《第24章+圆》2010年五三中学整章测试(A)1
新人教版九年级数学上册《第24章圆》测试(含答案)
新人教版九年级数学上册《第24章圆》一、选择题1.下列说法正确的是()A.三点确定一个圆B.一个三角形只有一个外接圆C.和半径垂直的直线是圆的切线D.三角形的内心到三角形三个顶点距离相等2.如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=84°,则∠E等于()A.42°B.28°C.21°D.20°3.已知如图,AB是⊙O的直径,弦CD⊥AB于E,CD=6,AE=1,则⊙O的直径为()A.6 B.8 C.10 D.124.如图,DC是以AB为直径的半圆上的弦,DM⊥CD交AB于点M,CN⊥CD交AB于点N.AB=10,CD=6.则四边形DMNC的面积()A.等于24 B.最小为24 C.等于48 D.最大为485.如图,在半径为5的⊙O中,弦AB=6,OP⊥AB,垂足为点P,则OP的长为()A.3 B.2.5 C.4 D.3.56.如图表示一圆柱形输水管的横截面,阴影部分为有水部分,如果输水管的半径为5cm,水面宽AB为8cm,则水的最大深度CD为()A.4cm B.3cm C.2cm D.1cm7.图中的五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从A点到B点,甲虫沿ADA1、A1EA2、A2FA3、A3GB路线爬行,乙虫沿ACB路线爬行,则下列结论正确的是()A.甲先到B点B.乙先到B点C.甲、乙同时到B D.无法确定8.在直径为200cm的圆柱形油槽内装入一些油以后,截面如图.若油面的宽AB=160cm,则油的最大深度为()A.40cm B.60cm C.80cm D.100cm9.如图,AB是⊙O的直径,四边形ABCD内接于⊙O,若BC=CD=DA=4cm,则⊙O的周长为()A.5πcm B.6πcm C.9πcm D.8πcm10.如图,AB是⊙O的弦,点C在圆上,已知∠OBA=40°,则∠C=()A.40°B.50°C.60°D.80°二、填空题11.如图,在⊙O中,弦AB∥CD,若∠ABC=40°,则∠BOD=.12.如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若要求另外三个顶点A、B、C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是.13.如图,已知∠BOA=30°,M为OB边上一点,以M为圆心、2cm为半径作⊙M.点M在射线OB上运动,当OM=5cm时,⊙M与直线OA的位置关系是.14.如图,正方形ABCD内接于⊙O,其边长为4,则⊙O的内接正三角形EFG 的边长为.15.已知扇形的半径为6cm,圆心角的度数为120°,则此扇形的弧长为cm.16.如图,半圆O的直径AB=2,弦CD∥AB,∠COD=90°,则图中阴影部分的面积为.三、解答题17.圆锥底面圆的半径为3m,其侧面展开图是半圆,求圆锥母线长.18.在一个底面直径为5cm,高为18cm的圆柱形瓶内装满水,再将瓶内的水倒入一个底面直径是6cm,高是10cm的圆柱形玻璃杯中,能否完全装下?若未能装满,求杯内水面离杯口的距离.19.(8分)如图,AB和CD分别是⊙O上的两条弦,过点O分别作ON⊥CD于点N,OM⊥AB于点M,若ON=AB,证明:OM=CD.20.如图为桥洞的形状,其正视图是由和矩形ABCD构成.O点为所在⊙O 的圆心,点O又恰好在AB为水面处.若桥洞跨度CD为8米,拱高(OE⊥弦CD 于点F )EF为2米.求所在⊙O的半径DO.21.△ABC是⊙O的内接三角形,BC=.如图,若AC是⊙O的直径,∠BAC=60°,延长BA到点D,使得DA=BA,过点D作直线l⊥BD,垂足为点D,请将图形补充完整,判断直线l和⊙O的位置关系并说明理由.22.如图直角坐标系中,已知A(﹣8,0),B(0,6),点M在线段AB上.(1)如图1,如果点M是线段AB的中点,且⊙M的半径为4,试判断直线OB 与⊙M的位置关系,并说明理由;(2)如图2,⊙M与x轴、y轴都相切,切点分别是点E、F,试求出点M的坐标.23.已知等边三角形ABC,AB=12,以AB为直径的半圆与BC边交于点D,过点D作DF⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连接GD,(1)求证:DF与⊙O的位置关系并证明;(2)求FG的长.24.如图,等边△ABC的边长为2,E是边BC上的动点,EF∥AC交边AB于点F,在边AC上取一点P,使PE=EB,连接FP.(1)请直接写出图中与线段EF相等的两条线段;(不再另外添加辅助线)(2)探究:当点E在什么位置时,四边形EFPC是平行四边形?并判断四边形EFPC是什么特殊的平行四边形,请说明理由;(3)在(2)的条件下,以点E为圆心,r为半径作圆,根据⊙E与平行四边形EFPC四条边交点的总个数,求相应的r的取值范围.新人教版九年级数学上册《第24章圆》一、选择题1.B;2.B;3.C;4.A;5.C;6.C;7.C;8.A;9.D;10.B;二、填空题11.80°;12.3<r<5;13.相离;14.2;15.4π;16.;三、解答题17.圆锥底面圆的半径为3m,其侧面展开图是半圆,求圆锥母线长.解:设母线长为x,根据题意得2πx÷2=2π×3,解得x=6.故圆锥的母线长为6m.18.在一个底面直径为5cm,高为18cm的圆柱形瓶内装满水,再将瓶内的水倒入一个底面直径是6cm,高是10cm的圆柱形玻璃杯中,能否完全装下?若未能装满,求杯内水面离杯口的距离.解:设将瓶内的水倒入一个底面直径是6cm,高是10cm的圆柱形玻璃杯中时,水面高为xcm,根据题意得π•()2•x=π•()2•18,解得x=12.5,∵12.5>10,∴不能完全装下.19.如图,AB和CD分别是⊙O上的两条弦,过点O分别作ON⊥CD于点N,OM⊥AB于点M,若ON=AB,证明:OM=CD.证明:设圆的半径是r,ON=x,则AB=2x,在直角△CON中,CN==,∵ON⊥CD,∴CD=2CN=2,∵OM⊥AB,∴AM=AB=x,在△AOM中,OM==,∴OM=CD.20.如图为桥洞的形状,其正视图是由和矩形ABCD构成.O点为所在⊙O 的圆心,点O又恰好在AB为水面处.若桥洞跨度CD为8米,拱高(OE⊥弦CD 于点F )EF为2米.求所在⊙O的半径DO.解:∵OE⊥弦CD于点F,CD为8米,EF为2米,∴EO垂直平分CD,DF=4m,FO=DO﹣2,在Rt△DFO中,DO2=FO2+DF2,则DO2=(DO﹣2)2+42,解得:DO=5;答:所在⊙O的半径DO为5m.21.△ABC是⊙O的内接三角形,BC=.如图,若AC是⊙O的直径,∠BAC=60°,延长BA到点D,使得DA=BA,过点D作直线l⊥BD,垂足为点D,请将图形补充完整,判断直线l和⊙O的位置关系并说明理由.解:图形如图所示,直线l与⊙O相切.理由:作OF⊥l于F,CE⊥l于E,∵AC是直径,∴∠ABC=90°,∵l⊥BD,∴∠BDE=90°,∵OF⊥l,CE⊥l,∴AD∥OF∥CE,∵AO=OC,∴DF=FE,∴OF=(AD+CE),设AD=a,则AB=2AD=2a,∵∠ABC=∠BDE=∠CED=90°,∴四边形BDEC是矩形,∴CE=BD=3a,∴OF=2a,∵在Rt△ABC中,∠ABC=90°,∠ACB=30°,AB=2a,∴AC=4a,∴OF=OA=2a,∴直线l是⊙O切线.22.如图直角坐标系中,已知A(﹣8,0),B(0,6),点M在线段AB上.(1)如图1,如果点M是线段AB的中点,且⊙M的半径为4,试判断直线OB 与⊙M的位置关系,并说明理由;(2)如图2,⊙M与x轴、y轴都相切,切点分别是点E、F,试求出点M的坐标.解:(1)直线OB与⊙M相切,理由:设线段OB的中点为D,连结MD,如图1,∵点M是线段AB的中点,所以MD∥AO,MD=4.∴∠AOB=∠MDB=90°,∴MD⊥OB,点D在⊙M上,又∵点D在直线OB上,∴直线OB与⊙M相切;,(2)解:连接ME,MF,如图2,∵A(﹣8,0),B(0,6),∴设直线AB的解析式是y=kx+b,∴,解得:k=,b=6,即直线AB的函数关系式是y=x+6,∵⊙M与x轴、y轴都相切,∴点M到x轴、y轴的距离都相等,即ME=MF,设M(a,﹣a)(﹣8<a<0),把x=a,y=﹣a代入y=x+6,得﹣a=a+6,得a=﹣,∴点M的坐标为(﹣,).23.已知等边三角形ABC,AB=12,以AB为直径的半圆与BC边交于点D,过点D作DF⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连接GD,(1)求证:DF与⊙O的位置关系并证明;(2)求FG的长.(1)证明:连接OD,∵以等边三角形ABC的边AB为直径的半圆与BC边交于点D,∴∠B=∠C=∠ODB=60°,∴OD∥AC,∵DF⊥AC,∴∠CFD=∠ODF=90°,即OD⊥DF,∵OD是以边AB为直径的半圆的半径,∴DF是圆O的切线;(2)∵OB=OD=AB=6,且∠B=60°,∴BD=OB=OD=6,∴CD=BC﹣BD=AB﹣BD=12﹣6=6,∵在Rt△CFD中,∠C=60°,∴∠CDF=30°,∴CF=CD=×6=3,∴AF=AC﹣CF=12﹣3=9,∵FG⊥AB,∴∠FGA=90°,∵∠FAG=60°,∴FG=AFsin60°=.24.如图,等边△ABC的边长为2,E是边BC上的动点,EF∥AC交边AB于点F,在边AC上取一点P,使PE=EB,连接FP.(1)请直接写出图中与线段EF相等的两条线段;(不再另外添加辅助线)(2)探究:当点E在什么位置时,四边形EFPC是平行四边形?并判断四边形EFPC是什么特殊的平行四边形,请说明理由;(3)在(2)的条件下,以点E为圆心,r为半径作圆,根据⊙E与平行四边形EFPC四条边交点的总个数,求相应的r的取值范围.解:(1)如图,∵△ABC是等边三角形,∴∠B=∠A=∠C=60°.又∵EF∥AC,∴∠BFE=∠A=60°,∠BEF=∠C=60°,∴△BFE是等边三角形,PE=EB,∴EF=BE=PE=BF;(2)当点E是BC的中点时,四边形是菱形;∵E是BC的中点,∴EC=BE,∵PE=BE,∴PE=EC,∵∠C=60°,∴△PEC是等边三角形,∴PC=EC=PE,∵EF=BE,∴EF=PC,又∵EF∥CP,∴四边形EFPC是平行四边形,∵EC=PC=EF,∴平行四边形EFPC是菱形;(3)如图所示:当点E是BC的中点时,EC=1,则NE=ECcos30°=,当0<r<时,有两个交点;当r=时,有四个交点;当<r<1时,有六个交点;当r=1时,有三个交点;当r>1时,有0个交点.。
