工程教学-翻转课堂

合集下载

翻转课堂教学教案

翻转课堂教学教案

翻转课堂教学教案教学目标:1.了解翻转课堂教学的概念和原理;2.掌握翻转课堂教学的实施步骤与方法;3.提高学生在课堂上的参与度和自主学习能力。

教学内容:1.翻转课堂教学的定义与背景;2.构建翻转课堂的基本要素;3.翻转课堂的实施步骤与技巧;4.评估和反馈在翻转课堂中的应用。

教学过程:一、翻转课堂教学的定义与背景翻转课堂教学是一种改变传统教学方式的教学模式,其核心思想是将课堂的学习内容提前以视频、阅读材料等形式交给学生自主学习,而将原本在课堂上讲解的内容转移到课后的学习活动中进行。

这种教学方式能够更好地激发学生的学习主动性和参与度,提高学习效果。

二、构建翻转课堂的基本要素1.准备学习资源:教师需要精心挑选和制作适合翻转课堂教学的学习资源,如录制教学视频、整理阅读材料等。

2.制定学习任务:在课前,教师需提前规划好学习任务,明确学生需要预习和掌握的内容,并设计相应的问题和活动。

3.提供学习支持:教师应提供学习指导和支持,为学生提供解答问题的平台和学习资源的补充。

4.培养学生学习能力:翻转课堂注重培养学生的自主学习能力和团队合作能力,因此在课堂上需要教师引导学生进行讨论、合作和探究。

三、翻转课堂的实施步骤与技巧1.引导学生预习:教师将学习资源提前交给学生,引导学生预习相关内容,并提出问题以引发学生的思考。

2.组织课堂活动:课堂上,教师可以组织讨论、小组合作、问题解答等活动,引导学生深入学习和思考。

3.梳理知识框架:教师在课堂上梳理和总结学生预习的内容,帮助学生建立完整的知识框架。

4.开展巩固练习:在课堂结束前,教师可以设计巩固练习,检验学生对知识的掌握情况。

四、评估和反馈在翻转课堂中的应用1.学生评估:学生可以通过课堂参与度、作业完成情况等方式进行自我评估,了解自己的学习进步。

2.教师评估:教师可以通过观察学生在课堂上的表现、课后作业情况等方式进行评估,并及时给予反馈和指导。

3.同学互评:学生之间可以进行互评,通过互相交流和分享,促进学习效果的提高。

翻转课堂递进式教学模式在工程训练课程中的探索与研究

翻转课堂递进式教学模式在工程训练课程中的探索与研究

科技风2021年1月科教论坛DOI:10.19392/ki.1671-7341.202101034翻转课堂递进式教学模式在工程训练课程中的探索与研究田万一王群易守华湖南大学现代工程训练中心湖南长沙410006摘要:在新工科建设大背景下,为了达到更好的教学效果,将翻转课堂递进式教学模式创新性的引入到工程训练中心的课程体系中。

在课程体系中,采用翻转课堂形式,调整课堂内外时间,提升工程训练课程的教学效果,培养具有创新思维的复合人才。

并且基于此,通过虚拟仿真软件实现递进式教学模式的建立,使教学过程生动形象,可以达到加深学生对课程内容的记忆的目的,并且提高学生参与度和学习创新积极性。

同时,在智能量化评分机制下,极大地减少不确定性因素对成绩评价的影响。

关键词:翻转课堂;递进式教学;工程训练1绪论创新型复合人才培养教学包括理论教学和实践教学,实践教学是培养创新型复合人才的重要环节,具体的在使学生掌握科学方法和强化实践动手能力等方面意义重大。

高校主要的实践教学基地就是工程训练中心,其教学模式对于创新型复合人才的输出质量具有绝对性影响,然而在目前高等教育中,工程训练作为高校重要实践教学课程,存在以下弊端:一是形式单一,教学方式还是以教师讲授,学生被动接受参与感低;二是内容陈旧,目前大多数高校工程训练都一直沿用引进设备时教学内容,内容陈旧无味,学生上课无新鲜感、无积极性,学习效率大打折扣。

因此,围绕国家“一流本科建设点”方针政策和新工科本科院校教学改革研究重点,迫切需要构建具有特色的工程训练教学模式,以此为培养创新型复合人才提供支撑。

2课堂教学模式研究现状在当前教学改革实践中,王文娟等⑴认为首先需要从教学内容、教学教材、教学手段、考核内容等方面进行了创新,以便培养出满足市场需求的应用技能型人才。

彭永忠等⑵认为应当以学生为核心,以就业市场为导向的教学体系,以突破原有的教学形式,来提高学生的综合素质能力。

上述教改思路都想在现有的教学基础上,突破原有的教学模式,力图找到一种效率高、效果好的教学方式。

基于项目驱动的“翻转课堂”教学模式的《C程序设计》课程教学的探索

基于项目驱动的“翻转课堂”教学模式的《C程序设计》课程教学的探索

154魁科■技2016年•第3期基于项目驱动的“翻转课堂”教学模式的《C程序设计》课程教学的探索◊重庆文理学院电子信息与电气工程学院向静杨文耀李杰《C程序设计》课程是电子信息类专业的基础课,本课程为后继课程的学习奠定基础。

基于重庆文理学院电子信息与电气工程学院电子信息类大类招生具体情况,本文指出在该课程的教学内容、教学设置等方面会遇到的问题。

结合以本为本的教学理念和现代化的教学手段,旨在培养适合学生分析和解决问题的能力。

1引言5G时代的来临,信息时代和数据将迎来爆炸式增长。

202舛疫情的出现,使得网购、线上教学的地位显得日益突出,这些都离不开程序的开发与使用。

《C@序设计》课程是大多数理工科专业的专业基础必修课,它在整个编程语言体系中的基础性,决定了它在教学中的重要地位。

C语言是世界上应用最广泛的计算机语言之一,具有发挥岀高级编程语言的功用,还具有汇编语言的优点。

学生学习C语言,可以提高学生自身的逻辑思维能力,还能提高自己的专业技能,为今后工作打下基础。

《C程序设计》课程是我院电子信息科学与技术、信息工程以及微电子科学与工程专业的一门专业基础必修课。

更好地为《微机原理与接口技术》《单片机原理及应用》《嵌入式系统设计》和《C++面向对象设计》等后续课程的学习奠定基础。

2《C程序设计》课程现状和存在的问题《C程序设计》课程是我院开设课程中极其重要的一门课,其课程内容十分丰富。

课程内容主要包括基础理论知识和程序开发编写两部分。

本门课程有64课时,对于一门新的且十分重要的专业基础课程的学习来说,教学时间依然十分紧张。

其原因珠宝包括两个方面:第一,《CS序设计》本身是存在较为庞大的知识体系,且课程内容十分丰富;第二,程序设计的关键环节在于学生实际操作练习程序,而每个程序项目均需要1~2节课的时间由学生自己自己动手练习,因此理论讲解的时间进一步综上所述,目前《CS序设计》的教学过程面临着较大的挑战。

一方面,如何能够让学生在有限的时间,学到最为有用的知识,是需要解决的重要问题,对于一名教师来说更是值得深思的问题。

基于智慧树平台的《工程力学》翻转课堂混合教学

基于智慧树平台的《工程力学》翻转课堂混合教学

基于智慧树平台的《工程力学》翻转课堂混合教学【摘要】线上线下混合式教学已经成为当今高校改革传统教育教学的主流。

工程力学课程从课前导学探究、课中反馈答疑、课后拓展训练 3个环节入手,构建基于智慧树知到平台的线上线下混合式教学模式。

实践表明,线上线下混合教学模式不仅能提高工程力学课程的教学质量,提升学生学习的自主性和积极性,而且符合转型发展时期应用型人才培养目标的要求。

【关键词】智慧树;知到;工程力学;翻转课堂;混合式教学模式1.工程力学课程实行翻转课堂改革的必要性工程力学是高等院校机械类专业的一门重要的专业基础课,主要培养学生构件分析、计算和实验等方面的能力,是学习后续诸多课程( 比如: 机械原理、机械设计等) 的基础,处于由基础理论课程向以往工程力学课程教学中存在的主要问题有:一是课程新概念多且较为抽象,经过几轮教学改革,学生普遍反映本门课程学习难度较大,任课教员也感觉教学效果不够理想。

