八年级数学上册全册教案最新版人教版

合集下载

八级上册数学教案人教版(全册)

八级上册数学教案人教版(全册)

八级上册数学教案人教版(第一部分)一、教学目标1. 知识与技能:使学生掌握本册数学的基本概念、性质、定理和公式,提高学生的数学思维能力和解决问题的能力。

2. 过程与方法:通过自主学习、合作探讨、实践操作等方式,培养学生的数学学习兴趣,提高学生的数学素养。

3. 情感态度与价值观:让学生体验到数学在实际生活中的运用,认识到数学的重要性,培养学生的责任感和使命感。

二、教学内容1. 第一章:实数与函数(1) 实数的概念、性质和运算;(2) 函数的定义、性质和图像;(3) 一次函数、二次函数、反比例函数的解析式、图像和性质。

2. 第二章:几何基础(1) 点、线、面的基本概念和性质;(2) 直线方程、圆方程;(3) 三角形、四边形的性质和判定;(4) 坐标系的应用。

三、教学重点与难点1. 教学重点:实数的运算、函数的性质、几何图形的判定与性质。

2. 教学难点:函数的图像、几何图形的复杂计算和证明。

四、教学方法1. 采用问题驱动法,引导学生主动探究数学问题;2. 运用案例分析法,让学生通过实际例子理解数学概念;3. 利用数形结合法,培养学生直观的数学思维;4. 实施分组合作学习,培养学生的团队协作能力。

五、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。

2. 作业完成情况:检查学生作业的准确性、书写规范性,评估学生的学习效果。

3. 考试成绩:定期进行数学考试,对学生的知识掌握程度进行评估。

4. 学生自评:鼓励学生自我评价,反思自己的学习过程,提出改进措施。

八级上册数学教案人教版(第二部分)六、教学安排1. 课时分配:本部分共安排课时,具体分配如下:第一章:实数与函数:课时第二章:几何基础:课时第十五章:课时2. 教学计划:根据课时分配,合理安排每个章节的教学内容,确保教学目标的达成。

七、教学资源1. 教材:使用人教版八级上册数学教材。

2. 教辅资料:提供相应的教辅资料,辅助教学。

部编人教版八年级数学上册优秀教案(全册)

部编人教版八年级数学上册优秀教案(全册)

部编人教版八年级数学上册优秀教案(全册)部编人教版八年级数学上册优秀教案(全册完整版)概述本文档是一份部编人教版八年级数学上册的优秀教案集合。

该教案全册完整,内容包括了八年级数学上册的所有章节和知识点。

教案列表以下是本文档包含的教案列表:1. 第一章:有理数的乘法与除法- 教案1:乘法和除法的基本概念- 教案2:乘方和除法的基本性质- 教案3:有理数的乘除法混合运算2. 第二章:代数式的等值变形- 教案1:代数式的基本概念和性质- 教案2:等式与等值变形的基本规律- 教案3:解一元一次方程式3. 第三章:图形的相似与尺度- 教案1:相似图形的基本概念和性质- 教案2:相似图形的判定和构造- 教案3:相似图形的尺度及应用4. 第四章:初识函数- 教案1:函数的概念和性质- 教案2:函数的表示和读图- 教案3:函数图象的平移和伸缩5. 第五章:一次函数与方程- 教案1:一次函数的概念和性质- 教案2:一次函数的图象和性质- 教案3:一次方程的解与应用6. 第六章:图形的平移和旋转- 教案1:平移的概念和性质- 教案2:平移的表示和图像- 教案3:旋转的概念和性质7. 第七章:数据的搜集、整理与表示- 教案1:数据的搜集和整理- 教案2:数据的图表表示- 教案3:数据的分析和应用8. 第八章:统计与概率- 教案1:统计调查和数据分布- 教案2:概率与事件- 教案3:概率的计算和应用使用说明本文档可以作为教师备课参考,提供了八年级数学上册的优秀教案,可以帮助教师更好地授课和引导学生研究。

每个教案都包括了基本概念、性质、规律和应用等内容,帮助学生深入理解数学知识。

注意事项请在使用教案时,根据具体教学需求进行调整和适应,并注意教学过程中的差异化教学和个性化指导。

最新人教版八年级数学上册教案(全册 共168页)

最新人教版八年级数学上册教案(全册 共168页)

最新人教版八年级数学上册教案(全册共168页)第十一章三角形一、课标要求(1)理解三角形及三角形有关的线段(边、高、中线、角平分线)的概念,证明三角形两边的和大于第三边,了解三角形的重心的概念,了解三角形的稳定性。

(2)理解三角形的内角、外角的概念,探索并证明三角形内角和定理,探索并掌握直角三角形的两个锐角互余,掌握有两个角互余的三角形是直角三角形,掌握三角形的一个外角等于与它不相邻的两个内角的和。

(3)了解多边形的有关概念(边、内角、外角、对角线、正多边形),探索并掌握多边形的内角和与外角和公式。

二、教材分析第1节研究与三角形有关的线段。

首先结合引言中的实际例子给出三角形的概念,进而研究三角形的分类。

对于三角形的边,证明了三角形两边的和大于第三边。

然后给出三角形的高、中线与角平分线的概念。

结合三角形的中线介绍三角形的重心的概念。

最后结合实际例子介绍三角形的稳定性。

第2节研究与三角形有关的角,对于三角形的内角,证明了三角形内角和定理。

然后由这个定理推出直角三角形的性质:直角三角形的两个锐角互余。

最后给出三角形的外角的概念,并由三角形内角和定理推出:三角形的外角等于与它不相邻的两个内角的和。

第3节介绍多边形的有关概念与多边形的内角和、外角和公式。

三角形是多边形的一种,因而可以借助三角形给出多边形的有关概念,如多边形的边、内角、外角、内角和都可由三角形的有关概念推广而来。

三角形是最简单的多边形,因而常常将多边形分为若干个三角形,利用三角形的性质研究多边形。

多边形的内角和公式就是利用上述方法得到的。

将多边形的有关内容与三角形的有关内容紧接安排,可以加强它们之间的联系,便于学生学习。

三、教学建议1.把握好教学要求与三角形有关的一些概念在本章中只要求达到理解的程度就可以了,进一步的要求可通过后续学习达到。

如对于三角形的角平分线,在本章中只要知道它的定义,能够从定义得出角相等就可以了,学生在画角平分线时发现三条角平分线交于一点,可直接肯定这个结论,在下一章“全等三角形”中再证明这个结论,同样,三角形的三条中线交于一点的结论也可直接点明。

新人教版八年级数学上册名师教案(6篇)_1

新人教版八年级数学上册名师教案(6篇)_1

新人教版八年级数学上册名师教案(6篇)新人教版八班级数学上册名师教案(篇1)教学目标:1、经受数据离散程度的探究过程2、了解刻画数据离散程度的三个量度极差、标准差和方差,能借助计算器求出相应的数值。