-人教版九年级数学上第24章圆全章测试含答案.doc
第24章 圆 全章测试一、填空题(每题5分,计40分)1、已知点O 为△ABC 的外心,若∠A=80°,则∠BOC 的度数为( ) A .40° B .80° C .160° D .120°2.点P 在⊙O 内,OP =2cm ,若⊙O 的半径是3cm ,则过点P 的最短弦的长度为( ) A .1cmB .2cmCD.3.已知A 为⊙O 上的点,⊙O 的半径为1,该平面上另有一点P,PA =P 与⊙O 的位置关系是( )A .点P 在⊙O 内B .点P 在⊙O 上C .点P 在⊙O 外D .无法确定4.如图,A B C D ,,,为O 的四等分点,动点P 从圆心O 出发,沿O C D O ---路线作匀速运动,设运动时间为t (s ).()APB y =∠,则下列图象中表示y 与t 之间函数关系最恰当的是( )5. 在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定( ) A .与x轴相离、与y 轴相切 B .与x 轴、y 轴都相离 C .与x轴相切、与y 轴相离 D .与x 轴、y 轴都相切6 如图,若⊙的直径AB 与弦AC 的夹角为30°,切线CD 与AB的延长线交于点D,且⊙O 的半径为2,则CD 的长为 ( )A.B.C.2D. 47.如图,△PQR 是⊙O 的内接三角形,四边形ABCD 是⊙O 的内接正方形,BC ∥QR,则∠DOR 的度数是 ( )A.60B.65C.72D. 75第4题图AB C DOP B .D .A .C .第6题图O P Q D B AC 第7题图 R8.如图,A ⊙、B ⊙、C ⊙、D ⊙、E ⊙相互外离,它们的半径都是1,顺次连结五个圆心得到五边形ABCDE ,则图中五个扇形(阴影部分)的面积之和是( )A .πB .1.5πC .2πD .2.5π 二 选择题(每题5分,计30分) 9.如图,直角坐标系中一条圆弧经过网格点A 、B 、C ,其中,B 点坐标为(4,4),则该圆弧所在圆的圆心坐标为 .10. 如图,在ΔABC 中,∠A=90°,AB=AC=2cm ,⊙A 与BC 相切于点D ,则⊙A 的半径长为 cm.11.善于归纳和总结的小明发现,“数形结合”是初中数学的基本思想方法,被广泛地应用在数学学习和解决问题中.用数量关系描述图形性质和用图形描述数量关系,往往会有新的发现.小明在研究垂直于直径的弦的性质过程中(如图,直径AB ⊥弦CD 于E ),设AE x =,BE y =,他用含x y ,的式子表示图中的弦CD 的长度,通过比较运动的弦CD 和与之垂直的直径AB 的大小关系,发现了一个关于正数x y ,的不等式,你也能发现这个不等式吗?写出你发现的不等式 .(12题图)12.如图,∠AOB=300,OM=6,那么以M 为圆心,4为半径的圆与直OA 的位置关系是_________________. 13.如图,△㎝,则AC的长等于_______㎝。
九年级数学上册《第二十四章 圆》单元检测卷及答案-人教版精选全文
可编辑修改精选全文完整版九年级数学上册《第二十四章圆》单元检测卷及答案-人教版学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.下列命题中是假命题的是()A.直径是弦;B.等弧所在的圆是同圆或等圆C.弦的垂直平分线经过圆心;D.平分弦的直径垂直于弦2.Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径作圆,若圆C与直线AB相切,则r的值为()A.2cm B.2.4cm C.3cm D.4cm3.如图,⊙O的直径CD垂直弦AB于点E,且CE=2, DE=8,则AB的长为()A.4 B.6 C.7 D.84.如图,AB是⊙O的直径,C,D是⊙O上的两点,且BC平分∠ABD,AD分别与BC,OC相交于点E,F,则下列结论不一定成立的是()A.OC∥BD B.AD⊥OCC.△CEF≌△BED D.AF=FD5.如图,OA交⊙O于点B,AD切⊙O于点D,点C在⊙O上.若∠A=40°,则∠C为()A.20°B.25°C.30°D.35°6.如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是()C.3+πD.πA.8﹣πB.5π47.如图,△ABC是⊙O的内接三角形,∠A=30°,BC=√2,把△ABC绕点O按逆时针方向旋转90°得到△BED,则对应点C、D之间的距离为()A.1 B.√2C.√3D.28.如图,⊙O是△ABC的外接圆,弦BD交AC于点E,AE=DE,BC=CE过点O作OF⊥AC于点F,延长FO交BE于点G,若DE=3,EG=2则AB的长为()A.4√3B.7 C.8 D.4√5二、填空题:(本题共5小题,每小题3分,共15分.)9.在直径为10cm的圆中,弦AB的长为8cm,则它的弦心距为cm.10.如图,点A,B,C都在⊙O上,若∠OAC=17°,∠ACB=46°,AC与OB交于点D,则∠ODA 的度数为度.11.如图,⊙I为△ABC的内切圆,AB=9,BC=8,AC=10,点D、E分别为AB、AC上的点,且DE 为⊙I的切线,则△ADE的周长为12.如图,AB为⊙O的直径,直线l与⊙O相切于点C,AD⊥l,垂足为D,AD交⊙O于点E,连接OC、BE.若AE=6,OA=5,则线段DC的长为.13.如图,AB是⊙O的直径,AC是⊙O的切线,连接OC与⊙O相交于点D,连接BD,∠C=40°,̂上的动点,连接PA、PD,则∠APD的大小是度.若点P为优弧ABD三、解答题:(本题共5题,共45分)⌢=AC⌢∠ADC=120°,求证:△ABC是等边三角形.14.已知四边形ABCD内接于⊙O,AB15.如图,在△ABC中AB=AC,以AC为直径的⊙O与AB交于点D,过点B作BE∥AC,与过点C的⊙O的切线相交于点E.求证:BD=BE.16.如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆⊙O相交于点D过D作直线DG∥BC.(1)若∠ACB=70°,则∠ADB=;∠AEB=.(2)求证:DE=CD;(3)求证:DG是⊙O的切线.⌢=BP⌢.17.已知,如图,⊙O的半径为2,半径OP被弦AB垂直平分,交点为Q,点C在圆上,且BC(1)求弦AB的长;(2)求图中阴影部分面积(结果保留π).18.如图,已知AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,∠M=∠D.(1)判断BC、MD的位置关系,并说明理由;(2)若AE=16,BE=4,求线段CD的长;(3)若MD恰好经过圆心O,求∠D的度数参考答案:1.D 2.B 3.D 4.C 5.B 6.A 7.D 8.B 9.310.7111.1112.413.2514.证明:∵四边形ABCD内接于⊙O∴∠ABC+∠ADC=180°∴∠ABC=180°﹣∠ADC=180°﹣120°=60°⌢=AC⌢∵AB∴AB=AC又∵∠ABC=60°∴△ABC是等边三角形.15.证明:如图,连接CD∵AC是直径∴∠ADC=90°∴∠ADC=∠BDC=90°∵CE是⊙O的切线∴AC⊥CE∴∠ACE=90°∵BE∥AC∴∠ACE+∠E=180°∴∠E=90°∴∠BDC=∠E.∵AB=AC∴∠ABC=∠ACB∵BE∥AC∴∠ACB=∠EBC∴∠DBC=∠EBC在△DCB和△ECB中∴△DCB≌△ECB(AAS)∴BD=BE16.(1)70º;125º(2)证明:连接BD∵点E是ΔABC的内心∴∠ABE=∠CBE,∠BAD=∠CAD∵∠DBC=∠DAC∴∠DBC=∠BAD∵∠DBE=∠DBC+∠CBE,∠DEB=∠BAD+∠ABE ∴∠DEB=∠DBE∴BD=DE∵∠BAD=∠CAD⌢=CD⌢∴BD∴BD=CD∴DE=CD;(3)证明:连接OD交BC于H,如图∵点E是ΔABC的内心∴AD平分∠BAC即∠BAD=∠CAD⌢=CD⌢∴BD∴OD⊥BC∴BH=CH∵DG//BC∴OD⊥DG∴DG是⊙O的切线;17.(1)解:连接OB,则OB=2∵弦AB垂直平分OP∴OQ=12OP=1.在Rt△OBQ中∵半径OP垂直AB∴AQ=BQ∴AB=2√3;(2)解:在Rt△OBQ中,cos∠POB=12∴∠POB=60°.连接OC,BC∵BC⌢=BP⌢∴BC=BP,∠BOC=∠POB=60°.又∵OC=OB∴△OBC是等边三角形.∴∠BCO=60°∵∠POB=60°,∠BOC=60°.∵∠BCO+∠POC=180∘∴BC∥OP∴S△PBC=S△OBC∴S阴=S扇形OBC=60360π⋅22=23π.18.(1)解:BC∥MD.理由:∵∠M=∠D,∠M=∠C,∠D=∠CBM ∴∠M=∠D=∠C=∠CBM∴BC∥MD.(2)解:∵AE=16,BE=4∴OB=16+42=10∴OE=10﹣4=6连接OC∵CD⊥AB∴CE=12CD在Rt△OCE中∵OE2+CE2=OC2,即62+CE2=102,解得CE=8 ∴CD=2CE=16.(3)解:如图2∵∠M=12∠BOD,∠M=∠D∴∠D=12∠BOD,∵AB⊥CD,∴∠D=13×90°=30°。
九年级上册24章《圆》水平测试题.pdf
第二十四章圆整章综合水平测试题一 选择题 (每小题3分,共30分) 1.下列命题中,假命题是( )A.两条弧的长度相等,它们是等弧B.等弧所对的圆周角相等C.直径所对的圆周角是直角D.一条弧所对的圆心角等于它所对圆周角的2倍. 2.若圆的一条弦把圆分成度数的比为1 :3的两段弧,则劣弧所对的圆周角等于( ) A . 45oB 。
90oC 。
135oD 。
