二:尽可能地制成奶片,其余的直接销售鲜奶;方案三:将一部分制成奶片,其余的制成酸奶销售,并恰好4天完成.你认为选择哪种方案获利最多参考答案与试题解析1.【分析】设他们两人共同做,需要x小时完成,根据工作效率×工作时间=总工作量,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设他们两人共同做,需要x小时完成,根据题意得:(+)x=1,解得:x=.答:他们两人共同做,需要小时完成.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.2.【分析】设工作量为1,根据甲单独做需要10天完成,乙单独做需要15天完成,即可求出甲乙的效率;等量关系为:甲的工作量+乙的工作量=1,列出方程,再求解即可.【解答】解:设乙还需x天完成,由题意得4×(+)+=1,解得x=5.答:乙还需5天完成.【点评】本题考查了一元一次方程的应用,解决问题的关键是找到所求的量的等量关系.当题中没有一些必须的量时,为了简便,可设其为1.3.【分析】在工程问题中,应把工作总量看作单位1,首先求出各自的工作量,再进一步求出报酬.【解答】解:设然后两人合作x天完成.则列方程:+=1,解得:x=2,则甲、乙各做了工作量的.故甲、乙平分300元.故若按个人完成的工作量付给报酬,甲、乙各分300元.【点评】本题考查一元一次方程的应用,关键在于找出题目中的等量关系,根据等量关系列出方程解答.4.【分析】设需安排x名工人加工大齿轮,安排(27﹣x)名工人加工小齿轮,根据“平均每人每天加工小齿轮12个或大齿轮10个,2个大齿轮和3个小齿轮配成一套”可列成方程求解.【解答】解:设需安排x名工人加工大齿轮,安排(27﹣x)名工人加工小齿轮,依题意得:12×(27﹣x)×2=10x×3解得x=12,则27﹣x=15.答:安排12名工人加工大齿轮,安排15名工人加工小齿轮.【点评】本题考查理解题意能力,关键是能准确2个大齿轮和3个小齿轮配成一套,根据此正确列出方程.5.【分析】等量关系为:所求人数1小时的工作量+所有人2小时的工作量=1,把相关数值代入即可求解.【解答】解:设先安排整理的人员有x人,依题意得:.解得:x=10.答:先安排整理的人员有10人.【点评】解决本题的关键是得到工作量1的等量关系;易错点是得到相应的人数及对应的工作时间.6.【分析】设原计划每小时生产x个零件,则实际生产26x+60件.题目中的相等关系是:实际24小时生产的件数=计划26小时生产的件数+60.根据相等关系就可以列出方程求解.【解答】解:设原计划每小时生产x个零件,由题意得:26x+60=24(x+5),解得:x=30,所以原计划生产零件个数为:26x=780,答:原计划生产780零件.【点评】此题主要考查了一元一次方程的应用,解题的关键是找到等量关系并列出方程.7.【分析】设甲队整治了x天,则乙队整治了(20﹣x)天,由两队一共整治了360m为等量关系建立方程求出其解即可.【解答】解:设甲队整治了x天,则乙队整治了(20﹣x)天,由题意,得24x+16(20﹣x)=360,解得:x=5,∴乙队整治了20﹣5=15天,∴甲队整治的河道长为:24×5=120m;乙队整治的河道长为:16×15=240m.答:甲、乙两个工程队分别整治了120m,240m.【点评】本题是一道工程问题,考查了列一元一次方程解实际问题的运用,设间接未知数解应用题的运用,解答时设间接未知数是解答本题的关键.8.【分析】根据题意可以列出相应的方程,求出甲队和乙队分别做了几个月,从而可以解答本题.【解答】解:设甲队做了x个月,则乙做了(4﹣x)个月,=1,解得,x=2,∴4﹣x=2.∴这样安排共耗资:12×2+5×2=34(万元),答:这样安排共耗资34万元.【点评】本题考查一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程.9.【分析】(1)根据每天可以粗加工8吨,得出8×14=112,故比较得出答案;(2)利用现计划用20天正好完成加工任务,表示出总的加工吨数得出等式求出答案.【解答】解:(1)由题意可得:8×14=112<116,即使每天安排粗加工也无法完成加工任务;(2)设精加工x天,则粗加工(20﹣x)天,由题意可得:4x+8(20﹣x)=116,解得:x=11,则20﹣x=9,答:精加工11天,则粗加工9天.【点评】此题主要考查了一元一次方程的应用,正确得出等式是解题关键.10.【分析】(1)总的工作量是“1”,甲的工作效率是,乙的工作效率是,根据题意,利用甲的工作量+乙的工作量=1列出方程并解答;(2)设共需x天完成该工程任务,根据“甲的工作量+乙的工作量=1”列出方程并解答.