17、线路自动重合闸(三)

合集下载

自动重合闸原理

自动重合闸原理

自动重合闸原理
自动重合闸是电力系统中常用的一种保护装置,它能够在电力系统发生故障时快速切断故障电路,保护电力设备的安全运行。

自动重合闸工作的原理是通过监测电流、电压和其他参数的变化来判断电力系统是否存在故障。

当监测到电力系统出现故障时,自动重合闸会发出信号,切断故障电路。

同时,自动重合闸还会进行故障诊断,确定并记录故障信息,以便维修人员进行进一步分析和修复。

自动重合闸主要包括三个部分:故障检测、信号传输和刀闸控制。

在故障检测方面,自动重合闸会通过电流互感器和电压互感器监测电力系统的电流和电压,并将检测到的信号传输到信号传输部分。

在信号传输方面,自动重合闸会将检测到的信号传输到控制器,通过处理器进行信号处理和判断。

最后,在刀闸控制方面,自动重合闸会根据信号判断结果控制刀闸的开合,以实现故障切除和系统重合。

自动重合闸的优点在于其快速反应、准确判断故障和自动操作的能力。

它能够在电力系统发生故障时迅速切断故障电路,减少故障对电力设备的损害程度。

同时,自动重合闸的自动操作能力能够减轻维修人员的工作负担,提高电力系统的可靠性和安全性。

总之,自动重合闸是电力系统中一种重要的保护装置,通过监测和判断电力系统的故障情况,实现快速切断故障电路,保护电力设备的安全运行。

它的工作原理主要包括故障检测、信号
传输和刀闸控制。

自动重合闸的应用能够提高电力系统的可靠性和安全性,减少故障对电力设备的损害。

自动重合闸

自动重合闸

五、重合闸与继电保护的配合
1. 重合闸前加速保护(简称为“前加速”)
I
I
I
A t I ARD
Bt
Ct
1
2
3
• 优点
– 能够快速切除各条线路上的瞬时性故障;
– 可能使瞬时性故障来不及发展为永久性故障, 从而提高重合闸的成功率;
– 所用设备少,只需装设一套重合闸装置,简单
经济。
29
五、重合闸与继电保护的配合
11
二、单侧电源线路的三相一次重合闸
重合闸 起动
重合闸 时间
一次合闸 脉冲
手动跳闸后闭锁 手动合闸后加速

合闸
信号
后加速 保护
1. 重合闸起动
① 保护动作起动 ② 手动跳闸起动(不对应起动)
12
二、单侧电源线路的三相一次重合闸
重合闸 起动
重合闸 时间
一次合闸 脉冲
手动跳闸后闭锁 手动合闸后加速

9
一、三相自动重合闸
三相一次重合闸方式就是不论在输电线 路上发生单相接地短路还是相间短路,继电 保护装置均将线路三相断路器断开,然后重 合闸起动,将三相断路器一起合上。若故障 为瞬时性故障,则重合成功;若故障为永久 性故障,则继电保护将再次将断路器三相断 开,不再重合。
10
一、三相自动重合闸
对单侧电源线路三相自动重合闸的基本要求: —安装地点:线路电源侧 —适用范围:35kV及以下线路(三相一次重合 闸) —线路特点:只有一个电源供电(不存在非同 期重合闸问题)
Bt
Ct
1
2
3
主要用于35KV以下由发电厂或重要变 电站引出的直配线路上,以便快速切除故 障,保证母线电压降低的时间最短。

线路综合自动重合闸

线路综合自动重合闸

图5 潜供电流示意图
由于“潜供电流”的存在,延长了故障点的熄弧时间,为此,超高压线路的综合 重合闸装置的单重时间应考虑潜供电流的影响。所以,单重时间应长一些。潜供电 流的大小与线路长短、电压等级及线路是否有并联电抗器有关,特别是500kV线路, 单重时间的整定应视具体情况而定。 线路发生相间故障跳三相后,由于三相都已断开,感应电流、电容电流均不存在, 因此,故障点的熄弧时间就很短,重合时间不需要很长,只要保证开关三相跳开, 稍加一点裕度即可。 综上所述,重合闸装置的单重和三重时间必须能够分开整定。
线路自动重合闸装置
1.概述 概述 在电力系统的引起的绝缘子表面闪络、大风引起的碰线、通过鸟类以及树枝等物掉落在导线 上引起的短路等,当线路被断路器迅速断开以后,电弧即行熄灭,故障点的绝缘 强度重新恢复,外界物体(如树枝、鸟类等)也被电弧烧掉而消失。此时,如果把断 开的线路断路器再合上,就能够恢复正常的供电,因此,称这类故障是瞬时性故 障。除此之外,也有永久性故障。例如由于线路倒杆、断线、绝缘子击穿或损坏 等引起的故障,在线路被断开之后,它们仍然是存在的。这时,即使再合上电源, 由于故障仍然存在,线路还要被继电保护再次断开,因而就不能恢复正常的供电。 由于输电线路上的故障具有以上的性质,因此,在线路被断开以后再进行一次合 闸,就能在多数情况下重合成功,从而提高了供电的可靠性和连续性。为此在电力 系统中采用了自动重合闸装置。 在线路上装设重合闸以后,不论是瞬时性故障还是永久性故障都必须完成一次 重合。因此,在重合以后可能成功(指恢复供电不再断开),也可能不成功(永久性 故障,重合后保护再次动作跳闸,不再重合)。用重合成功的次数与总动作次数 之比来表示重合闸的成功率。根据运行资料的统计,成功率一般在60%~90%之 间。

