临沂市2020年中考数学模拟试题及答案

合集下载

2020年临沂市中考模拟考试(一)初中数学

2020年临沂市中考模拟考试(一)初中数学

2020年临沂市中考模拟考试(一)初中数学本试卷分第I 卷〔选择题〕和第二卷〔非选择题〕两部分,第I 卷1至3页,第二卷4至8页,总分值l20分,考试时刻l20分钟。

第I 卷〔选择题 共42分〕本卷须知:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。

2.每题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦洁净后,再选涂其它答案。

不能答在试卷上。

3.考试、终止,将本试卷和答题卡一并交回。

一、选择题〔每题3分,在给出的四个选项中,只有一项为哪一项符合题目要求的〕 1.以下运算中,正确的选项是A .4222a a a =+ B .632a a a =⋅ C .236a a a =÷D .4222)(b a ab =2.当我们从上面观看图1所示的两个物体时,看到的将是3.刘翔在出征北京奥运会前刻苦进行110米跨栏训练,教练对他20次的训练成绩进行统计分 析,判定他的成绩是否稳固,那么教练需要明白刘翔这20次成绩的 A .众数 B .平均数 C .频数D .方差4.如图2,给出了过直线外一点作直线的平行线的方法,其依据是A .同位角相等,两直线平行B .内错角相等,两直线平行C .同旁内角互补,两直线平行D .两直线平行,同位角相等5.在边长为a 的正方形中挖去一个边长为b 的小正方形〔b a >〕〔如图3〕,把余下的部分拼成一个矩形〔如图4〕,依照两个图形中阴影部分的面积相等,能够验证 A .2222)(b ab a b a ++=+ B .2222)(b ab a b a +-=- C .))((22b a b a b a -+=-D .222))(2(b ab a b a b a -+=-+6.中央电视台2套〝快乐辞典〞栏目中,有一期的题目如图5所示。

两个天平都平稳,那么三个球体的重量等于〔 〕个正方体的重量。

A .2B .3C .4D .57.李老师骑自行车内班,最初以某一速度匀速行进,中途由于自行车发生故障,停下来修车耽搁了8分钟,为了按时到校,李老师加快了速度,但仍保持匀速,结果准时到校。

2020年山东省临沂市中考数学全真模拟试卷五套

2020年山东省临沂市中考数学全真模拟试卷五套

题号中考数学模拟试卷一二三四总分得分一、选择题(本大题共14小题,共42.0分)1.下列各数中,比1大的是()A.2B.0C.-1D.-22.一种液体每升含有36000000个有害细菌,把36000000用科学记数法表示应该是()A.3.6×107 C.36×106B.3.6×106 D.0.36×1083.如图所示,直线a∥b,∠B=22°,∠C=50°,则∠A的度数为()A.22°B.28°C.32°D.38°4.下列计算正确的是()A.a2+a3=a5 C.4x2-3x2=1B.a6÷a3=a2D.(-2x2y)3=-8x6y35.如图,是某几何体的三视图及相关数据,则下面判断正确的是()A.a>cB.b>cC.a2+4b2=c2D.a2+b2=c26.为了解居民用水情况,在某小区随机抽查了10户家庭的月用水量,结果如下表:月用水量(吨)户数526672则关于这10户家庭的月用水量,下列说法错误的是()A.众数是67.计算(B.极差是2-2)的结果是()C.平均数是6D.方差是4A. B. C. D.-8.如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O重合,若BC=3,则折痕CE的长为(): 3A.9. 若不等式组B. C.有解,则 a 的取值范围是( )D. 6A. a >-1B. a≥-1C. a≤1D. a <110. 四张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、等腰梯形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张, 则抽出的卡片正面图案是中心对称图形的概率为( )A.B. C. D. 111. 如图,在 △Rt ABC 中,∠ACB =90°,∠A =30°,BC =2△.将 ABC 绕点 C 按顺时针方向旋转 n 度后得到△EDC ,此时点 D 在 AB 边上,斜边 D E 交 AC 边于点 F ,则 n 的大 小和图中阴影部分的面积分别为( )A. 30,2B. 60,2C. 60,D. 60,12. 二次函数 y =ax 2+bx +c 的图象如图所示,反比例函数 与正比例函数 y =bx 在同一坐标系内的大致图象是()A. B. C. D.13. 如图,正五边形FGHMN 是由正五边形 ABCDE 经过位似变换得到的,若AB FG =2:,则下列结论正确的是( )A. 2DE=3MNB. 3DE=2MNC. 3∠A=2∠FD. 2∠A=3∠F14. 如图,已知点A 是直线 y =x 与反比例函数 y = (k >0,x >0)的交点,B 是 y = 图象上的另一点,BC ∥x 轴,交y 轴于点 C .动点 P 从坐标原点 O 出发,沿O →A →B →C (图中“→”所示路线)匀速运动,终 点为 C ,过点 P 作 PM ⊥x 轴,PN ⊥y 轴,垂足分别为M ,N .设四边形 OMPN 的面积为 S ,P 点运动时间为 t ,则 S 关于 t 的函数图象大 致为( )则方程 a (x +m +2)2+b =0 的解是______.当 x 1=-x 2 时,都有 y 1 =y 2 ,称该函数为偶函数,根据以上定义,可以判断下面所给A.B.C. D.二、填空题(本大题共 5 小题,共 15.0 分) 15. 分解因式:a 3-4a 2b +4ab 2=______.16. 关于 x 的方程 a (x +m )2+b =0 的解是 x =-2,x =1,(a ,m ,b 均为常数,a ≠0),1 217. 有一直径为 4 的圆形铁皮,要从中剪出一个最大圆心角为60°的扇形 ABC ,用此剪下的扇形铁皮围成一个圆锥,该圆 锥的底面圆的半径 r =______.18. 如图,菱形 ABCD 的对角线 AC 、BD 相交于点 O ,且 AC =8,BD =6,过点 O 作 OH丄 AB ,垂足为 H ,则点 0 到边 AB 的距离 OH =______.19. 定义:给定关于 x 的函数 y ,对于该函数图象上任意两点(x ,y ),(x ,y ),1 12 2的函数中,是偶函数的有______(填上所有正确答案的序号)①y =2x ;②y =-x +1;③y =x 2;④y =- ;三、计算题(本大题共 3 小题,共 25.0 分)20. 计算:( )-2-(π-3.14)0+-|2- |.21. 某企业为了增收节支,设计了一款成本为 20 元∕件的工艺品投放市场进行试销.经过调查,得到如下数据:销售单价x(元∕件)每天销售量y(件)……30500404005030060200……(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,根据所描出的点猜想y是x的什么函数,并求出函数关系式;(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价-成本总价)(3)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?22.如图,已知△ABC内接于⊙O,过点B作直线EF∥AC,又知∠ACB=∠BDC=60°,AC=cm.(1)请探究EF与⊙O的位置关系,并说明理由;(2)求⊙O的周长.四、解答题(本大题共3小题,共31.0分)23.贵阳市某中学开展以“三创一办”为中心,以“校园文明”为主题的手抄报比赛,同学们积极参与,参赛同学每人交了一份得意作品,所有参赛作品均获奖,奖项分请你根据图中所给信息解答下列问题:(1)一等奖所占的百分比是______.(2)在此次比赛中,一共收到多少份参赛作品?请将条形统计图补充完整;(3)各奖项获奖学生分别有多少人?24.如图1△,在ABC中,点P为BC边中点,直线a绕顶点A旋转,若点B,P在直线a的异侧,BM⊥直线a于点M.CN⊥直线a于点N,连接PM,PN.(1)延长MP交CN于点E(如图2).①求证:△BPM≌△CPE;②求证:PM=PN;(2)若直线a绕点A旋转到图3的位置时,点B,P在直线a的同侧,其它条件不变,此时PM=PN还成立吗?若成立,请给予证明;若不成立,请说明理由;(3)若直线a绕点A旋转到与BC边平行的位置时,其它条件不变,请直接判断四边形MBCN的形状及此时PM=PN还成立吗?不必说明理由.25.如图,设抛物线y=ax2+bx+c与x轴交于两个不同的点A(-1,0),B(m,0),(1)求m的值和抛物线的解析式;(2)已知点D(1,n)在抛物线上,过点A的直线y=x+1交抛物线于另一点E,求点D和点E的坐标;(3)在x轴上是否存在点P,使以点P,B,D为顶点的三角形与三角形AEB相似?若存在,请求出点P的坐标;若不存在,请说明理由.答案和解析1.【答案】A【解析】解:∵2>1,∴选项A符合题意;∵0<1,∴选项B不符合题意;∵-1<1,∴选项C符合题意;∵-2<1,∴选项D不符合题意.故选:A.正实数都大于0,负实数都小于0,正实数大于一切负实数,据此判断即可.此题主要考查了实数大小比较的方法,要熟练掌握,解答此类题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.【答案】A【解析】解:把36000000用科学记数法表示应该是3.6×107.故选:A.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】B【解析】解:如图,∵a∥b,∴∠1=∠C=50°,又180°-∠1=180°-∠A-∠B,∴∠A=∠1-∠B=50°-22°=28°,故选:B.如图,由平行线的性质可求得∠1=∠C,再根据领补角与三角形内角和可求得∠A.本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①同们角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行,④a∥b,b∥c⇒a∥c.4.【答案】D【解析】解:A、a2+a3=a5不是同类项,不能合并,故A选项错误;B、a6÷a3=a3,故B选项错误;C、4x2-3x2=x2,故C选项错误;D、(-2x2y)3=-8x6y3,故D选项正确.1 2 n1 2 n故选 D .根据合并同类项,系数相加字母和字母的指数不变;同底数幂的除法,底数不变指数相 减;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘.分别计算即可.本题考查了合并同类项,同底数幂的除法,积的乘方的性质,熟练掌握运算性质和法则 是解题的关键. 5.【答案】D【解析】解:根据勾股定理,a 2+b 2=c 2. 故选:D .由三视图知道这个几何体是圆锥,圆锥的高是 a ,母线长是 c ,底面圆的半径是 b ,刚 好组成一个以 c 为斜边的直角三角形.本题由物体的三种视图推出原来几何体的形状,考查了圆锥的高,母线和底面半径的关 系.6.【答案】D【解析】解:A 、6 出现的次数最多,出现了 6 次,则众数是 6,故本选项正确; B 、最大数是 7,最小数是 5,极差=7-5=2,故本选项正确; C 、平均数是(5×2+6×6+7×2)÷10=6,故本选项正确;D 、方差是: [2×(5-6)2+6×(6-6)2+2×(7-6)2]=0.25,故本选项错误;故选:D .根据众数、极差、平均数和方差的定义及公式分别进行解答,即可得出答案.此题考查了众数、极差、平均数和方差,一般地设n 个数据,x ,x ,…x 的平均数为,则方差 S 2= [(x - )2+(x - )2+…+(x - )2],众数是一组数据中出现次数最多的数,极差是最大数减去最小数.7.【答案】D【解析】解:( -2)===-,故选:D .根据分式的减法和乘法可以解答本题.本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法. 8.【答案】A【解析】△解:∵ CEO △是 CEB 翻折而成, ∴BC =OC ,BE =OE ,∠B =∠COE =90°, ∴EO ⊥AC ,∵O 是矩形 ABCD 的中心,∴OE 是 AC 的垂直平分线,AC =2BC =2×3=6, ∴AE =CE ,在△Rt ABC中,AC2=AB2+BC2,即62=AB2+32,解得AB=3,在△Rt AOE中,设OE=x,则AE=3-x,AE2=AO2+OE2,即(3-x)2=32+x2,解得x=,∴AE=EC=3-=2.故选:A.先根据图形翻折变换的性质求出AC的长,AE=CE,再由勾股定理即可得出结论.本题考查的是翻折变换,勾股定理,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等的知识是解答此题的关键.9.【答案】A【解析】解:由(1)得x≥-a,由(2)得x<1,∴其解集为-a≤x<1,∴-a<1,即a>-1,∴a的取值范围是a>-1,故选:A.先解出不等式组的解集,根据已知不等式组有解,即可求出a的取值范围.求不等式组的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知数处理,求出不等式组的解集并与已知解集比较,进而求得另一个未知数的取值范围.10.【答案】B【解析】解:圆、矩形、等边三角形、等腰梯形中,中心对称图形有圆,矩形2个;则P(中心对称图形)==.故选B.先判断出圆、矩形、等边三角形、等腰梯形中的中心对称图形,再根据概率公式解答即可.此题考查了概率公式和中心对称图形的定义,要弄清概率公式适用的条件方可解题:(1)试验中所有可能出现的基本事件有有限个;(2)每个基本事件出现的可能性相等.11.【答案】C【解析】△解:∵ABC是直角三角形,∠ACB=90°,∠A=30°,BC=2,∴∠B=60°,AC=BC×cot∠A=2×=2,AB=2BC=4,∵△EDC△是ABC旋转而成,∴BC=CD=BD=AB=2,∵∠B=60°,∴△BCD是等边三角形,∴∠BCD=60°,∴∠DCF=30°,∠DFC=90°,即DE⊥AC,∴S 阴影 DF ×CF = × = .∠∴DE ∥BC ,∵BD = AB =2,∴DF △是 ABC 的中位线,∴DF = BC = ×2=1,CF = AC = ×2 = ,=故选:C .先根据已知条件求出 AC 的长及∠B 的度数,再根据图形旋转的性质及等边三角形的判 定定理判断出△BCD 的形状,进而得出 DCF 的度数,由直角三角形的性质可判断出DF △是 ABC 的中位线,由三角形的面积公式即可得出结论.本题考查的是图形旋转的性质及直角三角形的性质、三角形中位线定理及三角形的面积 公式,熟知图形旋转的性质是解答此题的关键,即: ①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角; ③旋转前、后的图形全等.12.【答案】B【解析】解:∵二次函数 y =ax 2+bx +c 的图象开口方向向下, ∴a <0,对称轴在 y 轴的左边,∴x =- <0,∴b <0,∴反比例函数的图象在第二四象限,正比例函数 y =bx 的图象在第二四象限. 故选:B .由已知二次函数 y =ax 2+bx +c 的图象开口方向可以知道 a 的取值范围,对称轴可以确定b 的取值范围,然后就可以确定反比例函数 与正比例函数 y =bx 在同一坐标系内的大致图象.此题主要考查了从图象上把握有用的条件,准确选择数量关系解得a 的值,简单的图象 最少能反映出 2 个条件:开口向下 a <0;对称轴的位置即可确定 b 的值. 13.【答案】B【解析】【分析】本题考查的是位似变换.位似变换的两个图形相似.位似是特殊的相似,相似图形对应 边的比相等.根据相似多边形对应边成比例得 DE :MN =2:3. 【解答】解:∵正五边形 FGHMN 和正五边形 ABCDE 位似, ∴DE :MN =AB :FG =2:3, ∴3DE =2MN . 故选 B .14.【答案】B3 424【解析】解:设点 P 的运动速度为 v ,①由于点 A 在直线 y =x 上,故点 P 在 OA 上时,四边形 OMPN 为正方形,四边形 OMPN 的面积 S = (vt )2,②点 P 在反比例函数图象 AB 时,由反比例函数系数几何意义,四边形 OMPN 的面积 S =k ;③点 P 在 BC 段时,设点 P 运动到点 C 的总路程为 a ,则四边形 OMPN 的面积=OC •(a -vt )=-OC •vt +OC •a ,纵观各选项,只有 B 选项图形符合.故选:B .根据点 P 的位置,分①点 P 在 OA 上时,四边形 OMPN 为正方形;②点 P 在反比例函 数图象 AB 段时,根据反比例函数系数的几何意义,四边形 OMPN 的面积不变;③点 P 在 BC 段,设点 P 运动到点 C 的总路程为 a ,然后表示出四边形OMPN 的面积,最后判 断出函数图象即可得解.本题考查了动点问题函数图象,读懂题目信息,根据点P 的运动位置的不同,分三段表 示出函数解析式是解题的关键.15.【答案】a (a-2b )2【解析】解:原式=a (a 2-4ab +4b 2)=a (a -2b )2.故答案是:a (a -2b )2.首先提公因式 a ,然后利用完全平方公式即可分解.本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式 ,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.16.【答案】x =-4,x =-1【解析】解:∵关于 x 的方程 a (x +m )2+b =0 的解是1x =-2,x =1,(a ,m ,b 均为常数 ,a ≠0),∴方程 a (x +m +2)2+b =0 变形为 a [(x +2)+m ]2+b =0,即此方程中 x +2=-2 或 x +2=1, 解得 x =-4 或 x =-1.故答案为:x 3=-4,x =-1. 把后面一个方程中的 x +2 看作整体,相当于前面一个方程中的 x 求解.此题主要考查了方程解的定义.注意由两个方程的特点进行简便计算.17.【答案】【解析】解:连接 OA ,作 OD ⊥AB 于点 D .则∠DAO = ×60°=30°,OD =1,则 AD = OD = ,∴AB =2.则扇形的弧长是:= ,根据题意得:2πr =解得:r = .,1 2 2 1 1 2 2 2 1 1 2 2 2 1 1 1 22 1 2故答案是: .连接 OA ,作 OD ⊥AB 于点 D ,利用含 30°角的直角三角形的性质以及垂径定理即可求得 AB 的长,然后利用扇形的弧长公式即可求得弧长,然后利用圆的周长公式即可求得半 径.本题考查了扇形的弧长公式,垂径定理,正确求得 AB 的长是关键.18.【答案】【解析】解:∵AC =8,BD =6,∴BO =3,AO =4,∴AB =5.AO •BO = AB •OH ,OH = .故答案为: .因为菱形的对角线互相垂直平分,菱形的四边相等,根据面积相等,可求出 O H 的长. 本题考查菱形的基本性质,菱形的对角线互相垂直平分,菱形的四边相等,根据面积相 等,可求出 AB 边上的高 OH .19.【答案】③【解析】解:在①中,y 1=2x ,y =2x =-2x ,此时 y ≠y ,∴y =2x 不是偶函数, 在②中,y 1=-x 1 +1,y =-x +1=x +1,此时 y ≠y,∴y =-x +1 不是偶函数, 在③中,y 1=x 1 2,y =x 2=(-x )2=x 2,此时 y =y ,∴y =x 2 是偶函数,在④中,y 1=- ,y =- =- = ,此时 y ≠y,∴y =- 不是偶函数, ∴是偶函数的为③,故答案为:③.根据所给的定义,把 x 1 和 x 2 分别代入函数解析式进行判断即可.本题考查一次函数图象上点的坐标特征,二次函数图象上点的坐标特征,反比例函数图 象上点的坐标特征,理解题目中偶函数的定义是解题的关键.20.【答案】解:原式=4-1+2 - +2= +5.【解析】原式第一项利用负整数指数幂法则计算,第二项利用零指数幂法则计算,第三 项化为最简二次根式,最后一项利用绝对值的代数意义化简,计算即可得到结果. 此题考查了实数的运算,熟练掌握运算法则是解本题的关键.21.【答案】解:(1)由图可猜想 y 与 x 是一次函数关系,设这个一次函数为 y =kx +b (k ≠0),∵这个一次函数的图象经过(30,500)、(40,400)这两点,∴,∴函数关系式是:y=-10x+800.(2)设工艺厂试销该工艺品每天获得的利润是W元,依题意得W=(x-20)(-10x+800)=-10x2+1000x-16000=-10(x-50)2+9000,(20<x<80)当x=50时,W有最大值9000.所以,当销售单价定为50元∕件时,工艺厂试销该工艺品每天获得的利润最大,最大利润是9000元.(3)函数W=-10(x-50)2+9000的对称轴为x=50故当x≤45时,W的值随着x值的增大而增大,当x=45时利润最大,最大利润为8750元.∴销售单价定为45元∕件时,工艺厂试销该工艺品每天获得的利润最大,最大利润为8750元.【解析】(1)描点,由图可猜想y与x是一次函数关系,任选两点求表达式,再验证猜想的正确性;(2)利润=销售总价-成本总价=单件利润×销售量.据此得表达式,运用性质求最值;(3)根据自变量的取值范围结合函数的取值范围内的增减性,可得出函数的最值.此题主要考查了二次函数的应用,根据函数解析式求出的最值是理论值,与实际问题中的最值不一定相同,需考虑自变量的取值范围.22.【答案】解:(1)EF与⊙O相切.理由如下:延长BO交AC于H,如图,∵∠BAC=∠BDC=60°,而∠ACB=60°,∴△ABC为等边三角形,∵点O△为ABC的外心,∴BH⊥AC,∵AC∥EF,∴BH⊥EF,∴EF为⊙O的切线;(2)连结OA,如图,∵△ABC为等边三角形,∴OA平分∠ABC,∴∠OAH=30°,∵OH⊥AC,∴AH=CH=AC=,在△Rt AOH中,∵cos∠OAH=,∴OA==1,∴⊙O的周长=2π×1=2π(cm).【解析】(1)延长BO交AC于H,如图,先证明△ABC为等边三角形,利用点O为△ABC的外心得到BH⊥AC,由于AC∥EF,所以BH⊥EF,于是根据切线的判定定理即可得到EF为⊙O的切线;(2)连结OA,如图,根据等边三角形的性质得∠OAH=30°,AH=CH=AC=,再在△Rt AOH中,利用三角函数和计算出OA=1,然后根据圆的周长公式计算.本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了等边三角形的判定与性质.23.【答案】(1)10%(2)200份;图见解析。