二是教学方法传统,没有充分考虑到学生学习的主体性,限制了学生探究能力的发展。

三是考核方式单一,虽然也利用平时作业和实验报告进行了过程性考核,但课程的考核还是以期末考核为主。

针对以上存在的主要问题,笔者认为,有必要对工程力学课程教学模式进行改革,引进信息化技术,将在线学习和课堂教学有效结合,进而,混合式教学模式应运而生,线上线下混合教学模式正成为连接传统教学与信息化教学之间的桥梁。

本文以线上线下混合式教学理念为基础,深入分析如何基于智慧树知到教学平台、利用平台各种功能,将线上线下混合式教学模式应用于“工程力学”课程的具体教学与实践。

2.基于智慧树知到平台的工程力学课程翻转课堂混合教学模式的具体实践2.1知到平台与线上教学资源2.1.1智慧树平台简介智慧树平台分为电脑端和手机端的“知到”APP,是一款集资源、课程、学习、评测、交互于一体的面向移动端( 智能手机或平板电脑) 的移动线上教学平台,立足于信息化与教学深度融合,分为教师版和学生版。

翻转课堂实施教案

翻转课堂实施教案

翻转课堂实施教案一、引言翻转课堂是一种前沿的教学方法,旨在改变传统课堂教学的方式,提倡学生在课堂外通过预习等方式获取知识,并在课堂上进行实践、讨论和深入学习。

本教案将介绍翻转课堂的实施步骤和一些教学策略。

二、背景分析翻转课堂是在信息技术发展的背景下应运而生的,它旨在充分利用互联网资源,倡导学生在课堂外主动学习和思考。

通过翻转课堂,学生可以更深入地理解知识,培养批判性思维和问题解决能力,提高学习效果。

三、实施步骤1. 设计预习内容:根据教学目标,设计与课程内容相关的预习材料,可以包括教材、课外阅读和网络资源等。

预习内容应该能够引发学生的思考和问题。

2. 学生预习和准备:要求学生在课前完成预习任务,通过阅读、观看视频等方式获取相关知识。

教师可以提供一些指导问题,引导学生深入思考。

3. 开展课堂活动:在课堂上,教师可以组织学生进行小组讨论、实验、案例分析等活动,以加深对知识点的理解和应用。

教师可以起到指导和辅助的作用,鼓励学生发表自己的观点和想法。

4. 总结和反思:课堂活动结束后,教师和学生一起总结课堂内容,并进行反思。

学生可以分享自己的学习收获和困惑,教师则可以给予及时的反馈和指导。

四、教学策略1. 激发学生兴趣:在设计预习内容和课堂活动时,教师可以选取一些有趣和引人入胜的材料,吸引学生的注意力,激发他们的学习兴趣。

2. 引导思考和讨论:在课堂上,教师应该提出一些开放性问题,引导学生进行思考和讨论。

通过学生之间的交流和互动,可以促进深层次的学习。

3. 知识演绎和拓展:在课堂活动中,教师可以通过案例分析、实验演示等方式,将知识点扩展到更广阔的领域。

这有助于学生将知识应用于实际问题,并培养创新思维能力。

4. 制定个性化任务:根据学生的不同需求和能力水平,教师可以给予个性化的任务和引导。

有些学生可能需要更多的辅导和帮助,而有些学生则可以承担更高水平的挑战。

五、教学评估翻转课堂的教学评估应该更加注重学生的参与和表现。

大学翻转课堂实施方案

大学翻转课堂实施方案

大学翻转课堂实施方案随着信息技术的不断发展和教育教学模式的不断创新,翻转课堂作为一种新型的教学模式,逐渐在大学教育中得到了广泛的应用。

翻转课堂是指将课堂教学中的传统的知识讲授和学生课后作业的顺序颠倒过来,通过多媒体技术和网络平台,让学生在课堂上进行知识的消化和探究,而将老师的讲解放到课后进行。

这种教学模式的实施,需要教师和学生共同努力,才能够取得良好的效果。

下面,我们就来探讨一下大学翻转课堂的实施方案。

首先,大学翻转课堂的实施需要充分利用信息技术手段。

教师可以通过录制视频讲解、制作课件、设计网络课程等方式,将课堂内容进行数字化处理,以便学生能够随时随地进行学习。

同时,学校需要提供良好的网络环境和多媒体设备,以支持翻转课堂的实施。

此外,学校还可以建立在线学习平台,为学生提供学习资源和交流平台,方便他们进行学习和讨论。

其次,教师在实施翻转课堂时,需要做好课程设计和教学指导。

教师可以根据课程的特点和学生的实际情况,设计合适的学习任务和学习资源,引导学生进行自主学习和探究。

同时,教师还需要及时给予学生反馈和指导,帮助他们解决学习中遇到的问题,提高学习效果。

另外,学生在参与翻转课堂时,也需要主动参与学习,积极配合教师的教学安排。

他们需要按时完成课前预习和课后作业,积极参与课堂讨论和互动,提高学习的积极性和主动性。

同时,学生还可以通过网络平台和同学们进行交流和合作,共同探讨学习中的问题,促进学习效果的提高。

总的来说,大学翻转课堂的实施需要教师和学生共同努力,充分利用信息技术手段,做好课程设计和教学指导,提高学生的学习积极性和主动性。

只有这样,翻转课堂才能够取得良好的效果,为学生的学习提供更多的可能性和更好的支持。

希望大家能够共同努力,推动翻转课堂的实施,为大学教育的创新和发展做出贡献。

基于翻转课堂的工程数学教学实践与探索

基于翻转课堂的工程数学教学实践与探索

DISCIPLINES EXPLORATION 基于翻转课堂的工程数学教学实践与探索徐蓉曹爱华郭月玲(湖南工学院数理科学与能源工程学院湖南•衡阳421002)摘要“翻转课堂”作为一种全新的教学模式,其教育理念是转变师生角色,让学生成为学习的主体。

与传统 教学法相比,具有兼顾学生个体差异、增强师生互动交流、加强学生自主学习和团体合作的优势。

所以本文立足 于翻转课堂的工程数学教学研究,在我校电信学院2019级通信1901-02班开展实践教学,探究该教学法的可行 性,并不断跟踪教学过程,及时发现问题并解决问题,从而更好的培养学生的自主能动性,提升课堂教学质量。

关键词工程数学教学实践翻转课堂中图分类号:G642 文献标识码:A DOI:10.16400/ki.kjdks.2021.03.026Practice and Exploration of Engineering Mathematics TeachingBased on Flipped ClassroomXU Rong, CAO Aihua, GUO Yueling(Institute o f Mathematical Science and Energy Engineering, Hunan Institute of Technology,Hengyang, Hunan 421002)Abstract As a brand-new teaching mode,the educational philosophy of"Flip Classroom"is to change the roles of teachers and students,so that students can become the main body of pared with the traditional teaching method,it has the advantages of taking into account the individual differences of students,enhancing the interaction between teachers and students,and strengthening students'autonomous learning and group cooperation.Therefore,this paper is based on the research of engineering mathematics teaching in flip classroom,and carries out practical teachingin Class 1901-02, Grade 2019, School of Telecommunications,our school,explores the feasibility of this teaching method,keeps tracking the teaching process,finds problems and solves them in time,so as to better cultivate students' initiative and improve the quality of classroom teaching.Keywords engineering mathematics;teaching practice;flipped classroom工程数学包括线性代数、概率论与数理统计两门课程,主要应用于工程技术学科和管理学科的各个领域。

