《材料科学基础》经典习题及答案全解

合集下载

材料科学基础-作业参考答案与解析

材料科学基础-作业参考答案与解析

材料科学基础练习题参考答案第一章原子排列1. 作图表示立方晶系中的(123),(012),(421)晶面和[102],[211],[346]晶向.附图1-1 有关晶面及晶向2. 分别计算面心立方结构与体心立方结构的{100},{110}和{111}晶面族的面间距, 并指出面间距最大的晶面(设两种结构的点阵常数均为a).解由面心立方和体心立方结构中晶面间的几何关系, 可求得不同晶面族中的面间距如附表1-1所示.附表1-1 立方晶系中的晶面间距晶面{100} {110} {111}面间距FCC2a24a33aBCC2a22a36a显然, FCC中{111}晶面的面间距最大, 而BCC中{110}晶面的面间距最大.注意:对于晶面间距的计算, 不能简单地使用公式, 应考虑组成复合点阵时, 晶面层数会增加.3. 分别计算fcc和bcc中的{100},{110}和{111}晶面族的原子面密度和<100>,<110>和<111>晶向族的原子线密度, 并指出两种结构的差别. (设两种结构的点阵常数均为a) 解原子的面密度是指单位晶面内的原子数; 原子的线密度是指晶面上单位长度所包含的原子数. 据此可求得原子的面密度和线密度如附表1-2所示.附表1-2 立方晶系中原子的面密度和线密度晶面/晶向{100} {110} {111} <100> <110> <111>面/线密度BCC21a22a233a1a22a233aFCC22a22a2433a1a2a33a可见, 在BCC中, 原子密度最大的晶面为{110}, 原子密度最大的晶向为<111>; 在FCC 中, 原子密度最大的晶面为{111}, 原子密度最大的晶向为<110>.4. 在(0110)晶面上绘出[2113]晶向.解详见附图1-2.附图1-2 六方晶系中的晶向5. 在一个简单立方二维晶体中, 画出一个正刃型位错和一个负刃型位错. 试求:(1) 用柏氏回路求出正、负刃型位错的柏氏矢量.(2) 若将正、负刃型位错反向时, 说明其柏氏矢量是否也随之反向.(3) 具体写出该柏氏矢量的方向和大小.(4) 求出此两位错的柏氏矢量和.解正负刃型位错示意图见附图1-3(a)和附图1-4(a).(1) 正负刃型位错的柏氏矢量见附图1-3(b)和附图1-4(b).(2) 显然, 若正、负刃型位错线反向, 则其柏氏矢量也随之反向.(3) 假设二维平面位于YOZ坐标面, 水平方向为Y轴, 则图示正、负刃型位错方向分别为[010]和[010], 大小均为一个原子间距(即点阵常数a).(4) 上述两位错的柏氏矢量大小相等, 方向相反, 故其矢量和等于0.6. 设图1-72所示立方晶体的滑移面ABCD平行于晶体的上下底面, 该滑移面上有一正方形位错环. 如果位错环的各段分别与滑移面各边平行, 其柏氏矢量b // AB, 试解答:(1) 有人认为“此位错环运动离开晶体后, 滑移面上产生的滑移台阶应为4个b”, 这种说法是否正确? 为什么?(2) 指出位错环上各段位错线的类型, 并画出位错移出晶体后, 晶体的外形、滑移方向和滑移量. (设位错环线的方向为顺时针方向)图1-72 滑移面上的正方形位错环 附图1-5 位错环移出晶体引起的滑移解 (1) 这种看法不正确. 在位错环运动移出晶体后, 滑移面上下两部分晶体相对移动的距离是由其柏氏矢量决定的. 位错环的柏氏矢量为b , 故其相对滑移了一个b 的距离.(2) A ′B ′为右螺型位错, C ′D ′为左螺型位错, B ′C ′为正刃型位错, D ′A ′为负刃型位错. 位错运动移出晶体后滑移方向及滑移量见附图1-5.7. 设面心立方晶体中的(111)晶面为滑移面, 位错滑移后的滑移矢量为[110]2a .(1) 在晶胞中画出此柏氏矢量b 的方向并计算出其大小.(2) 在晶胞中画出引起该滑移的刃型位错和螺型位错的位错线方向, 并写出此二位错线的晶向指数.解 (1) 柏氏矢量等于滑移矢量, 因此柏氏矢量的方向为[110], 大小为2/2a .(2) 刃型位错与柏氏矢量垂直, 螺型位错与柏氏矢量平行, 晶向指数分别为[112]和[110], 详见附图1-6.附图1-6 位错线与其柏氏矢量、滑移矢量8. 若面心立方晶体中有[101]2a b =的单位位错及[121]6a b =的不全位错, 此二位错相遇后产生位错反应.(1) 此反应能否进行? 为什么?(2) 写出合成位错的柏氏矢量, 并说明合成位错的性质.解 (1) 能够进行.因为既满足几何条件:[111]3a b b ==∑∑后前,又满足能量条件: . 22222133b a b a =>=∑∑后前. (2) [111]3a b =合, 该位错为弗兰克不全位错. 9. 已知柏氏矢量的大小为b = 0.25nm, 如果对称倾侧晶界的取向差θ = 1° 和10°, 求晶界上位错之间的距离. 从计算结果可得到什么结论?解 根据bD θ≈, 得到θ = 1°,10° 时, D ≈14.3nm, 1.43nm. 由此可知, θ = 10°时位错之间仅隔5~6个原子间距, 位错密度太大, 表明位错模型已经不适用了.第二章 固体中的相结构1. 已知Cd, In, Sn, Sb 等元素在Ag 中的固熔度极限(摩尔分数)分别为0.435, 0.210, 0.130, 0.078; 它们的原子直径分别为0.3042 nm, 0.314 nm, 0.316 nm, 0.3228 nm; Ag 的原子直径为0.2883 nm. 试分析其固熔度极限差异的原因, 并计算它们在固熔度极限时的电子浓度.答: 在原子尺寸因素相近的情况下, 熔质元素在一价贵金属中的固熔度(摩尔分数)受原子价因素的影响较大, 即电子浓度e /a 是决定固熔度(摩尔分数)的一个重要因素, 而且电子浓度存在一个极限值(约为1.4). 电子浓度可用公式A B B B (1)c Z x Z x =-+计算. 式中, Z A , Z B 分别为A, B 组元的价电子数; x B 为B 组元的摩尔分数. 因此, 随着熔质元素价电子数的增加, 极限固熔度会越来越小.Cd, In, Sn, Sb 等元素与Ag 的原子直径相差不超过15%(最小的Cd 为5.5%, 最大的Sb 为11.96%), 满足尺寸相近原则, 这些元素的原子价分别为2, 3, 4, 5价, Ag 为1价, 据此推断它们的固熔度极限越来越小, 实际情况正好反映了这一规律; 根据上面的公式可以计算出它们在固熔度(摩尔分数)极限时的电子浓度分别为1.435, 1.420, 1.390, 1.312.2. 碳可以熔入铁中而形成间隙固熔体, 试分析是α-Fe 还是γ-Fe 能熔入较多的碳. 答: α-Fe 为体心立方结构, 致密度为0.68; γ-Fe 为面心立方结构, 致密度为0.74. 显然, α-Fe 中的间隙总体积高于γ-Fe, 但由于α-Fe 的间隙数量多, 单个间隙半径却较小, 熔入碳原子将会产生较大的畸变, 因此, 碳在γ-Fe 中的固熔度较α-Fe 的大.3. 为什么只有置换固熔体的两个组元之间才能无限互熔, 而间隙固熔体则不能?答: 这是因为形成固熔体时, 熔质原子的熔入会使熔剂结构产生点阵畸变, 从而使体系能量升高. 熔质原子与熔剂原子尺寸相差越大, 点阵畸变的程度也越大, 则畸变能越高, 结构的稳定性越低, 熔解度越小. 一般来说, 间隙固熔体中熔质原子引起的点阵畸变较大,故不能无限互熔, 只能有限熔解.第三章 凝固1. 分析纯金属生长形态与温度梯度的关系.答: 纯金属生长形态是指晶体宏观长大时固-液界面的形貌. 界面形貌取决于界面前沿液相中的温度梯度.(1) 平面状长大: 当液相具有正温度梯度时, 晶体以平直界面方式推移长大. 此时, 界面上任何偶然的、小的凸起深入液相时, 都会使其过冷度减小, 长大速率降低或停止长大, 而被周围部分赶上, 因而能保持平直界面的推移. 长大过程中晶体沿平行温度梯度的方向生长, 或沿散热的反方向生长, 而其它方向的生长则受到限制.(2) 树枝状长大: 当液相具有负温度梯度时, 晶体将以树枝状方式生长. 此时, 界面上偶然的凸起深入液相时, 由于过冷度的增大, 长大速率越来越大; 而它本身生长时又要释放结晶潜热, 不利于近旁的晶体生长, 只能在较远处形成另一凸起. 这就形成了枝晶的一次轴, 在一次轴成长变粗的同时, 由于释放潜热使晶枝侧旁液体中也呈现负温度梯度, 于是在一次轴上又会长出小枝来, 称为二次轴, 在二次轴上又长出三次轴……由此而形成树枝状骨架, 故称为树枝晶(简称枝晶).2. 简述纯金属晶体长大机制及其与固-液界面微观结构的关系.答: 晶体长大机制是指晶体微观长大方式, 即液相原子添加到固相的方式, 它与固-液界面的微观结构有关.(1) 垂直长大方式: 具有粗糙界面的物质, 因界面上约有50% 的原子位置空着, 这些空位都可以接受原子, 故液相原子可以进入空位, 与晶体连接, 界面沿其法线方向垂直推移, 呈连续式长大.(2) 横向(台阶)长大方式: 包括二维晶核台阶长大机制和晶体缺陷台阶长大机制, 具有光滑界面的晶体长大往往采取该方式. 二维晶核模式, 认为其生长主要是利用系统的能量起伏, 使液相原子在界面上通过均匀形核形成一个原子厚度的二维薄层状稳定的原子集团, 然后依靠其周围台阶填充原子, 使二维晶核横向长大, 在该层填满后, 则在新的界面上形成新的二维晶核, 继续填满, 如此反复进行.晶体缺陷方式, 认为晶体生长是利用晶体缺陷存在的永不消失的台阶(如螺型位错的台阶或挛晶的沟槽)长大的.第四章 相图1. 在Al-Mg 合金中, x Mg 为0.15, 计算该合金中镁的w Mg 为多少.解 设Al 的相对原子量为M Al , 镁的相对原子量为M Mg , 按1mol Al-Mg 合金计算, 则镁的质量分数可表示为Mg MgMg Al Al Mg Mg 100%x M w x M x M =⨯+.将x Mg = 0.15, x Al = 0.85, M Mg = 24, M Al = 27代入上式中, 得到w Mg = 13.56%.2. 根据图4-117所示二元共晶相图, 试完成:(1) 分析合金I, II的结晶过程, 并画出冷却曲线.(2) 说明室温下合金I, II的相和组织是什么, 并计算出相和组织组成物的相对量.(3) 如果希望得到共晶组织加上相对量为5%的β初的合金, 求该合金的成分.图4-117 二元共晶相图附图4-1 合金I的冷却曲线附图4-2 合金II的冷却曲线解 (1) 合金I的冷却曲线参见附图4-1, 其结晶过程如下:1以上, 合金处于液相;1~2时, 发生匀晶转变L→α, 即从液相L中析出固熔体α, L和α的成分沿液相线和固相线变化, 达到2时, 凝固过程结束;2时, 为α相;2~3时, 发生脱熔转变, α→βII.