2020年山东省临沂市中考数学模拟试卷含答案(2套)

2020年山东省临沂市中考数学模拟试卷含答案(2套)

2020年山东省临沂市中考数学模拟试卷(一)题号一二三四总分得分一、选择题(本大题共14小题,共42.0分)1. I-3| =()A. —3B. —2C. 32. 如图,乙1 = 110。

,则匕2的度数是()A. 68°B. 70°C. 105°D. 110°3. 不等式2% + 9 > 3(%+ 2)的解集是()A. % < 3B. % < —3C. x >3D. % > —34. 如图,三棱柱ABC-A^B^是正三棱柱,其主视图是边长为2的正方形,则此三棱 柱的左视图的面积为()A. V3B. 2V3C. 2V2D. 45, 把a 3 - ab 2进行因式分解,结果正确的是()A. (a + ab)(a — ab)B. a(a 2 — b 2)C. a(a — byD. a(a — h)(a + h)6. 如图所示,在 4ABC 和△DEF 中,BC〃EF m BAC = ZD,且A B =DE = 4, BC = 5, AC = 6,则时的长为()7. A. 4 C. 6B. x 3 + x 4 = x 7D. 2a -1 ■ a 2 = 2a 8. B.5D.不能确定下列计算中,正确的是()A. (-5)° = 0C. (一。

2胪)2 = 一“服务社会,提升自我. ”尤溪县某中学积极开展志愿者服务活动,来自九年级的 4名同学(二男二女)成立了 “交通秩序维护”小分队,若从该小分队中任选两名同 学进行交通秩序维护,则恰是一男一女的概率是()A. |B. |C. |D・i 9.计算:岂一片+加结果为()A X A・右 B.—X D -嘉c.—X 10.某校调查了 20名同学某一周玩手机游戏的次数,调查结果如下表所示,那么这20名同学玩手机游戏次数的平均数为()次数2458人数2210611. A. 5B. 5.5C. 6D.如图,A,B, C,Q 是。

2020年山东省临沂市中考数学一模试卷 (含解析)

2020年山东省临沂市中考数学一模试卷 (含解析)