电力系统继电保护 ——自动重合闸

电力系统继电保护 ——自动重合闸

2.
3. 4. 5. 6.
三、自动重合闸的分类


分类:
目的:1)保证并列运行系统的稳定性;2)尽快恢复瞬时故障元件的 供电,从而自动恢复整个系统的正常运行。
1.
根据重合闸控制的断路器所接通或断开的电力元件不同:线路重合 闸(10kV及以上,广泛采用)、变压器重合闸(后备保护动作时启 动)和母线重合闸(枢纽变电所);
2.
双侧电源线路三相重合闸的最佳重合时间的概念
最佳重合时刻的条件:最后一次操作完成后,对应最终网络拓扑下 稳定平衡点的系统暂态能量值最小的时刻。
四、自动重合闸与继电保护的配合
1.
两种方式:(1)重合闸前加速保护;(2)重合闸后加速保护 前加速
主要用于35kV以下由发电厂或重要变电所引出的直配线路上,以便 快速切除故障,保证母线电压。 当任何一条线路上发生故障时,第一次都由线路始端保护瞬时无选 择性动作予以切除,重合闸以后保护第二次动作切除故障是有选择性
武汉理工大学自动化学院
唐金锐
tangjinrui@
自动重合闸
一、自动重合闸的作用及对它的基本要求 二、输电线路的三相一次自动重合闸 三、高压输电线路的单相自动重合闸 四、高压输电线路的综合重合闸简介
自动重合闸的作用及对它的基本要求
一、自动重合闸的作用 二、对自动重合闸的基本要求 三、自动重合闸的分类

二、单相自动重合闸的特点

故障相选择元件:电流选相、低电压选相、阻抗选相、相电流差突变 量选相

动作时限:除应满足三相重合闸时的要求(大于故障点灭弧时间、大 于断路器复归时间)外:

1)选相元件与继电保护以不同时限切除故障; 2)潜供电流对灭弧产生的影响:当故障相线路自两侧切除后,由于非故障相与断 开相之间存在有静电(通过电容)和电磁(通过互感)的联系,因此,虽然短路 电流已被切除,但在故障点的弧光通道中,仍然有电流。

电力调度员考试题+答案

电力调度员考试题+答案

电力调度员考试题+答案1、调控机构将变电站自查报告、现场检查情况、变电站基本情况、业务移交准备工作情况进行分析评估,并形成集中监控(),作为许可变电站集中监控的依据。

A、监控报告B、评估总结C、评估报告D、评估结果答案:C2、新建变电站投运后,前期应由运维单位负责监视运行,再履行监视移交手续,具体监视运行天数要求如下:220kV及以上新建变电站至少运行( )天。

A、10B、7C、5D、3答案:B3、判别母线故障的依据()。

A、母线保护动作-断路器跳闸及有故障引起的声-光-信号等B、该母线所供厂用电或所用电失去C、该母线的各出线及变压器负荷消失D、该母线的电压表指示消失答案:A4、220kV及以上线路、母线主保护非计划停运,导致主保护非计划单套运行超过多长时间,确认为电网一类障碍()。

A、12小时B、24小时C、48小时D、72小时答案:B5、下述关于电力系统综合负荷模型主要特点的描述不正确的是( )。

A、每个实际电力系统有自己特有的综合负荷模型,与本系统的负荷构成有关B、既是同一个电力系统,在不同的季节,具体不同的综合负荷模型C、电力系统综合负荷模型与频率无关D、研究的问题不同,采用的综合负荷模型也不同6、当母线差动保护投信号时,应优先启用()对空母线充电。

A、母联开关电流保护B、母联开关的短充电保护C、母联开关的长充电保护D、母联非全相运行保护答案:C7、接地网除了起着保护接地的作用外,还有主要起()作用。

A、作为零电压B、工作接地C、构成回路D、设备放电答案:B8、低频低压解列装置一般不装设在( )。

A、系统间联络线B、地区系统中从主系统受电的终端变电站母线联络断路器C、地区电厂的高压侧母线联络断路器D、地区系统中主要变电站的高压侧母线联络断路器答案:D9、母线单相故障,母差保护动作后,断路器应()。