270o 3.已知正六边形的周长是12a ,则该正六边形的半径是( )A 6a B.4a C.2a D.32a 4.如图1,圆与圆的位置关系是( )A.外离 B 相切 C.相交 D.内含图1 图25. 如图2,,,,,A B C D E e e e e e 的半径都是1,顺次连结这些圆心得到五边形ABCDE ,则图中的阴影部分面积之和为( )A.πB.32π C.2π D.52π 6.过O e 内一点N 的最长弦为6,最短的弦长为4,那么ON 的长为( ) 3 B.2 5 37.若正三角形、正方形、正六边形的周长相等,它们的面积分别是123,,S S S ,则下列关系成立的是( )A .123S S S ==,B 。
123S S S <<C .123S S S >>D 。
231S S S >>8.平行四边形的四个顶点在同一个圆上,则该平行四边形一定是( )A.正方形 B 菱形 C.矩形 D.等腰梯形 9.在半径等于5cm 的圆内有长为53cm 的弦,则此弦所对的圆周角为( ) A.120oB 30o或120o C.60o D 60o 或120o10.已知10e 、2O e 、3O e 两两外切,且半径分别为2cm 、3cm 、10cm ,则123O O O V的形状是( )A 锐角三角形 B.直角三角形 C 钝角三角形 D.等腰直角三角形. 二、填空题(每小题3分,共30分)11.如图3,已知AB 为O e 的直径,AB CD ⊥,垂足为E ,由图你还能知道哪些正确 的结论?请把它们一一写出来._____________.图3 图4 图512.如图4,AB 是O e 的直径,C 为圆上一点,60A ∠=o,,OD BC ⊥D 为垂足,且OD=10, 则AB=_______,BC=_______.13.如图5,已知O e 中,»»AB BC =,且»¼:3:4AB AMC =,则AOC ∠=______. 14.如图6,在条件:①60COA AOD ∠=∠=o;②AC=AD=OA;③点E 分别是AO 、CD 的中点; ④OA CD ⊥,且60ACO ∠=o中,能推出四边形OCAD 是菱形的条件有_______个.图6 图715.为了改善市区人民的生活环境,某市建设污水管网工程,某圆柱型水管的直径为100cm ,截面如图7所示,若管内的污水的面宽60AB cm =,则污水的最大深度为______.16.O e 的直径为11cm ,圆心到一直线的距离为5cm ,那么这条直线和圆的位置关系是_______;若圆心到一直线的距离为5.5cm ,那么这条直线和圆的位置关系是_______;17. 若两圆相切,圆心距为8cm ,其中一个圆的半径为12cm ,则另一个圆的半径为_____. 18.正五边形的一个中心角的度数是________,19.已知1O e 和2o e 的半径分别为2和3,如果它们既不相交又不相切,那么它们的圆心 距d 的取值范围是________.20已知在同一平面内圆锥两母线在顶点处最大的夹角为60o,母线长为8,则圆锥的侧面积为______.三.解答题(共60分)21.(6分)如图8,已知ABC V 中,90C ∠=o,AC=3,BC=4,已点C 为圆心作C e ,半径为r .(1) 当r 取什么值时,点A 、B 在C e 外?(2)当r 取什么值时,点A 在C e 内,点B 在C e 外?图822.(6分)如图9,两个同心圆,作一直线交大圆于A 、B ,交小圆于C 、D ,AC 与BD 有何关系?请说明理由.图923.(6分)如图10,PA 、PB 是O e 的两条切线,A 、B 是切点,AC 是O e 的直径,35BAC ∠=o ,求P ∠的度数.图1024.(8分)如图11,P 是O e 的直径AB 上的一点,PC AB ⊥,PC 交O e 于C ,OCP∠的平分线交O e 于D ,当点P 在半径OA (不包括O 点和A 点)上移动时,试探究»AD 与»BD的大小关系.图1125(8分).如图12,O e 的半径OA=5,点C 是弦AB 上的一点,且OC AB ⊥,OC=BC.求AB 的长.图1226.(8分)如图13,O e 的直径AB 和弦CD 相交于点E ,已知AE=1,EB=5,60DEB ∠=o,求CD 的长.图1327.(8分)现有边长为a 的正方形花布,问怎样剪裁,才能得到一个面积最大的正八边形花布来做一个形状为正八边形的风筝?28(10分)如图14,已知一底面半径为r ,母线长为3r 的圆锥,在地面圆周上有一蚂蚁位于A 点,它从A 点出发沿圆锥面爬行一周后又回到原出发点,请你给它指出一条爬行最短的路径,并求出最短路径的长.图14.备用题1.如图1,ABC V 中,AB=AC ,BD 是ABC ∠的平分线,A 、B 、D 三点的圆与BC 相交于点E ,你认为AD=CE 吗?如果不能,请举反例;如果AD=CE ,请说明理由.图1 图22.如图2,在直角梯形ABCD 中,AB ∥CD ,以AD 为直径的圆切BC 于E ,谅解OB 、OC ,试探究OB 与OC 有何位置关系?参考答案一.1A 2A 3C 4A 5B 6C 7B 8C 9D 10B二.11.CE=DE ,»»AC AD =,»»BC BD =;12.40,20313.144o ; 14. 4;15. 90;16.相交、相切;17. 4cm 或16cm ;18.72o; 19.5d >或01d ≤<; 20.32π.三.21,3r <,34r <<;22. AC=BD. 理由:作OE AB ⊥于E ,(如图1)由垂径定理得AE=BE ,CE=DE ,所以AE-CE=BE-DE ,即AC=BD.( 图1) 图223. 因为35BAC ∠=o ,所以180352110AOB ∠=−⨯=o o o,因为PA 、PB 是O e 的切线,所以90PAO PBO ∠=∠=o,所以360P PAO PBO AOB ∠=−∠−∠−∠o =70o.24.»»AD BD =. 理由 如图2,延长CP 交O e 于E ,延长CO 交O e 于F ,因为PCD FCD ∠=∠,所以 »»DE DF = 因为直径AB CE ⊥,所以»»AE AC = 因为 AOC BOF ∠=∠,所以»»AC BF =, 所以 »»AE BF =,所以»»»»AE DE BF DF +=+,即»»AD BD =. 25. 因为OC AB ⊥,所以AC=BC ,又OC=BC ,所以OC=AC=BC 设OC=AC=BC=x ,在Rt AOC V 中,2225x x +=解得522x =252AB x ==. 26.作OF CD ⊥于F ,(如图3)则CF=EF ,连结DO ,在Rt OEF V 中,60OEF DEB ∠=∠=o,30EOF ∠=oOE=OA-AE=13122AB AE −=−=,112122EF OE ==⨯=, 所以2222213OF OE EF =−=−=所以222336DF OD OF =−=−=所以226CD DF ==.图3 图4 图527.如图4,将正方形花布的四个角各截去一个全等的直角三角形,设 DF=GC=x , 则2,EF x =因为,EF=FG ,所以22x a x =−,解得222x a −=因此,应从正方形花布的四个角各截去一个全等的直角边为222a −的等腰直角三角形.28.圆锥的侧面展开图如图5所示,则线段AA 的长为最短路径 设扇形的圆心角为n o,则32180n r r ππ⋅=,解得120n =o作OC AA ⊥,60AOC ∠=o,30AOC ∠=o,因为3,OA r =所以32OC r =,由勾股定理求得332AC r =, 所以33AA r =,即蚂蚁从A 点出发沿圆锥面爬行一周后又回到原出发点的最短路径长为33r .备用题.1. 连结DE ,(如图6)因为BD 是ABC ∠的平分线,所以ABD EBD ∠=∠,所以AD=DE , 因为AB=AC ,所以ABC C ∠=∠,因为CDE ABC ∠=∠ 所以C CDE ∠=∠,所以CE=DE , 所以AD=CE.图6 如图7 2. 连结OE ,(如图7)由切线性质及切线长定理可得: Rt AOB Rt EOB ≅V V , Rt COD Rt COE ≅V V 所以,AOB EOB COD COE ∠=∠∠=∠所以111809022BOE COE AOD ∠+∠=∠=⨯=o o 即90BOC ∠=o,所以OB OC ⊥.。
人教版九年级数学上册 第二十四章 圆 单元测试(含答案)
第二十四章 圆一、单选题1.下列命题:①直径相等的两个圆是等圆;②等弧是长度相等的弧;③圆中最长的弦是通过圆心的弦; ④一条弦把圆分为两条弧,这两条弧不可能是等弧.其中真命题是 ( ) A .①③ B .①③④ C .①②③ D .②④2.如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为P .若CD =AP =8,则⊙O 的直径为( )A .10B .8C .5D .33.如图,石拱桥的桥顶到水面的距离CD 为8m ,桥拱半径OC 为5m ,则水面AB 宽为( )A.4mB.5mC.6mD.8m4.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知4EF CD ==,则球的半径长是( )A .2B .2.5C .3D .45.如图,C 、D 为半圆上三等分点,则下列说法:①AD =CD =BC ;②∠AOD =∠DOC=∠BOC;③AD=CD=OC;④△AOD沿OD翻折与△COD重合.正确的有()A.4个B.3个C.2个D.1个6.下列各角中,是圆心角的是()A. B. C. D.7.如图,点A、B、C、D在⊙O上,∠AOC=120°,点B是弧AC的中点,则∠D的度数是()A.60°B.35°C.30.5°D.30°8.如图,一块直角三角板ABC的斜边AB与量角器的直径恰好重合,点D对应的刻度是60°,则∠ACD的度数为( )A.60°B.30°C.120°D.45°9.已知⊙O的半径是4,OP=3,则点P与⊙O的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定10.如图,AB是⊙O 的直径,BC是⊙O 的切线,若OC=AB,则∠C的度数为()A.15°B.30°C.45°D.60°11.如图,在平行四边形ABCD中,∠A=2∠B,⊙C的半径为3,则图中阴影部分的面积是()A.