2020年山东省临沂市中考数学一模试卷一、选择题(本大题共14小题,共42.0分)1.在下列各数中,比−1小的数是()A. 1B. −1C. −2D. 02.下列图形中,是中心对称图形的是()A. B. C. D.3.点A为数轴上表示−3的点,当点A沿数轴移动4个单位长度时,它所表示的数是()A. 1B. −7C. 1或−7D. 以上都不对4.一几何体的三视图如图所示,这个几何体是()A. 四棱锥B. 圆锥C. 三棱柱D. 四棱柱5.如图,已知OA=OB=OC,BC//AO,若∠A=36°,则∠B等于()A. 54°B. 60°C. 72°D. 76°6.计算(2x2y2)3÷2x2y3的结果为()A. 4x2y2B. 8x2y3C. 4x4y3D. 2x2y37.我们知道√20是一个无理数,那么√20−1的大小在哪两个数之间()A. 3和4B. 4和5C. 19和20D. 20和218.把一元二次方程x2−4x+1=0,配成(x+p)2=q的形式,则p、q的值是()A. p=−2,q=5B. p=−2,q=3C. p=2,q=5D. p=2,q=39.某班从甲、乙、丙、丁四位选手中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是()A. 13B. 14C. 16D. 18 10. 我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡x 只,兔y 只,可列方程组为( )A. {x +y =352x +2y =94B. {x +y =354x +2y =94 C. {x +y =354x +4y =94 D. {x +y =352x +4y =94 11. 甲和乙入选学校的定点投篮大赛,他们每天训练后投10个球测试,记录命中的个数,五天后将记录的数据绘制成折线统计图,如图所示.则下列对甲、乙数据描述正确的是( )A. 甲的方差比乙的方差小B. 甲的方差比乙的方差大C. 甲的平均数比乙的平均数小D. 甲的平均数比乙的平均数大12. 如图,△ABC 的面积为16,点D 是BC 边上一点,且BD =14BC ,点G 是AB 上一点,点H 在△ABC内部,且四边形BDHG 是平行四边形,则图中阴影部分的面积是( )A. 3B. 4C. 5D. 6 13. 计算2a−2−a a−2的结果是( )A. 1B. −1C. 2D. −214. 如图,在△ABC 中,AB =AC ,以BC 为直径画半圆交AB 于E ,交AC 于D ,CD⏜的度数为40°,则∠A 的度数是( )A. 40°B. 70°C. 50°D. 20°二、填空题(本大题共5小题,共15.0分)15.不等式5−2x>−3的解集是______.16.已知m+n=12,m−n=2,则m2−n2=______.17.已知点A(a,–2),B(b,–4)在直线y=–x+6上,则a、b的大小关系是a____b.18.如图,在△ABC中,MN//BC,若AM=1,MB=3,MN=1,则BC的长为______.19.在数学课上,老师提出如下问题:如图1,需要在A,B两地和公路l之间修地下管道,请你设计一种最节省材料的修建方案.小军同学的作法如下:①连接AB;②过点A作AC⊥直线l于点C;则折线段B−A−C为所求.老师说:小军同学的方案是正确的.请回答:该方案最节省材料的依据是______.三、计算题(本大题共1小题,共9.0分)20.如图,在△ABC中,AB=AC,E是BC中点,点O在AB上,以OB为半径的⊙O经过点AE上的一点M,分别交AB,BC于点F,G,连BM,此时∠FBM=∠CBM.(1)求证:AM是⊙O的切线;⏜,AM,AF围成的阴影部分面积.(2)当BC=6,OB:OA=1:2 时,求FM四、解答题(本大题共6小题,共54.0分)21.计算:√27−4√1−(√6−√3)2+6tan30°222.为弘扬中华传统文化,了解学生整体数学阅读能力,某校组织全校1000名学生进行一次阅读理解大赛的初赛,从中抽取部分学生的成绩进行统计分析,根据测试成绩绘制出了频数分布表和频数分布直方图:分组/分频数频率50≤x<6060.1260≤x<70a0.2870≤x<80160.3280≤x<90100.2090≤x≤10040.08(1)表中的a=____________;(2)把上面的频数分布直方图补充完整;(3)如果成绩达到90及90分以上者为优秀,可推荐参加决赛,那么请你估计该校进入决赛的学生大约有多少人.23.如图所示的是常见的工具“人字梯”,量得“人字梯”的一侧OC=OD=2.5米.(1)若CD=1.4米,求梯子顶端O离地面的高度.(2)《建筑施工高处作业安全技术规范》规定:使用“人字梯”时,上部夹角(∠AOB)以35°~45°为宜,铰链必需牢固,并应有可靠的拉撑措施,如图,小明在人字梯的一侧A、B处系上一根绳子确保用梯安全,他测得OA=OB=2米,在A、B处打结各需要0.4米的绳子,请你帮小明计算一下,他需要的绳子的长度应该在什么范围内.(结果精确到0.1米,参考数据:sin17.5°≈0.30,cos17.5°≈0.95,tan17.5°≈0.32,sin22.5°≈0.38,cos22.5°≈0.92,tan22.5°≈0.41)24.蓄电池的电压为定值.使用此电源时,电流I(A)是电阻R(Ω)的反比例函数,其图象如图所示.(1)求这个反比例函数的表达式;(2)当R=10Ω时,电流量是4A吗?为什么?25.已知抛物线y=ax2经过点A(−2,−8).(1)求此抛物线的函数解析式;(2)写出这个二次函数图象的顶点坐标、对称轴;(3)判断点B(−1,−4)是否在此抛物线上;(4)求出此抛物线上纵坐标为−6的点的坐标.26.四边形ABCD是菱形,点N是射线BA上一动点,点P,Q是直线BC上的两个动点,点Q在点P的右侧,且PQ=BN.作线段BQ的垂直平分线,分别交直线BD,BC于点E,M,连接EN,EP图(3)(1)发现如图(1),当P,Q两点都在线段BC上时EN与EP的数量关系为_________.(2)拓展如图(2),当P,Q两点都在线段CB的延长线上时,(1)中结论是否仍然成立⋅若成立,请加以证明;若不成立,请说明理由;(3)应用如图(3),当点P,Q都在射线BC上,且点Q的位置固定时,连接NP,若∠ABC=60°,BQ=6,请直接写出NP的最小值【答案与解析】1.答案:C解析:此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.解:根据有理数比较大小的方法,可得−2<−1<0<1,所以各数中,比−1小的数是−2.故选:C.2.答案:D解析:本题考查中心对称图形的概念.一个图形绕着一点旋转180°能够与原来的图形完全重合的图形由叫中心对称图形.根据中心对称图形的概念逐个判定即可.解:A.不是中心对称图形,故A错误;B.不是中心对称图形,故B错误;C.不是中心对称图形,故C错误;D.是中心对称图形,故D正确.故选D.3.答案:C解析:此题主要考查了数轴的特征和应用,要熟练掌握,注意分两种情况讨论.根据题意,分两种情况:(1)当点A沿数轴向左移动4个单位长度时;(2)当点A沿数轴向右移动4个单位长度时;求出它所表示的数是多少即可.解:(1)当点A沿数轴向左移动4个单位长度时,它所表示的数是:−3−4=−7.(2)当点A沿数轴向右移动4个单位长度时,它所表示的数是:−3+4=1.∴当点A沿数轴移动4个单位长度时,它所表示的数是1或−7.故选C.4.答案:A解析:本题考查由三视图确定几何体的形状,关键是利用学生空间想象能力及对立体图形的认识解答.如图所示,根据三视图的知识可使用排除法来解答.解:根据主视图和左视图都为三角形,俯视图是矩形,可得这个几何体为四棱锥.故选A.5.答案:C解析:本题主要考查等腰三角形的性质,平行线的性质等知识.由OA=OC,可得∠A=∠ACO=36°,由平行线的性质可得∠A=∠BCA=36°,得出∠BCO的度数,再由等腰三角形的性质可得答案.解:∵OA=OC,∴∠A=∠ACO=36°,∵BC//AO,∴∠A=∠BCA=36°,∴∠BCO=∠BCA+ACO=72°,∵OB=OC,∴∠B=∠BCO=72°.故选C.6.答案:C解析:[分析]根据幂的乘方和积的乘方的运算法则,先去括号,然后根据整式的除法法则计算即可求出答案.[详解]解:(2x2y2)3÷2x2y3=8x6y6÷2x2y3=4x4y3故选C.[点评]本题考查了幂的乘方和积的乘方以及整式的除法.解题的关键是熟练运用整式的除法法则,本题属于基础题型.7.答案:A解析:此题主要考查了估算无理数的大小,正确得出√20的取值范围是解题关键.直接得出√20的取值范围进而得出答案.解:∵4<√20<5,∴3<√20−1<4.故选A.8.答案:B解析:本题主要考查配方法解一元二次方程,可根据配方法的步骤先移项,再将方程两边加上一次项系数一半的平方即可求解.解:x2−4x=−1,x2−4x+4=−1+4,(x −2)2=3,∴p =−2,q =3,故选B .9.答案:C解析:解:根据题意画图如下:共用12种等情况数,其中恰好选中甲、乙两位选手的有2种,则恰好选中甲、乙两位选手的概率是212=16;故选:C .根据题意画出树状图得出所有等情况数和恰好选中甲、乙两位选手的情况数,然后根据概率公式即可得出答案.此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比. 10.答案:D解析:本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组. 根据题意可以列出相应的方程组,从而可以解答本题.解:由题意可得,{x +y =352x +4y =94, 故选:D .解析:本题考查了折线统计图、方差及算术平均数的知识,解题的关键是了解方差的意义,方差越大波动越大,反之越小,根据折线统计图可以发现两人的波动的大小,然后根据方差的意义直接确定答案即可.解:观察折线统计图知:甲的波动较大,故甲的方差比乙的方差大.甲的平均数是:(7+6+9+2+5)÷5=5.8;乙的平均数是:(5+5+7+5+7)÷5=5.8所以甲和乙的平均数相等.故选B.12.答案:B解析:本题考查了三角形的面积公式以及平行四边形的性质,解题的关键是找出S阴影=14S△ABC.解决该题型题目时,根据三角形的面积公式找出阴影部分的面积与△ABC的面积之间的关系是关键.设△ABC底边BC上的高为h,△AGH底边GH上的高为ℎ1,△CGH底边GH上的高为ℎ2,根据图形可知ℎ=ℎ1+ℎ2.利用三角形的面积公式结合平行四边形的性质即可得出S阴影=14S△ABC,由此即可得出结论.解:设△ABC底边BC上的高为h,△AGH底边GH上的高为ℎ1,△CGH底边GH上的高为ℎ2,则有ℎ=ℎ1+ℎ2.S△ABC=12BC⋅ℎ=16,S阴影=S△AGH+S△CGH=12GH⋅ℎ1+12GH⋅ℎ2=12GH⋅(ℎ1+ℎ2)=12GH⋅ℎ.∵四边形BDHG是平行四边形,且BD=14BC,∴GH=BD=14BC,∴S阴影=14×(12BC⋅ℎ)=14S△ABC=4.13.答案:B解析:解:原式=2−aa−2=−a−2a−2=−1.故选:B.原式利用同分母分式的减法法则计算,约分即可得到结果.此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.14.答案:A解析:本题考查了圆周角定理,等腰三角形的性质,以及圆心角、弧、弦的关系,熟练掌握圆周角定理是解本题的关键.由BC为直径,利用直径所对的圆周角为直角得到∠BDC为直角,再由CD⏜的度数求出圆周角∠DBC的度数,进而求出∠C与∠ABC的度数,确定出∠A的度数.解:∵BC为圆的直径,∴∠BDC=90°,∵CD⏜的度数为40°,∴∠DBC=20°,∴∠C=70°,∵AB=AC,∴∠ABC=∠C=70°,∴∠A=40°,故选A.15.答案:x<4解析:解:−2x>−3−5,−2x>−8,x<4,故答案为:x<4.根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.16.答案:24解析:解:∵m+n=12,m−n=2,∴m2−n2=(m+n)(m−n)=2×12=24,故答案为:24根据平方差公式解答即可.此题考查平方差公式,关键是根据平方差公式的形式解答.17.答案:<解析:本题考查了一次函数的性质,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小.由函数解析式y=−x+6可知,该函数为减函数,函数值越大,自变量的值就越小.解:因为k=−1<0,一次函数y随x的增大而减小,又−2>−4,所以a<b.故答案为<.18.答案:4解析:解析:本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.解:∵AM=1,MB=3,∴AB=4,∵MN//BC,∴△AMN∽△ABC,∴MNBC =AMAB,即1BC=14,解得,BC=4,故答案为:4.根据MN//BC,得到△AMN∽△ABC,根据相似三角形的性质列出比例式,计算即可.19.答案:两点之间,线段最短;垂线段最短解析:本题考查线段与垂线段的性质.解题的关键是正确理解两点之间线段最短以及垂线段最短,本题属于基础题.根据两点之间线段最短以及垂线段最短即可判断.解:由于两点之间线段最短,故连接AB,由垂线段最短可知,过点A作AC⊥直线l于点C,此时AC最短,故答案为:两点之间,线段最短;垂线段最短.20.答案:解:(1)连结OM,∵AB=AC,E是BC中点,∴BC⊥AE,∵OB=OM,∴∠OMB=∠MBO,∵∠FBM=∠CBM,∴∠OMB=∠CBM,∴OM//BC,∴OM⊥AE,∴AM是⊙O的切线;(2)∵E是BC中点,∴BE=12BC=3,∵OB:OA=1:2,OB=OM,∴OM:OA=1:2,∵OM⊥AE,∴∠MAB=30°,∠MOA=60°,OA:BA=2:3,∵OM//BC,∴OMBE =OAAB=23,∴OM=2,∴AM=√OA2−OM2=2√3,∴S阴影=12×2√3×2−60π×22360=2√3−23π.解析:(1)连接OM,由AB=AC,且E为BC中点,利用三线合一得到AE垂直于BC,再由OB=OM,利用等边对等角得到一对角相等,由已知角相等,等量代换得到一对内错角相等,利用内错角相等两直线平行得到OM与BC平行,可得出OM垂直于AE,即可得证;(2)由E为BC中点,求出BE的长,再由OB与OA的比值,以及OB=OM,得到OM与OA的比值,由OM垂直于AE,利用直角三角形中一直角边等于斜边的一半,得到此直角边所对的角为30度得到∠MAB=30°,∠MOA=60°,阴影部分的面积=三角形AOM面积−扇形MOF面积,求出即可.此题考查了切线的判定,涉及的知识有:圆周角定理,弧,弦及圆心角之间的关系,平行线的性质,扇形面积求法,以及勾股定理,熟练掌握切线的判定方法是解本题的关键.21.答案:解:原式=3√3−4×√22−(9−6√2)+6×√33=5√3+4√2−9.解析:此题主要考查了二次根式的混合运算,正确化简各数是解题关键.直接利用特殊角的三角函数值、二次根式的性质分别化简得出答案.22.答案:解:(1)14;(2)补全频数分布直方图如下:(3)根据题意得:1000×0.08=80(人),则估计该校进入决赛的学生大约有80人.解析:此题考查了频数分布直方图,用样本估计总体,频数(率)分布表,弄清题中的数据是解本题的关键.(1)根据频率分布表确定出总人数,进而求出a的值即可;(2)把上面的频数分布直方图补充完整即可;(3)根据样本中90分及90分以上的百分比,乘以1000即可得到结果.解:(1)根据题意得:a=6÷0.12×0.28=14;故答案为14;(2)见答案:(3)见答案.23.答案:解:(1)如图1,作OE⊥CD于点E,在△OCD中,∵OC=OD,OE⊥OD,∴CE=1CD=0.7米,2∴OE=√2.52−0.72=2.4米;(2)如图2,作OF⊥AB于点F,在△AOB中,OA=OB,OF⊥AB,∴∠AOF=∠BOF=1∠AOB,2AB,AF=FB=12,在Rt△OAF中,sin∠AOF=AFOA∴AF=OA⋅sin∠AOF,由题意知35°≤∠AOB∠45°,当∠AOF=17.5°时,AF=OA⋅sin∠AOF=2×sin17.5°≈0.60米,此时,AB≈1.20米,所需的绳子约为2.0米,当∠AOF=22.5°时,AF=OA⋅sin∠AOF=2×sin22.5°≈0.76米,此时,AB≈1.52米,所需的绳子约为2.3米,所以他所需的绳子的长度应该在2.0米到2.3米之间.解析:(1)直接根据等腰三角形的性质即可得出结论;(2)过点O作OF⊥AB于点F,由锐角三角函数的定义求出AF及AB的长,进而可得出结论.本题考查的是解直角三角形的应用−坡度坡角问题,熟记锐角三角函数的定义是解答此题的关键.24.答案:解:(1)∵电流I(A)是电阻R(Ω)的反比例函数,(k≠0),∴设I=KR把(4,9)代入得:k=4×9=36,∴这个反比例函数的表达式I=36;R(2)∵当R=10Ω时,I=3.6≠4,∴电流不可能是4A.解析:此题考查的是反比例函数的应用以及求反比例函数解析式.读懂题意,明确图象中的点的横纵坐标代表的实际意义是关键.(k≠0)后把(4,9)代入求得k值即可;(1)根据)电流I(A)是电阻R(Ω)的反比例函数,设出I=KR(2)将R=10Ω代入上题求得的函数关系式后求得电流的值与4比较即可.25.答案:解:(1)∵抛物线y=ax2经过点A(−2,−8),∴a⋅(−2)2=−8,∴a=−2,∴此抛物线对应的函数解析式为y=−2x2.(2)由题可得,抛物线的顶点坐标为(0,0),对称轴为y轴;(3)把x=−1代入得,y=−2×(−1)2=−2≠−4,∴点B(−1,−4)不在此抛物线上;(4)把y=−6代入y=−2x2得,−6=−2x2,解得x=±√3,∴抛物线上纵坐标为−6的点的坐标为(√3,−6)或(−√3,−6).解析:(1)根据二次函数图象上点的坐标满足其解析式,把A点坐标代入解析式得到a的值,即可得出抛物线的函数解析式;(2)根据图象和性质直接写出顶点坐标、对称轴;(3)把点B(−1,−4)代入解析式,即可判断点B(−1,−4)是否在此抛物线上;(4)把y=−6代入解析式,即可求得纵坐标为−6的点的坐标.本题主要考查了待定系数法求解析式,二次函数的性质以及二次函数图象上点的坐标特征,解题时注意:点在图象上,则点的坐标满足函数解析式.26.答案:解:(1)EN=EP;(2)成立.证明:连接EQ,∵四边形ABCD是菱形,∴∠ABD=∠CBD,又∵∠EBP=∠CBD,∴∠ABD=∠EBP.∵直线EM垂直平分线段BQ,∴EB=EQ,∴∠EBP=∠EQB,∴∠ABD=∠EQB,∴∠EQP=∠EBN.又∵BN=PQ,∴△ENB≌△EPQ,∴EN=EP;(3)NP的最小值为3;如图:连接EQ,∵BQ=6∴BM=MQ=3∴BE=BMcos∠EBM=3cos30°=2√3同(2)中的方法,可得△ENB≌△EPQ∴EN=EP,∠NEP=∠PEQ,∴∠NEP=∠BEQ,∵EB=EQ,∴EN:EB=EP:EQ,∴△ENP∽△EBQ,∴NP:BQ=EN:EB,即NP:6=EN:2√3,∴NP=√3EN,过点E作EG⊥AB,垂足为G,则EG=12BE=√3,当N和G重合时,EN的值最小,此时NP=√3EN=3,则最小值为3.解析:本题考查全等三角形的判定和性质、菱形的性质、垂直平分线的性质等知识,解题的关键是正确寻找全等三角形解决问题,学会用转化的思想思考问题,属于中考常考题型.(1)连接EQ,通过证明△EBN≌△EQP即可;(2)利用菱形性质和垂直平分线的性质得到△ENB≌△EPQ即可;(3)根据全等得到PN=QE,当QE⊥BD时,QE最小,此时QE=12QB=3,即最小值为3.解:(1)连接EQ,如图,∵EM垂直平分BQ,∴EQ=EB,∴∠EBQ=∠EQB,∵菱形ABCD,∴∠EBQ=∠EBN,在△EBN与△EQP中,{BN=PQ∠EBN=∠EQP EB=EQ,∴△EBN≌△EQP(SAS),∴EN=EP;故答案为EN=EP;(2)(3)见答案.。