A、三跳B、单跳C、单跳或三跳D、视母差保护的接线方式而定答案:A10、各级调度机构负责其调度设备检修计划安排及管理。

输电线路自动重合闸的作用及基本要求 输电线路三相一次自动重合闸

输电线路自动重合闸的作用及基本要求 输电线路三相一次自动重合闸

(6)自动重合闸应能自动闭锁。
(7)自动重合闸装置动作后,应能自动复归,为 下一次动作做好准备。
(8)自动重合闸应能在重合闸动作后或重合闸 动作前,加速继电保护的动作。 (9)在双侧电源线路上实现重合闸时,由于两侧 均有电源,所以应考虑以下两个问题问题。 1、故障点的断电时间问题。 2、同步问题。
三、对输电线路自动重合闸装置的基本要求 (1)自动重合闸装置应ຫໍສະໝຸດ 作迅速,ARC动作时 间应尽可能短。
(2)在下列情况下,重合闸不应动作: 1)由值班人员手动操作或通过遥控装置将断路 器断开时,属于正常运行操作,重合闸不应动 作,不能将断路器重新合上。 2)手动合闸于故障线路时,继电保护动作使断 路器跳闸后,不应重合。
ARC动作成功的次数 重合闸成功率= ARC总动作次数
ARC正确动作参数 正确动作率= ARC总动作次数
二、自动重合闸装置的分类 1)按作用于断路器的方式,可分为三相重 合闸、单相重合闸和综合重合闸。 2)按重合闸动作次数,可分为一次重合闸 和二次重合闸。 3)按重合闸使用的条件,可分为单侧电源 线路重合闸和双侧电源线路重合闸。 4)按重合闸的实现方法,可分为电气式的 重合闸装置、晶体管式及集成电路式的重合 闸装置。
第一节 输电线路自 动重合闸的作用及 基本要求
第一节 输电线路自动重合闸的作用及基本要求
一、输电线路自动重合闸的作用 输电线路的故障按其性质可分为瞬时性故障和 永久性故障两种。 所谓瞬时性故障,主要是由雷电引起的绝缘子表 面闪络、线路对树枝放电、大风引起的短时碰线、 鸟害以及绝缘子表面污染等原因引起的短路,这 种类型的故障由继电保护动作断开电源,故障点 电弧便立即熄灭,绝缘强度重新恢复,故障自行 消除。
而永久性故障,主要是由倒杆、断线、绝缘子击 穿或损坏等原因引起的故障,这种类型的故障即 使断开电源,故障点的绝缘强度也不能恢复,故 障仍然存在,此时若重新合上断路器,又要被继 电保护装置再次断开。 自动重合闸装置就是将被切除的线路断路器 重新自动投入的一种自动装置。

重合闸

重合闸

采用自动重合闸ARD后,当重合于永久性故障时,系统将再次受到短路
电流的冲击,可能引起电力系统振荡,继电保护应再次使断路器断开。
可见,断路器在短时间内连续两次切断故障电流,这就恶化了断路器的 工作条件。因此,对油断路器而言,其实际切断的短路容量应比正常的额定
切断容量有所降低。
动作迅速;对自动重合闸的基本要求:
, , t op t op t max t t re t rel t n
式中, top--近故障侧重合闸动作时间;
—远故障侧保护动作时间最大值;
, top max
—远故障侧断路器跳闸时间; tn—近故障侧断路器合闸时间。 tre—消弧及去游离时间; trel——裕度时间,0.1—0.15 s。
3.选相元件
(1)对选相元件的基本要求
●单相接地时,选相元件应可靠选出故障相; ●选相元件的灵敏度和速动性应比保护好;
●选相元件一般不要求区分外部故障,不要求有方向性。
(2)选相元件的基本类型 ●电流选相元件。相电流选相元件的动作电流应按躲线路最大
负荷电流和单相接地时非故障相电流整定。因此,短路电流小时不能采
二、三相自动重合闸
1.单电源线路的三相一次自动重合闸 (1)自动重合闸的构成
三相一次自动重合闸,主要由启动元件1、延时元件2、一次合
闸脉冲元件3和执行元件四部分组成。
1启动元件的作用是在断路器跳闸之后,使重合闸的延时元件启动2, 一般采用控制开关和断路器位置不对应或保护启动等方法;
2 延时元件是为了保证断路器跳开之后,在故障点有足够的去游离时
采用“前加速”的优点:
是能快速切除瞬时性故障,使暂时性故障来不及发展成为永久性 故障,而且使用设备少,只需一套ARD自动重合闸装置,

自动重合闸的作用及要求

自动重合闸的作用及要求

第六章自动重合闸第一节自动重合闸的作用及要求一、自动重合闸在电力系统中的作用架空线路故障大都是“瞬时性”的故障,在线路被继电保护迅速动作控制断路器断开后,故障点的绝缘水平可自行恢复,故障随即消失。

此时,如果把断开的线路断路器重新合上,就能够恢复正常的供电。

此外,也有“永久性故障”,“永久性故障”在线路被断开之后,它们仍然是存在的,即使合上电源,也不能恢复正常供电。

因此,在电力系统中采用了自动重合闸装置,即是当断路器由继电保护动作或其它非人工操作而跳闸后,能够自动控制断路器重新合上的一种装置。

二、重合闸在电力系统中的作用•大大提高供电的可靠性,减少线路停电的次数。

•在高压输电线路上采用重合闸,可以提高电力系统并列运行的稳定性。

•在架空线路上采用重合闸,可以暂缓架设双回线路,以节约投资。

•对断路器本身由于机构不良或继电保护误动作而引起的误跳闸,也能起纠正的作用。

但是,当重合于永久性故障上时,它也将带来一些不利的影响,如:(1)使电力系统又一次受到故障的冲击;(2)由于断路器在很短的时间内,连续切断两次短路电流,而使其工作条件变得更加恶劣。