教学重点:会计算某些数据的极差、标准差和方差。

教学难点:理解数据离散程度与三个差之间的关系。

教学预备:计算器,投影片等教学过程:一、创设情境1、投影课本P138引例。

(通过对问题串的解决,使同学直观地估量从甲、乙两厂抽取的20只鸡腿的平均质量,同时让同学初步体会平均水平相近时,两者的离散程度未必相同,从而顺理成章地引入刻画数据离散程度的一个量度极差)2、极差:是指一组数据中最大数据与最小数据的差,极差是用来刻画数据离散程度的一个统计量。

二、活动与探究假如丙厂也参与了竞争,从该厂抽样调查了20只鸡腿,数据如图(投影课本159页图)问题:1、丙厂这20只鸡腿质量的平均数和极差是多少?2、如何刻画丙厂这20只鸡腿质量与其平均数的差距?分别求出甲、丙两厂的20只鸡腿质量与对应平均数的差距。

3、在甲、丙两厂中,你认为哪个厂鸡腿质量更符合要求?为什么?(在上面的情境中,同学很简单比较甲、乙两厂被抽取鸡腿质量的极差,即可得出结论。

这里增加一个丙厂,其平均质量和极差与甲厂相同,此时导致同学思想熟悉上的冲突,为引出另两个刻画数据离散程度的量度标准差和方差作铺垫。

三、讲解概念:方差:各个数据与平均数之差的平方的平均数,记作s2 设有一组数据:x1, x2, x3,,xn,其平均数为则s2= ,而s= 称为该数据的标准差(既方差的算术平方根)从上面计算公式可以看出:一组数据的极差,方差或标准差越小,这组数据就越稳定。

四、做一做你能用计算器计算上述甲、丙两厂分别抽取的20只鸡腿质量的方差和标准差吗?你认为选哪个厂的鸡腿规格更好一些?说说你是怎样算的?(通过对此问题的解决,使同学回顾了用计算器求平均数的步骤,并自由探究求方差的具体步骤)五、巩固练习:课本第172页随堂练习六、课堂小结:1、怎样刻画一组数据的离散程度?2、怎样求方差和标准差?七、布置作业:习题5.5第1、2题。

人教版八年级上册数学教案(5篇)

人教版八年级上册数学教案(5篇)

人教版八年级上册数学教案(5篇)人教版八年级上册数学教案(5篇)人教版八年级上册数学教案1 一、内容和内容解析1.内容三角形高线、中线及角平分线的概念、几何语言表达及它们的画法.2.内容解析本节内容概念较多,有三角形的高、中线、角平分线和重心等有关概念;需要学生动手的频率也较高,要掌握任意三角形的高、中线、角平分线的画法,培养学生动手操作及解决问题的才能;鼓励学生主动参与,体验几何知识在现实生活中的真实性,激发学生热爱生活、勇于探究的思想感情。

理解三角形高、角平分线及中线概念到用几何语言准确表述,这是学生在几何学习上的一个深化.学习了这一课,对于学生增长几何知识,运用几何知识解决生活中的有关问题,起着非常重要的作用.它也是学习三角形的角、边的延续以及三角形全等、相似等后继知识一个准备.本节的重点是理解三角形的高、中线及角平分线概念的同时还要掌握它们的画法,难点是钝角三角形的高的画法及不同类型的三角形高线的位置关系.二、目的和目的解析1.教学目的(1)理解三角形的高、中线与角平分线等概念;(2)会用工具画三角形的高、中线与角平分线;2.教学目的解析(1)经历画图理论过程,理解三角形的高、中线与角平分线等概念.(2)可以纯熟用几何语言表达三角形的高、中线与角平分线的性质.(3)掌握三角形的高、中线与角平分线的画法.(4)理解三角形的三条高、三条中线与三条角平分线分别相交于一点.三、教学问题诊断分析^p三角形的高线的理解:三角形的高是线段,不是直线,它的一个端点是三角形的顶点,另一个端点在这个顶点的对边或对边所在的直线上.三角形的中线的理解:三角形的中线也是线段,它是一个顶点和对边中点的连线,它的一个端点是三角形的顶点,另一个端点是这个顶点的对边中点.三角形的角平分线的理解:三角形的角平分线也是一条线段,角的顶点是一个端点,另一个端点在对边上.而角的平分线是一条射线,即就是说三角形的角平分线与通常的角平线有一定的联络又有本质的区别.人教版八年级上册数学教案2 一、教学目的1、认识中位数和众数,并会求出一组数据中的众数和中位数。

人教版八年级数学上册教案册5篇

人教版八年级数学上册教案册5篇

人教版八年级数学上册教案全册5篇一、教材分析1、特点与地位:重点中的重点。

本课是教材求两结点之间的最短路径问题是图最常见的应用的之一,在交通运输、通讯网络等方面具有肯定的有用意义。

2、重点与难点:结合学生现有抽象思维力量水平,已把握根本概念等学情,以及求解最短路径问题的自身特点,确立本课的重点和难点如下: (1)重点:如何将现实问题抽象成求解最短路径问题,以及该问题的解决方案。