2020年临沂市中考数学一模试题附答案

2020年临沂市中考数学一模试题附答案

2020年临沂市中考数学一模试题附答案一、选择题1.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是230000000人一年的口粮,将230000000用科学记数法表示为( ) A.2.3×109 B.0.23×109 C.2.3×108 D.23×1072.已知反比例函数 y=的图象如图所示,则二次函数 y =a x 2-2x和一次函数 y=bx+a 在同一平面直角坐标系中的图象可能是()A.B.C.D.3.如果一组数据6、7、x、9、5的平均数是2x,那么这组数据的方差为()A.4B.3C.2D.14.如图,直线l1∥l2,将一直角三角尺按如图所示放置,使得直角顶点在直线l1上,两直角边分别与直线l1、l2相交形成锐角∠1、∠2且∠1=25°,则∠2的度数为()A.25°B.75°C.65°D.55°5.下列命题中,真命题的是()A.对角线互相垂直的四边形是菱形B.对角线互相垂直平分的四边形是正方形C.对角线相等的四边形是矩形D.对角线互相平分的四边形是平行四边形⊥于点D,连接BD,BC,且6.如图,AB,AC分别是⊙O的直径和弦,OD ACAC=,则BD的长为()10AB=,8A.5B.4C.213D.4.87.如图,将一个小球从斜坡的点O处抛出,小球的抛出路线可以用二次函数y=4x﹣1 2 x2刻画,斜坡可以用一次函数y=12x刻画,下列结论错误的是()A.当小球抛出高度达到7.5m时,小球水平距O点水平距离为3mB.小球距O点水平距离超过4米呈下降趋势C.小球落地点距O点水平距离为7米D.斜坡的坡度为1:28.一副直角三角板如图放置,点C在FD的延长线上,AB//CF,∠F=∠ACB=90°,则∠DBC的度数为( )A.10°B.15°C.18°D.30°9.某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数,中位数分别是()A.15.5,15.5B.15.5,15C.15,15.5D.15,1510.下列长度的三根小木棒能构成三角形的是()A.2cm,3cm,5cm B.7cm,4cm,2cm C.3cm,4cm,8cm D.3cm,3cm,4cm 11.如图,P为平行四边形ABCD的边AD上的一点,E,F分别为PB,PC的中点,△PEF,△PDC ,△PAB 的面积分别为S ,1S ,2S .若S=3,则12S S +的值为( )A .24B .12C .6D .312.均匀的向一个容器内注水,在注水过程中,水面高度h 与时间t 的函数关系如图所示,则该容器是下列中的( )A .B .C .D .二、填空题13.如图,直线l x ⊥轴于点P ,且与反比例函数11k y x=(0x >)及22k y x =(0x >)的图象分别交于A 、B 两点,连接OA 、OB ,已知OAB ∆的面积为4,则12k k =﹣________.14.当直线()223y k x k =-+-经过第二、三、四象限时,则k 的取值范围是_____. 15.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率是 .16.如图,边长为2的正方形ABCD 的顶点A ,B 在x 轴正半轴上,反比例函数k y x =在第一象限的图象经过点D ,交BC 于E ,若点E 是BC 的中点,则OD 的长为_____.17.在学习解直角三角形以后,某兴趣小组测量了旗杆的高度.如图,某一时刻,旗杆AB 的影子一部分落在水平地面L 的影长BC 为5米,落在斜坡上的部分影长CD 为4米.测得斜CD 的坡度i =1:.太阳光线与斜坡的夹角∠ADC =80°,则旗杆AB 的高度_____.(精确到0.1米)(参考数据:sin50°=0.8,tan50°=1.2,=1.732)18.等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是 .19.如图,把三角形纸片折叠,使点B ,点C 都与点A 重合,折痕分别为,DE FG ,若15,2C AE EG ︒∠===厘米,ABC △则的边BC 的长为__________厘米。

2020年山东省临沂市中考数学一模试卷含答案

2020年山东省临沂市中考数学一模试卷含答案

,两个点随之停止运动.设运动时间为 x 秒,P、Q 经
过的路径与线段 PQ 围成的图形的面积为 y(cm2),则 y 与 x 的函数图象大致是(

第 2 页,共 17 页
A.
B.
C.
D.
二、填空题(本大题共 5 小题,共 15.0 分)
15. 计算
的结果等于______.
16. 分式方程
的解是______.
3.【答案】D
【解析】解:如图,过 P 作 PQ∥a,
∵a∥b, ∴PQ∥b, ∴∠BPQ=∠2=45°, ∵∠APB=60°, ∴∠APQ=15°, ∴∠3=180°-∠APQ=165°, ∴∠1=165°, 故选:D. 先过 P 作 PQ∥a,则 PQ∥b,根据平行线的性质即可得到∠3 的度数,再根据对顶角相等 即可得出结论. 本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等,同旁内角互补 .
17. 如图,将矩形 ABCD 沿 GH 对折,点 C 落在 Q 处,点 D 落 在 AB 边上的 E 处,EQ 与 BC 相交于点 F,若 AD=8,AB=6, AE=4,则△EBF 周长的大小为______.
18. 如图,在平面直角坐标系中,经过点 A 的双曲线 y= (x>0 )同时经过点 B,且点 A 在点 B 的左侧,点 A 的横坐标为 ,∠AOB=∠OBA=45°,则 k 的值为______.
第 4 页,共 17 页
24. A,B 两地相距 60km,甲、乙两人从两地出发相向而行,甲先出发.图中 l1,l2 表 示两人离 A 地的距离 s(km)与时间 t(h)的关系,请结合图象解答下列问题:
(1)表示乙离 A 地的距离与时间关系的图象是____(填 l1 或 l2);甲的速度是 ____km/h,乙的速度是____km/h; (2)甲出发多少小时两人恰好相距 5km?

2020年山东省临沂市中考模拟试卷(一)初中数学

2020年山东省临沂市中考模拟试卷(一)初中数学

2020年山东省临沂市中考模拟试卷(一)初中数学讲明:本试题总分值120分,考试时刻120分钟。

第一卷〔选择题 共42分〕一、选择题〔本大题共14小题,每题3分,共42分。

在每题所给的四个选项中,只有一项为哪一项符合题目要求的。

〕 1.-2的倒数是A .21B .21-C .2D .-22.一批物资总质量为kg 102.17⨯,以下运输工具可将其一次运走的是A .一艘万吨级巨轮B .一辆汽车C .一辆拖拉机D .一辆马车3.以下运算正确的选项是A .3232a a a =+ B .428a a a =÷ C .623a a a =⋅D .623)(a a =4.以下各图中,∠1大于∠2的是5.以下分解因式正确的选项是A .)1(222--=--y x x x xy x B .)32(322---=-+-x xy y y xy xy C .2)()()(y x y x y y x x -=---D .3)1(32--=--x x x x6.以下运算中错误的选项是A .632=⨯B .2221=C .252322=+D .32)32(2-=-7.在函数121+-=x xy 中,自变量x 的取值范畴是 A .2≤xB .2≤x 且1-≠xC .21≥xD .21≥x 且1-≠x 8.如以下图,在Rt △ABC 中,AB =AC ,D 、E 是斜边BC 上的两点,且∠DAE =45°,将△ADC 绕点A 顺时针旋转90°后得到△AFB ,连结EF ,以下结论: ①△AED ≌△AEF ②△ABE ∽△ACD③BE +DC =DE ④BE 2+DC 2=DE 2其中正确的选项是A .②④B .①④C .②③D .①③9.以下讲法正确的选项是A .一对农村夫妇第一胎生女孩,四年后还承诺生一胎,有人讲第二胎必为男孩B .事件发生的频率确实是它的概率C .质检部门在某超市的化妆品台任意抽取100件化妆品进行质量检测,发觉有2件为不合格产品,我们就讲那个柜台的产品合格率为98%D .成语〝万无一失〞,从数学上看,确实是指〝失败〞是一种不可能事件10.如以下图,在钝角△ABC 中,AB =6cm ,AC =12cm ,动点D 从点A 动身到点B 止,动点E 从点C 动身到点A 止,点D 运动的速度为1cm /s ,点E 运动的速度为2cm /s 。

山东省临沂市2020年九年级中考数学模拟试卷(含答案)

山东省临沂市2020年九年级中考数学模拟试卷(含答案)