翻转课堂教案

翻转课堂教案

翻转课堂教案一、教学目标1. 知识与技能目标:(1)学生能够理解并掌握本课所学的知识点。

(2)学生能够运用所学知识解决实际问题。

2. 过程与方法目标:(1)学生能够通过自主学习、课堂讨论等方式,积极参与课堂活动,提高学习兴趣。

(2)学生能够通过合作学习,培养团队合作精神和交流沟通能力。

3. 情感态度与价值观目标:(1)学生能够通过学习本课,培养对知识的热爱之情。

(2)学生能够通过学习本课,培养自主学习和解决问题的能力。

二、教学内容1. 翻转课堂简介:介绍翻转课堂的概念、特点和优势。

2. 自主学习:学生在课前自主学习本课知识点,完成预习任务。

3. 课堂讨论:学生在课堂上分组讨论,分享预习心得,解决疑难问题。

4. 案例分析:教师通过案例分析,引导学生运用所学知识解决实际问题。

5. 总结与反思:学生进行课堂小结,反思自己的学习过程和方法。

三、教学过程1. 翻转课堂简介:教师简要介绍翻转课堂的概念、特点和优势,引导学生思考翻转课堂与传统课堂教学的区别。

2. 自主学习:教师布置预习任务,要求学生在课前自主学习本课知识点,完成预习任务。

预习任务可以包括阅读教材、观看视频、查找资料等。

3. 课堂讨论:学生在课堂上分组讨论,分享预习心得,解决疑难问题。

教师在讨论过程中给予指导和帮助,确保学生能够理解和掌握知识点。

4. 案例分析:教师通过案例分析,引导学生运用所学知识解决实际问题。

案例可以来源于生活、工作、社会等方面,要求学生运用所学知识进行分析和解决。

5. 总结与反思:学生进行课堂小结,反思自己的学习过程和方法。

教师对学生的总结和反思进行点评,提出改进意见和建议。

四、教学评价1. 过程评价:观察学生在课堂讨论、案例分析等环节的表现,及时给予指导和鼓励。

2. 结果评价:通过课堂小结、案例分析等方式,评价学生对知识点的掌握程度和应用能力。

3. 自我评价:学生自己评价自己的学习过程和方法,反思自己的不足和需要改进的地方。

学校翻转课堂实施方案

学校翻转课堂实施方案

学校翻转课堂实施方案随着信息技术的不断发展,翻转课堂教学模式逐渐成为教育领域的热门话题。

翻转课堂是指将课堂教学中的传统教学和作业环节颠倒过来,学生在课堂上进行学习,而在家完成作业。

这种教学模式能够激发学生的学习兴趣,提高学习效率,培养学生的自主学习能力。

因此,本文将提出学校翻转课堂实施方案,以期为教师和学校提供一些参考和借鉴。

首先,学校需要充分准备教学资源。

教师可以制作教学视频、PPT等多媒体教学资料,以便学生在家进行学习。

同时,学校还需要提供在线学习平台,供教师上传教学资源,学生进行学习和讨论。

这样可以有效地支持翻转课堂的教学活动,为学生提供更加便捷的学习途径。

其次,教师需要对翻转课堂进行有效的指导和管理。

教师应该在课堂上充分利用时间,引导学生进行讨论、实验、案例分析等互动性强的学习活动,从而加深学生对知识的理解和应用。

同时,教师还需要及时对学生在家学习的情况进行监督和评估,以确保学生能够有效地完成学习任务。

另外,学校还需要积极营造良好的学习氛围。

学校可以组织学生参加各类学科竞赛、科技创新活动等,激发学生的学习兴趣和动力。

同时,学校还可以邀请相关领域的专家学者来进行学术讲座,为学生提供更广阔的学术视野和学习机会。

最后,学校还需要进行有效的评估和反馈。

学校可以通过考试、作业、课堂表现等多种途径对学生进行评估,以了解学生的学习情况和水平。

同时,学校还应该及时给予学生反馈,指导学生进行个性化学习,帮助学生克服学习困难,提高学习效果。

总之,学校翻转课堂实施方案需要学校、教师和学生共同努力,才能取得良好的效果。

希望本文提出的方案能够为学校的翻转课堂教学提供一些参考和帮助,促进学生的全面发展和提高学校教学质量。

翻转课堂方案

翻转课堂方案

翻转课堂方案翻转课堂是一种被广泛应用于教育领域的教学模式,它打破了传统的课堂教学模式,在教师和学生之间建立了更加积极互动的学习环境。

本文将介绍翻转课堂的概念、原理和实施方案,以及它对学生学习效果和教师教学质量的积极影响。

1. 翻转课堂的概念翻转课堂是一种以学生为中心的教学模式,它在课堂教学中引入了多种互动学习方式。

传统的课堂教学中,教师将知识内容传授给学生,学生被动接受并进行记忆和理解。

而在翻转课堂中,教师将课堂内容以视频、讲义等形式提前制作好,并在课前分发给学生自主学习。

学生在课堂上通过讨论、合作和实践等形式进行知识的应用和巩固。

2. 翻转课堂的原理翻转课堂的核心原理是将课堂教学从传授知识转变为引导学生学习。

在翻转课堂中,教师的角色更像是学习导师,而不仅仅是知识传授者。

学生在课前通过自主学习获取基础知识,然后在课堂上通过讨论和实践来深化理解和应用知识。

这种学习方式更加注重学生的主动参与和思考能力的培养,可以激发学生的学习兴趣和动力。

3. 翻转课堂的实施方案要成功实施翻转课堂,需要教师和学生共同努力。

以下是一些实施翻转课堂的关键步骤和策略:3.1 制作优质的教学资源教师需要制作具有针对性和足够详细的教学资源,包括课堂视频、讲义、习题等。

这些资源应该能够满足学生自主学习的需求,内容简洁明了,重点突出。

3.2 设计互动的课堂活动在课堂上,教师可以组织学生进行小组讨论、案例分析、实验、模拟等互动活动,让学生在实践中学习和应用知识。

教师可以充当引导者的角色,激发学生的思考和问题解决能力。

3.3 提供及时的反馈和指导学生在课堂上进行活动时,教师应当及时给予反馈和指导。

这可以通过课堂讨论、小组辅导等形式实现。

及时的反馈可以帮助学生纠正错误,加深对知识的理解。

3.4 让学生积极参与为了鼓励学生积极参与课堂活动,教师可以设置一些激励机制,比如小组竞赛、奖励制度等。

同时,教师也应该充分尊重学生的意见和需求,建立良好的师生关系。

基于翻转课堂的《土木工程概论》教学改革与实践

基于翻转课堂的《土木工程概论》教学改革与实践

基于翻转课堂的《土木工程概论》教学改革与实践一、翻转课堂简介翻转课堂是一种以学生为中心的教学模式。

在传统教学中,老师通常会在课堂上讲解知识点,而学生则在课后进行作业或复习。

而在翻转课堂中,学生会先通过预习材料自学相关知识,然后在课堂上进行讨论、实践或者解决问题。

这种模式可以使学生更加主动地参与学习,提高他们的学习兴趣和动力。

二、《土木工程概论》教学改革与实践1. 教学目标的设定在以翻转课堂为基础的教学模式中,首先需要明确教学目标。

对于《土木工程概论》这门课程来说,教学目标可能包括:让学生了解土木工程的基本概念、原理和应用;培养学生的分析和解决问题的能力;引导学生探索土木工程的创新和发展方向等。

2. 学习资源的整合翻转课堂的教学模式需要充分整合各种学习资源,包括教科书、网络课件、视频、案例分析等。

对于《土木工程概论》这门课程来说,可以准备相关的教学视频、案例分析和最新的研究成果,帮助学生进行预习和自学。

3. 课堂教学的设计在翻转课堂中,课堂教学的设计尤为重要。

特别是对于《土木工程概论》这样理论性较强的课程来说,可以设计一些针对性强的案例分析或者实践活动,让学生在课堂上进行讨论和解决问题。

这样不仅可以加深学生对知识点的理解,还可以培养他们的分析和解决问题的能力。

4. 作业和考核方式的调整在翻转课堂的教学模式中,作业和考核方式也需要进行相应的调整。

可以设置一些开放性的问题或者项目,让学生在课后进行思考和探索,然后在课堂上进行展示和讨论。

这样既可以检验学生对知识点的掌握程度,还可以培养他们的创新和团队合作能力。

三、教学效果的评估在实施基于翻转课堂的《土木工程概论》教学改革与实践之后,需要及时对教学效果进行评估。

可以通过学生的课堂表现、作业和考试成绩以及学生的反馈等多种方式进行评估,从而了解学生对翻转课堂教学模式的接受程度和学习效果。

四、教学改革的反思与展望在实施翻转课堂的教学模式之后,教师需要及时对教学过程进行反思与总结。

基于“超星学习通”的翻转课堂教学设计——以软件工程课程为例

基于“超星学习通”的翻转课堂教学设计——以软件工程课程为例

基于“超星学习通”的翻转课堂教学设计熊瑛,刘松龄,朱山(中南民族大学电子信息工程学院,湖北武汉430074)一、软件工程教学的现状分析软件工程是一门用工程化的方法构建和维护有效的、实用的和高质量的软件的学科。