合金II的冷却曲线参见附图4-2, 其结晶过程如下:1以上, 处于均匀液相;1~2时, 进行匀晶转变L →β;2时, 两相平衡共存, 0.50.9L β;2~2′ 时, 剩余液相发生共晶转变0.50.20.9L βα+;2~3时, 发生脱熔转变α→βII .(2) 室温下, 合金I 的相组成物为α + β, 组织组成物为α + βII .相组成物相对量计算如下:αβ0.900.20100%82%0.900.050.200.05100%18%0.900.05w w -=⨯=--=⨯=- 组织组成物的相对量与相的一致.室温下, 合金II 的相组成物为α + β, 组织组成物为β初 + (α+β).相组成物相对量计算如下:αβ0.900.80100%12%0.900.050.800.05100%88%0.900.05w w -=⨯=--=⨯=- 组织组成物相对量计算如下:β(α+β)0.800.50100%75%0.900.500.900.80100%25%0.900.50w w -=⨯=--=⨯=-初 (3) 设合金的成分为w B = x , 由题意知该合金为过共晶成分, 于是有β0.50100%5%0.900.50x w -=⨯=-初 所以, x = 0.52, 即该合金的成分为w B = 0.52.3. 计算w C 为0.04的铁碳合金按亚稳态冷却到室温后组织中的珠光体、二次渗碳体和莱氏体的相对量, 并计算组成物珠光体中渗碳体和铁素体及莱氏体中二次渗碳体、共晶渗碳体与共析渗碳体的相对量.解 根据Fe-Fe 3C 相图, w C = 4%的铁碳合金为亚共晶铸铁, 室温下平衡组织为 P + Fe 3C II + L d ′, 其中P 和Fe 3C II 系由初生奥氏体转变而来, 莱氏体则由共晶成分的液相转变而成, 因此莱氏体可由杠杆定律直接计算, 而珠光体和二次渗碳体则可通过两次使用杠杆定律间接计算出来.L d ′ 相对量: d L 4 2.11100%86.3%4.3 2.11w '-=⨯=-. Fe 3C II 相对量: 3II Fe C 4.34 2.110.77100% 3.1%4.3 2.11 6.690.77w --=⨯⨯=--.P 相对量: P 4.34 6.69 2.11100%10.6%4.3 2.11 6.690.77w --=⨯⨯=--. 珠光体中渗碳体和铁素体的相对量的计算则以共析成分点作为支点, 以w C = 0.001%和w C = 6.69%为端点使用杠杆定律计算并与上面计算得到的珠光体相对量级联得到.P 中F 相对量: F P 6.690.77100%9.38%6.690.001w w -=⨯⨯=-. P 中Fe 3C 相对量: 3Fe C 10.6%9.38% 1.22%w =-=.至于莱氏体中共晶渗碳体、二次渗碳体及共析渗碳体的相对量的计算, 也需采取杠杆定律的级联方式, 但必须注意一点, 共晶渗碳体在共晶转变线处计算, 而二次渗碳体及共析渗碳体则在共析转变线处计算.L d ′ 中共晶渗碳体相对量: d Cm L 4.3 2.11100%41.27%6.69 2.11w w '-=⨯⨯=-共晶L d ′ 中二次渗碳体相对量: d Cm L 6.69 4.3 2.110.77100%10.2%6.69 2.11 6.690.77w w '--=⨯⨯⨯=--II L d ′ 中共析渗碳体相对量:d Cm L 6.69 4.3 6.69 2.110.770.0218100% 3.9%6.69 2.11 6.690.77 6.690.0218w w '---=⨯⨯⨯⨯=---共析 4. 根据下列数据绘制Au-V 二元相图. 已知金和钒的熔点分别为1064℃和1920℃. 金与钒可形成中间相β(AuV 3); 钒在金中的固熔体为α, 其室温下的熔解度为w V = 0.19; 金在钒中的固熔体为γ, 其室温下的熔解度为w Au = 0.25. 合金系中有两个包晶转变, 即1400V V V 1522V V V (1) β(0.4)L(0.25)α(0.27)(2) γ(0.52)L(0.345)β(0.45)w w w w w w =+===+==℃℃解 根据已知数据绘制的Au-V 二元相图参见附图4-3.附图4-3 Au-V 二元相图第五章 材料中的扩散1. 设有一条直径为3cm 的厚壁管道, 被厚度为0.001cm 的铁膜隔开, 通过输入氮气以保持在膜片一边氮气浓度为1000 mol/m 3; 膜片另一边氮气浓度为100 mol/m 3. 若氮在铁中700℃时的扩散系数为4×10-7 cm 2 /s, 试计算通过铁膜片的氮原子总数.解 设铁膜片左右两边的氮气浓度分别为c 1, c 2, 则铁膜片处浓度梯度为7421510010009.010 mol /m 110c c c c x x x --∂∆-≈===-⨯∂∆∆⨯ 根据扩散第一定律计算出氮气扩散通量为 722732410(10)(9.010) 3.610 mol/(m s)c J D x---∂=-=-⨯⨯⨯-⨯=⨯∂ 于是, 单位时间通过铁膜片的氮气量为 3-22-63.610(310) 2.5410 mol/s 4J A π-=⨯⨯⨯⨯=⨯最终得到单位时间通过铁膜片的氮原子总数为-62318-1A () 2.5410 6.02102 3.0610 s N J A N =⨯=⨯⨯⨯⨯=⨯第六章 塑性变形1. 铜单晶体拉伸时, 若力轴为 [001] 方向, 临界分切应力为0.64 MPa, 问需要多大的拉伸应力才能使晶体开始塑性变形?解 铜为面心立方金属, 其滑移系为 {111}<110>, 4个 {111} 面构成一个八面体, 详见教材P219中的图6-12.当拉力轴为 [001] 方向时, 所有滑移面与力轴间的夹角相同, 且每个滑移面上的三个滑移方向中有两个与力轴的夹角相同, 另一个为硬取向(λ = 90°). 于是, 取滑移系(111)[101]进行计算.222222222222k s cos 3001111cos 2001(1)01cos cos 60.646 1.57 MPa.m mϕλϕλτσ==++⨯++==++⨯-++=====即至少需要1.57 MPa 的拉伸应力才能使晶体产生塑性变形.2. 什么是滑移、滑移线、滑移带和滑移系? 作图表示α-Fe, Al, Mg 中的最重要滑移系. 那种晶体的塑性最好, 为什么?答: 滑移是晶体在切应力作用下一部分相对于另一部分沿一定的晶面和晶向所作的平行移动; 晶体的滑移是不均匀的, 滑移部分与未滑移部分晶体结构相同. 滑移后在晶体表面留下台阶, 这就是滑移线的本质. 相互平行的一系列滑移线构成所谓滑移带. 晶体发生滑移时, 某一滑移面及其上的一个滑移方向就构成了一个滑移系.附图6-1 三种晶体点阵的主要滑移系α-Fe具有体心立方结构, 主要滑移系可表示为 {110}<111>, 共有6×2 = 12个; Al 具有面心立方结构, 其滑移系可表示为 {111}<110>, 共有4×3 = 12个; Mg具有密排六方结构, 主要滑移系可表示为{0001}1120<>, 共有1×3 = 3个. 晶体的塑性与其滑移系的数量有直接关系, 滑移系越多, 塑性越好; 滑移系数量相同时, 又受滑移方向影响, 滑移方向多者塑性较好, 因此, 对于α-Fe, Al, Mg三种金属, Al的塑性最好, Mg的最差, α-Fe 居中. 三种典型结构晶体的重要滑移系如附图6-1所示.3. 什么是临界分切应力? 影响临界分切应力的主要因素是什么? 单晶体的屈服强度与外力轴方向有关吗? 为什么?答:滑移系开动所需的作用于滑移面上、沿滑移方向的最小分切应力称为临界分切应力.临界分切应力τk的大小主要取决于金属的本性, 与外力无关. 当条件一定时, 各种晶体的临界分切应力各有其定值. 但它是一个组织敏感参数, 金属的纯度、变形速度和温度、金属的加工和热处理状态都对它有很大影响.如前所述, 在一定条件下, 单晶体的临界分切应力保持为定值, 则根据分切应力与外加轴向应力的关系: σs= τk/ m, m为取向因子, 反映了外力轴与滑移系之间的位向关系, 因此, 单晶体的屈服强度与外力轴方向关系密切. m越大, 则屈服强度越小, 越有利于滑移.4. 孪生与滑移主要异同点是什么? 为什么在一般条件下进行塑性变形时锌中容易出现挛晶, 而纯铁中容易出现滑移带?答: 孪生与滑移的异同点如附表6-1所示.附表6-1 晶体滑移与孪生的比较锌为密排六方结构金属, 主要滑移系仅3个, 因此塑性较差, 滑移困难, 往往发生孪生变形, 容易出现挛晶; 纯铁为体心立方结构金属, 滑移系较多, 共有48个, 其中主要滑移系有12个, 因此塑性较好, 往往发生滑移变形, 容易出现滑移带.第七章 回复与再结晶1. 已知锌单晶体的回复激活能为8.37×104J/mol, 将冷变形的锌单晶体在-50 ℃进行回复处理, 如去除加工硬化效应的25% 需要17 d, 问若在5 min 内达到同样效果, 需将温度提高多少摄氏度?解 根据回复动力学, 采用两个不同温度将同一冷变形金属的加工硬化效应回复到同样程度, 回复时间、温度满足下述关系:122111exp t Q t R T T ⎛⎫⎛⎫=-- ⎪ ⎪ ⎪⎝⎭⎝⎭整理后得到221111ln T t R T Q t =+.将41211223 K,/5/(172460),8.3710 J/mol, 8.314 J/(mol K)4896T t t Q R ==⨯⨯==⨯=⋅代入上式得到2274.7 K T =.因此, 需将温度提高21274.722351.7 T T T ∆=-=-=℃.2. 纯铝在553 ℃ 和627 ℃ 等温退火至完成再结晶分别需要40 h 和1 h, 试求此材料的再结晶激活能.解 再结晶速率v 再与温度T 的关系符合阿累尼乌斯(Arrhenius)公式, 即exp()Q v A RT=-再 其中, Q 为再结晶激活能, R 为气体常数.如果在两个不同温度T 1, T 2进行等温退火, 欲产生同样程度的再结晶所需时间分别为t 1, t 2, 则122112122111exp[()]ln(/)t Q t R T T RTT t t Q T T =--⇒=-依题意, 有T 1 = 553 + 273 = 826 K, T 2 = 627 + 273 = 900 K, t 1 = 40 h, t 2 = 1 h, 则58.314826900ln(40/1)3.0810J/mol 900826Q ⨯⨯⨯=⨯-3. 说明金属在冷变形、回复、再结晶及晶粒长大各阶段的显微组织、机械性能特点与主要区别.答: 金属在冷变形、回复、再结晶及晶粒长大各阶段的显微组织、机械性能特点与主要区别详见附表7-1.附表7-1 金属在冷变形、回复、再结晶及晶粒长大各阶段的显微组织、机械性能第八章固态相变。