山东省临沂市2020年中考数学模拟试卷一.选择题(每题3分,满分42分)1.2020的相反数是()A.2020 B.﹣2020 C.D.2.据猫眼专业版显示,今年国庆档的献礼片《我和我的祖国》已经跻身中国电影票房榜前五名,自上映以来票房累计突破29.9亿元,将29.9亿用科学记数法可以表示为()A.0.299×1010B.2.99×109C.29.9×108D.2.99×10103.在下列几何体中,从正面看到为三角形的是()A.B.C.D.4.如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是()A.30°B.40°C.50°D.60°5.新冠疫情发生以来,各地根据教育部“停课不停教,停课不停学”的相关通知精神,积极开展线上教学.下列在线学习平台的图标中,是轴对称图形的是()A.B.C.D.6.下列运算正确的是()A.x2+x=x3B.(﹣2x2)3=8x6C.(x﹣y)(x+y)=x2﹣y2D.(x+1)(x﹣2)=x2﹣2x﹣27.数据2,4,8,5,3,5,5,4的众数、中位数分别为()A.4.5、5 B.5、4.5 C.5、4 D.5、58.不等式组的整数解的个数是()A.2 B.3 C.4 D.59.将一个无盖正方体纸盒展开(如图1),沿虚线剪开,用得到的5张纸片(其中4张是全等的直角三角形纸片)拼成一个正方形(如图2),则所剪得的直角三角形较短的与较长的直角边的比是()A.B.C.D.10.如图,已知公路l上A、B两点之间的距离为50m,小明要测量点C与河对岸边公路l 的距离,测得∠ACB=∠CAB=30°.点C到公路l的距离为()A.25m B.m C.25m D.(25+25)m 11.下面列举的平行四边形的判定条件中,不正确的一个是()A.两组对边分别相等B.两组对角分别相等C.一组对边平行,一组对角相等D.一组对边平行,另一组对边相等12.如图,⊙O中,=,∠ACB=75°,BC=4,阴影部分的面积是()A.+8 B.4+C.8+D.4+13.关于x的二次函数y=x2+2kx+k﹣1,下列说法正确的是()A.对任意实数k,函数图象与x轴都没有交点B.对任意实数k,函数图象没有唯一的定点C.对任意实数k,函数图象的顶点在抛物线y=﹣x2﹣x﹣1上运动D.对任意实数k,当x≥﹣k﹣1时,函数y的值都随x的增大而增大14.如图,矩形ABCD中,AB=6,AD=2,将矩形ABCD绕点B按顺时针方向旋转后得到矩形EBGF,此时恰好四边形AEHB为菱形,连接CH交FG于点M,则HM的长度为()A.B.2 C.D.1二.填空题(满分15分,每小题3分)15.分解因式:6xy2﹣9x2y﹣y3=.16.一个多边形的内角和是1800°,这个多边形是边形.17.如图,在平面直角坐标系中,矩形ABCD的边AB:BC=3:2,点A(﹣3,0),B(0,6)分别在x轴,y轴上,反比例函数的图象经过点D,且与边BC交于点E,则点E的坐标为.18.某商店以定进价一次性购进一种商品,3月份按一定售价销售,销售额为2400元,为扩大销售,减少库存,4月份在3月份售价基础上打9折销售,结果销售量增加30件,销售额增加840元.设该商店3月份这种商品的售价是x 元,则根据题意所列方程为 .19..将A (2,0)绕原点顺时针旋转40°,A 旋转后的对应点是A 1,再将A 1绕原点顺时针旋转40°,A 1旋转后的对应点是A 2,再将A 2绕原点顺时针旋转40°,A 2旋转后的对应点是A 3,再将A 3绕原点顺时针旋转40°,A 3旋转后的对应点是A 4…,按此规律继续下去,A 2019的坐标是 .三.解答题20.(7分)(1)计算:()﹣1+|1﹣|﹣2sin60°+(π﹣2016)0﹣. (2)先化简,再求值:(﹣x +1)÷,其中x =﹣2. 21.(7分)两会期间,记者随机抽取参会的部分代表,对他们某天发言的次数进行了统计,其结果如表,并绘制了如图所示的两幅不完整的统计图,请结合图中相关数据回答下列问题:发言次数nA 0≤n <3B 3≤n <6C 6≤n <9D 9≤n <12E 12≤n <15F15≤n <18 (1)求得样本容量为 ,并补全直方图;(2)如果会议期间组织1700名代表参会,请估计在这一天里发言次数不少于12次的人数;(3)已知A 组发表提议的代表中恰有1为女士,E 组发表提议的代表中只有2位男士,现从A 组与E 组中分别抽一位代表写报告,请用列表法或画树状图的方法,求所抽的两位代表恰好都是男士的概率.22.(7分)4月18日,一年一度的“风筝节”活动在市政广场举行,如图,广场上有一风筝A,小江抓着风筝线的一端站在D处,他从牵引端E测得风筝A的仰角为67°,同一时刻小芸在附近一座距地面30米高(BC=30米)的居民楼顶B处测得风筝A的仰角是45°,已知小江与居民楼的距离CD=40米,牵引端距地面高度DE=1.5米,根据以上条件计算风筝距地面的高度(结果精确到0.1米,参考数据:sin67°≈,cos67°≈,tan67°≈,≈1.414).23.(9分)已知:如图,AB是⊙O直径,OD⊥弦BC于点F,且交⊙O于点E,若∠AEC=∠ODB.(1)求证:BD是⊙O的切线;(2)当AB=10,BC=8时,求BD的长.24.(9分)甲、乙两车分别从A 、B 两地同时出发,在同一条公路上,匀速行驶,相向而行,到两车相遇时停止.甲车行驶一段时间后,因故停车0.5小时,故障解除后,继续以原速向B 地行驶,两车之间的路程y (千米)与出发后所用时间x (小时)之间的函数关系如图所示.(1)求甲、乙两车行驶的速度V 甲、V 乙.(2)求m 的值.(3)若甲车没有故障停车,求可以提前多长时间两车相遇.25.(11分)某校八年级数学兴趣小组在研究等腰直角三角形与图形变换时,作了如下研究:在△ABC 中,∠BAC =90°,AB =AC ,点D 为直线BC 上一动点(点D 不与B ,C 重合),以AD 为腰作等腰直角三角形DAF ,使∠DAF =90°,连接CF .(1)观察猜想如图1,当点D 在线段BC 上时,①CF 与BC 的位置关系为 ;②CF ,DC ,BC 之间的数量关系为 (直接写出结论);(2)数学思考如图2,当点D 在线段CB 的延长线上时,(1)中的①、②结论是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点B 在线段BC 的延长线上时,将△DAF 沿线段DF 翻折,使点A 与点E 重合,连接CE ,若已知4CD =BC ,AC =2,请求出线段CE 的长.26.如图,抛物线y=ax2+bx+3经过点B(﹣1,0),C(2,3),抛物线与y轴的交点A,与x轴的另一个交点为D,点M为线段AD上的一动点,设点M的横坐标为t.(1)求抛物线的表达式;(2)过点M作y轴的平行线,交抛物线于点P,设线段PM的长为l,当t为何值时,l 的长最大,并求最大值;(先根据题目画图,再计算)(3)在(2)的条件下,当t为何值时,△PAD的面积最大?并求最大值;(4)在(2)的条件下,是否存在点P,使△PAD为直角三角形?若存在,直接写出t的值;若不存在,说明理由.参考答案一.选择题1.解:2020的相反数是:﹣2020.故选:B.2.解:29.9亿=29 9000 0000=2.99×109,故选:B.3.解:A、圆柱的主视图是长方形,故本选项不合题意;B、三棱柱的主视图是长方形,故本选项不合题意;C、正方体的主视图是正方形,故本选项不合题意;D、圆锥的主视图是三角形,故本选项符合题意;故选:D.4.解:如图,∵∠BEF是△AEF的外角,∠1=20°,∠F=30°,∴∠BEF=∠1+∠F=50°,∵AB∥CD,∴∠2=∠BEF=50°,故选:C.5.解:四个图形中是轴对称图形的只有A选项,故选:A.6.解:A、x2与x不是同类项,不能合并,故此选项不符合题意;B、(﹣2x2)3=﹣8x6,故此选项不符合题意;C、(x﹣y)(x+y)=x2﹣y2,故此选项符合题意;D、原式=x2﹣x﹣2,故此选项不符合题意,故选:C.7.解:数据中5出现的次数最多,所以众数为5,将数据重新排列为2、3、4、4、5、5、5、8,则中位数为=4.5,故选:B.8.解:解不等式x+5>3,得:x>﹣2,解不等式x+6>4x﹣3,得:x<3,则不等式组的解集为﹣2<x<3,所以不等式组的整数解为﹣1、0、1、2这4个,故选:C.9.解:由图可得,所剪得的直角三角形较短的边是原正方体棱长的一半,而较长的直角边正好是原正方体的棱长,所以所剪得的直角三角形较短的与较长的直角边的比是1:2.故选:A.10.解:如图,过点C作CD⊥直线l于点D,∵∠ACB=∠CAB=30°,AB=50m,∴AB=BC=50m,∠CBD=60°,在Rt△BCD中,∵sin∠CBD=,∴CD=BC sin∠CBD=50×=25(m),故选:C.11.解:A、有两组对边分别相等的四边形是平行四边形,故本选项不符合题意;B、有两组对角分别相等的四边形是平行四边形,故本选项不符合题意;C、∵AD∥BC,∴∠A+∠B=180°,∵∠B=∠D,∴∠A+∠D=180°,∴AB∥CD,∴四边形ABCD是平行四边形,故本选项不符合题意;D、有一组对边平行,另一组对边相等可能是等腰梯形,故本选项符合题意.故选:D.12.解:作OD⊥BC,则BD=CD,连接OA,OB,OC,∴OD是BC的垂直平分线,∵=,∴AB=AC,∴A在BC的垂直平分线上,∴A、O、D共线,∵∠ACB=75°,AB=AC,∴∠ABC=∠ACB=75°,∴∠BAC=30°,∴∠BOC=60°,∵OB=OC,∴△BOC是等边三角形,∴OA=OB=OC=BC=4,∵AD⊥BC,AB=AC,∴BD=CD,∴OD=OB==2,∴AD=4+2,∴S△ABC=BC•AD==8+4,S△BOC=BC•OD==4,∴S阴影=S△ABC+S扇形OBC﹣S△BOC=8+4+﹣4=8+;故选:A.13.解:A、△=4k2﹣4(k﹣1)=(2k﹣1)2+3>0,抛物线与x轴有两个交点,所以A选项错误;B、k(2x+1)=y+1﹣x2,k为任意实数,则2x+1=0,y+1﹣x2=0,所以抛物线经过定点(﹣,﹣),所以B选项错误;C、y=(x+k)2﹣k2+k﹣1,抛物线的顶点坐标为(﹣k,﹣k2+k﹣1),则抛物线的顶点在抛物线y=﹣x2﹣x﹣1上运动,所以C选项正确;D、抛物线的对称轴为直线x=﹣=﹣k,抛物线开口向上,则x>﹣k时,函数y的值都随x的增大而增大,所以D选项错误.故选:C.14.解:连接AC,交BE于O,∵将矩形ABCD绕点B按顺时针方向旋转后得到矩形EBGF,∴AB=BE,∵四边形AEHB为菱形,∴AE=AB,∴AB=AE=BE,∴△ABE是等边三角形,∵AB=6,AD=2,∴tan∠CAB==,∴∠BAC=30°,∴AC⊥BE,∴C在对角线AH上,∴A,C,H共线,∴AO=OH=AB=3,∵∠COB=∠OBG=∠G=90°,∴四边形OBGM是矩形,∴OM=BG=BC=2,∴HM=OH﹣OM=,故选:A.二.填空15.解:原式=﹣y(y2﹣6xy+9x2)=﹣y(3x﹣y)2,故答案为:﹣y(3x﹣y)216.解:设这个多边形是n边形,根据题意得:(n﹣2)×180=1800,解得:n=12.∴这个多边形是12边形.故答案为:12.17.解:过点D作DF⊥x轴于点F,则∠AOB=∠DFA=90°,∴∠OAB+∠ABO=90°,∵四边形ABCD是矩形,∴∠BAD=90°,AD=BC,∴∠OAB+∠DAF=90°,∴∠ABO=∠DAF,∴△AOB∽△DFA,∴OA:DF=OB:AF=AB:AD,∵AB:BC=3:2,点A(﹣3,0),B(0,6),∴AB:AD=3:2,OA=3,OB=6,∴DF=2,AF=4,∴OF=OA+AF=7,∴点D的坐标为:(﹣7,2),∴反比例函数的解析式为:y=﹣①,点C的坐标为:(﹣4,8).设直线BC的解析式为:y=kx+b,则,解得:,∴直线BC的解析式为:y=﹣x+6②,联立①②得:或(舍去),∴点E的坐标为:(﹣2,7).故答案为:(﹣2,7).18.解:设该商店3月份这种商品的售价是x元,由题意得:=﹣30,故答案为:=﹣30.19.解:由题意:9次一个循环,∵2019÷9=224余数为3,∴A2019的坐标与A3相同,∵A3(﹣1,﹣),∴A2019(﹣1,﹣),故答案为(﹣1,﹣).三.解答题20.解:(1)原式=3+﹣1﹣2×+1﹣2 =3+﹣1﹣+1﹣2=1;(2)原式=(﹣)÷=•=•=,当x=﹣2时,原式===2﹣1.21.解:(1)由统计图可得,本次调查的人数为:10÷20%=50,发言次数为C的人数为:50×30%=15,发言次数为F的人数为:50×(1﹣6%﹣20%﹣30%﹣26%﹣8%)=50×10%=5,故答案为:50,补全的直方图如右图所示,(2)1700×(8%+10%)=306,即会议期间组织1700名代表参会,在这一天里发言次数不少于12次的人数是306;(3)由统计图可知,发言次数为A的人数有:50×6%=3,发言次数为E的人数有:50×8%=4,由题意可得,故所抽的两位代表恰好都是男士的概率是=,即所抽的两位代表恰好都是男士的概率是.22.解:如图,作AM⊥CD于M,作BF⊥AM于F,EH⊥AM于H.∵∠ABF=45°,∠AFB=90°,∴AF=BF,设AF=BF=x,则CM=BF=x,DM=HE=40﹣x,AH=x+30﹣1.5=x+28.5,在Rt△AHE中,tan67°=,∴=,解得x=19.9m.∴AM=19.9+30=49.9m.∴风筝距地面的高度49.9m.23.(1)证明:连接AC,∵AB是⊙O的直径∴∠ACB=90°又∵OD⊥BC∴AC∥OE∴∠CAB=∠EOB由对的圆周角相等∴∠AEC=∠ABC又∵∠AEC=∠ODB∴∠ODB=∠OBC∴△DBF∽△OBD∴∠OBD=90°即BD⊥AB又∵AB是直径∴BD是⊙O的切线.(2)解:∵OD⊥弦BC于点F,且点O圆心,∴BF=FC∴BF=4由题意OB是半径即为5∴在直角三角形OBF中OF为3由以上(1)得到△DBF∽△OBD∴即得BD=.24.解:(1)由图可得,,解得,,答:甲的速度是60km/h乙的速度是80km/h;(2)m=(1.5﹣1)×(60+80)=0.5×140=70,即m的值是70;(3)甲车没有故障停车,则甲乙相遇所用的时间为:180÷(60+80)=,若甲车没有故障停车,则可以提前:1.5﹣=(小时)两车相遇,即若甲车没有故障停车,可以提前小时两车相遇.25.解:(1)①等腰直角△ADF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,在△DAB与△FAC中,,∴△DAB≌△FAC(SAS),∴∠B=∠ACF,∴∠ACB+∠ACF=90°,即BC⊥CF;②△DAB≌△FAC,∴CF=BD,∵BC=BD+CD,∴BC=CF+CD;故答案为:垂直,BC=CF+CD;(2)CF⊥BC成立;BC=CD+CF不成立,结论:CD=CF+BC.理由如下:∵等腰直角△ADF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,在△DAB与△FAC中,,∴△DAB≌△FAC(SAS),∴∠ABD=∠ACF,∵∠BAC=90°,AB=AC,∴∠ACB=∠ABC=45°,∴∠ABD=180°﹣45°=135°,∴∠BCF=∠ACF﹣∠ACB=135°﹣45°=90°,∴CF⊥BC.∵CD=DB+BC,DB=CF,∴CD=CF+BC.(3)解:过A作AH⊥BC于H,过E作EM⊥BD于M如图3所示:∵∠BAC=90°,AB=AC=2,∴BC=AB=4,AH=BH=CH=BC=2,∴CD=BC=1,∴DH=CH+CD=3,∵四边形ADEF是正方形,∴AD=DE,∠ADE=90°,∵BC⊥CF,EM⊥BD,EN⊥CF,∴四边形CMEN是矩形,∴NE=CM,EM=CN,∵∠AHD=∠ADC=∠EMD=90°,∴∠ADH+∠EDM=∠EDM+∠DEM=90°,∴∠ADH=∠DEM,在△ADH与△DEM中,,∴△ADH≌△DEM(AAS),∴EM=DH=3,DM=AH=2,∴CM=EM=3,∴CE==3.26.解:(1)把点B(﹣1,0),C(2,3)代入y=ax2+bx+3,则有,解得,∴抛物线的解析式为y=﹣x2+2x+3.(2)在y=﹣x2+2x+3中,令y=0可得0=﹣x2+2x+3,解得x=﹣1或x=3,∴D(3,0),且A(0,3),∴直线AD解析式为y=﹣x+3,设M点横坐标为m,则P(t,﹣t2+2t+3),M(t,﹣t+3),∵0<t<3,∴点M在第一象限内,∴l=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t=﹣(t﹣)2+,∴当t=时,l有最大值,l最大=;=×PM×(x D﹣x A)=PM,(3)∵S△PAD∴PM的值最大时,△PAD的面积中点,最大值=×=.∴t=时,△PAD的面积的最大值为.(4)如图设AD的中点为K,设P(t,﹣t2+2t+3).∵△PAD是直角三角形,∴PK=AD,∴(t﹣)2+(﹣t2+2t+3﹣)2=×18,整理得t(t﹣3)(t2﹣t﹣1)=0,解得t=0或3或,∵点P在第一象限,∴t=.。

临沂2020中考数学综合模拟测验卷(含答案及解析)

临沂2020中考数学综合模拟测验卷(含答案及解析)