三、对自动重合闸装置的基本要求•正常运行时,当断路器由继电保护动作或其它原因而跳闸后,自动重合闸装置均应动作。

•由运行人员手动操作或通过遥控装置将断路器断开时,自动重合闸不应起动。

•继电保护动作切除故障后,自动重合闸装置应尽快发出重合闸脉冲。

•自动重合闸装置动作次数应符合预先的规定。

•自动重合闸装置应有可能在重合闸以前或重合闸以后加速继电保护的动作,以便加速故障的切除。

•在双侧电源的线路上实现重合闸时,重合闸应满足同期合闸条件。

•当断路器处于不正常状态而不允许实现重合闸时,应将自动重合闸装置闭锁。

第二节单侧电源线路的三相一次自动重合闸三相一次自动重合闸就是在输电线路上发生任何故障,继电保护装置将三相断路器断开时,自动重合闸起动,经0.5~1s的延时,发出重合脉冲,将三相断路器一起合上。

自动重合闸

自动重合闸

3、 U 的大小与相位(或频率)的关系: s t U 2U M sin 2U sin (6.7) 2 2
可见,U 将随着δ (角频率ω S)的增大而增大。
加于同步检查继电器上的电压△U与幅值和相位的关系 (a) 幅值不等但同相位; (b) 不同相位,但幅值相等
重合闸后加速
当线路发生故障后,保护有选择性地动作切除故障,重合闸进行—次重合 以恢复供电。若重合于永久性故障时,保护装臵即不带时限无选择性的动作断 开断路器,这种方式称为重合闸后加速。
断路器灭弧
电弧的特点是: (1)起弧电压、电流数值低 (2)电弧能量集中,温度很高 (3)电弧是一束质量很轻的游离 态气体,在外力作用下,很易弯曲、 变形。 (4)电弧有良好的导电性能、具 有很高的电导: (5)电弧有阴极区(包括阴极斑 点)、弧柱区(包括弧柱、弧焰)、 阳极区(包括阳极斑点)三部分组 成。 游离作用: 当开关工作时,介质会由绝缘状 态变成导电状态。介质的放电现象 是由于电场、热、光的作用下,介 质里的中性质点产生自由电子、正、 负离子的结果。这种现象我们称为 游离作用。在介质中产生的游离作 用达到一定程度时,介质将被击穿, 而产生电弧放电。电弧的形成是由 于介质的游离而发生的。
7
2015-3-24
KKJ(合后继电器)
KKJ的由来 现在微机保护操作回路都会有KKJ继电 器。它是从电力系统KK操作把手的合后位 臵接点延伸出来的,所以叫KKJ。 KKJ继电器实际上就是一个双圈磁保持 的双位臵继电器。该继电器有一动作线圈 和复归线圈,当动作线圈加上一个“触发 ”动作电压后,接点闭合。此时如果线圈 失电,接点也会维持原闭合状态,直至复 归线圈上加上一个动作电压,接点才会返 回。当然这时如果线圈失电,接点也会维 持原打开状态。手动/遥控合闸时同时启动 KKJ的动作线圈,手动/遥控分闸时同时启 动KKJ的复归线圈,而保护跳闸则不启动复 归线圈(保护跳闸和手动/遥控跳闸回路之 间加有的二极管就是为实现此目的)。这 样KKJ继电器(其常开接点的含义即我们传 统的合后位臵)就完全模拟了传统KK把手 的功能,这样既延续了电力系统的传统习 惯,同时也满足了变电站综合自动化技术 的需要。

自动重合闸

自动重合闸

一 自动重合闸概述
电力系统运行经验表明,架空线路大多数的故 障都是瞬时性故障(如雷击、风害等),永久性故 障一般不到10%,因此,在继电保护动作切除故障 之后,电弧将自动熄灭,绝大多数情况下短路处的 绝缘可以自动恢复。
自动重合闸是一种广泛应用于输电和供电线路上 的有效反事故措施。即当线路出现故障,继电保护使 断路器跳闸后,自动重合闸装置经短时间间隔后使断 路器重新合上。所以,在瞬时性故障发生跳闸的情况 下,自动将断路器重合,不仅提高了供电的安全性, 减少了停电损失,而且还提高了电力系统的暂态稳定 水平,增大了高压线路的送电容量。所以架空线路要 采用自动重合闸装置。
TWJA TWJB TWJC 外部单跳固定
0
>=1
0
不对应起动重合
0 M1
0 >=1
0 >=1
0 M3
0 本保护单跳固定
M2
任一相无流
外部三跳固定
本保护三跳固定
TWJA TWJB TWJC 三相均无流
0 0& 0
0 M7
三重方式
0 >=1
0 >=1
0 M8
不对应起动重合
0 0& 0
同步检定和无压检定重合闸的配置:
无电压检定继电器:即一般的低电压继电器,整定值保 证对侧断路器确实跳闸后才允许重合闸动作(0.5倍额 定电压)。 同步检定继电器:母线侧和线路侧同名相的在铁芯总产 生的磁通差随两侧电压之间的相位差增大而增大,达到 到一定数值后,闭锁重合闸。
(三) 重合闸时限的整定原则
的规定。 3、动作后应能自动复归,准备好再次动作。 4、合闸时间应能整定,能与继电保护相配合。 5、双电源线路应考虑两侧电源间的同步问题,满