材料科学基础习题与参考答案(doc 14页)(优质版)

材料科学基础习题与参考答案(doc 14页)(优质版)

第一章材料的结构一、解释以下基本概念空间点阵、晶格、晶胞、配位数、致密度、共价键、离子键、金属键、组元、合金、相、固溶体、中间相、间隙固溶体、置换固溶体、固溶强化、第二相强化。

二、填空题1、材料的键合方式有四类,分别是(),(),(),()。

2、金属原子的特点是最外层电子数(),且与原子核引力(),因此这些电子极容易脱离原子核的束缚而变成()。

3、我们把原子在物质内部呈()排列的固体物质称为晶体,晶体物质具有以下三个特点,分别是(),(),()。

4、三种常见的金属晶格分别为(),()和()。

5、体心立方晶格中,晶胞原子数为(),原子半径与晶格常数的关系为(),配位数是(),致密度是(),密排晶向为(),密排晶面为(),晶胞中八面体间隙个数为(),四面体间隙个数为(),具有体心立方晶格的常见金属有()。

6、面心立方晶格中,晶胞原子数为(),原子半径与晶格常数的关系为(),配位数是(),致密度是(),密排晶向为(),密排晶面为(),晶胞中八面体间隙个数为(),四面体间隙个数为(),具有面心立方晶格的常见金属有()。

7、密排六方晶格中,晶胞原子数为(),原子半径与晶格常数的关系为(),配位数是(),致密度是(),密排晶向为(),密排晶面为(),具有密排六方晶格的常见金属有()。

8、合金的相结构分为两大类,分别是()和()。

9、固溶体按照溶质原子在晶格中所占的位置分为()和(),按照固溶度分为()和(),按照溶质原子与溶剂原子相对分布分为()和()。

10、影响固溶体结构形式和溶解度的因素主要有()、()、()、()。

11、金属化合物(中间相)分为以下四类,分别是(),(),(),()。

12、金属化合物(中间相)的性能特点是:熔点()、硬度()、脆性(),因此在合金中不作为()相,而是少量存在起到第二相()作用。

13、CuZn、Cu5Zn8、Cu3Sn的电子浓度分别为(),(),()。

14、如果用M表示金属,用X表示非金属,间隙相的分子式可以写成如下四种形式,分别是(),(),(),()。

(完整版)材料科学基础习题及答案

(完整版)材料科学基础习题及答案

第一章材料的结构一、解释以下基本概念空间点阵、晶格、晶胞、配位数、致密度、共价键、离子键、金属键、组元、合金、相、固溶体、中间相、间隙固溶体、置换固溶体、固溶强化、第二相强化.二、填空题1、材料的键合方式有四类,分别是(),( ),(),().2、金属原子的特点是最外层电子数(),且与原子核引力(),因此这些电子极容易脱离原子核的束缚而变成( )。

3、我们把原子在物质内部呈( )排列的固体物质称为晶体,晶体物质具有以下三个特点,分别是(),( ),( ).4、三种常见的金属晶格分别为(),( )和().5、体心立方晶格中,晶胞原子数为( ),原子半径与晶格常数的关系为( ),配位数是(),致密度是( ),密排晶向为(),密排晶面为( ),晶胞中八面体间隙个数为(),四面体间隙个数为( ),具有体心立方晶格的常见金属有()。

6、面心立方晶格中,晶胞原子数为( ),原子半径与晶格常数的关系为(),配位数是( ),致密度是(),密排晶向为( ),密排晶面为(),晶胞中八面体间隙个数为( ),四面体间隙个数为(),具有面心立方晶格的常见金属有()。