πB.2πC.3πD.6π12.如图,已知在⊙O中,AB=4,AF=6,AC是直径,AC⊥BD于F,图中阴影部分的面积是()A. B. C.D.13.如图,在Rt △ABC 中,∠ABC=90°,AB=BC=2,以AB 的中点为圆心,OA 的长为半径作半圆交AC 于点D ,则图中阴影部分的面积为( )A.42π-B.42π+C.πD.2π二、填空题14.已知扇形的弧长为2π,圆心角为60°,则它的半径为________.15.如图,在⊙O 中,已知∠AOB =120°,则∠ACB =________.16.如图,在O 中,直径4AB =,弦CD AB ⊥于E ,若30A ∠=,则CD =____17.如图,在O 中,120AOB ∠=︒,P 为劣弧AB 上的一点,则APB ∠的度数是_______.三、解答题18.如图,在△ABC中,已知∠ACB=130°,∠BAC=20°,BC=2,以点C为圆心,CB为半径的圆交AB于点D,求弦BD的长19.如图,在Rt△ABC 中,∠C=90°,以BC 为直径的⊙O 交AB 于点D,过点D 作∠ADE=∠A,交AC 于点E.(1)求证:DE 是⊙O 的切线;(2)若34BCAC,求DE 的长.20.如图,AB为⊙O的直径,C为⊙O上一点,D为BC的中点.过点D作直线AC的垂线,垂足为E,连接OD.∠=∠;(1)求证:A DOB(2)DE与⊙O有怎样的位置关系?请说明理由.21.如图所示,一个圆锥的高为h=(1)圆锥的母线长与底面圆的半径之比;(2)母线AB与AC的夹角;(3)圆锥的全面积.答案1.A2.A4.B5.A6.D7.D8.B9.A10.B11.C12.D13.A14.6.15.60°16.17.12018.解:如图,作CE⊥AB于E.∵∠B=180°-∠A-∠ACB=180°-20°-130°在Rt △BCE 中,∵∠CEB=90°,∠B=30°,BC=2,∴CE=12BC=1,, ∵CE ⊥BD ,∴DE=EB ,∴19.(1)证明:连接 OD ,如图,∵∠C =90°,∴∠A +∠B =90°,∵OB =OD ,∴∠B =∠ODB , 而∠ADE =∠A ,∴∠ADE +∠ODB =90°,∴∠ODE =90°,∴OD ⊥DE ,∴DE 是⊙O 的切线;(2)解:在 Rt △ABC 中34BC AC ∴AC =43×15=20, ∵ED 和 EC 为⊙O 的切线,而∠ADE =∠A ,∴DE =AE ,∴AE =CE =DE12AC =10,即 DE 的长为10.20.(1)连接OC ,D Q 为BC 的中点,∴CD BD =,12BOD BOC ∴∠=∠, 12BAC BOC ∠=∠, A DOB ∴∠=∠;(2)DE 与⊙O 相切,理由如下:A DOB ∠=∠,//AE OD ∴,∴∠ODE+∠E=180°,DE AE ⊥,∴∠ODE=90°,OD DE ∴⊥,又∵OD 是半径,DE ∴与⊙O 相切.21.(1)设圆锥的母线长为l ,底面圆的半径为r . ∵圆锥的侧面展开图是半圆,∴2r l ππ=,∴2l r =,∴21l r =::.即圆锥的母线长与底面圆的半径之比为2:1.(2)∵2l r =,即2AB BO =,∴30BAO ∠︒=,∴60BAC ∠︒=,即母线AB 与AC 的夹角为60︒.(3)在Rt AOB 中,222l h r =+,又2l r =,h = ∴36r l =,=,∴227 S S S rl rπππ全底=+=+=侧。
新人教版九年级数学上册《第二十四章圆》测试题(含答案)
17.一个圆锥的底面半径为3������������,高为4������������,则这个圆锥的表面积为________. 18.如图,菱形������������������������中,对角线������������、������������交于������点,分别以������、������为圆心,������������、������������为半径画 圆弧,交菱形各边于点������、������、������、������,若������������ = 2 3,������������ = 2,则图中阴影部分的面积是 ________.
B.(7, 7) D.(8, 8)
8.如图, ⊙ ������是等边三角形������������������的外接圆, ⊙ ������的半径为2,则等边 △ ������������������的边长为( )
A.1
B. 2
C. 3
D.2 3
9.已知点������到 ⊙ ������的最长距离是3,最短距离是2,则 ⊙ ������的半径是( )
������������于������,连������������,������������,下列结论:
^=^
^
①������������ ������������;②������������ // ������������;③∠������������������ = ∠������������������;④当������是半圆������������的中点时,则������������ = ������������.
初中数学九年级数学上《第24章圆》单元测试含答案解析.docx
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:下列说法正确的是()A.三点确定一个圆B.一个三角形只有一个外接圆C.和半径垂直的直线是圆的切线D.三角形的内心到三角形三个顶点距离相等试题2:如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=84°,则∠E等于()A.42° B.28° C.21° D.20°试题3:已知如图,AB是⊙O的直径,弦CD⊥AB于E,CD=6,AE=1,则⊙O的直径为()评卷人得分A.6 B.8 C.10 D.12试题4:如图,DC是以AB为直径的半圆上的弦,DM⊥CD交AB于点M,CN⊥CD交AB于点N.AB=10,CD=6.则四边形DMNC的面积()A.等于24 B.最小为24 C.等于48 D.最大为48试题5:如图,在半径为5的⊙O中,弦AB=6,OP⊥AB,垂足为点P,则OP的长为()A.3 B.2.5 C.4 D.3.5试题6:.如图表示一圆柱形输水管的横截面,阴影部分为有水部分,如果输水管的半径为5cm,水面宽AB为8cm,则水的最大深度CD为()A.4cm B.3cm C.2cm D.1cm试题7:图中的五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从A点到B点,甲虫沿ADA1、A1EA2、A2FA3、A3GB 路线爬行,乙虫沿ACB路线爬行,则下列结论正确的是()A.甲先到B点 B.乙先到B点 C.甲、乙同时到B D.无法确定试题8:在直径为200cm的圆柱形油槽内装入一些油以后,截面如图.若油面的宽AB=160cm,则油的最大深度为()A.40cm B.60cm C.80cm D.100cm试题9:如图,AB是⊙O的直径,四边形ABCD内接于⊙O,若BC=CD=DA=4cm,则⊙O的周长为()A.5πcm B.6πcm C.9πcm D.8πcm试题10:如图,AB是⊙O的弦,点C在圆上,已知∠OBA=40°,则∠C=()A.40° B.50° C.60° D.80°试题11:如图,在⊙O中,弦AB∥CD,若∠ABC=40°,则∠BOD= .试题12:如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若要求另外三个顶点A、B、C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是.试题13:如图,已知∠BOA=30°,M为OB边上一点,以M为圆心、2cm为半径作⊙M.点M在射线OB上运动,当OM=5cm时,⊙M 与直线OA的位置关系是.试题14:如图,正方形ABCD内接于⊙O,其边长为4,则⊙O的内接正三角形EFG的边长为.试题15:已知扇形的半径为6cm,圆心角的度数为120°,则此扇形的弧长为cm.如图,半圆O的直径AB=2,弦CD∥AB,∠COD=90°,则图中阴影部分的面积为.试题17:圆锥底面圆的半径为3m,其侧面展开图是半圆,求圆锥母线长.试题18:在一个底面直径为5cm,高为18cm的圆柱形瓶内装满水,再将瓶内的水倒入一个底面直径是6cm,高是10cm的圆柱形玻璃杯中,能否完全装下?若未能装满,求杯内水面离杯口的距离.试题19:如图,AB和CD分别是⊙O上的两条弦,过点O分别作ON⊥CD于点N,OM⊥AB于点M,若ON=AB,证明:OM=CD.试题20:如图为桥洞的形状,其正视图是由和矩形ABCD构成.O点为所在⊙O的圆心,点O又恰好在AB为水面处.若桥洞跨度CD为8米,拱高(OE⊥弦CD于点F )EF为2米.求所在⊙O的半径DO.△ABC是⊙O的内接三角形,BC=.如图,若AC是⊙O的直径,∠BAC=60°,延长BA到点D,使得DA=BA,过点D作直线l⊥BD,垂足为点D,请将图形补充完整,判断直线l和⊙O的位置关系并说明理由.试题22:如图直角坐标系中,已知A(﹣8,0),B(0,6),点M在线段AB上.(1)如图1,如果点M是线段AB的中点,且⊙M的半径为4,试判断直线OB与⊙M的位置关系,并说明理由;(2)如图2,⊙M与x轴、y轴都相切,切点分别是点E、F,试求出点M的坐标.试题23:已知等边三角形ABC,AB=12,以AB为直径的半圆与BC边交于点D,过点D作DF⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连接GD,(1)求证:DF与⊙O的位置关系并证明;(2)求FG的长.试题24:如图,等边△ABC的边长为2,E是边BC上的动点,EF∥AC交边AB于点F,在边AC上取一点P,使PE=EB,连接FP.(1)请直接写出图中与线段EF相等的两条线段;(不再另外添加辅助线)(2)探究:当点E在什么位置时,四边形EFPC是平行四边形?并判断四边形EFPC是什么特殊的平行四边形,请说明理由;(3)在(2)的条件下,以点E为圆心,r为半径作圆,根据⊙E与平行四边形EFPC四条边交点的总个数,求相应的r的取值范围.