(2)难点:求解最短路径算法的程序实现。

3、教学安排:最短路径问题包含两种状况:一种是求从某个源点到其他各结点的最短路径,另一种是求每一对结点之间的最短路径。

依据教学大纲安排,重点讲解第一种状况问题的解决。

安排一个课时讲授。

教材直接分析算法,考虑实际应用需要,补充旅游景点线路选择的实例,实例中问题解决与算法分析相结合,逐步推动教学过程。

二、教学目标分析1、学问目标:把握最短路径概念、能够求解最短路径。

2、力量目标:(1)通过将旅游景点线路选择问题抽象成求最短路径问题,培育学生的数据抽象力量。

(2)通过旅游景点线路选择问题的解决,培育学生的独立思索、分析问题、解决问题的力量。

3、素养目标:培育学生讲究工作方法、与他人合作,提高效率。

三、教法分析课前充分预备,研读教材,查阅相关资料,制作多媒体课件。

教学过程中除了使用传统的“讲授法”以外,主要采纳“案例教学法”,同时辅以多媒体课件,以启发的方式绽开教学。

由于本节课的内容属于图这一章的难点,考虑学生的承受力量,留意与学生沟通,依据学生的反响掌握好教学进度是本节课胜利的关键。

四、学法指导1、课前上次课结课时给学生布置任务,使其有针对性的预习。

2、课中指导学生争论任务解决方法,引导学生分析本节课学问点。

3、课后给学生布置同类型任务,加强练习。

五、教学过程分析(一)课前复习(3~5分钟)回忆“路径”的概念,为引出“最短路径”做铺垫。

教学方法及留意事项:(1)采纳提问方式,留意准时小结,提问的目的是帮忙学生回忆概念。

八年级上册数学全册教案

八年级上册数学全册教案

八年级上册数学全册教案第一章:实数与代数1.1 有理数教学目标:理解有理数的定义及其分类。

掌握有理数的加、减、乘、除运算规则。

教学内容:有理数的定义及分类。

有理数的加法、减法、乘法、除法运算规则。

教学步骤:1. 引入有理数的概念,解释有理数的定义及分类。

2. 通过示例演示有理数的加法、减法、乘法、除法运算规则。

3. 让学生进行练习,巩固所学的运算规则。

1.2 代数式教学目标:理解代数式的概念及其组成。

掌握代数式的运算规则。

教学内容:代数式的概念及其组成。

代数式的运算规则。

教学步骤:1. 引入代数式的概念,解释代数式的组成。

2. 通过示例演示代数式的运算规则。

3. 让学生进行练习,巩固所学的运算规则。

第二章:几何基础2.1 点、线、面教学目标:理解点、线、面的概念及其关系。

教学内容:点、线、面的概念及其关系。

教学步骤:1. 引入点、线、面的概念,解释它们之间的关系。

2. 通过示例展示点、线、面的特征和性质。

3. 让学生进行练习,巩固所学的概念。

2.2 直线与角教学目标:理解直线和角的概念及其性质。

教学内容:直线和角的概念及其性质。

教学步骤:1. 引入直线和角的概念,解释它们的性质。

2. 通过示例展示直线的特征和角的性质。

3. 让学生进行练习,巩固所学的概念。

第三章:方程与不等式3.1 方程的概念与解法教学目标:理解方程的概念及其解法。

教学内容:方程的概念及其解法。

教学步骤:1. 引入方程的概念,解释方程的解法。

2. 通过示例演示方程的解法。

3. 让学生进行练习,巩固所学的解法。

3.2 不等式的概念与解法教学目标:理解不等式的概念及其解法。

教学内容:不等式的概念及其解法。

教学步骤:1. 引入不等式的概念,解释不等式的解法。

2. 通过示例演示不等式的解法。

3. 让学生进行练习,巩固所学的解法。

第四章:函数与图像4.1 函数的概念与性质教学目标:理解函数的概念及其性质。

教学内容:函数的概念及其性质。

教学步骤:1. 引入函数的概念,解释函数的性质。

人教版初二数学上册教案(通用10篇)

人教版初二数学上册教案(通用10篇)

初二数学上册教案人教版初二数学上册教案(通用10篇)作为一名优秀的教育工作者,总不可避免地需要编写教案,教案有利于教学水平的提高,有助于教研活动的开展。

那要怎么写好教案呢?以下是小编整理的人教版初二数学上册教案,欢迎阅读,希望大家能够喜欢。

初二数学上册教案篇1教学目标:1. 掌握三角形内角和定理及其推论;2. 弄清三角形按角的分类, 会按角的大小对三角形进行分类;3.通过对三角形分类的学习,使学生了解数学分类的基本思想,并会用方程思想去解决一些图形中求角的问题。

4.通过三角形内角和定理的证明,提高学生的逻辑思维能力,同时培养学生严谨的科学态5. 通过对定理及推论的分析与讨论,发展学生的求同和求异的思维能力,培养学生联系与转化的辩证思想。

教学重点:三角形内角和定理及其推论。

教学难点:三角形内角和定理的证明教学用具:直尺、微机教学方法:互动式,谈话法教学过程:1、创设情境,自然引入把问题作为教学的出发点,创设问题情境,激发学生学习兴趣和求知欲,为发现新知识创造一个最佳的心理和认知环境。

问题1 三角形三条边的关系我们已经明确了,而且利用上述关系解决了一些几何问题,那么三角形的三个内角有何关系呢?问题2 你能用几何推理来论证得到的关系吗?对于问题1绝大多数学生都能回答出来(小学学过的),问题2学生会感到困难,因为这个证明需添加辅助线,这是同学们第一次接触的新知识―――“辅助线”。

教师可以趁机告诉学生这节课将要学习的一个重要内容(板书课题)新课引入的好坏在某种程度上关系到课堂教学的成败,本节课从旧知识切入,特别是从知识体系考虑引入,“学习了三角形边的关系,自然想到三角形角的关系怎样呢?”使学生感觉本节课学习的内容自然合理。

2、设问质疑,探究尝试(1)求证:三角形三个内角的和等于让学生剪一个三角形,并把它的三个内角分别剪下来,再拼成一个平面图形。

这里教师设计了电脑动画显示具体情景。

然后,围绕问题设计以下几个问题让学生思考,教师进行学法指导。

八年级上册数学教案人教版【优秀8篇】

八年级上册数学教案人教版【优秀8篇】

八年级上册数学教案人教版【优秀8篇】篇一:人教版八年级上册数学教案篇一一、教学目标:1、加深对加权平均数的理解2、会根据频数分布表求加权平均数,从而解决一些实际问题3、会用计算器求加权平均数的值二、重点、难点和难点的突破方法:1、重点:根据频数分布表求加权平均数2、难点:根据频数分布表求加权平均数3、难点的突破方法:首先应先复习组中值的定义,在七年级下教材P72中已经介绍过组中值定义。

因为在根据频数分布表求加权平均数近似值过程中要用到组中值去代替一组数据中的每个数据的值,所以有必要在这里复习组中值定义。

应给学生介绍为什么可以利用组中值代替一组数据中的每个数据的值,以及这样代替的好处、不妨举一个例子,在一组中如果数据分布较为均匀时,比如教材P140探究问题的表格中的第三组数据,它的范围是41≤X≤61,共有20个数据,若分布较为平均,41、42、43、44…60个出现1次,那么这组数据的和为41+42+…+60=1010。

而用组中值51去乘以频数20恰好为1020≈1010,即当数据分布较为平均时组中值恰好近似等于它的平均数。

所以利用组中值X频数去代替这组数据的和还是比较合理的,而且这样做的好处是简化了计算量。

为了更好的理解这种近似计算的方法和合理性,可以让学生去读统计表,体会表格的实际意义。

三、例习题的意图分析1、教材P140探究栏目的意图。

(1)、主要是想引出根据频数分布表求加权平均数近似值的计算方法。

(2)、加深了对“权”意义的理解:当利用组中值近似取代替一组数据中的平均值时,频数恰好反映这组数据的轻重程度,即权。

这个探究栏目也可以帮助学生去回忆、复习七年级下的关于频数分布表的一些内容,比如组、组中值及频数在表中的具体意义。

2、教材P140的思考的意图。

(1)、使学生通过思考这两个问题过程中体会利用统计知识可以解决生活中的许多实际问题(2)、帮助学生理解表中所表达出来的信息,培养学生分析数据的能力。

八年级数学(上)全册教案(新人教版)

八年级数学(上)全册教案(新人教版)