7、密排六方晶格中,晶胞原子数为(),原子半径与晶格常数的关系为(),配位数是(),致密度是(),密排晶向为( ),密排晶面为(),具有密排六方晶格的常见金属有( )。

8、合金的相结构分为两大类,分别是()和( )。

9、固溶体按照溶质原子在晶格中所占的位置分为()和(),按照固溶度分为()和(),按照溶质原子与溶剂原子相对分布分为()和()。

10、影响固溶体结构形式和溶解度的因素主要有()、()、()、()。

11、金属化合物(中间相)分为以下四类,分别是( ),( ),( ),( )。

12、金属化合物(中间相)的性能特点是:熔点()、硬度( )、脆性(),因此在合金中不作为()相,而是少量存在起到第二相()作用。

13、CuZn、Cu5Zn8、Cu3Sn的电子浓度分别为(),( ),( ).14、如果用M表示金属,用X表示非金属,间隙相的分子式可以写成如下四种形式,分别是( ),(),( ),( ).15、Fe3C的铁、碳原子比为(),碳的重量百分数为(),它是( )的主要强化相。

《材料科学基础》习题附答案

《材料科学基础》习题附答案

第二章思考题与例题1. 离子键、共价键、分子键和金属键的特点,并解释金属键结合的固体材料的密度比离子键或共价键固体高的原因?2. 从结构、性能等方面描述晶体与非晶体的区别。

3. 何谓理想晶体?何谓单晶、多晶、晶粒及亚晶?为什么单晶体成各向异性而多晶体一般情况下不显示各向异性?何谓空间点阵、晶体结构及晶胞?晶胞有哪些重要的特征参数?4. 比较三种典型晶体结构的特征。

(Al、α-Fe、Mg三种材料属何种晶体结构?描述它们的晶体结构特征并比较它们塑性的好坏并解释。

)何谓配位数?何谓致密度?金属中常见的三种晶体结构从原子排列紧密程度等方面比较有何异同?5. 固溶体和中间相的类型、特点和性能。

何谓间隙固溶体?它与间隙相、间隙化合物之间有何区别?(以金属为基的)固溶体与中间相的主要差异(如结构、键性、性能)是什么?6. 已知Cu的原子直径为 2.56A,求Cu的晶格常数,并计算1mm3Cu的原子数。

7. 已知Al相对原子质量Ar(Al)=26.97,原子半径γ=0.143nm,求Al晶体的密度。

8 bcc铁的单位晶胞体积,在912℃时是0.02464nm3;fcc铁在相同温度时其单位晶胞体积是0.0486nm3。

当铁由bcc转变为fcc时,其密度改变的百分比为多少?9. 何谓金属化合物?常见金属化合物有几类?影响它们形成和结构的主要因素是什么?其性能如何?10. 在面心立方晶胞中画出[012]和[123]晶向。

在面心立方晶胞中画出(012)和(123)晶面。

11. 设晶面(152)和(034)属六方晶系的正交坐标表述,试给出其四轴坐标的表示。

反之,求(31)及(2112)的正交坐标的表示。

(练习),上题中均改为相应晶向指数,求12相互转换后结果。

12.在一个立方晶胞中确定6个表面面心位置的坐标,6个面心构成一个正八面体,指出这个八面体各个表面的晶面指数,各个棱边和对角线的晶向指数。

13. 写出立方晶系的{110}、{100}、{111}、{112}晶面族包括的等价晶面,请分别画出。

材料科学基础习题及答案

材料科学基础习题及答案

材料科学基础习题及答案第一章材料科学基础1.作图表示立方晶体的()()()421,210,123晶面及[][][]346,112,021晶向。

2.在六方晶体中,绘出以下常见晶向[][][][][]0121,0211,0110,0112,0001等。

3.写出立方晶体中晶面族{100},{110},{111},{112}等所包括的等价晶面。

4.镁的原子堆积密度和所有hcp 金属一样,为0.74。

试求镁单位晶胞的体积。

已知Mg 的密度3Mg/m 74.1=mg ρ,相对原子质量为24.31,原子半径r=0.161nm 。

5.当CN=6时+Na 离子半径为0.097nm ,试问:1)当CN=4时,其半径为多少?2)当CN=8时,其半径为多少?6.试问:在铜(fcc,a=0.361nm )的<100>方向及铁(bcc,a=0.286nm)的<100>方向,原子的线密度为多少?7.镍为面心立方结构,其原子半径为nm 1246.0=Ni r 。

试确定在镍的(100),(110)及(111)平面上12mm 中各有多少个原子。

8.石英()2SiO 的密度为2.653Mg/m 。

试问: 1)13m 中有多少个硅原子(与氧原子)?2)当硅与氧的半径分别为0.038nm 与0.114nm 时,其堆积密度为多少(假设原子是球形的)?9.在800℃时1010个原子中有一个原子具有足够能量可在固体内移动,而在900℃时910个原子中则只有一个原子,试求其激活能(J/原子)。

10.若将一块铁加热至850℃,然后快速冷却到20℃。

试计算处理前后空位数应增加多少倍(设铁中形成一摩尔空位所需要的能量为104600J )。

11.设图1-18所示的立方晶体的滑移面ABCD 平行于晶体的上、下底面。

若该滑移面上有一正方形位错环,如果位错环的各段分别与滑移面各边平行,其柏氏矢量b ∥AB 。

1)有人认为“此位错环运动移出晶体后,滑移面上产生的滑移台阶应为4个b ,试问这种看法是否正确?为什么?2)指出位错环上各段位错线的类型,并画出位错运动出晶体后,滑移方向及滑移量。

材料科学基础习题及参考答案

材料科学基础习题及参考答案

材料科学基础参考答案材料科学基础第一次作业1.举例说明各种结合键的特点。

⑴金属键:电子共有化,无饱和性,无方向性,趋于形成低能量的密堆结构,金属受力变形时不会破坏金属键,良好的延展性,一般具有良好的导电和导热性。

⑵离子键:大多数盐类、碱类和金属氧化物主要以离子键的方式结合,以离子为结合单元,无方向性,无饱和性,正负离子静电引力强,熔点和硬度均较高。

常温时良好的绝缘性,高温熔融状态时,呈现离子导电性。

⑶共价键:有方向性和饱和性,原子共用电子对,配位数比较小,结合牢固,具有结构稳定、熔点高、质硬脆等特点,导电能力差。

⑷范德瓦耳斯力:无方向性,无饱和性,包括静电力、诱导力和色散力。

结合较弱。

⑸氢键:极性分子键,存在于HF,H2O,NF3有方向性和饱和性,键能介于化学键和范德瓦尔斯力之间。

2.在立方晶体系的晶胞图中画出以下晶面和晶向:(1 0 2)、(1 1 -2)、(-2 1 -3),[1 1 0],[1 1 -1],[1 -2 0]和[-3 2 1]。

(213)3. 写出六方晶系的{1 1 -20},{1 0 -1 2}晶面族和<2 -1 -1 0>,<-1 0 1 1>晶向族中各等价晶面及等价晶向的具体指数。

{1120}的等价晶面:(1120)(2110)(1210)(1120)(2110)(1210){1012}的等价晶面:(1012)(1102)(0112)(1012)(1102)(0112) (1012)(1102)(0112)(1012)(1102)(0112)2110<>的等价晶向:[2110][1210][1120][2110][1210][1120]1011<>的等价晶向:[1011][1101][0111][0111][1101][1011][1011][1101][0111][0111][1101][1011]4立方点阵的某一晶面(hkl )的面间距为M /,其中M 为一正整数,为晶格常数。

材料科学基础试题及答案

材料科学基础试题及答案

材料科学基础试题及答案一、选择题(每题2分,共20分)1. 材料科学主要研究的是材料的哪些方面?A. 材料的加工方法B. 材料的微观结构C. 材料的性能D. 所有以上选项答案:D2. 金属材料的强度主要取决于其什么?A. 化学成分B. 微观结构C. 宏观尺寸D. 外部环境答案:B3. 以下哪个不是材料的力学性能?A. 硬度B. 韧性C. 导热性D. 弹性答案:C4. 陶瓷材料通常具有哪些特性?A. 高熔点B. 低热导率C. 低电导率D. 所有以上选项答案:D5. 聚合物材料的哪些特性使其在许多应用中受到青睐?A. 可塑性B. 轻质C. 良好的化学稳定性D. 所有以上选项答案:D二、填空题(每空1分,共10分)6. 材料的微观结构包括_______、_______和_______。