它涉及程序设计语言、软件开发工具、数据库、系统平台、标准、设计模式等方面。

在现代社会中,软件也应用于多个领域,促进了社会和经济的发展,提高了工作与生活效率。

如今借助计算机科学与技术、数学、管理科学与工程等学科,软件工程已经从最初计算机科学下的一个学科方向发展成一个以计算为基础的新兴交叉学科。

软件工程所涉及的范围非常广泛,同时也是学生们反映比较乏味抽象的课程。

但是掌握软件工程的实用技术对有志于投身软件产业的学生来说又很重要。

我们常常听到某些老师私底下抱怨软件工程这门课看似简单,实则难教。

如果按照经典的瀑布模型来授课,本以为是高屋建瓴,一泻千里,但实际情况却大相径庭。

在需求分析阶段,学生根本不了解企业的需求是什么,上课没兴趣,总是打瞌睡。

在设计阶段,学生们虽然用Rational Rose工具画了许多的UML图,图中也用到了不少的菱形框、矩形框,但不过如此而已。

在实现阶段,学生们一味讨论非常细节的问题,不深入浅出,UML图早已经搁置一边。

在稳定阶段,写代码的学生寥寥无几,其他人却无事可做。

很多情况下写出的代码不能完成预期的功能与性能,所有设计好的黑盒测试和白盒测试都无法正常进行。

在发布阶段,通常只剩下一天时间,此时还有人在不停地调试程序。

在维护阶段,随着课程结束,学生们对完成的产品没有进行任何有效的维护活动。

这种教学方法对软件工程教育提出了挑战,软件工程的教学面临的压力也越来越大。

因此,有必要在教学内容、方法上进行改革,积极探索翻转课堂、MOOC、案例式教学、开放式教学等新的教学模式[1-3]。

二、基于“超星学习通”的翻转课堂教学模式的构建“超星学习通”[4-6]是基于移动互联网的新一代教学生态系统,为了提高课堂活跃度,提供了覆盖所有课堂教学活动的课堂互动功能,如“课堂签到”“课堂投票”“讨论上墙”“随机选人”“资料共享”“课堂报告”“大数据分析”“电子教案”“教学评价”“问题抢答”“多屏互动”等功能。

翻转课堂模式在高校工程教育中的应用

翻转课堂模式在高校工程教育中的应用

翻转课堂模式在高校工程教育中的应用随着信息技术的发展和普及,翻转课堂模式正在逐渐被教育界所认可。

翻转课堂模式是一种以学生为中心的教学模式,其核心内容是通过自主学习来促进学生的深度思考和学习理解。

本文将主要探讨翻转课堂模式在高校工程教育中的应用。

第一节:翻转课堂模式的基本概念翻转课堂模式是一种互联网教学模式,是一种让学生将学习放在课堂之外的教育方式。

简单地说,就是通过视频、PPT或其他形式的教学课件将知识传授给学生,然后让学生在课堂上进行讨论和解决问题。

翻转课堂模式不同于传统的课堂,它将课堂从教师授课为主转变为学生互动为主,教师在课堂上起到引导和监督的作用。

这种模式下,学生可以通过自主学习来提高学习成果,开发潜能,培养创造性思维,提高课堂参与度。

第二节:高校工程教育中的翻转课堂模式应用实例在高校工程教育中,翻转课堂模式也开始得到越来越广泛的应用。

例如,各个大学和高职高专都在尝试将这种模式应用于教学实践中。

有的大学通过在线课程平台将课件散发给学生,让学生提前预习课程内容,通过知识学习和理解来提高自己的能力;有的大学则在课堂环节中,组织学生进行小组合作学习,通过理性互动和自主思考来提高学习效果。

在工程专业中,更加注重理论与实践的结合,通过翻转课堂模式能够达到实践性教学效果。

学生能够在课堂上更好地掌握理论知识,同时也能够了解实际操作流程和实验操作规范。

第三节:翻转课堂模式在高校工程教育中的优势翻转课堂模式在高校工程教育中有很多优势。

首先,它不仅仅具有提高学生自主学习能力的效果,而且还能够提高学生在课堂中的参与度,帮助学生更深入的理解知识。

其次,翻转课堂模式减少了教师在课堂上的讲解量,可以更好地分配时间,帮助学生更加深入地了解重点知识点。

再者,翻转课堂模式能够结合不同学生的学习能力,让全体学生学有所得,废除了传统课堂教学中“一刀切”的问题。

最后,翻转课堂模式在教学模式上更加专业和贴合实际,因为它倡导学生自主和多样化的学习方式,可以最大限度地降低教育资源的浪费。

翻转课堂在专业课程教学中的应用

翻转课堂在专业课程教学中的应用

科技创新科技视界Science &Technology Vision科技视界0引言, 4.0,,、、、。

,,,。

“+”“”“”,、、、,2015“2025”[1-2]。

,、,,,[3]。

,,,。

、[4]。

+5G ,“”。

,。

1机械专业课程教学现状、[5]。

1.1知识点杂乱,整体观不足,,,,。

1.2教学理念与形式单一,,,[6-7]。

,,,。

1.3理论与实践脱节,,,。

1.4教学缺乏以学生为导向的创新,,,,。

,,。

※基金项目:天津市教改课题(B201006605);天津市教委科研计划项目(2020KJ105);天津职业技术师范大学科研启动项目(KYQD1901)。

作者简介:齐杨(1988—),男,博士,讲师,从事机构学理论及应用研究。

陈青梅(1989—),女,硕士,工程师,从事机电一体化理论及应用研究。

郭培培(1979—),女,硕士,副教授,从事机构学理论及应用研究。

翻转课堂在专业课程教学中的应用齐杨陈青梅郭培培(天津职业技术师范大学<机械工程学院>,天津300222)【摘要】在“中国制造2025”的行业背景下,针对当前机械专业课程教学内容陈旧、教学方法落后、教学理念与形式单一、理论与实践脱节等现状,提出在专业教学中应用翻转课堂式教学模式,以学生学习为中心,转换学习方法,通过课前视频自主学习和项目分配思考,课中师生讨论及知识延伸,课后总结和实践来进行知识的传授,以期为高等院校机械专业课程教学提供一种新型教学方法,为培养具有创新精神和扎实理论基础的高水平本科生奠定基础。

【关键词】机械;专业课程;翻转课程;创新中图分类号:G643文献标识码:ADOI:10.19694/ki.issn2095-2457.2021.13.55职教科技130科技创新科技视界Science &Technology Vision 科技视界2机械专业课程翻转课堂的实施方式、、,。

2.1课前翻转课堂设计,,。

工程教育教学法心得体会

工程教育教学法心得体会

随着我国社会经济的快速发展,工程教育在我国教育体系中占据着越来越重要的地位。

作为一名工程教育工作者,我深感责任重大,既要传授给学生扎实的理论知识,又要培养他们的实践能力和创新精神。

在教学过程中,我不断探索和实践工程教育教学法,现将我的心得体会总结如下:一、明确教学目标,把握教学重点在教学过程中,首先要明确教学目标,这是教学活动的出发点和归宿。