自动重合闸的作用及要求

自动重合闸的作用及要求

第六章自动重合闸第一节自动重合闸的作用及要求一、自动重合闸在电力系统中的作用架空线路故障大都是“瞬时性”的故障,在线路被继电保护迅速动作控制断路器断开后,故障点的绝缘水平可自行恢复,故障随即消失。

此时,如果把断开的线路断路器重新合上,就能够恢复正常的供电。

此外,也有“永久性故障”,“永久性故障”在线路被断开之后,它们仍然是存在的,即使合上电源,也不能恢复正常供电。

因此,在电力系统中采用了自动重合闸装置,即是当断路器由继电保护动作或其它非人工操作而跳闸后,能够自动控制断路器重新合上的一种装置。

二、重合闸在电力系统中的作用•大大提高供电的可靠性,减少线路停电的次数。

•在高压输电线路上采用重合闸,可以提高电力系统并列运行的稳定性。

•在架空线路上采用重合闸,可以暂缓架设双回线路,以节约投资。

•对断路器本身由于机构不良或继电保护误动作而引起的误跳闸,也能起纠正的作用。

但是,当重合于永久性故障上时,它也将带来一些不利的影响,如:(1)使电力系统又一次受到故障的冲击;(2)由于断路器在很短的时间内,连续切断两次短路电流,而使其工作条件变得更加恶劣。

三、对自动重合闸装置的基本要求•正常运行时,当断路器由继电保护动作或其它原因而跳闸后,自动重合闸装置均应动作。

•由运行人员手动操作或通过遥控装置将断路器断开时,自动重合闸不应起动。

•继电保护动作切除故障后,自动重合闸装置应尽快发出重合闸脉冲。

•自动重合闸装置动作次数应符合预先的规定。

•自动重合闸装置应有可能在重合闸以前或重合闸以后加速继电保护的动作,以便加速故障的切除。

•在双侧电源的线路上实现重合闸时,重合闸应满足同期合闸条件。

•当断路器处于不正常状态而不允许实现重合闸时,应将自动重合闸装置闭锁。

第二节单侧电源线路的三相一次自动重合闸三相一次自动重合闸就是在输电线路上发生任何故障,继电保护装置将三相断路器断开时,自动重合闸起动,经0.5~1s的延时,发出重合脉冲,将三相断路器一起合上。

双侧电源线路三相自动重合闸

双侧电源线路三相自动重合闸

一、三相快速自动重合闸 三相快速自动重合闸就是当输电线路上发生故障时,继电保护 很快使线路两侧断路器跳开,并随即进行重合。 因此,采用三相快速自动重合闸必须具备以下条件: (1)线路两侧都装有能瞬时切除全线故障的继电保护装置,如 高频保护等。 (2)线路两侧必须具有快速动作的断路器,如空气断路器等。 (3)合闸瞬间所产生的冲击电流不超过规定的允许值。 特点 线路短路开始到重新合闸的整个时间间隔在0.5~0.6s以内; 线路两则电源电动势之间夹角摆开不大,系统不会失去同步; 即使两侧电源电动势间角度摆开较大,因重合周期短,断路 器重合后也会很快被拉入同步。 三相快速重合闸方式具有快速的特点 注意:必须校验线路两侧断路器重新合闸瞬间所产生的冲击电流。
(2)在非同期重合闸所产生的振荡过程中,对重要负荷的影响 应较小。 (3)重合后,电力系统可以迅速恢复同步运行 注意:防止继电保护误动作。
运行方式 1、 不按顺序投入线路两侧断路器的方式 ——在线路两侧均采用单侧电源三相自动重合闸接线。
优点是:接线简单,不需要装设线路电压互感器或电压抽取装 置, 系统恢复并列运行快,从而提高了供电可靠性; 缺点是:在永久性故障时,线路两侧断路器均要重合一次, 对系统产生的冲击次数较多。
2)当两个电压的角频率不相等 存在着角频率差 时,两个电压间相角差δ将随时间t 在0°~360°之间变化。设UM=UL=U,即有效值相等时, 如图所示: 分析可得ΔU与δ的关系为:
U U M U L 2U sin 2 s t
ΔU,随δ角的变化关系曲线如下:
18
同步继电器的工作原理
结构分析
母线电压
磁 通
线路电压
U
当 △U小于一定数值时, φΣ较小,产生的电磁力矩小于弹簧 反作用力矩,于是KY动断触点就闭合。 1)两侧电源电压的幅值不相等: 即压差较大时,即使两电压同相, △U仍较大, φΣ 也较大, 产生的电磁力矩会大于弹簧反作用力矩,于是KY动断触点 不可能闭合。 在电压差小于一定数值时, φΣ足够小,KY动断触点才能 闭合。