答案:晶粒、晶界、相界7. 材料的热处理过程通常包括_______、_______和_______。

答案:加热、保温、冷却8. 金属的塑性变形主要通过_______机制进行。

答案:位错滑移9. 材料的断裂韧性是指材料在_______条件下抵抗断裂的能力。

答案:受到冲击或应力集中10. 复合材料是由两种或两种以上不同_______的材料组合而成。

答案:性质三、简答题(每题10分,共30分)11. 简述金属的疲劳现象及其影响因素。

答案:金属疲劳是指金属在反复加载和卸载过程中,即使应力水平低于材料的屈服强度,也可能发生断裂的现象。

影响金属疲劳的因素包括应力幅度、加载频率、材料的微观结构、环境条件等。

12. 解释什么是相图,并说明其在材料科学中的重要性。

答案:相图是表示不同组分在特定条件下的相平衡状态的图形。

它在材料科学中的重要性体现在帮助科学家和工程师理解材料的相变行为,预测材料的性能,以及指导材料的加工和应用。

13. 描述聚合物材料的玻璃化转变温度(Tg)及其对聚合物性能的影响。

答案:玻璃化转变温度是聚合物从玻璃态转变为橡胶态的温度。

《材料科学基础》习题及参考答案

《材料科学基础》习题及参考答案

答案
2.试从晶体结构的角度,说明间隙固溶体、间隙相及
间隙化合物之间的区别。
答案
返回
3. 何谓玻璃?从内部原子排列和性能上看,
非晶态和晶态物质主要区别何在?
答案
4.有序合金的原子排列有何特点?这种排列
和结合键有什么关系?为什么许多有序合金
在高温下变成无序?
答案
5. 试分析H、N、C、B在Fe和Fe中形成固熔
6.离异共晶
答案
7.伪共晶
答案
8.杠杆定理
答案
返回
二、综合题
1.在图4—30所示相图中,请指出: (1) 水平线上反应的性质; (2) 各区域的组织组成物; (3) 分析合金I,II的冷却过程; (4) 合金工,II室温时组织组成物的相对量表达式。
答案
返回
2.固溶体合金的相图如下图所示,试根据相图确定: ①成分为ω(B)=40%的合金首
答案
返回
7. 根据图7-9所示的A1-Si共晶相图,试分析图中(a),(b),(c)3个金相组 织属什么成分并说明理由。指出细化此合金铸态组织的途径。
答案
返回
8. 青铜( Cu-Sn)和黄铜C Cu--fin)相图如图7-15(a),(b)所示:
①叙述Cu-10% Sn合金的不平衡冷却过程,并指出室温时的 金相组织。
化时是否会出现过热,为什么?
答案
3.欲获得金属玻璃,为什么一般选用液相线很陡,
从而有较低共晶温度的二元系?
答案
4.比较说明过冷度、临界过冷度、动态过冷度等
概念的区别。
答案
5.分析纯金属生长形态与温度梯度的关系。 答案
返回
6.简述纯金属晶体长大的机制。

材料科学基础试题及答案

材料科学基础试题及答案

材料科学基础试题及答案一、选择题1. 材料科学中的“四要素”是指()。

A. 组成、结构、性能、加工B. 组成、结构、性能、应用C. 材料、工艺、设备、产品D. 材料、结构、性能、应用答案:B2. 下列哪种材料属于金属材料?A. 碳纤维B. 聚氯乙烯C. 铝合金D. 陶瓷答案:C3. 材料的屈服强度与抗拉强度之间的关系是()。

A. 屈服强度大于抗拉强度B. 屈服强度等于抗拉强度C. 屈服强度小于抗拉强度D. 无固定关系答案:A4. 非晶态材料的特点之一是()。

A. 高强度B. 各向同性C. 无长程有序D. 高导热性答案:C5. 下列关于纳米材料的描述,正确的是()。

A. 纳米材料仅指尺寸在纳米级别的材料B. 纳米材料具有宏观材料的所有性质C. 纳米材料因其尺寸效应表现出特殊性能D. 纳米材料的应用受到限制答案:C二、填空题1. 材料的______和______是决定其宏观性能的基本因素。

答案:组成、结构2. 金属材料的塑性变形主要是通过______和______来实现的。

答案:滑移、孪晶3. 陶瓷材料的主要特点是______、______和______。

答案:高硬度、高强度、耐磨损4. 复合材料是由两种或两种以上不同______、______和______的材料组合而成。

答案:材料类型、性能、形态5. 形状记忆合金在______作用下能够恢复到原始形状。

答案:温度三、简答题1. 简述材料的疲劳现象及其影响因素。

答:材料的疲劳现象是指在反复的应力作用下,材料逐渐产生并扩展裂纹,最终导致断裂的现象。

影响疲劳的因素包括应力的大小和作用方式、材料的微观结构、表面状态、环境条件等。

2. 说明金属材料的冷加工硬化现象及其应用。

答:冷加工硬化是指金属材料在冷加工过程中,由于晶粒变形和位错密度的增加,导致材料的硬度和强度提高,塑性降低的现象。

该现象在制造高强度、高硬度的零件和工具中具有重要应用。

3. 描述陶瓷材料的断裂机理。

材料科学基础课后习题答案讲解

材料科学基础课后习题答案讲解

《材料科学基础》课后习题答案第一章材料结构的基本知识4. 简述一次键和二次键区别答:根据结合力的强弱可把结合键分成一次键和二次键两大类。

其中一次键的结合力较强,包括离子键、共价键和金属键。

一次键的三种结合方式都是依靠外壳层电子转移或共享以形成稳定的电子壳层,从而使原子间相互结合起来。

二次键的结合力较弱,包括范德瓦耳斯键和氢键。

二次键是一种在原子和分子之间,由诱导或永久电偶相互作用而产生的一种副键。

6. 为什么金属键结合的固体材料的密度比离子键或共价键固体为高?答:材料的密度与结合键类型有关。

一般金属键结合的固体材料的高密度有两个原因:(1)金属元素有较高的相对原子质量;(2)金属键的结合方式没有方向性,因此金属原子总是趋于密集排列。

相反,对于离子键或共价键结合的材料,原子排列不可能很致密。

共价键结合时,相邻原子的个数要受到共价键数目的限制;离子键结合时,则要满足正、负离子间电荷平衡的要求,它们的相邻原子数都不如金属多,因此离子键或共价键结合的材料密度较低。

9. 什么是单相组织?什么是两相组织?以它们为例说明显微组织的含义以及显微组织对性能的影响。

答:单相组织,顾名思义是具有单一相的组织。

即所有晶粒的化学组成相同,晶体结构也相同。

两相组织是指具有两相的组织。

单相组织特征的主要有晶粒尺寸及形状。

晶粒尺寸对材料性能有重要的影响,细化晶粒可以明显地提高材料的强度,改善材料的塑性和韧性。

单相组织中,根据各方向生长条件的不同,会生成等轴晶和柱状晶。

等轴晶的材料各方向上性能接近,而柱状晶则在各个方向上表现出性能的差异。

对于两相组织,如果两个相的晶粒尺度相当,两者均匀地交替分布,此时合金的力学性能取决于两个相或者两种相或两种组织组成物的相对量及各自的性能。

如果两个相的晶粒尺度相差甚远,其中尺寸较细的相以球状、点状、片状或针状等形态弥散地分布于另一相晶粒的基体内。

如果弥散相的硬度明显高于基体相,则将显著提高材料的强度,同时降低材料的塑韧性。

《材料科学基础》习题附答案

《材料科学基础》习题附答案

第二章 思考题与例题1. 离子键、共价键、分子键和金属键的特点,并解释金属键结合的固体材料的密度比离子键或共价键固体高的原因?2. 从结构、性能等方面描述晶体与非晶体的区别。

3. 何谓理想晶体?何谓单晶、多晶、晶粒及亚晶?为什么单晶体成各向异性而多晶体一般情况下不显示各向异性?何谓空间点阵、晶体结构及晶胞?晶胞有哪些重要的特征参数?4. 比较三种典型晶体结构的特征。

(Al 、α-Fe 、Mg 三种材料属何种晶体结构?描述它们的晶体结构特征并比较它们塑性的好坏并解释。

)何谓配位数?何谓致密度?金属中常见的三种晶体结构从原子排列紧密程度等方面比较有何异同?5. 固溶体和中间相的类型、特点和性能。

何谓间隙固溶体?它与间隙相、间隙化合物之间有何区别?(以金属为基的)固溶体与中间相的主要差异(如结构、键性、性能)是什么?6. 已知Cu 的原子直径为2.56A ,求Cu 的晶格常数,并计算1mm 3Cu 的原子数。

7. 已知Al 相对原子质量Ar (Al )=26.97,原子半径γ=0.143nm ,求Al 晶体的密度。

8 bcc 铁的单位晶胞体积,在912℃时是0.02464nm 3;fcc 铁在相同温度时其单位晶胞体积是0.0486nm 3。

当铁由bcc 转变为fcc 时,其密度改变的百分比为多少?9. 何谓金属化合物?常见金属化合物有几类?影响它们形成和结构的主要因素是什么?其性能如何?10. 在面心立方晶胞中画出[012]和[123]晶向。