工程教育教学目标应包括以下几个方面:1. 培养学生的工程素养,使其具备扎实的理论基础、较强的实践能力和创新精神。

2. 培养学生的团队合作意识,使其能够在团队中发挥自己的优势,共同完成任务。

3. 培养学生的社会责任感,使其认识到工程教育对国家、社会和人类的重要性。

在教学过程中,要把握教学重点,注重培养学生的核心能力。

例如,在工程力学课程中,要重点讲解基本理论、基本方法和基本技能,让学生掌握工程力学的基本知识和应用。

二、创新教学方法,提高教学质量1. 案例教学法:通过分析实际工程案例,让学生了解工程问题的提出、分析和解决过程,提高学生的实践能力和创新思维。

2. 项目教学法:以项目为导向,让学生在完成项目的过程中,锻炼自己的团队协作、沟通表达、问题解决等能力。

3. 模拟教学法:利用仿真软件或虚拟现实技术,模拟实际工程场景,让学生在虚拟环境中进行实践操作,提高学生的动手能力。

4. 翻转课堂教学法:将课堂讲授与课后自学相结合,让学生在课前通过视频、课件等资源自主学习,课堂上进行讨论、答疑和实践,提高教学效果。

5. 多媒体教学法:运用多媒体技术,将文字、图片、音频、视频等多种信息融合,使教学内容更加生动、形象,激发学生的学习兴趣。

三、注重实践教学,培养学生的动手能力1. 实验教学:通过实验教学,让学生掌握实验原理、实验方法和实验技能,提高学生的动手能力和实验操作水平。

2. 工程训练:组织学生参加工程训练,让学生在实际工程中运用所学知识,提高学生的工程实践能力。

3. 毕业设计:鼓励学生进行毕业设计,让学生在毕业设计过程中充分发挥自己的创新能力和实践能力。

基于“翻转课堂”的工程复变函数与积分变换课程的教学探索

基于“翻转课堂”的工程复变函数与积分变换课程的教学探索

心科教论坛科技风2021年2月DOI:10.19392//cnki.1671-7341.202106015基于“翻转课堂的工程复变函数与积分变换课程的教学探索李烁*张俊锋杭州电子科技大学自动化学院浙江杭州310018摘要:基于《工程复变函数与积分变换》的教学现状和特点,借鉴“翻转课堂”教学模式的优势,结合控制类学生的专业知识体系,本文拟研究基于“翻转课堂”的《工程复变函数与积分变换》课程的教学探索,包括如何改革教学目标、教学內容、教学方式、考核模式以及构建智慧教学体系,以调动学生学习的主观能动性,进而提高人才培养的质量。

关键词:翻转课堂;工程复变函数与积分变换;课程设计Teaching research on engineering functions of complex variableand integral transformation/course baser on''Uipped classroom"Lo Shuo*Zhang JunfengSchool of Automation,Hangzhou Dianzi University ZhejiangHangzhou310018 Abstract:Based on the teaching status and characteristics of“engineering functions of complex variable and inteeral transformc-tions”,drawing on the advantages of"flipped classroom"teaching mode,combined with the professional knowledge system of controf students,this paper intends ta study the teaching reform of“engineering functions of complex variable and inteeral transformations,based on"flipped classroom",which includes how te reform the teaching objectives,teaching contents,teaching methods and assessment modes as well as bui the intellioent teaching system.Ot can mobilize the subjective initiative of studentsf learning se as te inipove the quality of personnel training.Key words:flipped Cassroom;engineering functions of complex veriable and intearal transformations;curriculum design一、“翻转课堂”教育理念概述“翻转课堂”是课前学生以多种方式进行自主学习,课堂上师生之间对知识点进行交流互动,从而掌握所需知识的一种混合学习的教学模式。

基于翻转课堂模式的教学探讨——以“基础工程”课程为例

基于翻转课堂模式的教学探讨——以“基础工程”课程为例

&%%
!科技风 "堂模式采用教师录制视频并上传到线上平台
每个视频时间都不会很长学生很容易接受并且能够保 持专注 在学习过程中提高了时间利用率在课堂外学 生可以通过老师发布的线上资源或是自己寻找的资源来 补充知识储备或是做其他事情也提高了时间利用率
. All国的Ri快g速h发t展s 在Re科s技e创rv新e性d产. 品方面设置多重限制以
阻碍我国发展 我国为抵御这种科技封锁各行各业都需 要大量的专业人员以及创新型人才而推进翻转课堂对于 培养这种拥有独立思考能力有很强的主动性的人才有着 很大的优势 虽然目前在全国范围内翻转课堂成效并不 显著但部分试 点 学 校 与 地 区 也 取 得 了 部 分 成 效 并 提 供 了可行的实施方案对于在更广范围内推进翻转课堂模式 有着很大的参考价值
. All包括RiNg"h"t7s课程R目es标e设r计veNd"."7课程内容设计与资源开
发N""7课程学 习 活 动 设 计 N""7课 程 学 习 评 价 设 计 四个模块
五 寻找合适的教学方法 翻转课堂是一种教学模式对于不同的课程有着不同 的适用的教学方法而在众多方法中案例式教学是翻转 课堂比较合适的一种教学方法 土木工程专业核心课程 都需要有大 量 的 案 例 支 撑 以 保 证 给 予 学 生 最 直 观 的 效 果对于课程的实施效果也起到了一定的作用 对于 基 础工程 课程将浅基础桩基础等施工顺序以视频等影像 材料呈现给学生相比于传统课程上依靠 PP[和教师的讲 解这种形式对于学生理解各种基础的特点以及施工注意 事项都有着很大的帮助 二翻转课堂在 基础工程 课程中的应用成效 一 提高学生思辨能力 学生通过翻转课堂中老师发布的学习资料进行自主 学习在学习过程中难免会发现问题尽管可以反复观看 反复研磨但部 分 难 以 理 解 的 知 识 点 仍 需 要 教 师 的 讲 授 但是学生与学生的个体之间存在着差异教师并不了解学 生没有领悟哪个知识点 对于传统课堂学生不理解的知 识点较翻转课堂模式会更多但受中国传统的中庸思想影 响敢于向授课教师提出疑问的往往是极少部分活跃的学 生对于多数学生可能只是采用得过且过的办法 在翻转

基于工程教育认证的“机械结构有限元分析”翻转课堂教学改革

基于工程教育认证的“机械结构有限元分析”翻转课堂教学改革

基于工程教育认证的“机械结构有限元分析”翻转课堂教学改革随着教育改革的深入推进,翻转课堂教学模式逐渐成为教育领域的热门话题。

在工程领域,特别是机械工程领域,翻转课堂教学模式的应用也呈现出了一种新的趋势。

基于工程教育认证的“机械结构有限元分析”翻转课堂教学改革已经取得了一定的成果,本文将对这一改革进行深入探讨。

一、翻转课堂教学模式在工程教育中的意义翻转课堂教学模式是指将课堂内外的学习环境进行置换,即在学生课前预习,课堂上进行学习任务实施。

这种教学模式强调学生在课前对知识的预习、课中主动学习和课后巩固和应用,使学生在获得知识信息的基础上,通过实践与合作,培养了解问题、提出问题、解决问题的能力。

在工程领域,特别是在机械工程领域,学生需要掌握理论知识的更需要具备动手能力和实际应用能力。

而翻转课堂教学模式则更加贴合工程教育的特点,可以激发学生的学习兴趣,提高学习效率,培养学生的解决问题能力。

二、机械结构有限元分析课程的特点和教学现状机械结构有限元分析是机械工程领域中的重要课程之一,该课程是机械工程专业的核心专业课程,具有很强的理论性和实践性,学生需要通过学习掌握有限元分析的基本原理和方法,并且能够运用有限元软件进行结构分析和设计。

但是目前传统的教学模式存在着一些问题,比如课堂内容单一、学生 passivity 大、实际应用能力不足等。

针对机械结构有限元分析课程的特点和教学现状,某高校机械工程专业在工程教育认证的要求下,进行了“机械结构有限元分析”翻转课堂教学改革的实施。

具体措施如下:1. 课前预习:老师提前布置课前预习任务,要求学生通过阅读教材、查阅资料等方式对本节课将要学习的内容进行预习。

2. 课堂教学:课堂教学内容主要以案例分析为主,老师引导学生分析案例,提出问题,进行讨论,引导学生主动学习。

3. 实践与合作:在课堂上,老师组织学生进行实验和实践操作,通过小组合作的形式,让学生锻炼动手能力和实际应用能力。

基于工程教育认证的“机械结构有限元分析”翻转课堂教学改革

基于工程教育认证的“机械结构有限元分析”翻转课堂教学改革

基于工程教育认证的“机械结构有限元分析”翻转课堂教学改革一、翻转课堂教学的优势和应用1. 突破传统课堂的局限性传统的课堂教学模式往往是老师在黑板上讲解知识,而学生则是被动地接受和记忆这些知识。