【解答】解:(1)设剩余由乙工程队来完成,还需要用时x天,依题意得:+=1解得x=20.即剩余由乙工程队来完成,还需要用时20天故答案是:20;(2)设共需x天完成该工程任务,根据题意得+=1解得x=36答:共需36天完成该工程任务.【点评】考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.11.【分析】设香山山高x米,根据时间=路程÷速度结合王东比吴童多用18分钟,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设香山山高x米,根据题意得:﹣=18,解得:x=432.答:香山山高432米.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.12.【分析】设打开丙管后x小时可注满水池.等量关系为:甲注水量+乙注水量﹣丙排水量=1.据此列出方程并解答.【解答】解:设打开丙管后x小时可注满水池,由题意得,(+)(x+2)﹣=1,解这个方程,(x+2)﹣=1,21x+42﹣8x=72,13x=30,解得x=.答:打开丙管后小时可注满水池.【点评】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.13.【分析】(1)设甲、乙两队合作t天,甲队单独完成这项工程需要60天,乙队单独完成这项工程需要90天,所以乙队单独完成这项工程的速度是甲队单独完成这项工程的,由题意可列方程60﹣20=t(1+),解答即可;(2)把在工期内的情况进行比较即可;【解答】解:(1)设甲、乙两队合作t天,由题意得:乙队单独完成这项工程的速度是甲队单独完成这项工程的,∴60﹣20=t(1+)解得:t=24(2)(2)设甲、乙合作完成需y天,则有(+)×y=1.解得,y=36,①甲单独完成需付工程款为60×=210(万元).②乙单独完成超过计划天数不符题意,③甲、乙合作完成需付工程款为36×(+2)=198(万元).答:在不超过计划天数的前提下,由甲、乙合作完成最省钱.【点评】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.14.【分析】(1)设甲、乙两工程队合作需x个月完成,根据若请甲工程队单独做此项工程需3个月完成,若请乙工程队单独做此项工程需6个月完成可列方程求解,并求出钱数;(2)由于这项工程最迟4个月完成,并且最大限度节省资金,乙队省钱,但是乙队4个月只能做全部的,剩下,所以应该让甲参与其中的,所以甲,乙合做一段时间,剩下的乙来做,就可以.【解答】解:(1)设甲、乙两工程队合作需x个月完成,(+)x=1,解得x=2.(12+5)×2=34万元.答:甲、乙两工程队合作修建需要两个月完成,共耗资34万元;(2)设甲乙合做y个月,剩下的由乙来完成.(+)y+=1,解得y=1.故甲乙合作1个月,剩下的由乙来做3个月就可以.【点评】本题考查一元一次方程的应用,关键是根据工作量=工作时间×工作效率列方程求解.15.【分析】(1)先根据一个人操作采棉机的采摘效率为35公斤/时,大约是一个人手工采摘的倍,求出一个人手工采摘棉花的效率,再乘以工作时间8小时,即可求解;(2)根据一个雇工手工采摘棉花天获得的全部工钱正好购买一台采棉机,列出关于a的方程,解方程即可;(3)设张家雇人x人,则王家雇人2x人,其中机械采摘的有人,手工采摘的有人,由“采摘的天数刚好都是8天,张家付给雇工工钱总额为14400元”列出方程解答.【解答】解:(1)35÷×8=80(公斤);(2)×8×10×a=900解得a=(元);(3)设张家雇人x人,则王家雇人2x人,其中机械采摘的有人,手工采摘的有人,∵张家付给雇工工钱总额为14400元∴8×10××x×8=14400解得x=15王家这次采摘棉花的总重量是:8×35××8+8×10××8=35200(公斤).【点评】本题考查了一元一次方程及列代数式在实际生产与生活中的应用,抓住关键语句,找出等量关系是解题的关键,本题难度适中.16.【分析】设方案三中有x天生产酸奶,(4﹣x)天生产奶片,根据共有9吨,以及获利情况分别求出这三种方案的利润,找出获利最多的一种方案.【解答】解:方案一获利:9×1200=10800(元);方案二:由题意得,可以制成4吨奶片,剩余5吨直接销售,则获利为:4×2000+5×500=10500(元);方案三:设有x天生产酸奶,(4﹣x)天生产奶片,3x+(4﹣x)=9,x=,则获利为:1200××3+2000×(4﹣)=12000(元),综上可得,第三种方案获利最多.【点评】本题考查了一元一次方程的应用以及理解题意的能力,由已知设出x 天生产酸奶,(4﹣x)天生产奶片,共生产9吨,列出方程是解决问题的关键.。