在面心立方晶胞中画出(012)和(123)晶面。

11. 设晶面(152)和(034)属六方晶系的正交坐标表述,试给出其四轴坐标的表示。

反之,求(3121)及(2112)的正交坐标的表示。

(练习),上题中均改为相应晶向指数,求相互转换后结果。

12.在一个立方晶胞中确定6个表面面心位置的坐标,6个面心构成一个正八面体,指出这个八面体各个表面的晶面指数,各个棱边和对角线的晶向指数。

材料科学基础习题与答案

材料科学基础习题与答案

材料科学基础习题与答案LT柏氏回路,b =?;(2)围绕单个作柏氏回路,b =?(表明方向和强度)7. 方形晶体中有两根刃型位错,如下图4:(1)当周围晶体中:(a )空位多于平衡值;(b )空位少于平衡值;(c )间隙原子多于平衡值;(d )间隙原子少于平衡值时,位错易于向何种方向攀移?(2)加上怎样的外力,才能使这两根位错线通过纯攀移而相互靠拢?8. 简单立方晶体中(100)面上有一位错,b =[010],§// [001],问:(1)若在(001)面上有一个b =[010],§//[100]的位错与之相割,结果如何?(2)若在(001)面上有一个b =[100],§// [001]的位移与之相割,结果如何?(3)交割反应的结果对位错进一步运动有何影响?9. 画一方形位错环,并在这个平面上画出柏氏矢量(沿对角线方向)及位错线方向(顺时针),据此指出位错环各段的性质,并示意画出晶体滑移后的结果。

10. 在实际晶体中存在有哪几类缺陷?各有什么特征?11. 何谓刃型位错和螺型位错?全面比较两者有何异同?何谓柏氏矢量?如何用柏氏矢量来判断位错类型?12. 两个相同符合的的刃型位错,在同一滑移面相遇;它们会排斥还是会吸引?13. 试说明晶体中位错运动的方式——滑移,攀移及交滑移的条件,过程和结果,并阐述如何确定位错滑移运动的方向?在刃型位错与螺型位错的滑移运动中,滑移方向与柏氏矢量、切应力及位错线的位向关系是什么?14. 晶界在金属材料中所起的作用有哪些?当金属熔化时,是先在晶界还是先在晶粒中心熔化,为什么?15. 试分别描述位错增殖的F-R 源机制和双交滑移机制。

如果进行双交滑移的那段螺形位错的长度为50nm ,而位错的柏氏矢量为0.8nm ,试求实现位错增殖所必需的切应力(G=40Gpa )16. 何谓小角度晶界?有哪些类型?原子排列上有什么特征?17. 一个位错环能否各部分都是螺位错?能否各部分都是刃位错?为什么?18. 在刃型位错与螺型位错的滑移运动中,滑移方向与柏氏矢量、切应力及位错线的位向关系是什么?19. 何谓割阶、扭折?割阶或扭折的长短和位向如何?割阶或扭折的柏氏矢量如何?产生割阶或扭折后位错应变能的增加量如何?割阶或扭折对原位错线运动有何影响?20. 举例或画图说明什么是小角度晶界的位错模型?描述大角度晶界有何模型?其含义是什么?21. 点缺陷分几种?它们对周围原子排列有何影响?何谓空位平衡浓度?其影响因素是什么?这些缺陷对金属性能有何影响?22. 绘图说明用柏氏回路方法求出位错的柏氏矢量,并说明柏氏矢量的物理意义及用柏氏矢量如何确定位错性质?23. 名词区别:刃型位错和螺型位错,割价和扭折,交滑移和多滑移,滑移和攀移,晶界、相界和孪晶界,共格相界、非共格相界和半共格相界,小角度晶界和大角度晶界第四章思考题与例题1. 设有一条内径为30mm的厚壁管道,被厚度为0.1mm的铁膜隔开,通过向管子一端向管内输入氮气,以保持膜片一侧氮气浓度为1200mol/m3,而另一侧的氮气浓度为100mol/m3。

材料科学基础习题及参考答案

材料科学基础习题及参考答案

材料科学基础参考答案材料科学基础第一次作业1.举例说明各种结合键的特点。

⑴金属键:电子共有化,无饱和性,无方向性,趋于形成低能量的密堆结构,金属受力变形时不会破坏金属键,良好的延展性,一般具有良好的导电和导热性。

⑵离子键:大多数盐类、碱类和金属氧化物主要以离子键的方式结合,以离子为结合单元,无方向性,无饱和性,正负离子静电引力强,熔点和硬度均较高。

常温时良好的绝缘性,高温熔融状态时,呈现离子导电性。

⑶共价键:有方向性和饱和性,原子共用电子对,配位数比较小,结合牢固,具有结构稳定、熔点高、质硬脆等特点,导电能力差。

⑷范德瓦耳斯力:无方向性,无饱和性,包括静电力、诱导力和色散力。

结合较弱。

⑸氢键:极性分子键,存在于HF,H2O,NF3有方向性和饱和性,键能介于化学键和范德瓦尔斯力之间。

2.在立方晶体系的晶胞图中画出以下晶面和晶向:(1 0 2)、(1 1 -2)、(-2 1 -3),[1 1 0],[1 1 -1],[1 -2 0]和[-3 2 1]。

(213)3. 写出六方晶系的{1 1 -20},{1 0 -1 2}晶面族和<2 -1 -1 0>,<-1 0 1 1>晶向族中各等价晶面及等价晶向的具体指数。

{1120}的等价晶面:(1120)(2110)(1210)(1120)(2110)(1210){1012}的等价晶面:(1012)(1102)(0112)(1012)(1102)(0112) (1012)(1102)(0112)(1012)(1102)(0112)2110<>的等价晶向:[2110][1210][1120][2110][1210][1120]1011<>的等价晶向:[1011][1101][0111][0111][1101][1011][1011][1101][0111][0111][1101][1011]4立方点阵的某一晶面(hkl )的面间距为M /,其中M 为一正整数,为晶格常数。

材料科学基础习题(含答案)

材料科学基础习题(含答案)

材料科学基础习题(含答案)材料科学基础考前重点复习题1. Mn 的同素异构体有⼀为⽴⽅结构,其晶格常数α为0.632nm ,密度ρ为26.7g/cm 3,原⼦半径r 等于0.122nm ,问Mn 晶胞中有⼏个原⼦,其致密度为多少?答案解析:习题册 P9 2-22.2. 如图1所⽰,设有两个α相晶粒与⼀个β相晶粒相交于⼀公共晶棱,并形成三叉晶界,已知β相所张的两⾯⾓为80℃,界⾯能ααγ为0.60Jm -2, 试求α相与β相的界⾯能αβγ。

图1答案解析:习题册 P17 3-42.3. 有两种激活能分别为1Q =53.7kJ/mol 和2Q =201kJ/mol 的扩散反应,观察在温度从25℃升⾼到800℃时对这两种扩散的影响,并对结果进⾏评述。

答案解析:习题册 P21 4-8.4. 论述强化⾦属材料的⽅法、特点和机理。

答:(1)结晶强化。

通过控制结晶条件,在凝固结晶以后获得良好的宏观组织和显微组织,提⾼⾦属材料的性能。

包括细化晶粒,提⾼⾦属材料纯度。

(2)形变强化。

⾦属材料在塑性变形后位错运动的阻⼒增加,冷加⼯塑性变形提⾼其强度。

(3)固溶强化。

通过合⾦化(加⼊合⾦元素)组成固溶体,使⾦属材料强化。

(4)相变强化。

合⾦化的⾦属材料,通过热处理等⼿段发⽣固态相变,获得需要的组织结构,使⾦属材料强化。

(5)晶界强化。

晶界部位⾃由能较⾼,存在着⼤量缺陷和空⽳。

低温时,晶界阻碍位错运动,晶界强度⾼于晶粒本⾝;⾼温时,沿晶界扩散速度⽐晶内扩散速度快,晶界强度显著降低。

强化晶界可强化⾦属材料。

5. 什么是回复,请简述⾦属材料冷变形后回复的机制。

试举例说明回复的作⽤。

答:(1)回复是冷变形⾦属在低温加热时,其显微组织⽆可见变化,但物理性能、⼒学性能却部分恢复到冷变形以前的过程。

(2)回复机制:低温回复主要与点缺陷迁移有关,冷变形时产⽣⼤量的点缺陷,空⽳与间隙原⼦。

温度较⾼时,中温回复会发⽣位错运动和重新分布。

位错滑移,异号位错相遇⽽抵消,位错缠结重新排列,位错密度降低。

材料科学基础课后习题答案讲解

材料科学基础课后习题答案讲解

材料科学基础课后习题答案讲解简述一次键和二次键区别答:根据结合力的强弱可把结合键分成一次键和二次键两大类。

其中一次键的结合力较强,包括离子键、共价键和金属键。

一次键的三种结合方式都是依靠外壳层电子转移或共享以形成稳定的电子壳层,从而使原子间相互结合起来。

二次键的结合力较弱,包括范德瓦耳斯键和氢键。

二次键是一种在原子和分子之间,由诱导或永久电偶相互作用而产生的一种副键。

6、为什么金属键结合的固体材料的密度比离子键或共价键固体为高?答:材料的密度与结合键类型有关。

一般金属键结合的固体材料的高密度有两个原因:(1)金属元素有较高的相对原子质量;(2)金属键的结合方式没有方向性,因此金属原子总是趋于密集排列。

相反,对于离子键或共价键结合的材料,原子排列不可能很致密。

共价键结合时,相邻原子的个数要受到共价键数目的限制;离子键结合时,则要满足正、负离子间电荷平衡的要求,它们的相邻原子数都不如金属多,因此离子键或共价键结合的材料密度较低。