自动重合闸

自动重合闸
一般在220kV及以下电压单回联络线、两侧电源之间相互联系薄弱的线路(包括经低一级电压线路弱联系的 电磁环网),特别是大型汽轮发电机组的高压配出线路。
当发生单相接地故障时采用单相重合闸方式,而当发生相间短路时采用三相重合闸方式。
一般在允许使用三相重合闸的线路,但使用单相重合闸对系统或恢复供电有较好效果时,可采用综合重合闸 方式。
启动方式
断路器位置启动包括单相偷跳启动、三相偷跳启动,分别由“单相偷跳允许重合”、“三相偷跳允许重合” 控制字选择投退。
重合闸根据Ⅰ线、Ⅱ线分相跳闸开入确定单相跳闸启动或三相跳闸启动。接入装置的跳闸开入信号要求跳闸 成功后立即返回,装置将根据对应跳闸相无电流加以确认,判断为单相跳闸启动或三相跳闸启动。
对于重合闸的经济效益,应该用无重合闸时,因停电而造成的国民经济损失来衡量。由于重合闸装置本身的 投资很低,工作可靠,因此,在电力系统中获得了广泛应用。
分类
综合重合闸
单相重合闸
三相重合闸
110kV及以上线路大多采用三相一次重合闸,根据运行经验110kV以上的大接地电流系统的高压架空线路上, 短路故障中70%以上是单相接地短路,特别是220kV以上的架空线路,由于线间距离大,单相接地故障甚至高达 90%左右。在这种情况下,如果只把发生故障的一相断开,然后再进行单相重合闸,而未发生故障的两相在重合 闸周期内仍然继续,就能大大提高供电的可靠性和系统并列运行的稳定性。因此,在220kV以上的大接地电流系 统中,广泛采用了单相重合闸。
产品介绍
在电力系统的故障中,大多数是输电线路(特别是架空线路)的故障。运行经验表明,架空线路故障大都是 “瞬时性”的,例如,由雷电引起的绝缘子表面闪络、大风引起的碰线、鸟类以及树枝等物掉落在导线上引起的 短路等,在线路被继电保护迅速断开以后,电弧即行熄灭,外界物体(如树枝、鸟类等)也被电弧烧掉而消失。 此时,如果把断开的线路断路器再合上,就能够恢复正常的供电。因此,称这类故障是“瞬时性故障”。除此之 外,也有“永久性故障”,例如由于线路倒杆、断线、绝缘子击穿或损坏等引起的故障,在线路被断开以后,它 们仍然是存在的。这时,即使在合上电源,由于故障依然存在,线路还要被继电保护再次断开,因而就不能恢复 正常的供电。

第五章 (全)输电线路的自动重合闸

第五章  (全)输电线路的自动重合闸
架空线路故障大都是“暂时性”的故障 ,在线路 被继电保护迅速动作控制断路器断开后 ,故障点的 绝缘水平可自行恢复,故障随即消失。此时,如果把 断开的线路断路器重新合上,就能够恢复正常的供电。 定义:当断路器跳闸以后,能够自动的将断路器 重新合闸的自动重合闸装置。
• 暂时性故障:该类故障断电即逝;重合后可继续供电。 •


在电力系统输电线路上,采用自动重合闸的作用可 归纳如下: 1 、可大大提高供电的可靠性,在线路上发生暂时 性故障时,迅速恢复供电,减少线路停电的次数, 这对单侧电源的单回线路尤为显著; 2 、在有双侧电源的高压输电线路上采用重合闸, 可以提高电力系统并列运行的稳定性; 3、在电网的设计与建设过程中,有些情况下由于 考虑重合闸的作用,即可以暂缓架设双回线路,以 节约投资; 4、自动重合闸可以纠正因断路器本身机构不良或 继电保护误动作而引起的误跳闸。
tu——故障点去游离时间; tz——断路器消弧室及传动机构准备好再次动作时间。
3、一次合闸脉冲元件:保证重合闸装置只重合一次。 4、执行元件:启动合闸回路和信号回路,还可与保 护配合,实现重合闸后加速保护。
2、自动重合闸的动作时间整定
• 单侧电源线路的三相重合闸要带有时限, 因为在断路器跳闸后,要使故障点的电弧 熄灭并使周围介质恢复绝缘强度是需要一 定时间的,必须在这个时间以后进行合闸 才有可能成功;在断路器动作跳闸后,其 触头周围绝缘强度的恢复以及消弧室重新 充满油需要一定的时间。
a、线路两侧均装有全线瞬时动作的保护;
b、有快速动作的QF,如快速空气断路器;
c、冲击电流<允许值。
(2)非同期重合闸方式:当线路两侧断路器跳闸后, 冲击电流均未超过系统中各元件的允许值时,即不管 线路两侧电源是否同步,都将自动合上两侧断路器,