一元一次方程应用题工程问题(终审稿)

一元一次方程应用题工程问题(终审稿)

一元一次方程应用题工程问题公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]1.一项工程,甲单独做20天完成,乙单独做10天完成,现在由乙先独做几天后,剩下的部分由甲独做,先后共话12天完成,问乙做了几天2.一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,需要几天完成?3.某工程由甲、乙两队完成,甲队单独完成需16天,乙队单独完成需12天。

如先由甲队做4天,然后两队合做,问再做几天后可完成工程的六分之五?4. 已知某水池有进水管与出水管一根,进水管工作15小时可以将空水池放满,出水管工作24小时可以将满池的水放完;(1)如果单独打开进水管,每小时可以注入的水占水池的几分之几?(2)如果单独打开出水管,每小时可以放出的水占水池的几分之几?(3)如果将两管同时打开,每小时的效果如何如何列式(4)对于空的水池,如果进水管先打开2小时,再同时打开两管,问注满水池还需要多少时间?5. 有一个水池,用两个水管注水。

如果单开甲管,2小时30分注满水池,如果单开乙管,5小时注满水池。

①如果甲、乙两管先同时注水20分钟,然后由乙单独注水。

问还需要多少时间才能把水池注满?②假设在水池下面安装了排水管丙管,单开丙管3小时可以把一满池水放完。

如果三管同时开放,多少小时才能把一空池注满水?6.检修某场区的自来水管,甲独做需14天完成,乙独做18天完成,丙独做12天完成。

前7天由甲乙两人一起合作,但乙中途离开了一段时间;后一部分甲乙合作2天完成,问乙中途离开了几天?7.某项工程计划用300人在若干天内完成,为了缩短工期,实际施工时,实行了承包责任制,工作效率提高50%因此只用了250人,还提前20天完成任务,问原计划多少天完成这项工程?8.汛期到来之前某水利部门利用挖掘机挖掘土方,甲机单独做12天挖完,乙机单独做15天可以挖完,现在两机合作若干天后,再由乙机单独挖6天完成任务,问甲机挖了几天9.一组割草人去割两块草地,大的一块比小的一块大一倍,上午全部人都在大的一块草地割草,下午一半人留在大草地上,到傍晚时把草割完,另一半人去割小草地的草,到傍晚还剩一块,这一块由一个割草人在用一天时间刚好割完,问,这组割草人共有多少人(按习惯,从早晨到傍晚算一天工作,上午、下午各占一半)10.整理一批数据,由一个人做需80小时完成。

一元一次方程应用题10大类型例题精讲+学后练习

一元一次方程应用题10大类型例题精讲+学后练习

一元一次方程应用题10大类型例题精讲+学后练习1.配套问题【例题】某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.生产螺钉和螺母的工人各为多少人时,才能使生产的铁片恰好配套?【解析】设安排x名工人生产螺钉,则(26﹣x)人生产螺母,由一个螺钉配两个螺母可知,螺母的个数是螺钉个数的2倍。

从而得出等量关系列出方程。

【解答】解:设安排x名工人生产螺钉,则(26﹣x)人生产螺母由题意得1000(26﹣x)=2×800x解得x=10,则26﹣x=16答:生产螺钉的工人为10人,生产螺母的工人为16人。

【学后练习】油桶制造厂的某车间主要负责生产制造油桶用的圆形铁片和长方形铁片,该车间有工人42人,每个工人平均每小时可以生产圆形铁片120片或者长方形铁片80片,一个油桶由两个圆形铁片和一个长方形铁片相配套。

生产圆形铁片和长方形铁片的工人各为多少人时,才能使生产的铁片恰好配套?2. 增长率问题【例题】甲、乙班组工人,按计划本月应共生产680个零件,实际甲组超额20%,乙组超额15%完成了本月任务,因此比原计划多生产118个零件。

问本月原计划每组各生产多少个零件?【解析】设本月原计划甲组生产x个零件,那么乙组生产(680-x)个零件;实际甲组超额20%,实际甲组生产了(1+20%)x;乙组超额15%,实际生产了(1+15%)(680-x);本月共生产680个零件,实际比原计划多生产118个零件,也就是实际生产了798个零件。