八年级数学(上)全册教案(新人教版)第一章:勾股定理1.1 勾股定理的发现导入:通过直角三角形的实际测量,让学生感受勾股定理的背景。

探究:引导学生通过实际操作,发现勾股定理,并能够用字母表示。

练习:让学生通过解决实际问题,巩固勾股定理的应用。

1.2 勾股定理的证明导入:通过回顾三角形知识,引导学生思考勾股定理的证明方法。

探究:让学生通过割补、折叠等方法,尝试证明勾股定理。

练习:让学生通过解决实际问题,加深对勾股定理证明的理解。

第二章:实数与方程2.1 实数的分类导入:通过生活中的实例,引导学生理解实数的概念。

探究:让学生通过分类讨论,理解实数的分类,包括有理数和无理数。

练习:让学生通过解决实际问题,加深对实数分类的理解。

2.2 一元一次方程导入:通过实例引入方程的概念,引导学生理解一元一次方程的特点。

探究:让学生通过解方程的方法,掌握一元一次方程的解法。

练习:让学生通过解决实际问题,巩固一元一次方程的应用。

第三章:不等式与不等式组3.1 不等式的概念导入:通过比较大小引入不等式的概念,引导学生理解不等式的表示方法。

探究:让学生通过实际操作,理解不等式的性质。

练习:让学生通过解决实际问题,加深对不等式概念的理解。

3.2 不等式的解法导入:通过实例引入不等式的解法,引导学生掌握解不等式的方法。

探究:让学生通过实际操作,掌握不等式的解法。

练习:让学生通过解决实际问题,巩固不等式的解法。

第四章:函数及其图象4.1 函数的概念导入:通过实例引入函数的概念,引导学生理解函数的表示方法。

探究:让学生通过实际操作,理解函数的性质。

练习:让学生通过解决实际问题,加深对函数概念的理解。

4.2 一次函数的图象导入:通过实例引入一次函数的图象,引导学生理解一次函数图象的特点。

探究:让学生通过实际操作,绘制一次函数的图象。

练习:让学生通过解决实际问题,巩固一次函数图象的应用。

第五章:平面图形的认识5.1 线段的性质导入:通过实例引入线段的概念,引导学生理解线段的性质。

人教版八上数学教案优秀8篇

人教版八上数学教案优秀8篇

人教版八上数学教案优秀8篇出色的教案使教师可以提升教学效率和课堂效果,提前编写教案能够帮助教师更好地规划课堂活动,提升学生的积极性,以下是本店铺精心为您推荐的人教版八上数学教案优秀8篇,供大家参考。

人教版八上数学教案篇1教学要求:1.使学生能有效地使用自己的眼、耳、鼻、舌、身,获得准确的感性材料。

2.培养学生对看到的、听到的事物进行了深入理解和准确把握。

3.观察力的训练是伴随着理解思维而进行的,同时也检查你的记忆力。

教学重点:培养学生的对看到的、听到的事物进行了深入理解和准确把握。

教学难点:开拓学生是思维能力。

教学过程:一、导入新课:要使自己更聪明,就要经常训练自己的头脑,在多观察、多思考问题中使思路灵活,就能找到解决问题的方法。

所以观察力的训练是伴随着理解思维而进行的,同时也检查你的记忆力,即你是否见多识广,你是否一看就清楚,或者一听就明白。

愿这一节课能使你的头脑更灵活。

二、知识新授与应用1.课件出示:一组有趣的图片图1、柱子是圆的还是方的?仔细看一看。

让学生先同桌互相说一说,看到了什么?图2、看着黑点身体前后移动。

让学生跟着要求做,然后说一说看到的。

图3、有多少个黑点?图4、是静的还是动的?图5:弗雷泽螺旋是最有影响的幻觉图形。

你所看到的好像是个螺旋,但其实它是一系列完好的同心圆!这幅图形如此巧妙,以至于会促使你的手指沿着错误的方向追寻它的轨迹教师介绍学生认识。

2、练习。

三、回顾小结:学生谈收获。

人教版八上数学教案篇2圆的初步认识教学内容:小学数学新教材四年级第一学期(试用本)p74~76、教学目标:⒈从生活中感知圆,并抽象出圆。

⒉通过不同办法画圆,建立圆的初步概念并认识圆心、半径。

⒊认识圆规并会用圆规按要求画圆。

⒋通过认识圆、画圆和欣赏圆,感受圆的美。

教学重点:通过各种学习活动,认识圆并建立圆的初步概念,认识圆心、半径。

教学难点:用圆规画圆。

教学过程:一、情景导入1、(出示ppt)提问:在这些物体中,你都发现了哪个图形?2、揭题:生活中我们到处都可以见到圆形。

人教版初二数学上册教案

人教版初二数学上册教案

人教版初二数学上册教案人教版初二数学上册教案【5篇】计算数学是数学的一个分支,研究数值计算方法和算法的理论和应用,用于解决复杂计算问题。

这里给大家分享一些关于人教版初二数学上册教案,供大家参考学习。

人教版初二数学上册教案篇1教学目标:1、认识对称现象,初步理解对称轴和轴对称图形的含义,掌握判断一个图形是否是轴对称图形的方法。

2、经历观察、操作、想象、交流等活动,感知现实世界中普遍存在的对称现象,发展空间观念。

3、体验到生活中处处有数学,获得成功的喜悦,培养学生的探究精神和美感。

教学重点:认识对称现象和轴对称图形的特点。

教学难点:掌握识别轴对称图形的方法。

教具准备:多媒体课件、实物图片等。

教学过程:一、谈话引入,激发兴趣1、说说在游乐场喜欢玩的项目,出示主题图,引导学生观察。

2、从蝴蝶形状的风筝引出对称二、合作探究,学习新知1、观察图形,认识对称(1)观察几幅对称图形,引导学生感悟对称。

(2)说一说生活中的对称现象2、动手操作,认识轴对称图形(1)猜一猜:出示几幅轴对称图形,猜一猜它们是怎么来的。

(2)动手操作,剪出轴对称图形师示范剪一件上衣的过程:折一折、画一画、剪一剪。

生动手剪出自己喜欢的轴对称图形。

交流展示学生的作品(3)认识对称轴看一看,摸一摸,说一说画一画:师示范画出对称轴,然后学生自己画,再交流。

3、初步理解轴对称图形(1)说一说轴对称图形的特点,初步理解轴对称图形。

(2)议一议:讨论判断轴对称图形的方法(对折后完全重合才是轴对称图形)。

(3)举一举身边的轴对称图形的例子。

三、巩固练习,拓展延伸1、判一判:哪些是轴对称图形。

2、猜一猜:出示轴对称图形的一半,猜出它是什么图形。

3、折一折、画一画、数一数:长方形、正方形、圆形各有几条对称轴。

四、课堂总结通过这节课的学习,你有什么收获?五、欣赏轴对称图形的美丽人教版初二数学上册教案篇2教学目标:1、通过观察、操作活动,让学生初步认识轴对称图形的基本特征。

八年级数学(上)全册教案(新人教版)

八年级数学(上)全册教案(新人教版)