试题1答案:B.试题2答案:B.试题3答案:C.试题4答案:A.试题5答案:C.试题6答案:C.试题7答案:C.试题8答案:A.试题9答案:D.试题10答案:B.试题11答案:80°.【考点】圆周角定理;平行线的性质.【分析】根据平行线的性质由AB∥CD得到∠C=∠ABC=40°,然后根据圆周角定理求解.【解答】解:∵AB∥CD,∴∠C=∠ABC=40°,∴∠BOD=2∠C=80°.故答案为80°.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,一条弧所对的圆周角的度数等于它所对的圆心角度数的一半.也考查了平行线的性质.试题12答案:3<r<5 .【考点】点与圆的位置关系.【分析】要确定点与圆的位置关系,主要根据点与圆心的距离与半径的大小关系来进行判断.当d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.【解答】解:在直角△ABD中,CD=AB=4,AD=3,则BD==5.由图可知3<r<5.故答案为:3<r<5.【点评】此题主要考查了点与圆的位置关系,解决本题要注意点与圆的位置关系,要熟悉勾股定理,及点与圆的位置关系.试题13答案:相离.【考点】直线与圆的位置关系.【专题】常规题型.【分析】作MH⊥OA于H,如图,根据含30度的直角三角形三边的关系得到MH=OM=,则MH大于⊙M的半径,然后根据直线与圆的位置关系的判定方法求解.【解答】解:作MH⊥OA于H,如图,在Rt△OMH中,∵∠HOM=30°,∴MH=OM=,∵⊙M的半径为2,∴MH>2,∴⊙M与直线OA的位置关系是相离.故答案为相离.【点评】本题考查了直线与圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d,直线l和⊙O相交⇔d<r;直线l和⊙O相切⇔d=r;直线l和⊙O相离⇔d>r.试题14答案:2.【考点】正多边形和圆.【分析】连接AC、OE、OF,作OM⊥EF于M,先求出圆的半径,在RT△OEM中利用30度角的性质即可解决问题.【解答】解;连接AC、OE、OF,作OM⊥EF于M,∵四边形ABCD是正方形,∴AB=BC=4,∠ABC=90°,∴AC是直径,AC=4,∴OE=OF=2,∵OM⊥EF,∴EM=MF,∵△EFG是等边三角形,∴∠GEF=60°,在RT△OME中,∵OE=2,∠OEM=∠GEF=30°,∴OM=,EM=OM=,∴EF=2.故答案为2.【点评】本题考查正多边形与圆、等腰直角三角形的性质、等边三角形的性质等知识,解题的关键是熟练应用这些知识解决问题,属于中考常考题型.试题15答案:4πcm.【考点】弧长的计算.【分析】在半径是R的圆中,因为360°的圆心角所对的弧长就等于圆周长C=2πR,所以n°圆心角所对的弧长为l=nπR ÷180.【解答】解:∵扇形的半径为6cm,圆心角的度数为120°,∴扇形的弧长为:=4πcm;故答案为:4π.【点评】本题考查了弧长的计算.解答该题需熟记弧长的公式l=.试题16答案:.【考点】扇形面积的计算.【分析】由CD∥AB可知,点A、O到直线CD的距离相等,结合同底等高的三角形面积相等即可得出S△ACD=S△OCD,进而得出S阴影=S扇形COD,根据扇形的面积公式即可得出结论.【解答】解:∵弦CD∥AB,∴S△ACD=S△OCD,∴S阴影=S扇形COD=•π•=×π×=.故答案为:.【点评】本题考查了扇形面积的计算以及平行线的性质,解题的关键是找出S阴影=S扇形COD.本题属于基础题,难度不大,解决该题型题目时,通过分割图形找出面积之间的关系是关键.试题17答案:【考点】圆锥的计算.【分析】侧面展开后得到一个半圆就是底面圆的周长.依此列出方程即可.【解答】解:设母线长为x,根据题意得2πx÷2=2π×3,解得x=6.故圆锥的母线长为6m.【点评】本题考查圆锥的母线长的求法,注意利用圆锥的弧长等于底面周长这个知识点.试题18答案:【考点】圆柱的计算.【专题】计算题.【分析】设将瓶内的水倒入一个底面直径是6cm,高是10cm的圆柱形玻璃杯中时,水面高为xcm,根据水的体积不变和圆柱的条件公式得到π•()2•x=π•()2•18,解得x=12.5,然后把12.5与10进行大小比较即可判断能否完全装下.【解答】解:设将瓶内的水倒入一个底面直径是6cm,高是10cm的圆柱形玻璃杯中时,水面高为xcm,根据题意得π•()2•x=π•()2•18,解得x=12.5,∵12.5>10,∴不能完全装下.【点评】本题考查了圆柱:圆柱的母线(高)等于展开后所得矩形的宽,圆柱的底面周长等于矩形的长;圆柱的侧面积=底面圆的周长×高;圆柱的表面积=上下底面面积+侧面积;圆柱的体积=底面积×高.试题19答案:【考点】垂径定理;全等三角形的判定与性质.【专题】证明题.【分析】设圆的半径是r,ON=x,则AB=2x,在直角△CON中利用勾股定理即可求得CN的长,然后根据垂径定理求得CD 的长,然后在直角△OAM中,利用勾股定理求得OM的长,即可证得.【解答】证明:设圆的半径是r,ON=x,则AB=2x,在直角△CON中,CN==,∵ON⊥CD,∴CD=2CN=2,∵OM⊥AB,∴AM=AB=x,在△AOM中,OM==,∴OM=CD.【点评】此题涉及圆中求半径的问题,此类在圆中涉及弦长、半径、圆心角的计算的问题,常把半弦长,半圆心角,圆心到弦距离转换到同一直角三角形中,然后通过直角三角形予以求解.试题20答案:【考点】垂径定理的应用;矩形的性质.【分析】先根据垂径定理求出DF的长,再由勾股定理即可得出结论.【解答】解:∵OE⊥弦CD于点F,CD为8米,EF为2米,∴EO垂直平分CD,DF=4m,FO=DO﹣2,在Rt△DFO中,DO2=FO2+DF2,则DO2=(DO﹣2)2+42,解得:DO=5;答:所在⊙O的半径DO为5m.【点评】本题考查的是垂径定理的应用,此类题中一般使用列方程的方法,这种用代数方法解决几何问题即几何代数解的数学思想方法一定要掌握.试题21答案:【考点】直线与圆的位置关系.【分析】作OF⊥l于F,CE⊥l于E,设AD=a,则AB=2AD=2a,只要证明OF是梯形ADEC的中位线即可解决问题.【解答】解:图形如图所示,直线l与⊙O相切.理由:作OF⊥l于F,CE⊥l于E,∵AC是直径,∴∠ABC=90°,∵l⊥BD,∴∠BDE=90°,∵OF⊥l,CE⊥l,∴AD∥OF∥CE,∵AO=OC,∴DF=FE,∴OF=(AD+CE),设AD=a,则AB=2AD=2a,∵∠ABC=∠BDE=∠CED=90°,∴四边形BDEC是矩形,∴CE=BD=3a,∴OF=2a,∵在Rt△ABC中,∠ABC=90°,∠ACB=30°,AB=2a,∴AC=4a,∴OF=OA=2a,∴直线l是⊙O切线.【点评】本题考查直线与圆的位置关系、图形中位线的性质等知识,解题的关键是添加辅助线,要证明切线的方法有两种,一是连半径,证垂直,二是作垂直,正半径,此题则是运用第二种方法.试题22答案:【考点】直线与圆的位置关系;坐标与图形性质.【分析】(1)设线段OB的中点为D,连结MD,根据三角形的中位线求出MD,根据直线和圆的位置关系得出即可;(2)求出过点A、B的一次函数关系式是y=x+6,设M(a,﹣a),把x=a,y=﹣a代入y=x+6得出关于a的方程,求出即可.【解答】解:(1)直线OB与⊙M相切,理由:设线段OB的中点为D,连结MD,如图1,∵点M是线段AB的中点,所以MD∥AO,MD=4.∴∠AOB=∠MDB=90°,∴MD⊥OB,点D在⊙M上,又∵点D在直线OB上,∴直线OB与⊙M相切;,(2)解:连接ME,MF,如图2,∵A(﹣8,0),B(0,6),∴设直线AB的解析式是y=kx+b,∴,解得:k=,b=6,即直线AB的函数关系式是y=x+6,∵⊙M与x轴、y轴都相切,∴点M到x轴、y轴的距离都相等,即ME=MF,设M(a,﹣a)(﹣8<a<0),把x=a,y=﹣a代入y=x+6,得﹣a=a+6,得a=﹣,∴点M的坐标为(﹣,).【点评】本题考查了直线和圆的位置关系,用待定系数法求一次函数的解析式的应用,能综合运用知识点进行推理和计算是解此题的关键,注意:直线和圆有三种位置关系:已知⊙O的半径为r,圆心O到直线l的距离是,当d=r时,直线l 和⊙O相切.试题23答案:【考点】直线与圆的位置关系;等边三角形的性质;勾股定理;垂径定理.【分析】(1)连接OD,证∠ODF=90°即可.(2)利用△ADF是30°的直角三角形可求得AF长,同理可利用△FHC中的60°的三角函数值可求得FG长.【解答】(1)证明:连接OD,∵以等边三角形ABC的边AB为直径的半圆与BC边交于点D,∴∠B=∠C=∠ODB=60°,∴OD∥AC,∵DF⊥AC,∴∠CFD=∠ODF=90°,即OD⊥DF,∵OD是以边AB为直径的半圆的半径,∴DF是圆O的切线;(2)∵OB=OD=AB=6,且∠B=60°,∴BD=OB=OD=6,∴CD=BC﹣BD=AB﹣BD=12﹣6=6,∵在Rt△CFD中,∠C=60°,∴∠CDF=30°,∴CF=CD=×6=3,∴AF=AC﹣CF=12﹣3=9,∵FG⊥AB,∴∠FGA=90°,∵∠FAG=60°,∴FG=AFsin60°=.【点评】本题主要考查了直线与圆的位置关系、等边三角形的性质、垂径定理等知识,判断直线和圆的位置关系,一般要猜想是相切,那么证直线和半径的夹角为90°即可;注意利用特殊的三角形和三角函数来求得相应的线段长.试题24答案:【考点】点与圆的位置关系;等边三角形的性质;平行四边形的判定;菱形的判定.【专题】探究型.【分析】(1)由平行易得△BFE是等边三角形,那么各边是相等的;(2)当点E是BC的中点时,△PEC为等边三角形,可得到PC=EC=BE=EF,也就得到了四边形EFPC是平行四边形,再有EF=EC可证为菱形;(3)根据各点到圆心的距离作答即可.【解答】解:(1)如图,∵△ABC是等边三角形,∴∠B=∠A=∠C=60°.又∵EF∥AC,∴∠BFE=∠A=60°,∠BEF=∠C=60°,∴△BFE是等边三角形,PE=EB,∴EF=BE=PE=BF;(2)当点E是BC的中点时,四边形是菱形;∵E是BC的中点,∴EC=BE,∵PE=BE,∴PE=EC,∵∠C=60°,∴△PEC是等边三角形,∴PC=EC=PE,∵EF=BE,∴EF=PC,又∵EF∥CP,∴四边形EFPC是平行四边形,∵EC=PC=EF,∴平行四边形EFPC是菱形;(3)如图所示:当点E是BC的中点时,EC=1,则NE=ECcos30°=,当0<r<时,有两个交点;当r=时,有四个交点;当<r<1时,有六个交点;当r=1时,有三个交点;当r>1时,有0个交点.【点评】本题综合考查了等边三角形的性质和判定,菱形的判定及点和圆的位置关系等知识点.注意圆和线段有交点,应根据半径作答.。