2020临沂市初中学生学业模拟考试数学试题(含答案全解全析)(满分:120分时间:120分钟)第Ⅰ卷(选择题,共42分)一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.四个数-3,0,1,2,其中负数是( )A.-3B.0C.1D.22.如图,直线AB∥CD,∠A=40°,∠D=45°,则∠1的度数是( )A.80°B.85°C.90°D.95°3.下列计算正确的是( )A.x3-x2=xB.x3·x2=x6C.x3÷x2=xD.(x3)2=x54.不等式组-的解集在数轴上表示正确的是( )5.如图是一个空心圆柱体,其主视图正确的是( )6.某校九年级共有1、2、3、4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是( )A. B. C. D.7.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( )A.108°B.90°C.72°D.60°8.为了绿化校园,30名学生共种78棵树苗.其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,所列方程组正确的是( )A. B.C. D.9.某老师为了解学生周末学习时间的情况,在所任班级中随机调查了10名学生,绘成如图所示的条形统计图,则这10名学生周末学习的平均时间是( )A.4小时B.3小时C.2小时D.1小时10.如图,AB是☉O的切线,B为切点,AC经过点O,与☉O分别相交于点D,C.若∠ACB=30°,AB=,则阴影部分的面积是( )A. B.π C.-π D.-π11.用大小相等的小正方形按一定规律拼成下列图形,则第n个图形中小正方形的个数是( )A.2n+1B.n2-1C.n2+2nD.5n-212.如图,将等边△ABC绕点C顺时针旋转120°得到△EDC,连接AD,BD.则下列结论:①AC=AD;②BD⊥AC;③四边形ACED是菱形.其中正确的个数是( )A.0B.1C.2D.313.二次函数y=ax2+bx+c,自变量x与函数y的对应值如下表:下列说法正确的是( )A.抛物线的开口向下B.当x>-3时,y随x的增大而增大C.二次函数的最小值是-2D.抛物线的对称轴是x=-14.如图,直线y=-x+5与双曲线y=(x>0)相交于A,B两点,与x轴相交于C点, △BOC的面积是.若将直线y=-x+5向下平移1个单位,则所得直线与双曲线y=(x>0)的交点有( )A.0个B.1个C.2个D.0个,或1个,或2个第Ⅱ卷(非选择题,共78分)二、填空题(本大题共5小题,每小题3分,共15分)15.分解因式:x3-2x2+x= .16.计算:-+-= .17.如图,在△ABC中,点D,E,F分别在AB,AC,BC上,DE∥BC,EF∥AB.若AB=8,BD=3,BF=4,则FC的长为.18.如图,将一矩形纸片ABCD折叠,使两个顶点A,C重合,折痕为FG.若AB=4,BC=8,则△ABF的面积为.19.一般地,当α,β为任意角时,sin(α+β)与sin(α-β)的值可以用下面的公式求得:sin(α+β)=sin α·cos β+cos α·sin β;sin(α-β)=sin α·cos β-cos α·sin β.例如sin 90°=sin(60°+30°)=sin 60°·cos 30°+cos 60°·sin 30°=×+×=1.类似地,可以求得sin 15°的值是.三、解答题(本大题共7小题,共63分)20.(本小题满分7分)计算:|-3|+tan 30°--(2 016-π)0.21.(本小题满分7分)为了解某校九年级学生的身高情况,随机抽取部分学生的身高进行调查,利用所得数据绘成如下统计图表:频数分布表(1)填空:a= ,b= ;(2)补全频数分布直方图;(3)该校九年级共有600名学生,估计身高不低于165 cm的学生大约多少人.22.(本小题满分7分)一艘轮船位于灯塔P南偏西60°方向,距离灯塔20海里的A处,它向东航行多少海里到达灯塔P南偏西45°方向上的B处(参考数据:≈1.732,结果精确到0.1)?23.(本小题满分9分)如图,A,P,B,C是圆上的四个点,∠APC=∠CPB=60°,AP,CB的延长线相交于点D.(1)求证:△ABC是等边三角形;(2)若∠PAC=90°,AB=2,求PD的长.24.(本小题满分9分)现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;(2)小明选择哪家快递公司更省钱?25.(本小题满分11分)如图1,在正方形ABCD中,点E、F分别是边BC、AB上的点,且CE=BF.连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC.(1)请判断:FG与CE的数量关系是,位置关系是;(2)如图2,若点E、F分别是CB、BA延长线上的点,其他条件不变.(1)中结论是否仍然成立?请作出判断并给予证明;(3)如图3,若点E、F分别是BC、AB延长线上的点,其他条件不变.(1)中结论是否仍然成立?请直接写出你的判断.26.(本小题满分13分)如图,在平面直角坐标系中,直线y=-2x+10与x轴、y轴相交于A、B两点.点C 的坐标是(8,4),连接AC,BC.(1)求过O、A、C三点的抛物线的解析式,并判断△ABC的形状;(2)动点P从点O出发,沿OB以每秒2个单位长度的速度向点B运动;同时,动点Q从点B出发,沿BC以每秒1个单位长度的速度向点C运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t秒,当t为何值时,PA=QA?(3)在抛物线的对称轴上,是否存在点M,使以A、B、M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.答案全解全析:一、选择题1.A 小于0的数是负数,0既不是正数也不是负数,大于0的数是正数.2.B ∵AB∥CD ∴∠C=∠A=40°(两直线平行,内错角相等),∴∠1=∠D+∠C=45°+40°=85°.3.C x3与x2不是同类项,不能合并,故A选项错误;x3·x2=x3+2=x5 ,故B选项错误;x3÷x2=x3-2=x,故C选项正确;(x3)2=x6,故D选项错误.故选C.评析本题主要考查了合并同类项,同底数幂的乘除法法则,幂的乘方运算,熟练掌握运算法则是解题的关键.4.A 由3x<2x+4得x<4;由-≥2得3-x≥6,解得x≤-3.故不等式组的解集为x≤-3.故选A.评析本题考查了解一元一次不等式组以及在数轴上表示不等式组的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画).在表示解集时“≥”“≤”要用实心圆点表示,“<”“>”要用空心圆圈表示.熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答本题的关键.5.B 由主视图的定义可知选B.6.B 列表如下:则恰好抽到1班和2班的概率是.故选B.7.C 设这个正多边形的边数为n,则有(n-2)·180°=540°,解得n=5.因为多边形的外角和为360°,且正多边形的每一个外角都相等,所以这个正多边形的每一个外角为360°÷5=72°.故选C.8.D 根据学生总人数为30可列方程x+y=30,男生x人可植树3x棵,女生y人可植树2y棵,一共可植树(3x+2y)棵,则3x+2y=78,故选D.9.B 根据条形统计图可知,10名学生中学习1小时的有1人;学习2小时的有2人;学习3小时的有4人;学习4小时的有2人;学习5小时的有1人,则这10名学生周末学习的平均时间为==3小时.故选B.10.C 连接OB,∵AB是☉O的切线,B为切点,∴∠OBA=90°,又∠AOB=2∠ACB=60°,∴∠OAB=30°.在Rt△ABO中,设OB=x,则OA=2x,∵OB2+AB2=OA2,∴x2+()2=(2x)2,解得x=1(负值舍去),∴S阴影=S△OAB-S扇形BOD=·AB·OB-π=××1-π=-π.故选C.评析本题考查了切线的性质、扇形的面积公式.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.11.C 每个图形可分解成一个n×n的大正方形与上方n个及右方n个小正方形,即第1个图形中小正方形的个数为1×1+1+1=3;第2个图形中小正方形的个数为2×2+2+2=8;第3个图形中小正方形的个数为3×3+3+3=15;……第n个图形中小正方形的个数为n×n+n+n=n2+2n.故选C.12.D ∵等边△ABC绕点C顺时针旋转120°得到△EDC,∴AC=BC=CD=CE,∠BCD=120°,∵∠ACB=60°,∴∠ACD=60°,∴△ACD为等边三角形,∴AC=AD,∴①正确;∵AC=CE=DE=AD=CD,∴四边形ACED是菱形,∴③正确;由AB=BC,得B在AC的垂直平分线上,由AD=CD,得D在AC的垂直平分线上,∴BD垂直平分AC,∴②正确.13.D 由题表中数据可求得二次函数的解析式为y=x2+5x+4,即y=-,故抛物线的开口向上,对称轴是x=-,二次函数的最小值是-,当x>-时,y随x的增大而增大,当x<-时,y随x的增大而减小.故选D.14.B 由题意得C(5,0),设点B的坐标为(a,-a+5),a>0,∵△BOC的面积是,∴×5×(-a+5)=,解得a=4,则B(4,1),∴k=4,则y=(x>0),将直线y=-x+5向下平移1个单位得到直线y=-x+4,令=-x+4,整理得x2-4x+4=0,解得x=2,即直线y=-x+4与双曲线y=(x>0)只有一个交点,为(2,2),故选B.评析根据题意得出反比例函数的解析式是解答本题的关键.二、填空题15.答案x(x-1)2解析x3-2x2+x=x(x2-2x+1)=x(x-1)2.评析本题考查了提公因式法,公式法分解因式,注意分解要彻底.16.答案a+1解析-+-=---=--=--=a+1.17.答案解析由已知得AD=AB-BD=8-3=5.∵DE∥BC,EF∥AB,∴四边形BFED是平行四边形,则DE=BF=4,由DE∥BC得△ADE∽△ABC,则=,即=,解得BC=,∴FC=BC-BF=-4=.18.答案 6解析由折叠知AF=FC,设BF=x,则AF=FC=8-x,在Rt△ABF中,AB2+BF2=AF2,即42+x2=(8-x)2,解得x=3.所以S△ABF=AB·BF=6.19.答案-解析sin 15°=sin(45°-30°)=sin 45°cos 30°-cos 45°·sin 30°=×-×=-.三、解答题20.解析|-3|+tan 30°--(2 016-π)0 =3+×-2-1(4分)=3+1-2-1(5分)=3-2.(7分)21.解析(1)10;28%.(2分)(2)(4分) (3)600×=240(人).故身高不低于165 cm的学生大约240人.(7分)22.解析过点P作PC⊥AB,交AB的延长线于点C.在Rt△ACP中,∠ACP=90°,∠APC=60°,PA=20,∵cos∠APC=,sin∠APC=,∴PC=PA·cos 60°=20×=10,(2分)AC=PA·sin 60°=20×=10.(4分)在Rt△BCP中,∠BCP=90°,∠BPC=45°.∴BC=PC=10.(5分)∴AB=AC-BC=10-10≈10×1.732-10≈7.3.答:轮船向东航行约7.3海里到达位于灯塔P南偏西45°方向上的B处.(7分)23.解析(1)证明:∵∠APC=∠CPB=60°,∴∠ABC=∠BAC=60°,(2分)∴∠ACB=60°,(3分)∴△ABC是等边三角形.(4分)(2)解法一:∵∠PAC=90°,∠APC=∠ACB=60°,∴∠D=∠DAB=∠PCB=30°,∴BD=AB=2.(6分)又∵∠PBD=∠PAC=90°,==4.(9分)∴PD=°解法二:∵∠PAC=90°,∠APC=∠ACB=60°,∴∠ACP=∠PCB=∠D=30°,∴PD=PC.(6分)由(1)知△ABC是等边三角形,∴AC=AB=2,==4.∴在Rt△PAC中,PC=°∴PD=4.(9分)24.解析(1)y甲=(2分)y乙=16x+3,x>0.(3分)(2)解法一:若0<x≤1,当y甲>y乙,即22x>16x+3时,x>; 当y甲=y乙,即22x=16x+3时,x=;当y甲<y乙,即22x<16x+3时,x<.(6分)若x>1,当y甲>y乙,即15x+7>16x+3时,x<4;当y甲=y乙,即15x+7=16x+3时,x=4;当y甲<y乙,即15x+7<16x+3时,x>4.因此,当快递物品少于千克或者多于4千克时,选择甲公司省钱;当快递物品等于千克或者4千克时,两家公司一样;当快递物品多于千克而少于4千克时,选择乙公司省钱.(9分)解法二:画出函数y甲=和y乙=16x+3,x>0的图象.(5分)分别解二元一次方程组得因此两图象的交点分别是,(4,67),(7分)由图象可以看出:当0<x<或x>4时,选择甲公司省钱;当x=或x=4时,两家公司一样;当<x<4时,选择乙公司省钱.(9分)25.解析(1)FG=CE(相等);FG∥CE(平行).(2分)(2)仍然成立.(3分)证明:证法一:设CF与DE相交于点M.∵四边形ABCD是正方形,∴BC=CD,∠FBC=∠ECD=90°.∵BF=CE,∴△BCF≌△CDE,∴FC=ED,∠BFC=∠DEC.(5分)∵∠BFC+∠FCE=90°,∴∠DEC+∠FCE=90°,∴∠EMC=90°,即FC⊥DE,∵GE⊥DE,∴GE∥FC,又∵EG=DE,∴EG=FC.∴四边形GECF是平行四边形.(8分)∴FG=CE,FG∥CE.(9分)证法二:过点G作GN⊥BC,交CB的延长线于点N,则∠GNE=∠ECD=90°.∴∠NGE+∠NEG=90°.又GE⊥ED,∴∠GEN+∠DEC=90°. ∴∠NGE=∠CED.又∵EG=DE,∴△GNE≌△ECD.∴EN=CD,GN=CE.(5分)又∵CE=BF,∴BF=GN.又∵∠FBC=∠GNB=90°,∴BF∥GN.∴四边形GNBF是矩形,(7分)∴FG=BN,FG∥CN,即FG∥CE.又∵CD=BC,∴NB=CE,∴FG=CE.(9分)(3)成立.(11分)26.解析(1)由题意,知A(5,0),B(0,10),∵抛物线过坐标原点,∴设其解析式为y=ax2+bx.则解得-∴抛物线的解析式为y=x2-x.(3分)在△ABC中,∵AB2=52+102=125,BC2=82+(10-4)2=100,AC2=42+(8-5)2=25,∴AC2+BC2=AB2.∴△ABC为直角三角形.(5分)(2)解法一:设当P,Q运动t秒,即OP=2t,CQ=10-t时,PA=QA,由(1)知AC=OA,∠ACQ=∠AOP=90°,∴△AOP≌△ACQ.∴OP=CQ,(6分)∴2t=10-t,∴t=.故当运动时间为秒时,PA=QA.(8分)解法二:分别过C、Q作CD、QE垂直于y轴,垂足分别为D、E,则CD=8. ∵P、Q的运动时间为t秒,∴BQ=t,OP=2t,设点Q的坐标是(m,n),∴QE=m.∵CD⊥y轴,QE⊥y轴,∴CD∥QE,∴△BQE∽△BCD.∴=,即=,∴m=t.(6分)设直线BC的解析式为y=kx+b,则解得-∴直线BC的解析式为y=-x+10.∵点Q在BC上,∴n=-×t+10=-t+10,∴点Q的坐标是-,(7分)∴QA2=-+-=t2-20t+125.∵OP=2t,∴PA2=(2t)2+25=4t2+25,∵PA=QA,∴t2-20t+125=4t2+25,即3t2+20t-100=0,解得t1=,t2=-10(不合题意,舍去),因此,当运动时间为秒时,PA=QA.(8分)(3)存在.由(1)知抛物线的对称轴是直线x=,设点M的坐标为.①若BM=BA,则有+(m-10)2=125,解得m1=,m2=-,此时点M的坐标是M1,M2-.(10分) ②若AM=AB,则有+m2=125,解得m3=,m4=-. 此时点M的坐标是M3,M4-.(12分)③若MA=MB,则有-+m2=+(10-m)2,解得m=5,此时点M5的坐标为.因为点M5恰好是线段AB的中点,构不成三角形,所以不符合题意,应舍去. 综上所述,点M的坐标是:M1,M2-,M3,M4-.(13分)。

2020年山东省临沂市中考数学模拟试卷(一)

2020年山东省临沂市中考数学模拟试卷(一)

2020年山东省临沂市中考数学模拟试卷(一)题号一二三四总分得分一、选择题(本大题共14小题,共42.0分)1.|−3|=()A. −3B. −2C. 3D. 22.如图,l1//l2,∠1=110°,则∠2的度数是()A. 68°B. 70°C. 105°D. 110°3.不等式2l+9≥3(l+2)的解集是()A. l≤3B. l≤−3C. l≥3D. l≥−34.如图,三棱柱lll−l1l1l1是正三棱柱,其主视图是边长为2的正方形,则此三棱柱的左视图的面积为()A. √3B. 2√3C. 2√2D. 45.把l3−ll2进行因式分解,结果正确的是()A. (l+ll)(l−ll)B. l(l2−l2)C. l(l−l)2D. l(l−l)(l+l)6.如图所示,在△lll和△lll中,ll//ll,∠lll=∠l,且ll=ll=4,ll=5,ll=6,则EF的长为()A. 4B. 5C. 6D.不能确定7.下列计算中,正确的是()A. (−5)0=0B. l3+l4=l7C. (−l2l3)2=−l4l6D. 2l−1⋅l2=2l8.“服务社会,提升自我.”尤溪县某中学积极开展志愿者服务活动,来自九年级的4名同学(二男二女)成立了“交通秩序维护”小分队,若从该小分队中任选两名同学进行交通秩序维护,则恰是一男一女的概率是()A. 13B. 12C. 23D. 349.计算:ll−3−l+6l2−3l+1l的结果为()A. ll−3B. l−3lC. l+3lD. ll+310.某校调查了20名同学某一周玩手机游戏的次数,调查结果如下表所示,那么这20名同学玩手机游戏次数的平均数为()次数2458人数221065.5 C. 6 D.6.511.如图,A,B,C,D是⊙l上的四个点,ll⏜=ll⏜,若∠lll=58°,∠lll=()A. 29°B. 58°C. 116°D. 120°12.下列关于一次函数l=−2l+4的说法错误的是()A. y随x的增大而减小B. 直线不经过第三象限C. 向下平移三个单位得直线l=−2l+1D. 与x轴交点坐标为(0,4)13.平行四边形ABCD中,AC、BD是两条对角线,如果添加一个条件,即可推出平行四边形ABCD是矩形,那么这个条件是()A. ll=llB. ll=llC. ll⊥llD. ll⊥ll14.把一个物体以初速度l0(米/秒)竖直向上抛出,在不计空气阻力的情况下,物体的运动路线是一条抛物线,且物体的上升高度ℎ(米)与抛出时间l(秒)之间满足:ℎ=l0l−12ll2(其中g是常数,取10米/秒 2).某时,小明在距地面2米的O点,以10米/秒的初速度向上抛出一个小球,抛出2.1秒时,该小球距地面的高度是()A. 1.05米B. −1.05米C. 0.95米D. −0.95米二、填空题(本大题共5小题,共15.0分)15.计算:√12−√12×√6=______ .16.如图,在平面直角坐标系中,直线m经过(1,0)点,且垂直x轴,则点l(−1,2)关于直线m的对称点的坐标为______.17.李师傅加工1个甲种零件和1个乙种零件的时间分别是固定的,现知道李师傅加工3个甲种零件和5个乙种零件共需55分钟;加工4个甲种零件和9个乙种零件共需85分钟,则李师傅加工2个甲种零件和1个乙种零件共需___________分钟.18.将下列各数的序号填在相应的横线上: ①−√83, ②2l, ③3.1415926, ④−0.86, ⑤3.030030003⋯(相邻两个3之间0的个数依次增加1),⑥2√2, ⑦20182019, ⑧−√(−1)2.有理数:.无理数:.负实数:.19.如图,在△lll中,ll⊥ll于D,ll⊥ll于E,∠lll=45°,∠lll=75°,ll=5ll,则ll=______ .三、计算题(本大题共2小题,共14.0分)20.解方程:l−23l+5−1=1−5−3l21.2016年合肥市初中生学业质量绿色指标综合评价在合肥12个县(市)、区312所学校进行,某校八年级根据比例被随机抽取了40名学生参与了语文、数学、英语、科学等四个科目的测试,根据这40位同学的数学成绩,绘制了如下条形统计图.平均成绩(分)中位数(分)众数(分)86.85______ ______500名若全部参加测试,估计有多少学生的成绩能达到优秀?(3)张明同学的数学成绩为88分,他认为自己成绩超过平均分,排名应该处于中上等水平,这种说法对吗?为什么?四、解答题(本大题共5小题,共49.0分)22.王浩同学用木板制作一个带有卡槽的三角形手机架,如图所示.已知ll=20ll,ll=18ll,∠lll=50°,王浩的手机长度为17cm,宽为8cm,王浩同学能否将手机放入卡槽AB内?请说明你的理由.(提示:lll50°≈0.8,lll50°≈0.6,lll50°≈1.2)23.如图,在△lll中,以AC为直径的⊙l交AB于点D,连接CD,∠lll=∠l.(1)求证:BC是⊙l的切线;(2)若ll=5,ll=3,求点O到CD的距离.24.近年来,我国煤矿安全事故频频发生,其中危害最大的是瓦斯,其主要成分是ll.在一次矿难事件的调查中发现:如图,从零时起,井内空气中CO的浓度达到4ll/l,此后浓度直线上升,在第7小时达到最高,即浓度达到46ll/l发生爆炸.爆炸后,空气中的CO浓度下降,此时浓度与时间成反比例.根据题中相关信息,回答下列问题:(1)求爆炸前、后空气中CO浓度y与时间x之间的函数表达式,并写出相应的自变量x的取值范围.(2)当空气中的CO浓度达到34ll/l时,井下3km的矿工接到自动报警信号,这时他们至少要以多大的速度撤离才能在爆炸前逃生⋅(3)矿工只有在空气中的CO浓度降到4ll/l及以下时,才能回到矿井开展生产自救,则矿工至少在爆炸后多长时间才能下井⋅25.在正方形ABCD中,E、F分别为BC、CD的中点,AE与BF相交于点G.(1)如图1,求证:ll⊥ll;(2)如图2,将△lll沿BF折叠,得到△lll,延长FP交BA的延长线于点Q,若ll=4,求QF的值26.如图,已知抛物线l=−l2+ll+l与一直线相交于l(1,0)、l(−2,3)两点,与y轴交于点N,其顶点为D(1)求抛物线的函数关系式;(2)若P是抛物线上位于直线AC上方的一个动点,求△lll的面积的最大值及此时点P的坐标;(3)在直线AC上是否存在一点M,使△lll为直角三角形,若存在,求点M的坐标;若不存在,请说明理由.。