八年级数学(上)全册教案(新人教版)教案内容:一、第一章:勾股定理1. 教学目标:理解勾股定理的定义和证明;能够运用勾股定理解决实际问题。

2. 教学重点:勾股定理的表述和证明;勾股定理的应用。

3. 教学难点:勾股定理的证明;解决实际问题时的计算和应用。

4. 教学准备:教学课件;练习题。

5. 教学过程:导入:介绍勾股定理的背景和意义;讲解:讲解勾股定理的表述和证明;练习:学生练习解决实际问题;总结:回顾本节课的重点和难点。

二、第二章:平行四边形1. 教学目标:理解平行四边形的定义和性质;能够识别和判断平行四边形。

2. 教学重点:平行四边形的定义和性质;平行四边形的判定。

3. 教学难点:平行四边形的性质证明;平行四边形的判定方法。

4. 教学准备:教学课件;练习题。

5. 教学过程:导入:介绍平行四边形的背景和意义;讲解:讲解平行四边形的定义和性质;练习:学生练习识别和判断平行四边形;总结:回顾本节课的重点和难点。

三、第三章:三角形1. 教学目标:理解三角形的定义和性质;能够识别和判断三角形。

2. 教学重点:三角形的定义和性质;三角形的判定。

3. 教学难点:三角形的性质证明;三角形的判定方法。

4. 教学准备:教学课件;练习题。

5. 教学过程:导入:介绍三角形的背景和意义;讲解:讲解三角形的定义和性质;练习:学生练习识别和判断三角形;总结:回顾本节课的重点和难点。

四、第四章:数的开方与乘方1. 教学目标:理解数的开方和乘方的概念;能够熟练进行数的开方和乘方运算。

2. 教学重点:数的开方和乘方的概念;数的开方和乘方的运算规则。

3. 教学难点:数的乘方运算;数的开方和乘方的逆运算。

4. 教学准备:教学课件;练习题。

5. 教学过程:导入:介绍数的开方和乘方的意义;讲解:讲解数的开方和乘方的概念和运算规则;练习:学生练习进行数的开方和乘方运算;总结:回顾本节课的重点和难点。

五、第五章:实数1. 教学目标:理解实数的定义和性质;能够运用实数解决实际问题。

人教版初中数学八年级上册全册教案

人教版初中数学八年级上册全册教案

人教版初中数学八年级上册全册教案第一课数与代数
教学目标
- 掌握数字的读法和写法。

- 了解数的分类和数的特性。

- 掌握数的比较和数的大小顺序。

- 能够解决实际问题中的数的应用。

教学内容
1. 数的概念和分类
- 自然数、整数、有理数的概念和特性
- 正整数、负整数、零的概念和表示方法
2. 数的比较和大小顺序
- 数的大小比较
- 数的大小顺序
3. 数的应用
- 数的读法和写法
- 数的应用实例分析和解决
教学步骤
1. 引入数字的概念和分类,介绍数的基本特性。

2. 通过示例演示和练,巩固学生对数的比较和大小顺序的掌握。

3. 教授数字的读法和写法,让学生进行读数和写数的练。

4. 结合实际问题,教学数的应用,并引导学生分析和解决问题。

5. 进行小组讨论和总结,复本节课的内容。

6. 布置作业,让学生练巩固所学知识。

教学评价
1. 课堂表现:观察学生的参与度、注意力、回答问题的准确性
和自信度。

2. 作业完成情况:检查学生对课堂内容的理解和应用能力。

参考资料
- 《初中数学八年级上册》,人教版
- 《数学教学指导大纲》,教育部发布
>注意: 以上为简要教案概述,具体教学内容和安排可根据实际
情况进行调整和修改。

八年级上册数学教案人教版全册

八年级上册数学教案人教版全册

八年级上册数学教案人教版全册第一章:勾股定理1.1 勾股定理的发现【学习目标】1. 了解勾股定理的背景和意义。

2. 掌握勾股定理的表述和证明。

【教学内容】1. 引导学生通过实际问题,探索勾股定理。

2. 讲解勾股定理的证明方法。

【教学活动】1. 引入勾股定理的背景知识,如古代数学家赵爽的《周髀算经》中的证明。

2. 通过几何画图软件或实际测量,让学生验证勾股定理。

【作业布置】1. 请学生运用勾股定理解决实际问题。

1.2 勾股定理的应用【学习目标】1. 掌握运用勾股定理解决直角三角形相关问题的方法。

2. 能够运用勾股定理解决实际生活中的问题。

【教学内容】1. 讲解勾股定理在直角三角形中的应用。

2. 举例说明勾股定理在实际生活中的应用。

【教学活动】1. 通过例题,讲解勾股定理在直角三角形中的应用。

2. 分组讨论,让学生尝试解决实际生活中的问题。

【作业布置】1. 请学生运用勾股定理解决实际问题。

第二章:二次根式2.1 二次根式的定义及性质【学习目标】1. 了解二次根式的概念。

2. 掌握二次根式的性质。

【教学内容】1. 讲解二次根式的定义和性质。

2. 举例说明二次根式的性质的应用。

【教学活动】1. 通过几何画图软件或实际测量,让学生直观地理解二次根式。

2. 引导学生探索二次根式的性质。

【作业布置】1. 请学生运用二次根式的性质解决问题。

2.2 二次根式的运算【学习目标】1. 掌握二次根式的加减乘除运算方法。

2. 能够运用二次根式解决实际问题。

【教学内容】2. 举例说明二次根式在实际问题中的应用。

【教学活动】1. 通过例题,讲解二次根式的加减乘除运算方法。

2. 分组讨论,让学生尝试解决实际问题。

【作业布置】1. 请学生运用二次根式解决实际问题。

第三章:实数3.1 实数的概念及分类【学习目标】1. 了解实数的概念和分类。

2. 掌握实数间的运算规律。

【教学内容】1. 讲解实数的概念和分类。

2. 举例说明实数间的运算规律。

新人教版八年级数学上册全册名师教案大全5篇

新人教版八年级数学上册全册名师教案大全5篇

新人教版八年级数学上册全册名师教案大全5篇哪里有数,哪里就有美。

思维自疑问和惊奇开始。

一个数学家越超脱越好。

数学是锻炼思想的体操。

这里给大家分享一些关于新人教版八年级数学上册全册名师教案,供大家参考学习。

新人教版八年级数学上册全册名师教案【篇1】一、学习目标:1、会推导两数差的平方公式,会用式子表示及用文字语言叙述;2、会运用两数差的平方公式进行计算。

二、学习过程:请同学们快速阅读课本第27—28页的内容,并完成下面的练习题:(一)探索1、计算: (a - b) =方法一:方法二:方法三:2、两数差的平方用式子表示为_________________________;用文字语言叙述为___________________________ 。

3、两数差的平方公式结构特征是什么?(二)现学现用利用两数差的平方公式计算:1、(3 - a)2、 (2a -1)3、(3y-x)4、(2x – 4y)5、( 3a - )(三)合作攻关灵活运用两数差的平方公式计算:1、(999)2、( a – b – c )3、(a + 1) -(a-1)(四)达标训练1、、选择:下列各式中,与(a - 2b)一定相等的是()A、a -2ab + 4bB、a -4bC、a +4bD、 a - 4ab +4b2、填空:(1)9x + + 16y = (4y - 3x )(2) ( ) = m - 8m + 162、计算:( a - b) ( x -2y )3、有一边长为a米的正方形空地,现准备将这块空地四周均留出b米宽修筑围坝,中间修建喷泉水池,你能计算出喷泉水池的面积吗?(四)提升1、本节课你学到了什么?2、已知a – b = 1,a + b = 25,求ab 的值新人教版八年级数学上册全册名师教案【篇2】一、教学目标(一)、知识与技能:(1)使学生了解因式分解的意义,理解因式分解的概念。