这种教学模式存在着知识传输效率低,学生学习兴趣不高,难以激发学生的学习动力等问题。

而翻转课堂教学模式则能够打破这种局限性,通过提前录制教学视频,让学生自行消化和理解知识,然后在课堂上进行讨论和实践,更能够激发学生的学习兴趣和主动性,提高教学效果。

2. 符合学生自主学习的需求随着社会的发展,学生的自主学习能力和需求越来越高。

翻转课堂教学通过让学生提前自主学习,更符合学生的学习需求,也更能够培养学生独立思考和解决问题的能力。

3. 提高课堂教学的效率在课堂上进行讨论和实践,能够更快速地发现学生对于知识的理解程度和掌握程度,并随时进行针对性的调整教学内容,提高了教学效率。

基于以上的优势和应用,翻转课堂教学已经在很多学科中得到了很好的应用和效果。

对于机械结构有限元分析这样的工程课程,如何应用翻转课堂教学模式,将会成为提高课程教学效果的重要手段。

二、工程教育认证对于机械结构有限元分析的要求在我国的工程教育认证中,对于机械结构有限元分析的教学也是有一系列的要求的。

下面将针对《工程教育认证指南(工科类)》对于机械结构有限元分析的要求进行简要介绍。

1. 要求学生具备较强的数学基础在机械结构有限元分析的教学中,学生需要具备较强的数学基础,能够熟练掌握有关的数学知识和技能。

教学中需要注重学生数学基础的培养和提升。

2. 要求学生具备较强的工程实际应用能力机械结构有限元分析是一种工程实际应用的技术,学生需要能够将所学的理论知识应用到实际工程问题中去。

在教学中需要注重培养学生的工程实际应用能力。

3. 要求学生具备较强的团队合作和沟通能力在工程实际应用中,团队合作和沟通能力也是非常重要的。

在机械结构有限元分析的教学中,也需要注重培养学生的团队合作和沟通能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