从而得出等量关系列出方程。

【解答】解:设本月原计划甲组生产x个零件,则乙组生产(680-x)个零件由题意可得:(1+20%)x+(1+15%)(680-x)=798解得x=320则680-x=360答:本月原计划甲组生产320个零件,则乙组生产360个零件。

【学后练习】已知甲、乙两种商品的原单价和为100元,因市场变化,甲商品降价10%,乙商品提价5%,调价后,甲、乙两种商品的单价和比原单价和提高了2%,求甲、乙两种商品的原单价各是多少元?3. 数字问题【例题】一个两位数,十位数与个位上的数之和为11,如果把十位上的数与个位上的数对调得到比原来的数大63,原来的两位数是多少?【解析】数字问题,千位数字×1000、百位数字×100、十位数字×10、个位数字×1相加后才是所求之数,以此类推,切忌位数数字直接相加。

新人教版七年级上册数学课件 第五章 一元一次方程 5.3 实际问题与一元一次方程(第2课时)工程问题

新人教版七年级上册数学课件 第五章 一元一次方程 5.3 实际问题与一元一次方程(第2课时)工程问题

1.加工某种工件,甲单独作要20天完成,乙只要10就能 完成任务,现在要求二人在12天内完成任务.问乙需工 作几天后甲再继续加工才可正好按期完成任务?
1
12-x
20
1
x
10
1 (12 x) 20
1x 10
解:设乙需工作x天后甲再继续加工才可正好按期
完成任务,则甲做了(12-x)天.
依题意,得
1 (12 x) 1 x 1.
3.用一元一次方程解决实际问题的基本过程如下:
实际问题
设未知数,列方程 一元一次方程
解 方 程
实际问题的答案
检验
一元一次方程的解 (x=a)
同学们,通过这节课的学习 ,你有什么收获呢?
谢谢 大家
爱心.诚心.细心.耐心,让家长放心.孩子安心。
如果设先 安排 x人
做4 h,你
能列出方
程吗?
这两个工作量之和等于总工作量.
1
40 ×
1 40
×
×

4x
40
× = 8(x 2)
40
工作量之和等于总工作量1
解:设先安排 x 人做4 h,根据题意得等量关系: 前部分工作总量+后部分工作总量=总工作量1
可列方程
4x 8(x 2) 1. 40 40
小结
设未知数的常见方法
1.一般情况下,题中问什么就设什么,即设直接未知数;
2.特殊情况下,设直接未知数难以列出方程时,可设另一个相
关的量为未知数,即设间接未知数;
3.在某些问题中,为了便于列方程,可以设辅助未知数.
注意
1. 设未知数时,如果有单位,要加上单位. 2. 列方程时,等号两边量的单位要一致. 3. 检验有两层含义:一是检验所得结果是不是方程的解; 二是检验方程的解是否符合实际问题的意义.

一元一次方程应用题——工程问题(供参考)

一元一次方程应用题——工程问题(供参考)

一元一次方程应用题----工程问题1.一项工程,甲单独做20天完成,乙单独做10天完成,现在由乙先独做几天后,剩下的部分由甲独做,先后共话12天完成,问乙做了几天2.一项工程,甲单独做需要10天完成,1乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,需要几天完成?3.某工程由甲、乙两队完成,甲队单独完成需16天,乙队单独完成需12天。

如先由甲队做4天,然后两队合做,问再做几天后可完成工程的六分之五?4. 已知某水池有进水管与出水管一根,2进水管工作15小时可以将空水池放满,出水管工作24小时可以将满池的水放完;(1)如果单独打开进水管,每小时可以注入的水占水池的几分之几?(2)如果单独打开出水管,每小时可以放出的水占水池的几分之几?(3)如果将两管同时打开,每小时的效果如何?如何列式?3(4)对于空的水池,如果进水管先打开2小时,再同时打开两管,问注满水池还需要多少时间?5. 有一个水池,用两个水管注水。