(2)认识因式分解与整式乘法的相互关系——互逆关系,并能运用这种关系寻求因式分解的方法。

人教新版八年级数学上册教案(精选10篇)

人教新版八年级数学上册教案(精选10篇)

人教新版八年级数学上册教案人教新版八年级数学上册教案(精选10篇)作为一名辛苦耕耘的教育工作者,可能需要进行教案编写工作,借助教案可以提高教学质量,收到预期的教学效果。

写教案需要注意哪些格式呢?下面是小编整理的人教新版八年级数学上册教案,希望对大家有所帮助。

人教新版八年级数学上册教案篇1教学目标1.知识与技能领会运用完全平方公式进行因式分解的方法,发展推理能力。

2.过程与方法经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤。

3.情感、态度与价值观培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力。

重、难点与关键1.重点:理解完全平方公式因式分解,并学会应用。

2.难点:灵活地应用公式法进行因式分解。

3.关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,•达到能应用公式法分解因式的目的。

教学方法采用“自主探究”教学方法,在教师适当指导下完成本节课内容。

教学过程一、回顾交流,导入新知【问题牵引】1.分解因式:(1)-9x2+4y2;(2)(x+3y)2-(x-3y)2;(3)x2-0.01y2.【知识迁移】2.计算下列各式:(1)(m-4n)2;(2)(m+4n)2;(3)(a+b)2;(4)(a-b)2.【教师活动】引导学生完成下面两道题,并运用数学“互逆”的思想,寻找因式分解的规律。

3.分解因式:(1)m2-8mn+16n2(2)m2+8mn+16n2;(3)a2+2ab+b2;(4)a2-2ab+b2.【学生活动】从逆向思维的角度入手,很快得到下面答案:解:(1)m2-8mn+16n2=(m-4n)2;(2)m2+8mn+16n2=(m+4n)2;(3)a2+2ab+b2=(a+b)2;(4)a2-2ab+b2=(a-b)2.【归纳公式】完全平方公式a2±2ab+b2=(a±b)2.二、范例学习,应用所学【例1】把下列各式分解因式:(1)-4a2b+12ab2-9b3;(2)8a-4a2-4;(3)(x+y)2-14(x+y)+49;(4)+n4.【例2】如果x2+axy+16y2是完全平方,求a的值。

八年级数学(上)全册教案(新人教版)

八年级数学(上)全册教案(新人教版)

八年级数学(上)全册教案(新人教版)第一章:一元一次方程1.1 方程与方程的解理解方程的概念,掌握方程的解的定义。

学会解一元一次方程,掌握解方程的基本步骤。

1.2 方程的解法学习使用加减法、乘除法解一元一次方程。

学会使用移项、合并同类项解方程。

1.3 方程的应用学会将实际问题转化为方程,解决实际问题。

练习使用一元一次方程解决实际问题。

第二章:不等式与不等式组2.1 不等式理解不等式的概念,掌握不等式的性质。

学会解一元一次不等式,掌握解不等式的基本步骤。

2.2 不等式组理解不等式组的概念,掌握不等式组的解法。

学会解不等式组,掌握解不等式组的基本步骤。

2.3 不等式的应用学会将实际问题转化为不等式,解决实际问题。

练习使用不等式解决实际问题。

第三章:函数的初步认识3.1 函数的概念理解函数的概念,掌握函数的定义。

学会判断两个变量之间的关系是否为函数。

3.2 函数的性质学习函数的单调性、奇偶性、周期性等基本性质。

学会判断函数的单调性、奇偶性、周期性。

3.3 函数的应用学会将实际问题转化为函数问题,解决实际问题。

练习使用函数解决实际问题。

第四章:整式的加减4.1 整式的概念理解整式的概念,掌握整式的定义。

学会判断两个整式是否相等。

4.2 整式的加减法学习整式的加减法运算,掌握加减法的基本步骤。

学会使用合并同类项进行整式的加减法运算。

4.3 整式的应用学会将实际问题转化为整式问题,解决实际问题。

练习使用整式解决实际问题。

第五章:数据的收集、整理与描述5.1 数据的收集学会使用调查、实验等方法收集数据。

掌握数据的整理方法,如列表、画图等。

5.2 数据的整理学习数据的整理方法,掌握数据的分类、排序等基本操作。

学会使用图表展示数据,如条形图、折线图等。

5.3 数据的描述学习数据的描述方法,掌握数据的平均数、中位数、众数等基本统计量。

学会使用统计量对数据进行描述和分析。

八年级数学(上)全册教案(新人教版)第六章:三角形6.1 三角形的概念理解三角形的基本概念,掌握三角形的定义。

2024年版人教版八年级上册数学教案5篇

2024年版人教版八年级上册数学教案5篇

2024年版人教版八年级上册数学教案5篇2023版人教版八年级上册数学教案篇1教学目标:教学知识点:能运用勾股定理及直角三角形的判别条件(即勾股定理的逆定理)解决简单的实际问题。

能力训练要求:1.学会观察图形,勇于探索图形间的关系,培养学生的空间观念。

2.在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想。

情感与价值观要求:1.通过有趣的问题提高学习数学的兴趣。

2.在解决实际问题的过程中,体验数学学习的实用性,体现人人都学有用的数学。

教学重点难点:重点:探索、发现给定事物中隐含的勾股定理及其逆及理,并用它们解决生活实际问题。

难点:利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题。

教学过程1、创设问题情境,引入新课:前几节课我们学习了勾股定理,你还记得它有什么作用吗?例如:欲登12米高的建筑物,为安全需要,需使梯子底端离建筑物5米,至少需多长的梯子?根据题意,(如图)ac是建筑物,则ac=12米,bc=5米,ab 是梯子的长度,所以在rt△abc中,ab2=ac2+bc2=122+52=132;ab=13米。

所以至少需13米长的梯子。

2、讲授新课:①、蚂蚁怎么走最近。

出示问题:有一个圆柱,它的高等于12厘米,底面半径等于3厘米。

在圆行柱的底面a点有一只蚂蚁,它想吃到上底面上与a 点相对的b点处的食物,需要爬行的的最短路程是多少?(π的值取3)。

(1)同学们可自己做一个圆柱,尝试从a点到b点沿圆柱的侧面画出几条路线,你觉得哪条路线最短呢?(小组讨论)(2)如图,将圆柱侧面剪开展开成一个长方形,从a点到b 点的最短路线是什么?你画对了吗?(3)蚂蚁从a点出发,想吃到b点上的食物,它沿圆柱侧面爬行的最短路程是多少?(学生分组讨论,公布结果)我们知道,圆柱的侧面展开图是一长方形。