9、什么是单相组织?什么是两相组织?以它们为例说明显微组织的含义以及显微组织对性能的影响。

答:单相组织,顾名思义是具有单一相的组织。

即所有晶粒的化学组成相同,晶体结构也相同。

两相组织是指具有两相的组织。

单相组织特征的主要有晶粒尺寸及形状。

晶粒尺寸对材料性能有重要的影响,细化晶粒可以明显地提高材料的强度,改善材料的塑性和韧性。

单相组织中,根据各方向生长条件的不同,会生成等轴晶和柱状晶。

等轴晶的材料各方向上性能接近,而柱状晶则在各个方向上表现出性能的差异。

对于两相组织,如果两个相的晶粒尺度相当,两者均匀地交替分布,此时合金的力学性能取决于两个相或者两种相或两种组织组成物的相对量及各自的性能。

如果两个相的晶粒尺度相差甚远,其中尺寸较细的相以球状、点状、片状或针状等形态弥散地分布于另一相晶粒的基体内。

如果弥散相的硬度明显高于基体相,则将显著提高材料的强度,同时降低材料的塑韧性。

10、说明结构转变的热力学条件与动力学条件的意义,说明稳态结构和亚稳态结构之间的关系。

《材料科学基础》习题附答案

《材料科学基础》习题附答案

《材料科学基础》习题附答案第⼆章思考题与例题1. 离⼦键、共价键、分⼦键和⾦属键的特点,并解释⾦属键结合的固体材料的密度⽐离⼦键或共价键固体⾼的原因?2. 从结构、性能等⽅⾯描述晶体与⾮晶体的区别。

3. 何谓理想晶体?何谓单晶、多晶、晶粒及亚晶?为什么单晶体成各向异性⽽多晶体⼀般情况下不显⽰各向异性?何谓空间点阵、晶体结构及晶胞?晶胞有哪些重要的特征参数?4. ⽐较三种典型晶体结构的特征。

(Al 、α-Fe 、Mg 三种材料属何种晶体结构?描述它们的晶体结构特征并⽐较它们塑性的好坏并解释。

)何谓配位数?何谓致密度?⾦属中常见的三种晶体结构从原⼦排列紧密程度等⽅⾯⽐较有何异同?5. 固溶体和中间相的类型、特点和性能。

何谓间隙固溶体?它与间隙相、间隙化合物之间有何区别?(以⾦属为基的)固溶体与中间相的主要差异(如结构、键性、性能)是什么?6. 已知Cu 的原⼦直径为2.56A ,求Cu 的晶格常数,并计算1mm 3Cu 的原⼦数。

7. 已知Al 相对原⼦质量Ar (Al )=26.97,原⼦半径γ=0.143nm ,求Al 晶体的密度。

8 bcc 铁的单位晶胞体积,在912℃时是0.02464nm 3;fcc 铁在相同温度时其单位晶胞体积是0.0486nm 3。

当铁由bcc 转变为fcc 时,其密度改变的百分⽐为多少?9. 何谓⾦属化合物?常见⾦属化合物有⼏类?影响它们形成和结构的主要因素是什么?其性能如何?10. 在⾯⼼⽴⽅晶胞中画出[012]和[123]晶向。

在⾯⼼⽴⽅晶胞中画出(012)和(123)晶⾯。

11. 设晶⾯(152)和(034)属六⽅晶系的正交坐标表述,试给出其四轴坐标的表⽰。

反之,求(3121)及(2112)的正交坐标的表⽰。

(练习),上题中均改为相应晶向指数,求相互转换后结果。

12.在⼀个⽴⽅晶胞中确定6个表⾯⾯⼼位置的坐标,6个⾯⼼构成⼀个正⼋⾯体,指出这个⼋⾯体各个表⾯的晶⾯指数,各个棱边和对⾓线的晶向指数。

【材料科学基础经典习题及答案】考试试题5

【材料科学基础经典习题及答案】考试试题5

2020届材料科学基础经典习题(后附详细答案)1. 在Al-Mg 合金中,x Mg =0.05,计算该合金中Mg 的质量分数(w Mg )(已知Mg 的相对原子质量为24.31,Al 为26.98)。

2.已知Al-Cu 相图中,K =0.16,m =3.2。

若铸件的凝固速率R =3×10-4 cm/s ,温度梯度G =30℃/cm ,扩散系数D =3×10-5cm 2/s ,求能保持平面状界面生长的合金中W Cu 的极值。

3.证明固溶体合金凝固时,因成分过冷而产生的最大过冷度为:⎥⎦⎤⎢⎣⎡-+--=∆GK R K mw R GD K K mw T Cu C Cu C )1(ln 1)1(00max最大过冷度离液—固界面的距离为:⎥⎦⎤⎢⎣⎡-=GDK R K mw R D x Cu C )1(ln 0式中m —— 液相线斜率;w C0Cu —— 合金成分;K —— 平衡分配系数;G —— 温度梯度;D —— 扩散系数;R —— 凝固速率。

说明:液体中熔质分布曲线可表示为:⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--+=x D R K K w C Cu C L exp 1104.Mg-Ni 系的一个共晶反应为:546.02)Mg (570235.0Ni Mg ==+⇔w w L NiNi 纯℃α设w 1Ni =C 1为亚共晶合金,w 2Ni =C 2为过共晶合金,这两种合金中的先共晶相的质量分数相等,但C 1合金中的α总量为C 2合金中α总量的2.5倍,试计算C 1和C 2的成分。

5.在图4—30所示相图中,请指出: (1) 水平线上反应的性质; (2) 各区域的组织组成物; (3)分析合金I ,II 的冷却过程;(4) 合金工,II 室温时组织组成物的相对量表达式。

6.根据下列条件画出一个二元系相图,A和B的熔点分别是1000℃和700℃,含w B=0.25的合金正好在500℃完全凝固,它的平衡组织由73.3%的先共晶。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料科学与基础习题集和答案第七章回复再结晶,还有相图的内容。

第一章1.作图表示立方晶体的()()()421,210,123晶面及[][][]346,112,021晶向。

2.在六方晶体中,绘出以下常见晶向[][][][][]0121,0211,0110,0112,0001等。

3.写出立方晶体中晶面族{100},{110},{111},{112}等所包括的等价晶面。

4.镁的原子堆积密度和所有hcp 金属一样,为0.74。

试求镁单位晶胞的体积。

已知Mg 的密度3Mg/m 74.1=mg ρ,相对原子质量为24.31,原子半径r=0.161nm 。

5.当CN=6时+Na 离子半径为0.097nm ,试问:1) 当CN=4时,其半径为多少?2) 当CN=8时,其半径为多少?6. 试问:在铜(fcc,a=0.361nm )的<100>方向及铁(bcc,a=0.286nm)的<100>方向,原子的线密度为多少?7.镍为面心立方结构,其原子半径为nm 1246.0=Ni r 。

试确定在镍的(100),(110)及(111)平面上12mm 中各有多少个原子。

8. 石英()2SiO 的密度为2.653Mg/m 。

试问: 1) 13m 中有多少个硅原子(与氧原子)?2) 当硅与氧的半径分别为0.038nm 与0.114nm 时,其堆积密度为多少(假设原子是球形的)?9.在800℃时1010个原子中有一个原子具有足够能量可在固体内移动,而在900℃时910个原子中则只有一个原子,试求其激活能(J/原子)。

10.若将一块铁加热至850℃,然后快速冷却到20℃。

试计算处理前后空位数应增加多少倍(设铁中形成一摩尔空位所需要的能量为104600J )。

11.设图1-18所示的立方晶体的滑移面ABCD 平行于晶体的上、下底面。

若该滑移面上有一正方形位错环,如果位错环的各段分别与滑移面各边平行,其柏氏矢量b ∥AB 。

1) 有人认为“此位错环运动移出晶体后,滑移面上产生的滑移台阶应为4个b ,试问这种看法是否正确?为什么?2)指出位错环上各段位错线的类型,并画出位错运动出晶体后,滑移方向及滑移量。