如果单开甲管,2小时30分注满水池,如果单开乙管,5小时注满水池。

①如果甲、乙两管先同时注水20分钟,4然后由乙单独注水。

问还需要多少时间才能把水池注满?②假设在水池下面安装了排水管丙管,单开丙管3小时可以把一满池水放完。

如果三管同时开放,多少小时才能把一空池注满水?56.检修某场区的自来水管,甲独做需14天完成,乙独做18天完成,丙独做12天完成。

前7天由甲乙两人一起合作,但乙中途离开了一段时间;后一部分甲乙合作2天完成,问乙中途离开了几天?7.某项工程计划用300人在若干天内完6成,为了缩短工期,实际施工时,实行了承包责任制,工作效率提高50%因此只用了250人,还提前20天完成任务,问原计划多少天完成这项工程?78.汛期到来之前某水利部门利用挖掘机挖掘土方,甲机单独做12天挖完,乙机单独做15天可以挖完,现在两机合作若干天后,再由乙机单独挖6天完成任务,问甲机挖了几天9.一组割草人去割两块草地,大的一块8是小的一块的2倍,上午全部人都在大的一块草地割草,下午一半人留在大草地上,到傍晚时把草割完,另一半人去割小草地的草,到傍晚还剩一块,这一块由一个割草人在用一天时间刚好割完,问,这组割草人共有多少人?(按习惯,从早晨到傍晚算一天工作,上午、下午各占一半)910.整理一批数据,由一个人做需80小时完成。

5.3 一元一次方程的应用(3)

5.3 一元一次方程的应用(3)

1、甲每天生产某种零件80个,3天能生产 3×80 个零件。 2、乙每天生产某种零件x个,5天能生产 5x 个零件。 3、甲每天生产某种零件80个,乙每天生产某种零件x个。 (5×80+5x) 个零件。 他们5天一共生产 4、甲每天生产某种零件80个,乙每天生产这种零件x个 甲生产3天后,乙也加入生产同一种零件,再经过5天, (3×80+5×80+5x) 两人共生产 个零件。 工程问题的基本数量关系:
增加人数 增加后人数 等量关系
x
23+ x
20 - x
17+20- x
甲处增加后人数=2×乙处增加后人数
解:设应调往甲处x人,根据题意,得 23+x=2(17+20-x) 解这个方程,得x=17 ∴20-x=3 答:应调往甲处17人,乙处3人。
想一想:若设调往乙处的人数为x,方程又应怎样列? 23+20 - x=2(17+x) 在解决实际问题时,我们一般可以通过分析实 际问题, 抽象出数学问题, 然后运用数学思想方法 解决问题.用列表分析数量关系是常用的方法.
一元一次方程的应用 (3)
调配问题
例2、学校组织植树活动,已知在甲处植树的有23人, 在乙处植树的有17人,现调20人去支援,使在甲处 植树的人数是乙处植树人数的2倍,应调往甲、乙两 处各多少人? 分析 : 设应调往甲处x人,题目中涉及的有关数量 及其关系能用表格去表示吗? 原有人数 甲 处 23 乙 17 处
后5天甲 后5天乙 + 生产零件 + 生产零件 的个数 的个数
=940
解:设乙每天生产零件的个数为x, 由题意得 3 80 5 80 5 x 940 解得 x 60 答:乙每天生产零件60个.

(完整word版)一元一次方程应用题——工程问题

(完整word版)一元一次方程应用题——工程问题

一元一次方程应用题----工程问题1.一项工程,甲单独做20天完成,乙单独做10天完成,现在由乙先独做几天后,剩下的部分由甲独做,先后共话12天完成,问乙做了几天2.一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,需要几天完成?3.某工程由甲、乙两队完成,甲队单独完成需16天,乙队单独完成需12天。

如先由甲队做4天,然后两队合做,问再做几天后可完成工程的六分之五?4. 已知某水池有进水管与出水管一根,进水管工作15小时可以将空水池放满,出水管工作24小时可以将满池的水放完;(1)如果单独打开进水管,每小时可以注入的水占水池的几分之几?(2)如果单独打开出水管,每小时可以放出的水占水池的几分之几?(3)如果将两管同时打开,每小时的效果如何?如何列式?(4)对于空的水池,如果进水管先打开2小时,再同时打开两管,问注满水池还需要多少时间?5. 有一个水池,用两个水管注水。