doi:10.1111/bjet.12548A systematic review of research on the flipped learning method in engineering educationAliye Karabulut-Ilgu,Nadia Jaramillo Cherrez and Charles T.JahrenAliye Karabulut-Ilgu is a lecturer in the Department of Civil,Construction and Environmental Engineering at Iowa State University.Nadia Jaramillo Cherrez is a doctoral student in School of Education at Iowa State University. Charles T.Jahren is the W. A.Klinger Teaching Professor in the Department of Civil,Construction and Environmental Engineering at Iowa State University.Address for correspondence:Aliye Karabulut-Ilgu,the Department of Civil,Construction and Environmental Engineering at Iowa State University,394Town Engineering, 813Bissell Road,Ames,IA50011USA.Email:aliye@AbstractThe purpose of this article is to describe the current state of knowledge and practice in the flipped learning approach in engineering education and to provide guidance for practitioners by critically appraising and summarizing existing research.This article is a qualitative synthesis of quantitative and qualitative research investigating the flipped learning approach in engineering education.Systematic review was adopted as the research methodology and article selection and screening process are described.Articles published between2000and May2015were reviewed,and62articles were included for a detailed analysis and synthesis.The results indicated that flipped learning gained popularity amongst engineering educators after2012.The review revealed that research in engineering education focused on documenting the design and development process and sharing preliminary findings and student feedback.Future research examining different facets of a flipped learning implementation,framed around sound theoretical frameworks and evaluation methods,is still needed to establish the pedagogy of flipped learning in teaching engineering.IntroductionFlipped learning—also referred to as inverted learning—extends the typical three-hour learning beyond the confines of classroom time through the use of online platforms.In flipped learning, part or all of direct instruction is delivered through videos and other media;and the class time is used for engaging students in collaborative,hands-on activities(Flipped Learning Network, 2014).Many colleges and universities have embraced flipped learning model as it provides oppor-tunities for increased peer interaction and deeper engagement with the material(Johnson, Adams Becker,Estrada&Freeman,2015).This pedagogical approach has gained such popular-ity in higher education that2015NMC Horizon Report listed flipped learning to be adopted in a large scale in1year or less(Johnson et al.,2015).According to a survey conducted by Center for Digital Education and Sonic Foundry,29%of the higher education faculty in the US reported to be currently implementing flipped learning,and27%reported to be planning to implement it in near future(Bart,2013).Flipped learning appears to be particularly well suited to engineering education because of its potential to“combine learning theories once thought to be incompatible—active,problem-based learning activities founded upon a constructivist ideology and instructional lectures V C2017The Authors British Journal of Educational Technology published by John Wiley&Sons Ltd on behalf of BERAThis is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License,which permits use and distribution in any medium,provided the original work is properly cited,the use is non-commercial and no modifications or adaptations are made.Practitioner NotesWhat is already known about this topic•Flipped learning has gained popularity in higher education.•Flipped learning has been used in a wide range of engineering subdisciplines.•Flipped learning creates opportunities for complex problem solving in engineeringeducation.What this paper adds•There is a paucity of reporting regarding theoretical or conceptual frameworksguiding the development and evaluation of the flipped approach.•Evaluation methods have mostly been limited to quantitative data drawn fromcourse assessments and surveys,and there is a scarcity in qualitative research.•Students involved in the flipped approach have learned as much as their counter-parts in the traditional lecture-style format if not more.Implications for practice and/or policy•Flipped learning course design and research need to be based on a theoreticalframework.•Flipped learning research needs to employ quantitative and qualitative methodsto understand the phenomena in depth.•Further systematic research addressing validity and reliability concerns is neededto consolidate the role of flipped learning in enhancing student learning.derived from direct instruction methods founded upon behaviorist principles”(Bishop&Ver-leger,2013,p.1).Although engineering educators agree that students learn better when they engage in complex problems and projects(Lombardi&Oblinger,2007),they are reluctant to forgo lecturing on theoretical and background information necessary for solving engineering problems(Bishop&Verleger,2013).Flipped learning provides the midway between these two opposite viewpoints and is probably one of the few pedagogical innovations that have received considerable attention and interest(Mitchell,2014).Despite this increasing interest,there does not seem to be an agreement on what flipped learning is and how effective it is in improving student learning(Sharples et al.,2014).Therefore,it is timely to analyze and synthesize research findings to describe the current state of knowledge and inform future research and development efforts.Few articles reviewing flipped learning have been published to date(Estes,Ingram,&Liu,2014; Hamdan,McKnight,McKnight,&Arfstrom,2013)and only one of them focused specifically on engineering(Bishop&Verleger,2013).Bishop and Verleger(2013)reviewed24studies related to the flipped classroom and concluded that studies mostly focused on student perceptions,which were generally positive and single-group designs.Highlighting the scarcity of studies objectively measuring the impact of flipped approach on student learning,these authors recommended con-ducting experimental or quasi-experimental studies to investigate objective learning outcomes. Although Bishop and Verleger’s(2013)review has provided important considerations for engi-neering educators,their review is not categorized as a systematic review since their article selection process was not described,and it included studies that were published through the first half of2012.However,our analyses indicated that approximately90%of the empirical research on flipped learning was published in2013and2014.Including more recent studies provides a more accurate and up-to-date picture of the current state of flipped learning in engineering V C2017The Authors British Journal of Educational Technology published by John Wiley&Sons Ltd on behalf of BERAeducation.The following research questions were addressed in this article by following the sys-tematic review steps recommended by Borrego,Foster,and Froyd (2014).1.What are the trends in flipped classroom in engineering education research?2.What kinds of theoretical frameworks and evaluation methods have been adopted in engineering education investigating flipped learning?3.Is flipped learning effective in teaching engineering according to existing engineering education research?4.What are benefits and challenges of flipped learning as reported in engineering education research?Article selection processTo ensure that relevant studies were located,a wide variety of databases were searched.The key-words searched in all the databases included “flipped”and “engineering”or “flipped”and “engineering education”or “inverted classroom”and “engineering”or “flipped classroom”and “engineering.”Figure 1displays the complete article selection process based on the inclusion criteria.As of May 2015,this search yielded 164results after the duplicates were removed.The articles were organized and tabulated according to context (ie,engineering subdiscipline),and type (eg,empirical,practical,and editorial).The following inclusion criteria were applied:(a)empirical research on the flipped approach in engineering higher education contexts;(b)description of the flipped course design;(c)engineering students and faculty as participants;(d)publication in peer-reviewed journals or conference proceedings.As can be seen in Figure 1,final total of 62studiesFigure 1:Flowchart for article selection process (adapted from Liberati et al.,2009)(Note:numbers do notadd up as one article might be excluded for more than one reason)Flipped Learning in Engineering Education 3VC 2017The Authors British Journal of Educational Technology published by John Wiley &Sons Ltd on behalf of BERAwere included in the final synthesis.Detailed information about each article is provided as Sup-porting Information (Table S1).FindingsSeveral findings emerged as a result of this systematic review of 62studies on flipped learning in engineering education.Trends in the flipped learning and engineering education literatureFigure 2displays the publication trend of proceedings,journal articles and the combined total from 2000to 2014.Studies published in the first half of 2015—when data collection ended—are included in this review but not reported in Figure 2since it does not represent an accurate picture of the whole year of 2015.The first article on flipped learning (using the term “inverted learning”)was published in 2003.From then on,research in this area was very limited,with zero to two or three publications a year until 2013.From 2013,flipped learning started sparking more interest amongst engineering education researchers,and 53%of the articles included in this synthesis were published in 2014.In addition,six studies included in this review were pub-lished in the first half of 2015and they were all journal articles.Although conference proceedings outnumber the journal articles,the increasing trend seems to be similar for both of the publication venues.This trend indicates an increase in the number of engineering courses being converted into a flipped format after 2012.The vast majority of the studies,66%,were published in conference proceedings,and 34%were published in archival journals (Figure 3).The American Society of Engineering Education (ASEE)is the most common publication venue.Theoretical frameworks and evaluation methodsThis synthesis revealed a paucity of published studies that included a theoretical framework guid-ing the research and teaching practices.Out of the 62studies,only 13referred to a theoretical or conceptual framework.One of the most commonly cited rationales behind converting a course from the traditional to a flipped format was the use of in-class time for active learning exercises rather than for lecturing (Cavalli,Neubert,Mcnally,&Jacklitch-Kuikan,2014;Velegol,Zappe,&Mahoney,2015).The other frameworks are listed in Table 1.A detailed description of these theo-retical frameworks can be found as Supporting Information (Supporting Material 2).Researchers adopted a range of data collection methods to evaluate flipped learning.Quantitative methods involved comparison of exam scores,surveys,course evaluations,institutional data (eg,retention rates)and system log data (eg,time spent on certain activities on a coursemanagement Figure 2:The number of studies published from 2000to May 2015[Colour figure can be viewed at]4British Journal of Educational Technology Vol 00No 002017VC 2017The Authors British Journal of Educational Technology published by John Wiley &Sons Ltd on behalf of BERAsystem).Use of qualitative data,such as interviews,classroom recordings and observations,was rather limited.A detailed discussion of the evaluation methods adopted in the studies can be found as Supporting Information (Supporting Material 2).Effectiveness of flipped learning in teaching engineeringResearchers in 30studies compared student learning in traditional classrooms to learning in flipped classrooms (Table 2).Thirteen studies exclusively reported that students in the flipped classroom outperformed their counterparts in the traditional classrooms.Of these,seven studies reported the statistical significance of their findings.In others,the authors reported an increaseinFigure 3:The list of publication venues [Colour figure can be viewed at ]Table 1:Theoretical frameworks included in the studiesTheoretical frameworkStudies Transactional theoryChen,Wang,Kinshuk,and Chen (2014)The Thayer systemChetcuti,Hans,and Brent (2014)Problem-based learning &collaborative learningChiang and Wang (2015)Cooperative educationChoi (2013)Combination of traditional and constructivist approachesDavies,Dean,and Ball (2013)Team-based learningGhadiri,Qayoumi,Junn,and Hsu (2014)Technology acceptance modelIvala,Thiart,and Gachago (2013)Revised community of inquiryKim,Patrick,Srivastava,and Law (2014)Socio-constructivist theoryRedekopp and Ragusa (2013)Self-directed learningRutkowski (2014)Inquiry-based learning Schmidt (2014)Flipped Learning in Engineering Education 5VC 2017The Authors British Journal of Educational Technology published by John Wiley &Sons Ltd on behalf of BERA6British Journal of Educational Technology Vol00No002017Table2:Findings of articles comparing flipped approach to traditional approachFindings StudiesFlipped is more effective Amresh,Carberry,&Femiani(2013);Chao,Chen,and Chuang(2015);Chiang and Wang(2015)*;Fowler(2014);Kalavally,Chan,and Khoo(2014);Lemley et al.(2013);Mason,Shuman,and Cook(2013b)*;McGivney-Burelle and Xue(2013);Ossman and Warren(2014)*;Papadopoulos and Roman(2010)*;Redekoppand Ragusa(2013);Schmidt(2014)*;Swithenbank and DeNucci(2014);Thomas andPhilpot(2012);Yelamarthi,Member,and Drake(2015)*Flipped is more effective and/or no difference Baepler,Walker,and Driessen(2014);Cavalli et al.(2014);Chetcuti,Hans,&Brent(2014);Choi(2013)No difference Buechler,Sealy,and Goomey(2014);Davies et al.(2013);Love,Hodge,Grandgenett,and Swift(2014);Mason,Shuman,and Cook(2013b);Olson(2014);Swift and Wilkins(2014);Talbert(2014);Velegol et al.