自动重合闸

自动重合闸
DL400-1991《继电保护和安全自动装置技
术规程》规定: 对3kV及以上的架空线路和兼作旁路的母联 断路器或分段断路器,宜装设自动重合闸装 置。 对于低压侧不带电源的降压变压器以及母线, 必要时也可装设自动重合闸装置。
自动重合闸的指标
动作成功的次数 总动作的次数
重合闸成功率=
正确动作参数 正确动作率= 总动作次数
三相一次重合闸工作原理图
优点:简单可靠,还可以纠正 断路器误碰或偷跳,可提高供 电可靠性和系统运行的稳定性 ,在各级电网中具有良好的运 行效果,是所有重合闸的基本 控制开关与断路器位置不对应启动: 启动方式
重合闸的启动方式
断路器控制开关处于“合闸后”状态,线路
由于某种原因,工作人员误碰断路器操作机

双电源线路的三相一次自动重合闸
在使用检查线路无电压方式的重合闸一侧,
当其断路器在正常运行情况下,由于某种原 因 (如误碰跳闸机构、保护误动等)而跳闸 时,由于对侧并未动作,因此,线路上有电 压,因而就不能实现重合。所以一般在检定 无电压的一侧也同时投入同步检定继电器, 两者的触点并联工作。
检无压 检同期
按照断路器跳闸方式分类
三相重合闸
• 当线路上发生任何形式的故障时,均实现三 相自动重合,当重合到永久性故障时,断开 三相后不再重合;
按照断路器跳闸方式分类
单相重合闸
• 当线路上发生单相的故障时,实行单相自动 重合闸(断路器分相操作机构),当重合到 永久性故障时,断开三相不再进行重合,当 线路发生相间故障时,断开三相不进行自动 重合。
自动重合闸
背 景
在电力系统的各种故障中,输电线路(架空线
路)是发生故障几率最多的元件,约占电力 系统总故障的90%。 输电线路故障的性质,大多数是瞬时性故障, 故障几率占输电线路故障的90%左右,而永 久性故障确不到10%,最严重时也不到20%。

自动重合闸

自动重合闸

自动重合闸一、自动重合闸在电力系统中的作用自动重合闸(ZCH )装置是将因故障跳开后的断路器按需要自动投入的一种自动装置。

运行经验表明,架空线路大多数故障是瞬时性的,如: (1)雷击过电压引起绝缘子表面闪络。

(2)大风时的短时碰线。

(3)通过鸟类身体(或树枝)放电。

此时,若保护动——>熄弧——>故障消除——>合断路器——>恢复供电。

手动(停电时间长)效果不显著,自动重合(1”)效果明显。

作用:(P153)(1)对暂时性故障,可迅速恢复供电,从而能提高供电的可靠性。

(2)对两侧电源线路,可提高系统并列运行的稳定性,从而提高线路的输送容量。

(3)可以纠正由于断路器或继电保护误动作引起的误跳闸。

应用:1KV 及以上电压的架空线路或电缆与架空线路的混合线路上,只要装有断路器,一般应装设ZCH (P153,最后一段)。

但是,ZCH 本身不能判断故障是瞬时性的,还是永久性的。

所以若重合于永久性故障时,其不利影响: (1)使电力系统又一次受到故障的冲击;(2)使断路器的工作条件恶化(因为在短时间内连续两次切断短路电流)。

据运行资料统计,ZCH 成功率60~90%,经济效益很高——>广泛应用。

二、对自动重合闸的基本要求:(1)动作迅速。

z u t t t +>,一般0.5”~1.5”。

tu ——故障点去游离,tz ——断路器消弧室及传动机构准备好再次动作。

(2)不允许任意多次重合,即动作次数应符合预先的规定,如一次或两次。

(3)动作后应能自动复归,准备好再次动作。

(4)手动跳闸时不应重合(手动操作或遥控操作)。

(5)手动合闸于故障线路不重合(多属于永久性故障)。

三、三相自动重合闸:(一)单侧电源线路的三相一次重合闸:当线路上故障(单相接地短路、相间短路)——>保护动作跳开三相——>重合闸起动——>合三相:故障是瞬时性的,重合成功;故障是永久性的,保护再次跳开三相,不再重合。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线路自动重合闸(三)
自动重合闸的问题比较琐碎,我们本期继续讨论。