如果单开甲管,2小时30分注满水池,如果单开乙管,5小时注满水池。

①如果甲、乙两管先同时注水20分钟,然后由乙单独注水。

问还需要多少时间才能把水池注满?②假设在水池下面安装了排水管丙管,单开丙管3小时可以把一满池水放完。

如果三管同时开放,多少小时才能把一空池注满水?6.检修某场区的自来水管,甲独做需14天完成,乙独做18天完成,丙独做12天完成。

前7天由甲乙两人一起合作,但乙中途离开了一段时间;后一部分甲乙合作2天完成,问乙中途离开了几天?7.某项工程计划用300人在若干天内完成,为了缩短工期,实际施工时,实行了承包责任制,工作效率提高50%因此只用了250人,还提前20天完成任务,问原计划多少天完成这项工程?8.汛期到来之前某水利部门利用挖掘机挖掘土方,甲机单独做12天挖完,乙机单独做15天可以挖完,现在两机合作若干天后,再由乙机单独挖6天完成任务,问甲机挖了几天9.一组割草人去割两块草地,大的一块是小的一块的2倍,上午全部人都在大的一块草地割草,下午一半人留在大草地上,到傍晚时把草割完,另一半人去割小草地的草,到傍晚还剩一块,这一块由一个割草人在用一天时间刚好割完,问,这组割草人共有多少人?(按习惯,从早晨到傍晚算一天工作,上午、下午各占一半)10.整理一批数据,由一个人做需80小时完成。

一元一次方程的应用-工程问题

一元一次方程的应用-工程问题

3
检查解
4
将解带入原方程,检查等式是否成立。

问题分析
仔细分析工程问题,确保理解所有的条件和 要求。
解方程
通过逐步操作和运算,解出方程,获得未知 数的值。
总结与应用拓展
一元一次方程在工程问题中扮演着重要角色。通过理解方程的基本概念和解 法,并将其应用到工程实践中,我们可以有效地解决各种实际问题。
一元一次方程的解法
解一元一次方程的常规方法是通过移项和分解系数的步骤,以求出未知数的 值。
工程问题中的一元一次方程应用
计算工程材料
通过方程式计算所需的材料数 量,以确保工程的顺利进行。
预测成本
通过方程式预测工程项目所需 的成本,以便进行预算和资源 管理。
计算时程
通过方程式计算工程项目所需 的时间,以安排和管理时间表。
工程问题案例介绍
建筑工地
通过一元一次方程,计算建筑材料 的需求和成本,以确保项目按计划 进展。
测量工具
使用一元一次方程,根据测量结果 计算出需要的尺寸和量度。
电气布线
通过方程,计算电线的长度,以安 装并保持电气系统的正常运转。
工程问题求解步骤
1
建立方程
2
根据问题中提供的信息,建立适当的一元一
次方程。
一元一次方程的应用-工 程问题
一元一次方程在工程中起着重要作用。通过解决方程,我们可以解决真实世 界中的实际问题,并提供可行的解决方案。
什么是一元一次方程
一元一次方程是一个包含一个未知数的等式,其中所有项的指数都是1。方程 的解就是未知数的值。
一元一次方程的定义
一元一次方程的一般形式为ax + b = 0,其中a和b是已知数,x是未知数。

(RJ)人教版七年级数学上册教学课件第5章 一元一次方程3 第1课时 产品配套问题和工程问题

(RJ)人教版七年级数学上册教学课件第5章 一元一次方程3 第1课时 产品配套问题和工程问题
新知一览
从算式到方程
方程

等式的性质

用合并同类项的方法 解一元一次方程
一 解一元一次方程 次
用移项的方法解一元一次方程 利用去括号解一元一次方程

利用去分母解一元一次方程
程 实际问题与
产品配套问题和工程问题
一元一次方程
销售中 球赛积分 不同能效空调的 的盈亏 表问题 综合费用比较
第五章 一元一次方程
x=1920. 乙:2400-1920=480(米).
答:甲、乙两队分别整治河道 1 920 米、480米.
见《 》或《 》对应课时练习
实际问题
实际问题 的解答
设未知数,列方程 抽象为数学模型
回归于实际问题 检验
一元一次方程
解 合并同类项
方 程
系数化 1
一元一次方程的解 ( x=m )
设_未__知__数__,用 式子表示相关量
解方程,求出 __未__知__数__的值
根据题意写答案

弄清题意,分清 已__知__量和未__知__量


解:(1) 设用 x m3 的钢材做 A 部件, (6-x) m3 钢材做 B 部件.
所以共能做 40x 个 A 部件, 240(6-x) 个 B 部件. 故答案为:40x 、240(6-x) .
(2) 根据题意得:3×40x=240(6-x). 解得 x=4.(3)Βιβλιοθήκη 40x=40×4=160 (套).
故答案为 160 套.
2.(姜堰区校级月考)为打造绿色生态环境,一段长为 2 400 米的河道整治任务交给甲、乙两个工程队接力完 成,共耗时 80 天.已知甲队每天整治 32 米,乙队每天 整治 24 米. 求甲、乙两队分别整治河道多少米?(写出完 整的解答过程).