山东省临沂市2020年中考数学模拟试卷解析版

山东省临沂市2020年中考数学模拟试卷解析版
∵AB=4,sinA= ,
∴BD=AB•sinA=4× =3,
∴AD=
=
=,
∴▱ABCD 的面积=AD•BD=3 ; 故答案为:3 . 先由三角函数求出 BD,再根据勾股定理求出 AD,▱ABCD 的面积=AD•BD,即可得出 结果. 本题考查了平行四边形的性质、三角函数、勾股定理以及平行四边形面积的计算;熟练 掌握平行四边形的性质,并能进行推理计算是解决问题的关键.
中考数学模拟试卷
题号 得分




总分
一、选择题(本大题共 5 小题,共 25.0 分)
1. 多项式 mx2-m 与多项式 x2-2x+1 的公因式是( )
A. x-1
B. x+1
C. x2-1
2. 观察下列关于 x 的单项式,探究其规律: x,3x2,5x3,7x4,9x5,11x6,…
按照上述规律,第 2015 个单项式是( )
2.【答案】C
【解析】解:根据分析的规律,得 第 2015 个单项式是 4029x2015. 故选:C. 系数的规律:第 n 个对应的系数是 2n-1. 指数的规律:第 n 个对应的指数是 n. 此题考查单项式问题,分别找出单项式的系数和次数的规律是解决此类问题的关键.
3.【答案】A
【解析】解:由一元一次不等式组
10. 一般地,我们把研究对象统称为元素,把一些元素组成的总体称为集合.一个给定 集合中的元素是互不相同的,也就是说,集合中的元素是不重复出现的.如一组数 1,1,2,3,4 就可以构成一个集合,记为 A={1,2,3,4}.类比实数有加法运算 ,集合也可以“相加”.定义:集合 A 与集合 B 中的所有元素组成的集合称为集
第 4 页,共 7 页

临沂市2020届数学中考模拟试卷

临沂市2020届数学中考模拟试卷

临沂市2020届数学中考模拟试卷一、选择题1.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1.5小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距40千米时,t=32或t=72,其中正确的结论有()A.1个B.2个C.3个D.4个2.如图,已知E是菱形ABCD的边BC上一点,且∠DAE=∠B=70°,那么∠CDE的度数为()A.20°B.15°C.30°D.25°3.如图,AB是⊙O的直径,C,D两点在⊙O上,若∠BCD=40°,则∠ABD的度数为()A.40°B.50°C.80°D.90°4.计算:2-2的结果是( )A.4 B.1 C.0 D.-45.如图,▱ABCD中,∠B=70°,BC=6,以AD为直径的⊙O交CD于点E,则DE的长为()A.13πB.23πC.76πD.43π6.某数学研究性学习小组制作了如下的三角函数计算图尺:在半径为1的半圆形量角器中,画一个直径为1的圆,把刻度尺CA的0刻度固定在半圆的圆心O处,刻度尺可以绕点O旋转.从图中所示的图尺可读出cos∠AOB的值是()A.34B.710C.45D.357.(2008•衢州)某商品原价289元,经连续两次降价后售价为256元,设平均每降价的百分率为x ,则下面所列方程正确的是( ) A .289(1﹣x )2="256" B .256(1﹣x )2=289 C .289(1﹣2x )2="256"D .256(1﹣2x )2=2898.下列运算中,正确的是( ) A .(﹣12)﹣1=﹣2 B .a 3•a 6=a 18 C .6a 6÷3a 2=2a 3D .(﹣2ab 2)2=2a 2b 49.如图,在平面直角坐标系xOy 中,以原点O 为圆心的圆过点(13,0)A ,直线12y kx =+与O 交于B 、C 两点,则弦BC 长的最小值( )A .24B .10C .8D .2510.由若干个相同的小正方体搭成的一个几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数最多有( )A.6B.5C.4D.711.如图,在锐角三角形ABC 中,BC =4,∠ABC =60°,BD 平分∠ABC ,交AC 于点D ,M ,N 分别是BD ,BC 上的动点,则CM+MN 的最小值是( )A .B .2C .2D .412.分式方程, 2133xx x +=-+-的解为( ). A .0x = B .6x =C .15x =-D .15x =二、填空题13.观察下列等式: 第1层1+2=3 第2层4+5+6=7+8第3层9+10+11+12=13+14+15第4层16+17+18+19+20=21+22+23+24…在上述数字宝塔中,从上往下数,2019在第_____层.14.如图,矩形ABCD 中,AB =6,AD =,点E 是BC 的中点,点F 在AB 上,FB =2,P 是矩形上一动点.若点P 从点F 出发,沿F→A→D→C 的路线运动,当∠FPE =30°时,FP 的长为_____.15.计算2的结果等于_____.16.若在实数范围内有意义,则x 的取值范围是______.17.如图所示,长方形ABCD 中,AB =1,AD =2,将长方形向上、下、左、右各扩大1得到长方形A 1B 1C 1D 1,…,依此类推,则长方形A n B n ∁n D n 的周长可以表示为_____.18.若x =2是关于x 的方程2x ﹣m+1=0的解,则m =_____. 三、解答题19.已知关于x 的方程x 2﹣2x+m ﹣2=0有两个不相等的实数根. (1)求m 的取值范围;(2)如果m 为正整数,且该方程的根都是整数,求m 的值. 20.(1)计算:()112cos3020192π-⎛⎫---- ⎪⎝⎭(2)解方程:4501x x -=-21﹣2019022.某校文学社为了解学生课外阅读情况,抽样调查了部分学生每周用于课外阅读的时间,过程如下: 数据收集:从全校随机抽取20名学生,进行了每周用于课外阅读时间的调查,数据如下(单位:min):⑴用样本中的统计量估计该校学生每周用于课外阅读时间的情况等级为_____;⑵如果该校现有学生400人,估计等级为“B”的学生有多少人?⑶假设平均阅读一本课外书的时间为320分钟,请你选择样本中的一种统计量估计该校学生每人一年(按52周计算)平均阅读多少本课外书?23.如图,已知点A、B分别在反比例函数1yx=-(x>0),kyx=(k<0,x>0)的图象上.点B的横坐标为4,且点B在直线y=x﹣5上.(1)求k的值;(2)若OA⊥OB,求tan∠ABO的值.24.解方程组:235 45 x yx y+=-⎧⎨+=⎩25.为推进“全国亿万学生阳光体育运动”的实施,组织广大同学开展健康向上的第二课堂活动.我市某中学准备组建球类社团(足球、篮球、羽毛球、乒乓球)、舞蹈社团、健美操社团、武术社团,为了解在校学生对这4个社团活动的喜爱情况,该校随机抽取部分初中生进行了“你最喜欢哪个社团”调查,依据相关数据绘制成以下不完整的统计表,请根据图表中的信息解答下列问题:(2)请补全统计图;(3)被调查的60个喜欢球类同学中有3人最喜欢足球,若该校有3000名学生,请估计该校最喜欢足球的人数.【参考答案】***一、选择题13.4414.4或8或415.516.x≥-217.8n+6.18.5三、解答题19.(1)m<3;(2)m=2.【解析】【分析】(1)根据题意得出△>0,代入求出即可;(2)求出m=1或2,代入后求出方程的解,即可得出答案.【详解】(1)∵方程有两个不相等的实数根.∴△=4﹣4(m﹣2)>0.∴m<3;(2)∵m<3 且 m为正整数,∴m=1或2.当 m=1时,原方程为 x2﹣2x﹣1=0.它的根不是整数,不符合题意,舍去;当 m=2时,原方程为 x2﹣2x=0.∴x(x﹣2)=0.∴x1=0,x2=2.符合题意.综上所述,m=2.【点睛】本题考查了根的判别式和解一元二次方程,能根据题意求出m的值和m的范围是解此题的关键.20.(11;(2)5x =. 【解析】 【分析】(1)根据整数指数幂的运算以及特殊三角函数值计算即可; (2)根据解分式方程的步骤解即可,注意要验根. 【详解】(1)()112cos3020192π-⎛⎫---- ⎪⎝⎭=21+2-,1+; (2)4501x x-=- , 去分母得:4x-5(x-1)=0 去括号得,4x-5x+5=0 移项得,4x-5x=-5, 合并,得:-x=-5, 系数化为1,得:x=5.经检验,x=5是原分式方程的解. 【点睛】本题主要考查了实数的运算以及解分式方程,计算时一定要细心,分式方程要检验.21.【解析】 【分析】按顺序先分别代入特殊角的三角函数值,化简二次根式 ,进行0次幂运算,然后再按运算顺序进行计算即可. 【详解】20190=2×12+﹣1=. 【点睛】本题考查了实数的综合运算能力,涉及了特殊角的三角函数值,二次根式的化简,0次幂,熟练掌握各运算的运算法则是解题的关键.22.整理数据:5;4;分析数据:81;81;得出结论:(1)B ;(2)160人;(3)13本. 【解析】 【分析】整理数据:从表格中的数据直接找出40≤x<80有5人,120≤x<160有4人;中位数:先把数据从小到大(或从大到小)进行排列,如果数据的个数是奇数,那么最中间的那个数据就是中位数,如果数据的个数是偶数,那么最中间的那两个数据的平均数就是中位数;众数:是一组数据中出现次数最多的数据;据此求出即可.(1)根据分析数据统计显示,平均数是80 ,中位数与众数都是81,都是B 等级,据此可估计该校学生每周用于课外阅读时间的情况等级为B.(2)直接用400乘以B等级在样本中所占比列即得.(3)根据题意选择样本平均数来估计.【详解】解:整理数据:5;4.分析数据:81;81.得出结论:⑴B⑵等级为“B”的学生有820×400=160(人)⑶以平均数来估计:80320×52=13,∴假设平均阅读一本课外书的时间为320分钟,以样本的平均数来估计,该校学生每人一年(按52周计算)平均阅读13本课外书。

山东省2020年临沂市中考数学模拟试题(含答案)

山东省2020年临沂市中考数学模拟试题(含答案)

山东省2020年临沂市中考数学模拟试题含答案一、选择题(每小题3分,共36分)1、下列运算中,正确的是( )A 、B 、C 、D 、2、 如图,把一张长方形纸片沿EF 折叠后,点D ,C 分别落在D',C'的位置,若∠EFB=650,则∠AED'等于( )A 、500B 、550C 、600D 、6503、若代数式()231-+x x 有意义,则实数x 的取值应满足( ) A 、1-≥x B 、31≠-≥x x 且 C 、x>-1 D 、31≠->x x 且4、一个几何体的三视图如图所示:其中主视图和左视图都是腰长为4、底边长为2的等腰三角形,则这个几何体的侧面积展开图的面积为( )A 、π2B 、π21 C 、π4 D 、π85、若不等式⎩⎨⎧->-≥+2210x x a x 无解,则实数a 的取值范围是( )A 、1-≥aB 、1-<aC 、1≤aD 、1-≤a6、如图是拦水坝的横断面,斜坡AB 的水平宽度为12米,斜面坡度为1:2,则斜坡AB 的长为( )A 、34米B 、56米C 、512米D 、24米C D E C'主视图左视图俯视图 A B C DE7、下列事件:①在足球赛中,弱队战胜强队;②抛掷1枚硬币,硬币落地时正面朝上;③任取两个正整数,其和大于1;④长为3cm ,5cm ,9cm 的三条线段能围成一个三角形。

其中确定的事件有( )A 、1个B 、2个C 、3个D 、4个8、方程()0622=++-m x m x 有两个相等的实数根,且满足2121x x x x =+,则m 的值是( )A 、—2或3B 、3C 、—2D 、—3或29、如图,在菱形ABCD 中,M ,N 分别在AB ,CD 上,且AM=CN ,MN 与AC 交于点O 。

若∠DAC=280,则∠OBC 的度数为( )A 、280B 、520C 、620D 、7210、已知⊙O 的半径为2,点P 是⊙O 内一点,且OP=3,过P 作互相垂直的两条弦AC 、BD ,则四边形ABCD 的面积的最大值为( )A 、4B 、5C 、6D 、711、如图,一次函数y 1=x 与二次函数c bx ax y ++=22的图象相交于P 、Q 两点,则函数()c x b ax y +-+=12的图象可能为( )12、如图,A 点在半径为2的⊙O 上,过线段OA 上的一点P 作直线l ,与⊙O 过A 点的切线xy o A x y o B x y o C o x y D交于点B ,且∠APB=600,设OP=x ,则ΔPAB 的面积y 关于x 的函数图象大致是( )二、填空题(每小题4分,共20分)13、用科学计数法表示0.000000645这个数为___________。