(2015)Flipped is less effective Hagen and Fratta(2014);McClelland(2013) Flipped is less effective and/or no difference Lavelle,Stimpson,and Brill(2013)*Indicates statistical significance.average scores,but did not report a statistical analysis investigating the significance of the observed difference.Four studies concluded mixed results in terms of learning gain.For example,Baepler et al.(2014) found that students in the flipped section performed significantly higher than the ones in the tra-ditional section during the first year that the flipped approach was implemented,but this difference was not statistically significant in the second year.In nine other studies,researchers did not find any statistically significant difference between flipped and traditional formats in terms of student learning.Two articles reported that students in the flipped classroom did not perform as well as their coun-terparts learning in a traditional environment.Hagen and Fratta(2014)observed that even intrinsically motivated students underperformed in the flipped environment.Students had nega-tive perceptions toward the course and felt unprepared for the exams because they had to manage their own learning.Similarly,McClelland(2013)indicated that the average final score for students in the traditional format was significantly higher than the students in the flipped sec-tions.Other researchers,on the other hand,did not find any statistically significant difference between the two formats in terms of exam scores;however,more students failed the course in the flipped section when compared to the average of nonpass in previous years’traditional offerings, and this difference was statistically significant(Lavelle et al.,2013).To see if there was any difference between student performance in flipped and traditional formats, an analysis of variance was performed based on the mean scores reported in25studies.The results indicated that the mean score for flipped was higher than traditional format but this differ-ence was not statistically significant.However,when we controlled for the author as a clustering effect,the difference was statistically significant at the p<.05level F(1,102)54.26,p5.042.V C2017The Authors British Journal of Educational Technology published by John Wiley&Sons Ltd on behalf of BERAFlipped Learning in Engineering Education7 Benefits and challenges of flipped learningThe results of this synthesis indicated that flipped learning provided various benefits and chal-lenges for students and instructors.The benefits can be listed as flexibility,improvement in interaction,professional skills,and student engagement.Challenges included increased workload for faculty,student resistance,lack of opportunities for just-in-time questions,technical issues, decreased interest and neglected material.One of the most commonly cited benefits of flipped learning was flexibility(Buechler et al.,2014; Kiat&Kwot,2014;Mok,2014;Simpson,Evans,Eley,&Stiles,2003;Velegol et al.,2015).An added value of the flipped approach was being able to rewatch the lecture videos.Students could pause and rewind the videos,take notes and solve example problems while watching the lecture videos.Having access to course materials for24/7provided flexibility for students with different learning preferences and personal commitments.This flexible teaching and learning environment also created time for complex problem solving(Ankeny&Krause,2014;Mok,2014)and oppor-tunities to cover more materials(Mason,Shuman,&Cook,2013a,b).The rationale behind flipped learning is to use face-to-face class time for complex exercises where students can interact with each other and with the instructor.This synthesis concluded that stu-dents enjoyed working with their peers(Bailey&Smith,2013;Ghadiri et al.,2014;Love et al., 2014;Talbert&Valley,2012)and having the instructor available for help(Clark,Norman,& Besterfield-Sacre,2014;Lemley et al.,2013;McGivney-Burelle&Xue,2013;Mok,2014;Swi-thenbank&DeNucci,2014).Student-centered instructional approaches,like flipped learning,not only help students learn the content but also provide opportunities to improve professional skills that“today’s competitive global market and changing work environment demand engineers to possess”(Kumar&Hsiao, 2007,p.18).Several authors argued that flipped learning contributed to students’professional skills such as life-long learning(Luster-Teasley,Hargrove-Leak,&Waters,2014),learner autonomy(Kim,Kim,Khera,&Getman,2014;Mok,2014),critical thinking(Chetcuti et al., 2014)and interpersonal skills(Yelamarthi et al.,2015).Another benefit that this synthesis revealed was student engagement(Lavelle et al.,2013).Several researchers found that students came to class better prepared(Chetcuti et al.,2014;Jungic,Kaur, Mulholland,&Xin,2015;Mok,2014;Papadopoulos&Roman,2010),and they devoted more time and formed better study habits compared to traditional classroom approaches(Papadopoulos &Roman,2010).Although the findings in terms of class attendance varied,some researchers found that the flipped format increased attendance(Chen et al.,2014;Rutkowski,2014)and retention rate(Kim,Patrick,et al.,2014;Love et al.,2014).For example,Rutkowski(2014)found that regular lecture attendance increased from55%to70%when the course was converted to the flipped format.Similarly,Chen et al.(2014)found out that students logged into the course platform more frequently to access course materials compared to the prior versions of the course.Challenges of flipped learningAs with any new approach,flipped learning brings some challenges for instructors and students. The biggest challenge for instructors was the heavy workload prior to and during class.Convert-ing a course from a traditional teaching approach to a flipped format required a reasonable amount of front-end investment from faculty members(Ghadiri et al.,2014;Kalavally et al., 2014).During class,on the other hand,one instructor had to serve many students requesting assistance(Clark et al.,2014).V C2017The Authors British Journal of Educational Technology published by John Wiley&Sons Ltd on behalf of BERA8British Journal of Educational Technology Vol00No002017 Challenges for students included uninteresting online material,technical issues and insufficient knowledge about the new approach.For example,students in Amresh,Carberry,and Femiani’s (2013)study found the online videos boring.Similarly,the length of the videos contributed to lack of interest in the material(Olson,2014).Other researchers found that students could easily skip some of the materials in the flipped classrooms.For example,Ossman and Warren indicated that rather than watching the videos,students read the slides(2014).Velegol and her colleagues made the lecture attendance optional,so students who were able to finish their homework on their own chose not to attend the class(2015).Although it is generally accepted that today’s net generation students ubiquitously use various technological tools and applications in their daily lives,this synthesis implied that technical issues frustrated students(Clemens et al.,2013;Tague&Baker,2014).Students complained about the connectivity speed which is assumed to have been resolved at least on higher education campuses (Everett,Morgan,Stanzione,&Mallouk,2014).Student resistance was another challenge that flipped learning instructors faced.Having gone through a traditional approach throughout their educational career,students felt overwhelmed when faced with a new approach that required them to actively participate in the learning pro-cess(Amresh et al.,2013;Bland,2006;Gannod,Burge,&Helmick,2008).Students who lacked metacognitive and organizational skills struggled in flipped classrooms(Margoniner,2014)as they opined that they were not being taught;rather,they taught themselves(Talbert&Valley, 2012)DiscussionTrends in the flipped learning and engineering education literatureThe publication trend indicates that there is a proliferating interest in flipped learning in engineer-ing education.Benefits such as learning gain,flexibility,opportunities for interaction and student engagement seem to have encouraged several engineering educators to convert their traditional classrooms to a flipped format.However,the scarcity of archived journal publications indicates that research on flipped learning in engineering education is still in its infancy.The conference proceedings usually adopted a practice-oriented approach;and focused on documenting the design and development process and sharing some preliminary findings and student feedback. Further systematic research investigating different components and claims of flipped learning using various research methods is needed to establish flipped learning as an effective pedagogical approach in the field.Theoretical frameworks and evaluation methodsAs a critical component of disciplined research,theoretical frameworks help researchers to organ-ize and create a strong argument to justify the significance of a given research problem and guide selection of appropriate data collection and analysis methods(Antonenko,2015).More than 50%of the studies included in this review lacked a theoretical framework for implementing flipped learning in engineering education.If flipped learning has the potential to combine learn-ing theories once thought to be incompatible,as Bishop and Verleger(2013)argued,then the research on flipped learning needs to detail how this combination can be successfully imple-mented with the aid of varied instructional technology tools.These models need to present strategies for engineering educators for designing,developing and evaluating instruction.The most commonly cited motivation behind converting a course from the traditional to a flipped format was the use of in-class time for active learning exercises rather than for lecturing.However, active learning itself is an ambiguous term that has been used and interpreted differently by vari-ous researchers and practitioners(Prince,2004).A multitude of activities ranging from pausing the lecture for a few minutes and asking students to compare notes with each other to V C2017The Authors British Journal of Educational Technology published by John Wiley&Sons Ltd on behalf of BERAFlipped Learning in Engineering Education9 simulations and games would fall under the category of active learning.Some of these activities do not necessarily require flipping the instruction.Therefore,specific pedagogical models that may fall under the umbrella of the term“active learning”such as case-based reasoning,problem-based learning and project-based learning could provide a clearer direction for researchers and practitioners.Evaluation methods were limited to grade comparisons to measure learning gain and surveys to get student feedback.These methods provide valuable information about the role of flipped approach in student learning;however,they may fall short in analyzing the overall impact. Bishop and Verleger(2013)called for more experimental studies to investigate the effectiveness of the flipped approach,but this review indicated that more systematic qualitative and mixed-method approaches are needed to understand what flipped learning entails and how it supports student learning in various ways.Effectiveness of the flipped learningThe results of this systematic review indicated that flipped learning was more effective than tradi-tional lecture method in many cases.It would have been ideal to conduct a meta-analysis to make a definitive conclusion about the superiority of flipped approach over traditional approach; however,majority of the studies included in this study failed to report mean scores,standard devi-ations and number of observations required for a meta-analysis.The studies also used different measurements(eg,final course grades,exam scores,quiz scores)which made such a comparison difficult.However,one-way ANOVA test results based on the studies that reported a mean score indicated that students in the flipped approach learned the content as much as their counterparts in the traditional approach if not better.Benefits and challenges of flipped learningFlipped learning approach seemed to be promising in regards to the benefits it provides for stu-dents and instructors.Yet,the research focused on measuring the effectiveness of the new approach through comparisons to traditional approaches,and the conclusions about benefits were reported as additional findings.Therefore,further research is needed to investigate the transferability of these findings to different contexts.Specifically,the claims about the professional skills and increased interaction need to be investigated thoroughly.For example,only one study included in this review analyzed how students interacted with each other during face-to-face problem sessions and learned how their conversations shifted from simply recalling facts to con-ceptual discussions(Lin et al.,2014).Further research investigating the student engagement and interaction in the face-to-face sessions would help instructors who have hesitations about individ-ual contributions in collaborative group assignments.This line of research can also produce a list of guidelines for successfully flipping an engineering course and help practitioners to identify areas of problems and develop interventions as needed.Some of the challenges cited in these studies,such as heavy workload and technical issues,can be addressed effectively.Instructors might be advised to gradually convert their courses rather than doing it all at once because material development might be overwhelming.Although it may not be plausible to foresee every technical issue,making students aware of possible issues might reduce frustration.Some other challenges,on the other hand,raise some crucial concerns about the design of a flipped classroom.Studies that found a lack of engagement in the flipped format seemed not to make full use of the format(eg,Ossman&Warren,2014;Velegol et al.,2015). Online materials need to be carefully designed and complex problems,where students are required to collaborate and interact with each other and the instructor,should be assigned for in-class sessions.This would increase lecture attendance and engagement as concluded in studies by Chen et al.(2014)and Rutkowski(2014).V C2017The Authors British Journal of Educational Technology published by John Wiley&Sons Ltd on behalf of BERA。

相关文档
最新文档