一元一次方程的应用-工程问题

一元一次方程的应用-工程问题

第3课时一元一次方程的应用-工程问题【知识与技能】经历探索性问题情境,积极参与教学活动,掌握列一元一次方程解决实际问题方法,培养学生的建模能力,使学生理解用一元一次方程解工程问题的本质规律.【过程与方法】通过对开放性问题的探索,培养创造性思维和探索兴趣;通过对“行程问题、工程问题”的分析进一步培养学生用代数方法解决实际问题的能力.【情感态度】使学生在自主探索与合作交流的过程中理解和掌握基本的数学知识、技能、数学思想,获得广泛的数学活动经验,提高解决问题的能力.【教学重点】探索开放性问题的解决思路与方法.【教学难点】尝试自己提出问题并解决问题.一、旧知回顾1.行程问题中路程、速度、时间三者间有什么关系?相遇问题中含有怎样的相等关系?追及问题中含有怎样的相等关系呢?2.相遇与追及问题中的等量关系?3.工作量、工作效率、工作时间之间有怎样的关系?【教学说明】通过对这两种常见的问题中公式的复习,为找等量关系打好基础.二、新知探索填空:1、甲每天生产某种零件80个,3天能生产( 3×80 )个零件.2、乙每天生产某种零件x个,5天能生产( 5x )个零件.3、甲每天生产某种零件80个,乙每天生产这种零件x个,他们5天一共生产( 5(80+x))个零件.4、甲每天生产某种零件80个,乙每天生产这种零件x个,甲生产3天后,乙加入生产同一零件,再经过5天,两人共生产( (3×80+5×80+5x))个零件.讨论:试类比行程问题中几个量的关系,归纳总结工程问题中几个量的关系,试试看.【教学说明】让学生亲身体验设不同的工作方式,可列出不同的方程,难易度也不一样.从而得出为了解题方便应选择设适当的未知数的结论.【归纳结论】工程问题的基本数量关系是:工作量=工作时间×工作效率;工作总量=各部分工作量之和.三、例题讲解例1:甲每天生产某种零件80个,甲生产3天后,乙也加入生产同一种零件,再经过5天,两人共生产这种零件940个,问乙每天生产这种零件多少个?分析:根据“工作效率=工作总量/工作时间”可以知道,总工作量为940个,甲的工作效率是80,整项工程分了两个部分:第一部分是甲先做的3天,第二部分是甲乙两人合作5天完成的,而乙的工作效率我们不知道,所以应设乙的工作效率为x,根据工作总量可列出方程.解:设乙每天生产这种零件x个,由题意得:3×80+5(80+x)解得:x=60经检验,符合题意.答:乙每天生产这种零件60个.【教学说明】给学生充足的时间,利用已学知识解决问题,敢于尝试.【归纳结论】工程问题中的工作方式,分为独做、合做、独做+合做. 合做的等量关系:甲做+乙做=总工作量或是工作效率之和×工作时间=总工作量;独做+合做的等量关系:独做+合做=总工作量,再利用工程问题的三个量的关系.例2:某装潢公司接到一项业务,如果由甲组做需10天完成,由乙组做需15天完成,为了早日完工,现由甲、乙两组一起做,4天后甲组因另有任务,余下部分由乙组单独做,问需几天才能完成?分析:这道题没有给出具体的工作总量,我们可以把工作总量看做单位“1”,根据“工作效率=工作总量/工作时间”可以知道,总工作量为1,甲组的工作效率是1/10,乙组的工作效率是1/15,整项工程分了两个部分:第一部分是甲、乙组合作15天,第二部分是乙组独做完成的,而乙组独做的时间我们不知道,所以应设乙组独做x天,根据工作总量可列出方程.解:设还需x天才能完成,由题意得:4×(1/10+1/15)+1/15x 解得:x=5经检验,符合题意.答:还需5天才能完成.【教学说明】对比上一个例题,想一想没有给出具体工作总量该如何求解.【归纳结论】工程问题中的工作总量,分为两种. 一是具体的量,二是看作单位”1”,再利用工程问题的三个量的关系.三、巩固练习1.师徒两人检修一条长180米的自来水管道,师傅每小时检修15米,徒弟每小时检修10米,现两人合作,多少时间可以完成整条管道的检修?解:设x小时可以完成整条管道的检修,由题意得:(15+10)x =1800 解得:x =72经检验,符合题意.