人教版九年级数学上册第二十四章《圆》全章测试卷 含答案.doc
初中数学试卷鼎尚图文**整理制作初三数学 第二十四章《圆》全掌测试卷一.选择题:(每题5分,共30分)1.已知圆锥的母线长为5cm ,侧面积为10πcm 2,则这个圆锥的底面半径是 ( )A .2cm;B .3cm;C .4cm;D .5cm2.已知⊙O 1的半径r 为3cm ,⊙O 2的半径R 为4cm ,两圆的圆心距O 1O 2为1cm ,则这两圆的位置关系是( ) A 相交 B 内含 C 内切 D 外切3.⊙O 的半径是6,点O 到直线a 的距离为5,则直线a 与⊙O 的位置关系为( ). A .相离; B .相切 ;C .相交; D .内含4.如图(1),⊙O 中,直径AB ⊥弦CD,则=∠+∠B D C A C D ( )A .︒60;B .︒90;C.︒120D .︒150 图(1)5.如图(2),这是中央电视台“曲苑杂谈”中的一副图案,它是一扇形图形,其中AOB ∠为120,OC 长为8cm ,CA 长为12cm ,则阴影部分的面积为( )A .264πcm ;B .2112πcm ;C .2144πcm ;D .2152πcm 6.如图(3),⊙O 内切于ABC △,切点分别为D E F ,,.50B ∠=°,60C ∠=°,连结OE OF DE DF ,,,,那么EDF ∠等于( )A.40° B.55°C.65° D.70°二.填空题:(每题5分,共45分) 7.如图(4),☉O 是ABC 的外接圆,ABO ∠=︒40,则ACB ∠等于 度.8.如图(5),BC 是⊙O 的直径,延长BC至点P ,PA 切⊙O 于A ,若30P ∠= 图(4) 则B ∠= °.9. 如图(6),AB 是⊙O 的直径,弦CD⊥AB 于P ,若 AP :PB =1:9.CD =6,则⊙O 的直径长为 .图(5)AC O B图(2)D10.半径长是6cm 的正六边形的内切圆的半径长是11.如图(7),⊙O 的弦AB 平分半径OC ,交OC 于P 点,︒=∠60OPB132=AB ,则⊙O 的直径为 图(6)12.如图(8),AB 是⊙O 的弦,P 是AB 上一点,AB=10, PA=4, OP=5, 则⊙O 的半径为(7) (8) (9) 13.如图(9),PC 切⊙O 于点C ,经过圆心的割线PAB 交⊙O 于点A 和B ,PC =6,∠B =︒30,则⊙O 的半径长是 14.如图(10),等腰∆ABC 外接于☉O ,AB AC =,☉O 的半径长是2,︒=∠30A ,则D ∠= ,AB= .(图11) 15.如图(11),在平面直角坐标系中,点A 在第一象限,⊙A 与x 轴相切于B ,与y 轴交于C (0,1),D (0,4)两点,则点A 的坐标是三. 解答题(每题5分,共25分)16.如图,某花园小区一圆形管道破裂,修理工准备更换一段新管道,现在量得污水水面宽度为80cm ,水面到管道顶部距离为20cm , 求:修理工应准备的管道的内直径.17.已知:如图,⊙O 的直径是10cm ,PA 、 PB 切⊙O 于点A 、B 两点,13=PO 求PA 的长及∆PAB 的周长A(第10题图)18.已知:如图,等腰ABC中,AB=AC,以AB为直径作⊙O,交BC于点D,过点 D作DE⊥AC,垂足为E.(1)求证:DE为⊙O的切线;(3分)(2)若⊙O的半径为5,∠BAC =60°,求DE的长.(2分)19.已知:如图,ABC中,AB=AC=13,BC=10,<1>用直尺和圆规作出ABC的外接圆⊙O<2>求ABC的外接圆的半径长20.如图,在平面直角坐标系中,以点M(0)为圆心,以长为半径作⊙M交x轴于A、B两点,交y轴于C、D两点,连结AM 并延长交⊙M于P点,连结PC交x轴于E。
人教版九年级上册《第二十四章圆》综合检测试卷(含答案).docx
第二十四章综合检测试卷(满分:100分时间:90分钟)一、选择题(每小题2分,共20分)1.下列命题中正确的有(A )(1)平分弦的直径垂直于弦;(2)经过半径一端且与这条半径垂直的直线是圆的切线;(3)在同圆或等圆中,圆周角等于圆心角的一半;(4)平面内三点确定一个圆;(5)三角形的外心到各个顶点的距离相等.A. 1个B. 2个C. 3个D. 4个2. [2016-江苏南京甲考】C知止7X以形旳垃氏为2,则匕旳内切圆旳半彳仝为(B )A. 1B.书C. 2D. 2羽3. [2017-江苏宿迁中考】若将半径为12cm的半圆形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径是(D )A. 2 cmB. 3 cmD. 6 cm4. [2016-福建三明中考】如图,AB是的弦,半径OC丄A3于点ZZ若OO的半径B. 3D・5的延长线于点& 若ZE=50°,则ZCDB等于(A )A.20°D. 40°6.如图,直线BA、PB是OO的两条切线,A、3分别为切点,ZAPB=120°, OP=10cm,则弦A3的长为(D )B.IO\/3 cmC. 4 cm为5, AB=S,则CQ的长是(A )A.C.5. 如图, 点C、D为OO上的点,过点C作(DO的切线交ABB. 25°C. 30°笫4题第5题cmC. 5 cmD. 5羽 cm7. 【辽宁营口中考】将弧长为2^cm,圆心角为120。
的扇形围成一个圆锥的侧面,则这个圆锥的髙及侧面积分别是(B)A.迈 cm,3^ cm2C. 2y[2 cm,6^ cm 2 B. 2y[2 cm,3^ cm 2D. cm,6n- cm 28.小明想用直角尺检查某些工件是否恰好是半圆形,下列几个图形是半圆形的是9.如图,OC 过原点O,且与两坐标轴分别交于点A. C. 610•【贵州遵义中考】将正方形ABCD 绕点A 按逆时针方向旋转30。
人教版初三上《第24章圆》单元测试题(有答案)(数学)
单元测试(四) 圆(满分:120分 考试时间:120分钟)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求)1.已知⊙O 的半径是5,直线l 是⊙O 的切线,则点O 到直线l 的距离是(C)A .2.5B .3C .5D .102.如图,在△ABC 中,AB =BC =2,以AB 为直径的⊙O 与BC 相切于点B ,则AC 等于(C)A. 2B. 3 C .2 2 D .2 33.如图,⊙O 是△ABC 的外接圆,连接OB ,OC.若OB =BC ,则∠BAC 等于(C)A .60°B .45°C .30°D .20°4.如图,AB ,CD 是⊙O 的直径,AE ︵=BD ︵.若∠AOE =32°,则∠COE 的度数是(D)A .32°B .60°C .68°D .64°5.如图,C ,D 是以线段AB 为直径的⊙O 上两点.若CA =CD ,且∠ACD =40°,则∠CAB =(B)A .10°B .20°C .30°D .40°6.如图,四边形ABCD 是⊙O 的内接四边形,⊙O 的半径为2,∠B =135°,则AC ︵的长(B)A .2πB .Π C.π2D.π37.如图,已知一块圆心角为270°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60 cm ,则这块扇形铁皮的半径是(A)A .40 cmB .50 cmC .60 cmD .80 cm8.如图,AB 是⊙O 的直径,CD 是弦,AB ⊥CD ,垂足为点E ,连接OD ,CB ,AC ,∠DOB =60°,EB =2,那么CD 的长为(D)A. 3 B .2 3 C .3 3 D .4 39.如图,△ABC 是一张三角形纸片,⊙O 是它的内切圆,点D 、E 是其中的两个切点,已知AD =6 cm ,小明准备用剪刀沿着与⊙O 相切的一条直线MN 剪下一块三角形(△AMN),则剪下的△AMN 的周长是(B)A .9 cmB .12 cmC .15 cmD .18 cm10.如图,在Rt △AOB 中,∠AOB =90°,OA =3,OB =2,将Rt △AOB 绕点O 顺时针旋转90°后得Rt △FOE ,将线段EF 绕点E 逆时针旋转90°后得线段ED ,分别以O ,E 为圆心,OA ,ED 长为半径画弧AF 和弧DF ,连接AD ,则图中阴影部分面积是(D)A .Π B.5π4C .3+πD .8-π二、填空题(每大题共5个小题,每小题3分,共15分)11.如图,在矩形ABCD 中,AB =3,AD =4.若以点A 为圆心,4为半径作⊙A ,则点A ,点B ,点C ,点D 四点中在⊙A 外的是点C .12.已知△ABC的三边长分别是6,8,10,则△ABC外接圆的直径是10.13.如图,正六边形ABCDEF内接于⊙O,⊙O的半径为6,则这个正六边形的边心距OM的长为14.如图,AP为⊙O的切线,P为切点.若∠A=20°,C,D为圆周上的两点,且∠PDC=60°,则∠OBC 等于65°.15.如图,四边形OABC是菱形,点B,C在以点O为圆心的弧EF上,且∠1=∠2.若扇形OEF的面积为3π,则菱形OABC的边长为3.三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤)16.(本大题共2小题,每小题5分,共10分)(1)如图,在△AOC中,∠AOC=90°,以点O为圆心,OA为半径的圆交AC于点B,且OB=BC,求∠A 的度数.解:∵OA=OB,OB=BC,∴∠A=∠OBA,∠BOC=∠C,又∵∠OBA=∠BOC+∠C,∴∠A=2∠C.∵△AOC中,∠AOC=90°,∴∠A+∠C=90°,即3∠C=90°.∴∠C=30°,∠A=60°.(2)如图,AB是⊙O的直径,∠ACD=25°,求∠BAD的度数.