好了,现在咱们就用剪刀沿母线aa′将圆柱的侧面展开(如下图)。

我们不难发现,刚才几位同学的走法:(1)a→a′→b;(2)a→b′→b;(3)a→d→b;(4)a—→b。

人教新版八年级数学上册教案优秀6篇

人教新版八年级数学上册教案优秀6篇

在教学工作者开展教学活动前,时常会需要准备好教案,借助教案可以提高教学质量,收到预期的教学效果。

那么大家知道正规的教案是怎么写的吗?下面是小编辛苦为大家带来的人教新版八年级数学上册教案优秀6篇,希望大家可以喜欢并分享出去。

八年级上册数学教案篇一【教学目标】知识目标:解单项式乘以多项式的意义,理解单项式与多项式的乘法法则,会进行单项式与多项式的乘法运算。

能力目标:(1)经历探索乘法运算法则的过程,发展观察、归纳、猜测、验证等能力;(2)体会乘法分配律的作用与转化思想,发展有条理的思考及语言表达能力。

情感目标:充分调动学生学习的积极性、主动性【教学重点】单项式与多项式的乘法运算【教学难点】推测整式乘法的运算法则。

【教学过程】一、复习引入通过对已学知识的复习引入课题(学生作答)1、请说出单项式与单项式相乘的法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里出现的字母,则连同它的指数作为积的一个因式。

(系数×系数)×(同字母幂相乘)×单独的幂例如:( 2a2b3c) (-3ab)解:原式=[2· (-3) ] · (a2·a) · (b3 · b) · c= -6a3b4c2、说出多项式2x2-3x-1的项和各项的系数项分别为:2x2、-3x、-1系数分别为:2、-3、-1问:如何计算单项式与多项式相乘?例如:2a2· (3a2 - 5b)该怎样计算?这便是我们今天要研究的问题。