2020年临沂市中考模拟考试(三)初中数学

2020年临沂市中考模拟考试(三)初中数学

2020年临沂市中考模拟考试(三)初中数学 本试卷分第一卷〔选择题〕和第二卷〔非选择题〕两部分,第一卷1至2页,第二卷3至8页,总分值l20分。

考试时刻l20分钟。

第一卷〔选择题 共42分〕本卷须知:1.答第一卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。

2.每题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦洁净后,再选涂其它答案,不能答在试卷上。

3.考试终止,将本试卷和答题卡一并交回。

一、选择题〔每题3分,在给出的四个选项中,只有一项为哪一项符合题目要求的〕1.运算)3(232x x -⋅的结果是A .56x -B .56xC .62x -D .62x 2.不等式组⎩⎨⎧<->-0302x x 的解集是A .2>xB .3<xC .32<<xD .无解 3.神州六号飞船与送它上天的火箭共有零部件约120000个,用科学记数法表示为A .4102.1⨯B .5102.1⨯C .6102.1⨯D .4102.1⨯ 4.现有以下四边形:①菱形,②矩形,③对角线互相垂直的四边形,④对角线相等的四边形,⑤等腰梯形,⑥直角梯形。

其中连接四边形中点是菱形的有A .1个B .2个C .3个D .4个5.在平面镜里看到背后墙上,电子钟示数如下图.这时的实际时刻应该是 A .21:05 B .8:15 C .2:15 D .9:156.在Rt △ABC 中,∠C=90º,135sinA =,那么tanB= A .125 B .135 C .512 D .1312 7.以下能构成三角形的三条线段长是A .2,4,6B .23,24,25C .3,2,5D .3,5,78.某超级市场失窃,大量的商品在夜间被罪犯用汽车运走。

三个嫌疑犯被警察局传讯,警察局差不多把握了以下事实:〔1〕罪犯不在A.B.C三人之外;〔2〕C作案时总得有A作从犯;〔3〕B可不能开车。

2020年临沂市中考模拟考试(四)初中数学

2020年临沂市中考模拟考试(四)初中数学

2020年临沂市中考模拟考试(四)初中数学数学试题本试卷分第一卷〔选择题〕和第二卷〔非选择题〕两部分,第一卷1至2页,第二卷3至8页,总分值120分。

考试时刻120分钟。

第一卷〔选择题 共42分〕本卷须知:1.答第一卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。

2•每题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦洁 净后,再选涂其它答案,不能答在试卷上。

3•考试终止,将本试卷和答题卡一并交回。

一、选择题〔每题 3分,在给出的四个选项中,只有一项为哪一项符合题目要求的〕 1. X 3 X 2的运算结果是A . XB . X 3C . X 5D . XX 2x2.不等式组的解集为4x 3 04.北京等5个都市的国际标准时刻〔单位:小时〕可在数轴上表示如下,假如将两地国际 标准时刻的差简称为时差。

那么輒的爹檢爹卷敦It*-—~~1—1_I ~~I ~t~I t_1_L't £ £・i -J -1 6 I i 315 6 7 3 9A .汉城与纽约的时差为 13小时B .汉城与多伦多的时差为 13小时C .北京与纽约的时差为 14小时D .北京与多伦多的时差为 14小时 5•—只小狗正在平面镜前观赏自己的全身像〔如图〕。

现在,它所看到的全身像是OXD.OX3 - 4C.3 •不等边三角形的一边等于 5,另一边等于3,假设第三边长为奇数,那么周长等于 & 11C . 11 , 13或 15D . 1516•在函数y的图像上有三点 A i (X i ,y i), A 2(x 2, y 2), A 3(X 3, y 3)。

假设2xx1 0 X 2X 3,那么以下正确的选项是A . y 1 0 y 2 y 3B . y 2 y 3 0 y 1C . y 2y 3 y 1 0D . 0y 2 y 1 y 37.在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如 下图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

市2020年中考数学模拟试题及答案注意事项:1.考生务必将自己的姓名、准考证号填涂在试卷和答题卡的规定位置。

2.考生必须把答案写在答题卡上,在试卷上答题一律无效。

考试结束后,本试卷和答题卡一并交回。

3.本试卷满分120分,考试时间120分钟。

一、选择题(本题共12小题。

每小题3分,共36分。

在每小题给出的四个选项中,只有一项是正确的。

)1.5的相反数是( )A .55B .﹣5C .﹣55D .5 2.舌尖上的浪费让人触目惊心,据统计中国每年浪费的食物总量折合粮食约499.5亿千克,这个数用科学记数法应表示为( ) A .4.995×1011B .49.95×1010C .0.4995×1011D .4.995×10103.某区“引进人才”招聘考试分笔试和面试.其中笔试按60%、面试按40%计算加权平均数作为总成绩.吴老师笔试成绩为90分.面试成绩为85分,那么吴老师的总成绩为( )分. A .85B .86C .87D .884. 若以A(-0.5,0),B(2,0),C(0,1)三点为顶点画平行四边形,则第四个顶点不可能在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限5. 图①是由五个完全相同的小正方体组成的立方体图形,将图①中的一个小正方体改变位置后如图②,则三视图发生改变的是( )A. 主视图B. 俯视图C. 左视图D. 主视图、俯视图和左视图都改变 6.如图,已知∠ABC =∠DCB ,添加以下条件,不能判定△ABC ≌△DCB 的是( )A .∠A =∠DB .∠ACB =∠DBC C .AC =DBD .AB =DC7. 若反比例函数y =(k ≠0)的图象经过点P (2,﹣3),则该函数的图象不经过的点是( ) A .(3,﹣2)B .(1,﹣6)C .(﹣1,6)D .(﹣1,﹣6)8.若圆锥的底面半径r 为6cm ,高h 为8cm ,则圆锥的侧面积为( ) A .30πcm2 B .60πcm2 C .48πcm2 D .80πcm29.将1.2.3三个数字随机生成的点的坐标列成下表.如果每个点出现的可能性相等,那么从中任意取一点,这个点在函数y=x 图象上的概率是( )A.0.3B.0.5C.31 D.3210.如图1,点P 从矩形ABCD 的顶点A 出发沿A →B →C 以2cm /s 的速度匀速运动到点C ,图2是点P 运动时,△APD 的面积y (cm 2)随运动时间x (s )变化而变化的函数关系图象,则矩形ABCD 的面积为( )A .36B .48C .32D .2411.如图,AB 是⊙O 的直径,M 、N 是弧AB (异于A 、B )上两点,C 是弧MN 上一动点,∠ACB 的角平分线交⊙O 于点D ,∠BAC 的平分线交CD 于点E .当点C 从点M 运动到点N 时,则C 、E 两点的运动路径长的比是( ) A .2 B .2C .23 D .2512. 函数y=4x-1和y=x-1在第一象限内的图象如图,点P 是y=4x-1的图象上一动点,PC ⊥x 轴于点C ,交y=x-1的图象于点A ,PD ⊥y 轴于D ,交y=x-1的图象于点B ,给出如下4个结论:①△ ODB 与△OCA 的面积相等; ②线段PA 与PB 始终相等;③四边形PAOB 的面积大小不会发生变化; ④3CA=AP .其中正确的结论是( )A.①②③B.①②④C.②③④D.①③④二、填空题(本题共6小题,满分18分。

只要求填写最后结果,每小题填对得3分。

) 13.在△ABC 中,∠B =45°,cosA =12,则∠C 的度数是________.14. 不等式2+9≥3(+2)的正整数解是_______.15.把命题“平行于同一条直线的两条直线互相平行”改写成“如果…,那么…”的形式为_______. 16.如图,在边长为6cm 的正方形ABCD 中,点E 、F 、G 、H 分别从点A 、B 、C 、D 同时出发,均以1cm /s 的速度向点B 、C 、D 、A 匀速运动,当点E 到达点B 时,四个点同时停止运动,在运动过程中,当运动时间为 s 时,四边形EFGH 的面积最小,其最小值是 cm 2.17.如图,在Rt △ABC 中,AB =AC ,D 、E 是斜边AC 上两点,且∠DAE =45°,若BE =4,CD =3,则AB 的长为 .18.如图,点A 在双曲线y =上,点B 在双曲线y =(k ≠0)上,AB ∥x 轴,过点A 作AD ⊥x 轴 于D .连接OB ,与AD 相交于点C ,若AC =2CD ,则k 的值为 .三、解答题(本题共7小题,共66分。

解答应写出文字说明、证明过程或推演步骤。

) 19.(6分)先化简,再求值:(1﹣x +)÷,其中x =tan45°+()﹣1.20.(8分)如图,在平面直角坐标系中,△ABC 的三个顶点分别为A (﹣1,﹣1)、B (﹣3,3)、C(﹣4,1)(1)画出△ABC关于y轴对称的△A1B1C1,并写出点B的对应点B1的坐标;(2)画出△ABC绕点A按顺时针旋转90°后的△AB2C2,并写出点C的对应点C2的坐标.21.(10分)进行了统计,并绘制了如下两幅不完整的统计图.请结合统计图中的信息解决下列问题:(1)这次学校抽查的学生人数是;(2)将条形统计图补充完整;(3)如果该校共有1000名学生,请你估计该校报D的学生约有多少人?22.(10分)如图是小强洗漱时的侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD=80cm,宽AB=48cm,小强身高166cm,下半身FG=100cm,洗漱时下半身与地面成80°(∠FGK=80°),身体前倾成125°(∠EFG=125°),脚与洗漱台距离GC=15cm(点D,C,G,E在同一直线上).(cos80°≈0.018,sin80°≈0.98,≈1.414)(1)此时小强头部E点与地面DK相距多少?(2)小强希望他的头部E恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少?23.(10分)某市一种出租车起步价是5元(路程在3km以内均付5元),达到或超过3km,每增加0.5km加价0.7元(不足0.5km按0.5km计).某乘客坐这种出租车从甲地到乙地,下车时付车费14.8元,那么甲地到乙地的路程是多少?24. (10分)如图,正方形ABCD边长为4,点O在对角线DB上运动(不与点B,D重合),连接OA,作OP⊥OA,交直线BC于点P.(1)判断线段OA,OP的数量关系,并说明理由.(2)当OD=时,求CP的长.(3)设线段DO,OP,PC,CD围成的图形面积为S1,△AOD的面积为S2,求S1﹣S2的最值.25.(12分)如图1,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C(0,﹣2),顶点为D,对称轴交x轴于点E.(1)求该二次函数的解析式;(2)设M为该抛物线对称轴左侧上的一点,过点M作直线MN∥x轴,交该抛物线于另一点N.是否存在点M,使四边形DMEN是菱形?若存在,请求出点M的坐标;若不存在,请说明理由;(3)连接CE(如图2),设点P是位于对称轴右侧该抛物线上一点,过点P作PQ⊥x轴,垂足为Q.连接PE,请求出当△PQE与△COE相似时点P的坐标.参考答案一、选择题(本题共12小题。

每小题3分,共36分。

在每小题给出的四个选项中,只有一项是正确的。

)1.B2.D3.D4.C5.A6.C7.D8.B9.C 10.C 11.A 12.D二、填空题(本题共6小题,满分18分。

只要求填写最后结果,每小题填对得3分。

)13. 12.75° 14. 1,2,3 15. “如果两条直线平行于同一条直线,那么这两条直线平行”.16. 3;18 17. 62 18. 12 18.三、解答题(本题共7小题,共66分。

解答应写出文字说明、证明过程或推演步骤。

)19. (6分)解:原式=(+)÷=•=,当x=tan45°+()﹣1=1+2=3时,原式==﹣.20. (8分)解:(1)如图(1)所示,△A1B1C1即为所求,其中B1的坐标为(3,3).(2)如图(2)所示,△AB2C2即为所求,C2的坐标为(1,2).21.(10分)解:(1)这次学校抽查的学生人数是12÷30%=40(人),故答案为:40人;(2)C项目的人数为40﹣12﹣14﹣4=10(人)条形统计图补充为:(3)估计全校报名军事竞技的学生有1000×=100(人).22. (10分)解:(1)过点F作FN⊥DK于N,过点E作EM⊥FN于M.∵EF+FG=166,FG=100,∴EF=66,∵∠FGK=80°,∴FN=100•sin80°≈98,∵∠EFG=125°,∴∠EFM=180°﹣125°﹣10°=45°,∴FM=66•cos45°=33≈46.53,∴MN=FN+FM≈144.5,∴此时小强头部E点与地面DK相距约为144.5cm.(2)过点E作EP⊥AB于点P,延长OB交MN于H.∵AB=48,O为AB中点,∴AO=BO=24,∵EM=66•sin45°≈46.53,∴PH≈46.53,∵GN=100•cos80°≈17,CG=15,∴OH=24+15+17=56,OP=OH﹣PH=56﹣46.53=9.47≈9.5,∴他应向前9.5cm.23. (10分)解:设从甲地到乙地的路程是xkm,根据题意,得:14.8﹣0.7<5+1.4(x﹣3)≤14.8,解得:9.5<x≤10,答:甲地到乙地的路程大于9.5km且不超过10km.24. (10分)解:(1)OA=OP,理由是:如图1,过O作OG⊥AB于G,过O作OH⊥BC于H,∵四边形ABCD是正方形,∴∠ABO=∠CBO,AB=BC,∴OG=OH,∵∠OGB=∠GBH=∠BHO=90°,∴四边形OGBH是正方形,∴BG=BH,∠GOH=90°,∵∠AOP=∠GOH=90°,∴∠AOG=∠POH,∴△AGO≌△PHO(ASA),∴OA=OP;(2)如图2,过O作OQ⊥CD于Q,过O作OH⊥BC于H,连接OC,∴∠OQD=90°,∵∠ODQ=45°,∴△ODQ是等腰直角三角形,∵OD=,∴OQ=DQ=1,∵AD=CD,∠ADO=∠CDO,OD=OD,∴△ADO≌△CDO(SSS),∴AO=OC=OP,∵OH⊥PC,∴PH=CH=OQ=1,∴PC=2;(3)如图3,连接OC,过O作OG⊥BC于G,OH⊥CD于H,设OH=x,则DH=x,CH=OG=4﹣x,PC=2x,由(2)知:△AOD≌△COD,∴S△AOD=S△COD,∴S1﹣S2=S1﹣S△COD=S△POC===﹣x2+4x=﹣(x﹣2)2+4,当x=2时,S1﹣S2有最大值是4.25.(12分)解:(1)设抛物线解析式为y=a(x+1)(x﹣3),将点C(0,﹣2)代入,得:﹣3a=﹣2,解得a=,则抛物线解析式为y=(x+1)(x﹣3)=x2﹣x﹣2;(2)∵y=x2﹣x﹣2=(x﹣1)2﹣,∴顶点D(1,﹣),即DE=,∵四边形DMEN是菱形,∴点M的纵坐标为﹣,则x2﹣x﹣2=﹣,解得x=1±,∵M为该抛物线对称轴左侧上的一点,∴x<1,则x=1﹣,∴点M坐标为(1﹣,﹣);(3)∵C(0,﹣2),E(1,0),∴OC=2,OE=1,如图,设P(m, m2﹣m﹣2)(m>1),则PQ=|m2﹣m﹣2|,EQ=m﹣1,①若△COE∽△PQE,则=,即=,解得m=0(舍)或m=5或m=2或m=﹣3(舍),此时点P坐标为(5,8)或(2,﹣2);②若△COE∽△EQP,则=,即=,解得m=(负值舍去)或m=,此时点P的坐标为(,)或(,);综上,点P的坐标为(5,8)或(2,﹣2)或(,)或(,).。

相关文档
最新文档