解:∵AB 为⊙O 的直径, ∴∠ADB =90°.∵相同的弧所对应的圆周角相等,且∠ACD =25°, ∴∠B =25°.∴∠BAD =90°-∠B =65°.17.(本题6分)如图,在⊙O 中,AC ︵=CB ︵,CD ⊥OA 于D ,CE ⊥OB 于E ,求证:AD =BE. 证明:连接OC ,∵AC ︵=CB ︵, ∴∠AOC =∠BOC.∵CD ⊥OA 于D ,CE ⊥OB 于E , ∴∠CDO =∠CEO =90°. 在△COD 和△COE 中, ⎩⎪⎨⎪⎧∠DOC =∠EOC ,∠CDO =∠CEO ,CO =CO ,∴△COD ≌△COE(AAS). ∴OD =OE. ∵AO =BO , ∴AD =BE.18.(本题7分)“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”此问题的实质就是解决下面的问题:“如果CD 为⊙O 的直径,弦AB ⊥CD 于E ,CE =1寸,AB =10寸,那么直径CD 的长为多少寸?”请你求出CD 的长.解:设直径CD 的长为2x ,则半径OC =x ,OE =x -1.∵CD 为⊙O 的直径,弦AB ⊥CD 于E ,AB =10, ∴AE =BE =12AB =12×10=5.连接OB ,则OB =x ,根据勾股定理,得x 2=52+(x -1)2, 解得x =13,CD =2x =2×13=26(寸).19.(本题9分)如图,在平面直角坐标系中,已知点A(1,3),B(3,3),C(4,2). (1)请在图中作出经过A ,B ,C 三点的⊙M ,并写出圆心M 的坐标; (2)若D(1,4),则直线BD 与⊙M 的位置关系是相切.解:如图所示,圆心M 的坐标为(2,1).20.(本题9分)如图,△ABC 是直角三角形,∠ACB =90°.(1)尺规作图:作⊙C ,使它与AB 相切于点D ,与AC 相交于点E ,保留作图痕迹,不写作法,请标明字母; (2)在你按(1)中要求所作的图中,若BC =3,∠A =30°,求DE ︵的长.解:(1)如图,⊙C 为所求.(2)∵⊙C 切AB 于D ,∴CD ⊥AB.∴∠ADC =90°.∴∠DCE =90°-∠A =90°-30°=60°.∴∠BCD =90°-∠ACD =30°. 在Rt △BCD 中,BC =3,∴BD =12BC =32,CD =BC 2-BD 2=332.∴DE ︵的长为60·π·332180=32π.21.(本题9分)如图,⊙O 的直径AB =12 cm ,C 为AB 延长线上一点,CP 与⊙O 相切于点P ,过点B 作弦BD ∥CP ,连接PD. (1)求证:点P 为BD ︵的中点;(2)若∠C =∠D ,求四边形BCPD 的面积.解:(1)证明:连接OP ,交BD 于E.∵CP 与⊙O 相切于点P ,∴PC ⊥OP.∴∠OPC =90°. ∵BD ∥CP ,∴∠OEB =∠OPC =90°. ∴BD ⊥OP.∴点P 为BD ︵的中点.(2)∵∠C =∠D ,∠POB =2∠D ,∴∠POB =2∠C. ∵∠CPO =90°,∴∠C =30°.∵BD ∥CP ,∴∠C =∠DBA.∴∠D =∠DBA. ∴BC ∥PD.∴四边形BCPD 是平行四边形. ∵PO =12AB =6,∴PC =6 3.∵∠ABD =∠C =30°,∴OE =12OB =3.∴PE =3.∴四边形BCPD 的面积为PC·PE =63×3=183(cm 2).22.(本题12分)如图,△ABD 是⊙O 的内接三角形,E 是弦BD 的中点,点C 是⊙O 外一点且∠DBC =∠A ,连接OE 并延长与圆相交于点F ,与BC 相交于点C. (1)求证:BC 是⊙O 的切线;(2)若⊙O 的半径为6,BC =8,求弦BD 的长.解:(1)证明:连接OB ,∵E 是弦BD 的中点,∴BE =DE ,OE ⊥BD, BF ︵=DF ︵=12BD ︵.∴∠BOE =∠A ,∠OBE +∠BOE =90°.∵∠DBC =∠A ,∴∠BOE =∠DBC.∴∠OBE +∠DBC =90°.∴∠OBC =90°,即BC ⊥OB. ∵OB 为⊙O 的半径, ∴BC 是⊙O 的切线.(2)∵OB =6,BC =8,BC ⊥OB ,∴OC =OB 2+BC 2=10.∵△OBC 的面积为12OC·BE =12OB·BC ,∴BE =OB·BC OC =6×810=4.8.∴BD =2BE =9.6,即弦BD 的长为9.6.23.(本题13分)先阅读材料,再解答问题:小明同学在学习与圆有关的角时了解到:在同圆或等圆中,同弧(或等弧)所对的圆周角相等.如图,点A ,B ,C ,D 均为⊙O 上的点,则有∠C =∠D.小明还发现,若点E 在⊙O 外,且与点D 在直线AB 同侧,则有∠D>∠E.请你参考小明得出的结论,解答下列问题:(1)如图1,在平面直角坐标系xOy 中,点A 的坐标为(0,7),点B 的坐标为(0,3),点C 的坐标为(3,0). ①在图1中作出△ABC 的外接圆(保留必要的作图痕迹,不写作法);②若在x 轴的正半轴上有一点D ,且∠ACB =∠ADB ,则点D 的坐标为(7,0);(2)如图2,在平面直角坐标系xOy 中,点A 的坐标为(0,m),点B 的坐标为(0,n),其中m>n>0,点P 为x 轴正半轴上的一个动点,当∠APB 达到最大时,直接写出此时点P 的坐标. 解:(1)①如图.(2)当以AB 为弦的圆与x 轴正半轴相切时,作CD ⊥y 轴,连接CP ,CB. ∵点A 的坐标为(0,m),点B 的坐标为(0,n), ∴点D 的坐标是(0,m +n 2),即BC =PC =m +n2.在Rt △BCD 中,BC =m +n 2,BD =m -n2,∴则CD =BC 2-BD 2=mn. ∴OP =CD =mn.∴点P 的坐标是(mn ,0).。
人教版九年级数学上册《第24章圆》单元测试含答案
第二十四章圆单元测试一、单选题(共10题;共30分)1、如图,⊙O是△ABC的外接圆,已知∠ABO=50°,则∠ACB的大小为()A、40°B、30°C、45°D、50°2、下列说法:①平分弦的直径垂直于弦;②三点确定一个圆;③相等的圆心角所对的弧相等;④垂直于半径的直线是圆的切线;⑤三角形的内心到三条边的距离相等。
其中不正确的有()个。
A、1B、2C、3D、43、如图,四边形ABCD内接于⊙O,已知∠ADC=140°,则∠AOC的大小是()A、80°B、100°C、60°D、40°4、已知Rt△ACB,∠ACB=90°,I为内心,CI交AB于D,BD=,AD=,则S△ACB=()A、12B、6C、3D、7.55、如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为()A、B、C、D、6、如图,⊙O的内接四边形ABCD两组对边的延长线分别交于点E,F,∠E=α,∠F=β,则∠A=()A、α+βB、C、180﹣α﹣βD、7、如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()A、2B、2+C、2D、2+8、如图,已知AB是⊙O的直径,∠CAB=50°,则∠D的度数为()A、20°B、40°C、50°D、70°9、已知A、B、C三点在⊙O上,且AB是⊙O内接正三角形的边长,AC是⊙O内接正方形的边长,则∠BAC的度数为()A、15°或105°B、75°或15°C、75°D、105°10、如图,在⊙O中,∠ABC=52°,则∠AOC等于()A、52°B、80°C、90°D、104°二、填空题(共8题;共25分)11、如图,⊙O是ABC的外接圆,OCB=40°,则A的度数等于________°.12、如图,已知半圆O的直径AB=4,沿它的一条弦折叠.若折叠后的圆弧与直径AB相切于点D,且AD:DB=3:1,则折痕EF的长________ .13、如图,若∠1=∠2,那么与 ________相等.(填一定、一定不、不一定)14、如图,AB是半圆O的直径,点C、D是半圆O的三等分点,若弦CD=2,则图中阴影部分的面积为________.15、已知扇形的圆心角为150°,它所对应的弧长20πcm,则此扇形的半径是________ cm,面积是________ cm2.16、如图,△ABC是⊙O的内接三角形,AD是⊙O的直径,∠ABC=50°,则∠CAD=________.17、若一个圆锥的侧面积是它底面积的2倍,则这个圆锥的侧面展开图的圆心角是________.18、已知一圆锥的底面半径为1cm,母线长为4cm,则它的侧面积为________cm2(结果保留π).三、解答题(共5题;共35分)19、已知:△ABC是边长为4的等边三角形,点O在边AB上,⊙O过点B且分别与边AB,BC相交于点D,E,EF⊥AC,垂足为F.(1)求证:直线EF是⊙O的切线;(2)当直线DF与⊙O相切时,求⊙O的半径.20、【阅读材料】已知,如图1,在面积为S的△ABC中,BC=a,AC=b,AB=c,内切圆O的半径为r,连接OA,OB,OC,△ABC被划分为三个小三角形.∵S=S△OBC+S△OAC+S△OAB=BC•r+AC•r+AB•r=ar+br+cr=(a+b+c)r.∴r= .(1)【类比推理】如图2,若面积为S的四边形ABCD存在内切圆(与各边都相切的圆),各边长分别为AB=a,BC=b,CD=c,AD=d,求四边形的内切圆半径r的值;(2)【理解应用】如图3,在Rt△ABC中,内切圆O的半径为r,⊙O与△ABC各边分别相切于D、E和F,已知AD=3,BD=2,求r的值.21、如图,公路MN与公路PQ在点P处交汇,且∠QPN=30°,点A处有一所中学,AP=160m.假设拖拉机行驶时,周围100m以内会受到噪音的影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否受到噪音影响?说明理由;如果受影响,且知拖拉机的速度为18km/h,那么学校受影响的时间是多少秒?22、如图,已知矩形ABCD的边AB=3cm、BC=4cm,以点A为圆心,4cm为半径作⊙A,则点B、C、D与⊙A怎样的位置关系.23、已知圆的半径为R,试求圆内接正三角形、正四边形、正六边形的边长之比.四、综合题(共1题;共10分)24、(2017•襄阳)如图,AB为⊙O的直径,C、D为⊙O上的两点,∠BAC=∠DAC,过点C做直线EF⊥AD,交AD的延长线于点E,连接BC.(1)求证:EF是⊙O的切线;(2)若DE=1,BC=2,求劣弧的长l.答案解析一、单选题1、【答案】 A【考点】圆周角定理【解析】【分析】根据等边对等角及圆周角定理求角即可.【解答】∵OA=OB∴∠OAB=∠OBA=50°∴∠AOB=80°∴∠ACB=40°.故选A.【点评】此题综合运用了等边对等角、三角形的内角和定理以及圆周角定理2、【答案】 D【考点】垂径定理,确定圆的条件,三角形的内切圆与内心【解析】【解答】①中被平分的弦是直径时,不一定垂直,故错误;②不在同一条直线上的三个点才能确定一个圆,故错误;③应强调在同圆或等圆中,否则错误;④中垂直于半径,还必须经过半径的外端的直线才是圆的切线,故错误;⑤三角形的内心是三角形三个角平分线的交点,所以到三条边的距离相等,故正确;综上所述,①、②、③、④错误。