答:72小时可以完成整条管道的检修.2.师徒两人检修一条煤气管道,师傅单独完成要10小时,徒弟单独完成要15小时,现两人合作,需多少小时完成?解:设需x小时完成,由题意得:(1/10 x +1/15 x)=1 解得:x =6经检验,符合题意.答:需6小时完成.四、强化训练检修某厂区的自来水管,甲独做需14天完成,乙独做需18完成,丙独做需12天,前7天由甲、乙两人一起合作,但乙中途离开了一段时间,后部分由乙、丙合作2天完成,问乙中途离开了几天?解:设乙中途离开了x天,由题意得:(7-x)×(1/14 +1/18 )+1/14 x +2×(1/18 + 1/12)=1 解得:x =3经检验,符合题意.答:乙中途离开了3天.【教学说明】这道强化训练题相比前面的题,难度加大,既多加入一个人且出现了中途离开的情况,进一步活跃学生的思维广度,培养学生思维的灵活性.五、课堂小结【师生互动】本节课你学习了哪些知识,掌握了哪些方法?1.布置作业:教材第21页第7、9 题.2.完成《状元导练》相关练习.本节课重点知识版书太繁琐,甲做的工作总量直接写成甲做.简单的、学生会做的题目对答案即可,难度较大的需先分析再让学生自己做,给学生充足的时间,发挥他们的想象力,锻炼他们的创新能力和思维能力.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工作总量=工作时间×工作效率
例1: 甲每天生产某种零件80个, 甲生产3天后,乙也加入生产同一 种零件,再经过5天,两人共生产 这种零件940个。问乙每天生产这 种零件多少个?
练习:一收割机队每天收割小麦12 公顷,收割完一片麦地的 后,该天完成.
1、一批零件,甲每小时能加工80个,则 ⑴甲3小时可加工____个零件;x小时可加工____个; 240 80x
a ⑵加工a个零件,甲需______小时完成。 80
2、一项工程甲独做需6天完成,则
1 ⑴甲独做一天可完成这项工程的_______; 6
⑵若乙独做比甲快2天完成,则乙独做一天可完成这
1 项工程的_________。 4
练习3:一条路按计划18天可以
1 修完它的 ,如果工作4天后, 3 1 工作效率提高 ,那么一共几 5 天可以修完它的一半?
例3:挖一条长为1210米长的水渠,由 甲施工队独做需要11天完成,乙施工队 独做需要20天完成,现在甲、乙两施工 队从两头同时施工,挖完这条水渠估计 需几天? 例4:甲乙两输油管向油轮注油,甲管 单独注需要11小时,乙管单独注需要 20小时,问两管同时注油多少小时可 注满油轮。
例5:已知开管注水缸,10分钟 可满,拨开底塞,满缸水20分 钟流完,缸内的水流完后,现 若管、塞同开,若干时间后, 将底塞塞住,又过了2倍的时间 才注满水缸,求管塞同开的时 间是几分钟?
练习1:一个水槽有甲乙两个水管。 甲水管是进水管,在5小时可以把水 槽装满。乙水管是出水管,满槽的 水在6小时可以流完。现水槽内没有 水。如果先开甲水管1小时,再把乙 水管也打开,再经过几小时水槽里 5 的水恰好等于水槽容量的 ? 18
问这片麦地有多少公顷?
例2:一件工作,甲单独做20个 小时完成,乙单独做12小时完 成,现在先由甲单独做4小时, 剩下的部分由甲、乙合做。剩 下的部分需要几小时完成?
练习1:某工作由甲、乙两队单独 做分别需要3小时、5小时,求两人 合做这项工作的80%需要几小时?
练习2:某装潢公司接到一项 业务,如果由甲组做需10天完 成,由乙组做需15天完成。为 了早日完工,现由甲、乙两组 一起做,4天后甲组因另有任 务,余下部分由乙组单独做, 问还需几天才能完成?
练习2:一个水池装甲、乙、丙 三根水管,单开甲管10小时可注 满水池,单开乙管15小时可注满, 单开丙管20小时可注满。现在三 管齐开,中途甲管关闭,结果6 小时把水池注满,问甲管实际开 了几个小时?
工作总量=工作时间×工作效率 部分工作量+部分工作量=总量
工作效率
工作时间
工作总量
相关文档
最新文档