二、新知探究已知一长方形长为(a+b+c),宽为m,则面积为:m(a+b+c)现将这个长方形分割为宽为m,长分别为a、b、c的三个小长方形,其面积之和为ma+mb+mc因为分割前后长方形没变所以m(a+b+c)=ma+mb+mc上一等式根据什么规律可以得到?从中可以得出单项式与多项式相乘的运算法则该如何表述?(学生分组讨论:前后座为一组;找个别同学作答,教师作评)结论单项式与多项式相乘的运算法则:用单项式分别去乘多项式的每一项,再把所得的积相加。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学上册全册教案(2013年最新版人教版)15.4.1 因式分解教学目标 1.知识与技能了解因式分解的意义,以及它与整式乘法的关系. 2.过程与方法经历从分解因数到分解因式的类比过程,掌握因式分解的概念,感受因式分解在解决问题中的作用. 3.情感、态度与价值观在探索因式分解的方法的活动中,培养学生有条理的思考、表达与交流的能力,培养积极的进取意识,体会数学知识的内在含义与价值.重、难点与关键 1.重点:了解因式分解的意义,感受其作用. 2.难点:整式乘法与因式分解之间的关系. 3.关键:通过分解因数引入到分解因式,并进行类比,加深理解.教学方法采用“激趣导学”的教学方法.教学过程一、创设情境,激趣导入【问题牵引】请同学们探究下面的2个问题:问题1:720能被哪些数整除?谈谈你的想法.问题2:当a=102,b=98时,求a2-b2的值.二、丰富联想,展示思维探索:你会做下面的填空吗? 1.ma+mb+mc=()(); 2.x2-4=()(); 3.x2-2xy+y2=()2.【师生共识】把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做分解因式.三、小组活动,共同探究【问题牵引】(1)下列各式从左到右的变形是否为因式分解:①(x+1)(x-1)=x2-1;②a2-1+b2=(a+1)(a-1)+b2;③7x-7=7(x-1).(2)在下列括号里,填上适当的项,使等式成立.①9x2(______)+y2=(3x+y)(_______);②x2-4xy+(_______)=(x-_______)2.四、随堂练习,巩固深化课本练习.【探研时空】计算:993-99能被100整除吗?五、课堂总结,发展潜能由学生自己进行小结,教师提出如下纲目: 1.什么叫因式分解? 2.因式分解与整式运算有何区别?六、布置作业,专题突破选用补充作业.板书设计 15.4.1 因式分解1、因式分解例:练习:15.4.2 提公因式法教学目标 1.知识与技能能确定多项式各项的公因式,会用提公因式法把多项式分解因式. 2.过程与方法使学生经历探索多项式各项公因式的过程,依据数学化归思想方法进行因式分解. 3.情感、态度与价值观培养学生分析、类比以及化归的思想,增进学生的合作交流意识,主动积极地积累确定公因式的初步经验,体会其应用价值.重、难点与关键 1.重点:掌握用提公因式法把多项式分解因式. 2.难点:正确地确定多项式的最大公因式. 3.关键:提公因式法关键是如何找公因式.方法是:一看系数、二看字母.•公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.教学方法采用“启发式”教学方法.教学过程一、回顾交流,导入新知【复习交流】下列从左到右的变形是否是因式分解,为什么?(1)2x2+4=2(x2+2);(2)2t2-3t+1= (2t3-3t2+t);(3)x2+4xy-y2=x(x+4y)-y2;(4)m(x+y)=mx+my;(5)x2-2xy+y2=(x-y)2.问题:1.多项式mn+mb中各项含有相同因式吗? 2.多项式4x2-x和xy2-yz-y呢?请将上述多项式分别写成两个因式的乘积的形式,并说明理由.【教师归纳】我们把多项式中各项都有的公共的因式叫做这个多项式的公因式,如在mn+mb中的公因式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y.概念:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积形式,这种分解因式的方法叫做提公因式法.二、小组合作,探究方法【教师提问】多项式4x2-8x6,16a3b2-4a3b2-8ab4各项的公因式是什么?【师生共识】提公因式的方法是先确定各项的公因式再将多项式除以这个公因式得到另一个因式,找公因式一看系数、二看字母,公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.三、范例学习,应用所学【例1】把-4x2yz-12xy2z+4xyz分解因式.解:-4x2yz-12xy2z+4xyz =-(4x2yz+12xy2z-4xyz) =-4xyz(x+3y -1)【例2】分解因式,3a2(x-y)3-4b2(y-x)2 【思路点拨】观察所给多项式可以找出公因式(y-x)2或(x-y)2,于是有两种变形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,从而得到下面两种分解方法.解法1:3a2(x-y)3-4b2(y-x)2 =-3a2(y-x)3-4b2(y-x)2 =-[(y-x)2•3a2(y-x)+4b2(y-x)2] =-(y-x)2 [3a2(y-x)+4b2] =-(y-x)2(3a2y -3a2x+4b2)解法2:3a2(x-y)3-4b2(y-x)2 =(x-y)2•3a2(x-y)-4b2(x-y)2 =(x-y)2 [3a2(x-y)-4b2] =(x-y)2(3a2x-3a2y-4b2)【例3】用简便的方法计算:0.84×12+12×0.6-0.44×12.【教师活动】引导学生观察并分析怎样计算更为简便.解:0.84×12+12×0.6-0.44×12 =12×(0.84+0.6-0.44)=12×1=12.【教师活动】在学生完全例3之后,指出例3是因式分解在计算中的应用,提出比较例1,例2,例3的公因式有什么不同?四、随堂练习,巩固深化课本P167练习第1、2、3题.【探研时空】利用提公因式法计算:0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69 五、课堂总结,发展潜能 1.利用提公因式法因式分解,关键是找准最大公因式.•在找最大公因式时应注意:(1)系数要找最大公约数;(2)字母要找各项都有的;(3)指数要找最低次幂. 2.因式分解应注意分解彻底,也就是说,分解到不能再分解为止.六、布置作业,专题突破课本P170习题15.4第1、4(1)、6题.板书设计 15.4.2 提公因式法1、提公因式法例:练习:15.4.3 公式法(一)教学目标 1.知识与技能会应用平方差公式进行因式分解,发展学生推理能力. 2.过程与方法经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性. 3.情感、态度与价值观培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值.重、难点与关键 1.重点:利用平方差公式分解因式. 2.难点:领会因式分解的解题步骤和分解因式的彻底性. 3.关键:应用逆向思维的方向,演绎出平方差公式,•对公式的应用首先要注意其特征,其次要做好式的变形,把问题转化成能够应用公式的方面上来.教学方法采用“问题解决”的教学方法,让学生在问题的牵引下,推进自己的思维.教学过程一、观察探讨,体验新知【问题牵引】请同学们计算下列各式.(1)(a+5)(a-5);(2)(4m+3n)(4m-3n).【学生活动】动笔计算出上面的两道题,并踊跃上台板演.(1)(a+5)(a-5)=a2-52=a2-25;(2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.【教师活动】引导学生完成下面的两道题目,并运用数学“互逆”的思想,寻找因式分解的规律. 1.分解因式:a2-25; 2.分解因式16m2-9n.【学生活动】从逆向思维入手,很快得到下面答案:(1)a2-25=a2-52=(a+5)(a-5).(2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).【教师活动】引导学生完成a2-b2=(a+b)(a-b)的同时,导出课题:用平方差公式因式分解.平方差公式:a2-b2=(a+b)(a-b).评析:平方差公式中的字母a、b,教学中还要强调一下,可以表示数、含字母的代数式(单项式、多项式).二、范例学习,应用所学【例1】把下列各式分解因式:(投影显示或板书)(1)x2-9y2;(2)16x4-y4;(3)12a2x2-27b2y2;(4)(x+2y)2-(x-3y)2;(5)m2(16x-y)+n2(y-16x).【思路点拨】在观察中发现1~5题均满足平方差公式的特征,可以使用平方差公式因式分解.【教师活动】启发学生从平方差公式的角度进行因式分解,请5位学生上讲台板演.【学生活动】分四人小组,合作探究.解:(1)x2-9y2=(x+3y)(x-3y);(2)16x4-y4=(4x2+y2)(4x2-y2)=(4x2+y2)(2x+y)(2x-y);(3)12a2x2-27b2y2=3(4a2x2-9b2y2)=3(2ax+3by)(2ax-3by);(4)(x+2y)2-(x-3y)2=[(x+2y)+(x-3y)][(x+2y)-(x-3y)] =5y (2x-y);(5)m2(16x-y)+n2(y-16x) =(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).三、随堂练习,巩固深化课本P168练习第1、2题.【探研时空】 1.求证:当n是正整数时,n3-n的值一定是6的倍数. 2.试证两个连续偶数的平方差能被一个奇数整除.连续偶数的平方差能被一个奇数整除.四、课堂总结,发展潜能运用平方差公式因式分解,首先应注意每个公式的特征.分析多项式的次数和项数,然后再确定公式.如果多项式是二项式,通常考虑应用平方差公式;如果多项式中有公因式可提,应先提取公因式,而且还要“提”得彻底,最后应注意两点:一是每个因式要化简,二是分解因式时,每个因式都要分解彻底.五、布置作业,专题突破课本P171习题15.4第2、4(2)、11题.板书设计 15.4.3 公式法(一)1、平方差公式:例: a2-b2=(a+b)(a-b)练习:15.4.3 公式法(二)教学目标 1.知识与技能领会运用完全平方公式进行因式分解的方法,发展推理能力. 2.过程与方法经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤. 3.情感、态度与价值观培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力.重、难点与关键 1.重点:理解完全平方公式因式分解,并学会应用. 2.难点:灵活地应用公式法进行因式分解. 3.关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,•达到能应用公式法分解因式的目的.教学方法采用“自主探究”教学方法,在教师适当指导下完成本节课内容.教学过程一、回顾交流,导入新知【问题牵引】 1.分解因式:(1)-9x2+4y2;(2)(x+3y)2-(x-3y)2;(3) x2-0.01y2.【知识迁移】 2.计算下列各式:(1)(m-4n)2;(2)(m+4n)2;(3)(a+b)2;(4)(a-b)2.【教师活动】引导学生完成下面两道题,并运用数学“互逆”的思想,寻找因式分解的规律. 3.分解因式:(1)m2-8mn+16n2 (2)m2+8mn+16n2;(3)a2+2ab+b2;(4)a2-2ab+b2.【学生活动】从逆向思维的角度入手,很快得到下面答案:解:(1)m2-8mn+16n2=(m-4n)2;(2)m2+8mn+16n2=(m+4n)2;(3)a2+2ab+b2=(a+b)2;(4)a2-2ab+b2=(a-b)2.【归纳公式】完全平方公式a2±2ab+b2=(a±b)2.二、范例学习,应用所学【例1】把下列各式分解因式:(1)-4a2b+12ab2-9b3;(2)8a-4a2-4;(3)(x+y)2-14(x+y)+49;(4) +n4.【例2】如果x2+axy+16y2是完全平方,求a的值.【思路点拨】根据完全平方式的定义,解此题时应分两种情况,即两数和的平方或者两数差的平方,由此相应求出a的值,即可求出a3.三、随堂练习,巩固深化课本P170练习第1、2题.【探研时空】 1.已知x+y=7,xy=10,求下列各式的值.(1)x2+y2;(2)(x-y)2 2.已知x+ =-3,求x4+ 的值.四、课堂总结,发展潜能由于多项式的因式分解与整式乘法正好相反,因此把整式乘法公式反过来写,就得到多项式因式分解的公式,主要的有以下三个: a2-b2=(a+b)(a-b);a2±ab+b2=(a±b)2.在运用公式因式分解时,要注意:(1)每个公式的形式与特点,通过对多项式的项数、•次数等的总体分析来确定,是否可以用公式分解以及用哪个公式分解,通常是,当多项式是二项式时,考虑用平方差公式分解;当多项式是三项时,应考虑用完全平方公式分解;(2)•在有些情况下,多项式不一定能直接用公式,需要进行适当的组合、变形、代换后,再使用公式法分解;(3)当多项式各项有公因式时,应该首先考虑提公因式,•然后再运用公式分解.五、布置作业,专题突破课本P171习题15.4第3、5、7、8题.板书设计 15.4.3 公式法(二)1、完全平方公式:例:a2±2ab+b2=(a±b)2 练习:。

相关文档
最新文档