这一期主要了解一下重合闸的前加速、后加速,以及3/2接线方式下的运行要求。

继电保护与重合闸配合可以利用重合闸所提供的条件以加速继电保护切除故障。

也就是我们通常所说的前加速和后加速。

1、重合闸前加速
在如图的低压电网单侧电源线路上,如果只装有简单的电流速断和过流三段式的电流保护。

电流速断保护只能保护本线路的80%。

而过电流保护虽然保护范围长,但动作时间按阶梯型配合。

如果串接的线路很多的话,将造成电源侧的1号过流保护动作时间非常长。

这样即使是在MN线路末端发生短路,1号断路器也需要很长的时间才能切除故障,这对系统是不利的。

为了解决这样的问题,可以再1号断路器设置重合闸装置(ZCH),而其他保护处不设重合闸。

并且设置1号的过流保护在重合闸前使瞬时动作的,重合后它的动作时限才按阶梯型配合动作。

这样的设置称做重合闸前加速。

这样一来,无论是MN线路末端K1短路,还是其他线路任一点K2短路,1号的过流保护都可以瞬时切除故障。

如果是瞬时性故障,1号断路器重合后立即恢复供电。

如果是永久性故障,重合后1号断路器过流保护再按照整定时间动作。

前加速方式第一次跳闸虽然快速,但是有可能牺牲了选择性。

例如在远处K2点短路,1号断路器非选择性瞬时跳闸,这将造成N、P、Q几个变电站全部停电。

K2点的非选择性跳闸也只能再用重合闸来补救。

所以前加速方式通常用于35kV以下不太重要的直配线路上使用。

优点:
(1)能快速切除瞬时性故障;
(2)使用设备少,只需要配一套重合闸装置,简单经济;
缺点:
(1)重合于永久性故障上,故障切除的时间可能较长;
(2)牺牲了选择性,如果重合闸合闸失败,将扩大停电范围;
2、重合闸后加速
所谓后加速就是当线路第一次故障时,保护有选择性动作,然后进行重合。

如果重合于永久性故障上,则在断路器合闸后,则不带时限,加速瞬时切除故障。

在图中各处的多段式保护均按照其整定配合的时限动作,所以第一次跳闸是有选择性的。

如K点短路,若3号保护或断路器拒动,则由1号保护的II段或III段延时动作。

随后1号断路器重合,如果是永久性故障,那么1号保护再次跳闸时就没必要再等延时,所以设置了后加速功能,重合后瞬时切除故障。

“后加速”广泛用于35kV以上电网。

一般是加速距离、零序II段的动作,有时也可以加速III段动作。

但是加速距离保护时要考虑是否经振荡闭锁。

优点:
(1)第一次可以有选择性切除故障,不会扩大停电范围;
(2)对永久性故障重合闸后能瞬时切除。

缺点:
(1)每个断路器都需要装设一套重合闸,与前加速相比较复杂;
(2)第一次切除故障可能带延时;
3、3/2接线方式对重合闸和断路器失灵保护的要求
一般的输电线路保护要发跳闸命令时只跳本线路的一个断路器,重合闸自然也只重合这个断路器,所以重合闸按保护配置。

可是有些输电线路保护要发跳闸命令时要跳两个断路器,例如在如图的3/2接线中,L1一段保护要发跳令时,要跳1、2两个断路器,重合闸自然也要合这两个断路器。

这就涉及到一个重合闸次序的问题。

到底是先合边断路器1,还是先合中断路器2,还是两个一起合?
我们先来看一下断路器失灵保护。

首先看边断路器失灵的情况:如果L1上发生短路,线路保护跳1、2两个断路器。

假如断路器1失灵,其失灵保护应将I母上所有断路器(图中断路器4)都跳开。

如果I母上发生短路,母线保护动作跳母线上所有断路器,假如断路器1失灵,断路器1的失灵保护应将断路器2跳开,并远跳L1对侧断路器7。

由此我们总结:边断路器的失灵保护动作后应该跳开边断路器所在母线上的所有断路器和中断路器,并远跳边断路器所连线路的对端断路器。

再来看中断路器失灵的情况:如果L1上发生了短路,线路保护跳断路器1、2。

如果断路器2失灵,其失灵保护应跳开断路器3,并远跳断路器8。

我们总结:中断路器的失灵保护动作后跳开他两侧的边断路器,并远跳与之相连的线路对端断路器。

结合失灵保护的动作情况,我们回头来看重合闸。

假设L1上的故障时永久性故障。

如果先合中断路器2,保护再次动作,如果断路器2此时失灵,其失灵保护将跳开断路器3、8。

这样将造成线路L2停电。

如果先合边断路器1,保护再次动作,如果断路器1失灵,其失灵保护跳开断路器4、7,线路L2以及其他各线路均不受影响。

所以,重合闸应先合边断路器,后合中断路器。

如果边断路器重合不成功,保护在此将边断路器跳开,此时中断路器就不再重合且发三跳命令。

既然3/2接线中断路器重合闸有一个先后次序。

那么重合闸就不应设置在线路保护装置内,而应按断路器单独设置。

此外边断路器和中断路器的失灵保护跳闸对象也不一样,,所以失灵保护也应按断路器单独设置。

因此3/2接线中,把重合闸和断路器失灵保护做成单独的断路器保护装置,每一个断路器配置一套该装置。

4、小结
通过三期的讨论,我们把线路自动重合闸的相关知识大致地过了一下。

首先了解了自动重合闸的作用和分类,了解了检无压和检同期重合闸;然后学习了自动重合闸装置是如何实现重合闸的,尤其是位置不对应起动方式和保护起动方式,还讨论了重合闸的充电条件和闭锁条件;本期主要讨论了重合闸的前加速、后加速的概念,以及3/2接线方式下的运行要求。

相关文档
最新文档