12.设图1-19所示立方晶体中的滑移面ABCD 平行于晶体的上、下底面。

晶体中有一条位错线de fed ,段在滑移面上并平行AB ,ef 段与滑移面垂直。

位错的柏氏矢量b 与de 平行而与ef 垂直。

试问:1) 欲使de 段位错在ABCD 滑移面上运动而ef 不动,应对晶体施加怎样的应力?2) 在上述应力作用下de 位错线如何运动?晶体外形如何变化?13.设面心立方晶体中的)111(为滑移面,位错滑移后的滑移矢量为[]1012a 。

1) 在晶胞中画出柏氏矢量b 的方向并计算出其大小。

2) 在晶胞中画出引起该滑移的刃型位错和螺型位错的位错线方向,并写出此二位错线的晶向指数。

14. 判断下列位错反应能否进行。

1) ];111[3]211[6]110[2a a a →+ 2) ];110[2]101[2]100[a a a +→3) ];111[6]111[2]112[3a a a →+ 4) ].111[2]111[2]100[a a a +→15. 若面心立方晶体中有b =]011[2a 的单位位错及b =]112[6a 的不全位错,此二位错相遇产生位错反应。

1) 问此反应能否进行?为什么?2) 写出合成位错的柏氏矢量,并说明合成位错的类型。

16. 若已知某晶体中位错密度376cm /cm 10~10=ρ。

1) 由实验测得F-R位错源的平均长度为cm 104-,求位错网络中F-R 位错源的数目。

2) 计算具有这种F-R 位错源的镍晶体发生滑移时所需要的切应力。

已知Ni 的10109.7⨯=G Pa ,nm 350.0=a 。

17.已知柏氏矢量b=0.25nm ,如果对称倾侧晶界的取向差θ=1°及10°,求晶界上位错之间的距离。

从计算结果可得到什么结论?18. 由n 个刃型位错组成亚晶界,其晶界取向差为0.057°。

设在形成亚晶界之前位错间无交互作用,试问形成亚晶界后,畸变能是原来的多少倍(设;10,10804--===b r R 形成亚晶界后,θb D R ≈=)?19. 用位错理论证明小角度晶界的晶界能γ与位向差θ的关系为()θθγγln 0-=A 。

式中0γ和A 为常数。

20. 简单回答下列各题。

1) 空间点阵与晶体点阵有何区别?2) 金属的3种常见晶体结构中,不能作为一种空间点阵的是哪种结构?3) 原子半径与晶体结构有关。

当晶体结构的配位数降低时原子半径如何变化?4) 在晶体中插入柱状半原子面时能否形成位错环?5) 计算位错运动受力的表达式为b f τ=,其中τ是指什么?6) 位错受力后运动方向处处垂直于位错线,在运动过程中是可变的,晶体作相对滑动的方向应是什么方向?7)位错线上的割阶一般如何形成?8)界面能最低的界面是什么界面?9) “小角度晶界都是由刃型位错排成墙而构成的”这种说法对吗?答案1.有关晶面及晶向附图2.1所示。

2.见附图2.2所示。

3. {100}=(100)十(010)+(001),共3个等价面。

{110}=(110)十(101)+(101)+(011)+(011)+(110),共6个等价面。

{111}=(111)+(111)+(111)+(111),共4个等价面。

)121()112()112()211()112()121( )211()121()211()211()121()112(}112{+++++++++++=共12个等价面。

4. 单位晶胞的体积为V Cu =0.14 nm 3(或1.4×10-28m 3)5.(1)0.088 nm ;(2)0.100 nm 。

6.Cu 原子的线密度为2.77×106个原子/mm 。

Fe 原子的线密度为3.50×106个原子/mm 。

7.1.6l ×l013个原子/mm 2;1.14X1013个原子/mm 2;1.86×1013个原子/mm 2。

8.(1) 5.29×1028个矽原子/m 3; (2) 0.33。

9. 9. 0.4×10-18/个原子。

10.1.06×1014倍。

11.(1) 这种看法不正确。

在位错环运动移出晶体后,滑移面上、下两部分晶体相对移动的距离是由其柏氏矢量决定的。

位错环的柏氏矢量为b ,故其相对滑移了一个b 的距离。

(2) A'B'为右螺型位错,C'D'为左螺型位错;B'C'为正刃型位错,D'A'为负刃型位错。

位错运动移出晶体后滑移方向及滑移量如附图2.3所示。

12(。

1)应沿滑移面上、下两部分晶体施加一切应力τ0,的方向应与de 位错线平行。

(2)在上述切应力作用下,位错线de 将向左(或右)移动,即沿着与位错线de 垂直的方向(且在滑移面上)移动。

在位错线沿滑移面旋转360°后,在晶体表面沿柏氏矢量方向产生宽度为一个b的台阶。

13.(1)]101[2ab=,其大小为ab22||=,其方向见附图2.4所示。

(2) 位错线方向及指数如附图2.4所示。

14. (1) 能。

几何条件:∑b前=∑b后=]111[3a;能量条件:∑b前2=232a>∑b后2=231a(2) 不能。

能量条件:∑b前2=∑b后2,两边能量相等。

(3) 不能。

几何条件:∑b前=a/6[557],∑b后=a/6[11¯1],不能满足。

(4) 不能。

能量条件:∑b前2=a2 < ∑b后2=223a,即反应后能量升高。

15.(1) 能够进行。

因为既满足几何条件:∑b前=∑b后=]111[3a,又满足能量条件:∑b前2=232a>∑b后2=231a(2) b合=]111[3a;该位错为弗兰克不全位错。

16. (1)假设晶体中位错线互相缠结、互相钉扎,则可能存在的位错源数目111010~10==l n ρ个/Cm 3。

(2) τNi =1.95×107 Pa 。

17. 当θ=1°,D =14 nm ;θ=10°,D =1.4 nm 时,即位错之间仅有5~6个原子间距,此时位错密度太大,说明当θ角较大时,该模型已不适用。

18.畸变能是原来的0.75倍 (说明形成亚晶界后,位错能量降低)。

19. 设小角度晶界的结构由刃型位错排列而成,位错间距为D 。

晶界的能量γ由位错的能量E 构成,设l 为位错线的长度,由附图2.5可知,D E Dl El ==γ由位错的能量计算可知,中心E r R Gb E +-=02ln )1(4νπ取R =D (超过D 的地方,应力场相互抵消),r 0=b 和θ=b/D 代入上式可得:)ln (1ln )1(4 ]ln )1(4[02θθγθθυπθυπθγ-=+-=+-A b E b G E b D Gb b 中心中心=式中Gb E Gb 中心,=)1(4A )1(40υπυπγ-=-20. (1)晶体点阵也称晶体结构,是指原子的具体排列;而空间点阵则是忽略了原子的体积,而把它们抽象为纯几何点。

(2) 密排六方结构。

(3) 原子半径发生收缩。

这是因为原子要尽量保持自己所占的体积不变或少变 [原子所占体积V A =原子的体积(4/3πr 3+间隙体积],当晶体结构的配位数减小时,即发生间隙体积的增加,若要维持上述方程的平衡,则原子半径必然发生收缩。

(4) 不能。

因为位错环是通过环内晶体发生滑移、环外晶体不滑移才能形成。

(5) 外力在滑移面的滑移方向上的分切应力。

(6) 始终是柏氏矢量方向。

(7) 位错的交割。

(8) 共格界面。

(9) 否,扭转晶界就由交叉的同号螺型位错构成。

第二章1. 说明间隙固熔体与间隙化合物有什么异同。

2.有序合金的原子排列有何特点?这种排列和结合键有什么关系?为什么许多有序合金在高温下变成无序?3.已知Cd,Zn,Sn,Sb 等元素在Ag 中的固熔度(摩尔分数)极限分别为210/5.42-=Cd x ,210/20-=Zn x ,210/12-=Sn x ,210/7-=Sb x ,它们的原子直径分别为0.3042nm ,0.314nm ,0.316nm ,0.3228nm ,Ag 为0.2883nm 。

试分析其固熔度(摩尔分数)极限差别的原因,并计算它们在固熔度(摩尔分数)极限时的电子浓度。

4.试分析H 、N 、C 、B 在-αFe 和-γFe 中形成固熔体的类型、存在位置和固溶度(摩尔分数)。

各元素的原子半径如下:H 为0.046nm ,N 为0.071nm ,C 为0.077nm ,B 为0.091nm ,-αFe 为0.124nm , -γFe 为0.126 nm 。

相关文档
最新文档