人教版数学九年级上册《第24章圆》单元测试有答案
人教版数学九年级上册《第24章圆》单元测试一.选择题(共10小题,满分30分,每小题3分)1.在△ABC中,∠C为锐角,分别以AB,AC为直径作半圆,S1﹣S2=,过点B,A,C作,如图所示.若AB=4,AC=2,则S3﹣S4的值是()A.B.C.D.2.一个小圆沿着一个五边形的边滚动,如果五边形的各边长都和小圆的周长相等,那么当小圆滚动到原来位置时,小圆自身滚动的圈数是()A.4 B.5 C.6 D.103.在半径为10cm圆中,两条平行弦分别长为12cm,16cm,则这两条平行弦之间的距离为()A.28cm或4cm B.14cm或2cm C.13cm或4cm D.5cm或13cm4.如图,DC是以AB为直径的半圆上的弦,DM⊥CD交AB于点M,CN ⊥CD交AB于点N.AB=10,CD=6.则四边形DMNC的面积()A.等于24 B.最小为24 C.等于48 D.最大为485.如图,已知⊙O的半径为5,弦AB=6,M是AB上任意一点,则线段OM的长可能是()A.2.5 B.3.5 C.4.5 D.5.56.如图,在平台上用直径为100mm的两根圆钢棒嵌在大型工件的两侧,测量大的圆形工件的直径D,测得两根圆钢棒与地的两个接触点之间的距离为400mm,则工件直径D(mm)用科学记数法可表示为()mm.A.4×104B.0.4×105C.20000 D.4×1027.图中的五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从A点到B点,甲虫沿ADA1、A1EA2、A2FA3、A3GB路线爬行,乙虫沿ACB路线爬行,则下列结论正确的是()A.甲先到B点B.乙先到B点C.甲、乙同时到B D.无法确定8.“圆材埋壁”是我国古代著名的数学著作《九章算术》中的一个问题,“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问锯几何?”用现代的数学语言表述是:“如图,CD为⊙O的直径,弦AB ⊥CD垂足为E,CE=1寸,AB=10寸,求直径CD的长”,依题意,CD长为()A.12寸B.13寸C.24寸D.26寸9.⊙O的半径为10cm,圆心角∠AOB=60°,那么圆心O到弦AB的距离为()A.10cm B.cm C.5cm D.cm10.如图,点A,B,C均在⊙O上,若∠A=66°,则∠OCB的度数是()A.24°B.28°C.33°D.48°二.填空题(共6小题,满分18分,每小题3分)11.如图,四边形ABCD内接于半圆O,其中点A,D在直径上,点B,C在半圆弧上,AB∥CD,∠B=90°,若AO=3,∠BAD=120°,则BC=.12.如图,在网格中(每个小正方形的边长均为1个单位)选取9个格点(格线的交点称为格点).如果以A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内,则r的取值范围为.13.如图,∠O=30°,C为OB上一点,且OC=6,以点C为圆心,半径为3的圆与OA的位置关系是.14.如图,把正六边形各边按同一方向延长,使延长的线段与原正六边形的边长相等,顺次连接这六条线段外端点可以得到一个新的正六边形,重复上述过程,经过10次后,所得到的正六边形是原正六边形边长的倍.15.在一个圆中,如果60°的圆心角所对弧长为6πcm,那么这个圆所对的半径为cm.16.如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=4,则阴影部分图形的面积为.三.解答题(共8小题,满分72分)17.(8分)已知,有一直径是1m的圆形铁皮,要从中剪出一个最大的圆心角时90°的扇形ABC(如图),用剪下的扇形铁皮围成一个圆锥,该圆锥的底面圆的半径是多少?18.(8分)现将一个长为4厘米,宽为3厘米的长方形,分别绕它的长、宽所在的直线旋转一周,得到不同的圆柱体,它们的体积分别是多大?19.(8分)如图,在⊙O中,点C是弧AB的中点,过点C分别作半径OA、OB的垂线,交⊙O于E、F两点,垂足分别为M、N,求证:ME=NF.20.(8分)如图为桥洞的形状,其正视图是由和矩形ABCD构成.O点为所在⊙O的圆心,点O又恰好在AB为水面处.若桥洞跨度CD为8米,拱高(OE⊥弦CD于点F )EF为2米.求所在⊙O的半径DO.21.(10分)如图在Rt△ACB中,∠C=90°,点O在AB上,以O 为圆心,OA长为半径圆与AC,AB分别交于点D,E,且∠CBD=∠A.(1)判断直线BD与⊙O的位置关系,并证明你的结论;(2)若AD:AO=8:5,BC=3,求BD的长.22.(8分)如图,已知O为坐标原点,点A的坐标为(2,3),⊙A的半径为1,过A作直线l平行于x轴,点P在l上运动.(1)当点P运动到圆上时,求线段OP的长.(2)当点P的坐标为(4,3)时,试判断直线OP与⊙A的位置关系,并说明理由.23.(10分)已知等边三角形ABC,AB=12,以AB为直径的半圆与BC边交于点D,过点D作DF⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连接GD,(1)求证:DF与⊙O的位置关系并证明;(2)求FG的长.24.(12分)如图,等边△ABC的边长为2,E是边BC上的动点,EF∥AC交边AB于点F,在边AC上取一点P,使PE=EB,连接FP.(1)请直接写出图中与线段EF相等的两条线段;(不再另外添加辅助线)(2)探究:当点E在什么位置时,四边形EFPC是平行四边形?并判断四边形EFPC是什么特殊的平行四边形,请说明理由;(3)在(2)的条件下,以点E为圆心,r为半径作圆,根据⊙E与平行四边形EFPC四条边交点的总个数,求相应的r的取值范围.参考答案一.选择题1.D.2.C.3.B.4.A.5.C.6.D.7.C.8.D.9.C.10.A.二.填空题11.3.12.<r≤3.13.相切.14.243.15.1816..三.解答题17.解:连接BC,AO,∵∠BAC=90°,OB=OC,∴BC是圆0的直径,AO⊥BC,∵圆的直径为1,∴AO=OC=,则AC==m,弧BC的长l==πm,则2πR=π,解得:R=.故该圆锥的底面圆的半径是m.18.解:绕长所在的直线旋转一周得到圆柱体积为:π×32×4=36πcm3.绕宽所在的直线旋转一周得到圆柱体积:π×42×3=48πcm3.19.证明:连接OC,∵OA⊥CE,OB⊥CF,∴EM=CM,NF=CN,∠CMO=∠CNO=90°,∵C为的中点,∴∠AOC=∠BOC,在△CNO与△CNO中,∵,∴△CNO≌△CNO,∴CM=CN,∴EM=NF.20.解:∵OE⊥弦CD于点F,CD为8米,EF为2米,∴EO垂直平分CD,DF=4m,FO=DO﹣2,在Rt△DFO中,DO2=FO2+DF2,则DO2=(DO﹣2)2+42,解得:DO=5;答:所在⊙O的半径DO为5m.21.解:(1)直线BD与⊙O的位置关系是相切.证明:连结OD,DE.∵∠C=90°,∴∠CBD+∠CDB=90°.∵∠A=∠CBD,∴∠A+∠CDB=90°.∵OD=OA,∴∠A=∠ADO.∴∠ADO+∠CDB=90°.∴∠ODB=180°﹣90°=90°.∴OD⊥BD.∵OD为半径,∴BD是⊙O的切线.(2)∵AD:AO=8:5,∴,∴由勾股定理得AD:DE:AE=8:6:10.∵∠C=90°,∠CBD=∠A.∴△BCD∽△ADE.∴DC:BC:BD=DE:AD:AE=6:8:10.∵BC=3,∴BD=22.解:(1)如图,设l与y轴交点为C.当点P运动到圆上时,有P1、P2两个位置,∴;.(2)连接OP,过点A作AM⊥OP,垂足为M.∵P(4,3),∴CP=4,AP=2.在Rt△OCP中.∵∠APM=∠OPC,∠PMA=∠PCO=90°,∴△PAM∽△POC.∴,,∴,∴直线OP与⊙A相离.23.(1)证明:连接OD,∵以等边三角形ABC的边AB为直径的半圆与BC边交于点D,∴∠B=∠C=∠ODB=60°,∴OD∥AC,∵DF⊥AC,∴∠CFD=∠ODF=90°,即OD⊥DF,∵OD是以边AB为直径的半圆的半径,∴DF是圆O的切线;(2)∵OB=OD=AB=6,且∠B=60°,∴BD=OB=OD=6,∴CD=BC﹣BD=AB﹣BD=12﹣6=6,∵在Rt△CFD中,∠C=60°,∴∠CDF=30°,∴CF=CD=×6=3,∴AF=AC﹣CF=12﹣3=9,∵FG⊥AB,∴∠FGA=90°,∵∠FAG=60°,∴FG=AFsin60°=.24.解:(1)如图,∵△ABC是等边三角形,∴∠B=∠A=∠C=60°.又∵EF∥AC,∴∠BFE=∠A=60°,∠BEF=∠C=60°,∴△BFE是等边三角形,PE=EB,∴EF=BE=PE=BF;(2)当点E是BC的中点时,四边形是菱形;∵E是BC的中点,∴EC=BE,∵PE=BE,∴PE=EC,∵∠C=60°,∴△PEC是等边三角形,∴PC=EC=PE,∵EF=BE,∴EF=PC,又∵EF∥CP,∴四边形EFPC是平行四边形,∵EC=PC=EF,∴平行四边形EFPC是菱形;(3)如图所示:当点E是BC的中点时,EC=1,则NE=ECcos30°=,当0<r<时,有两个交点;当r=时,有四个交点;当<r<1时,有六个交点;当r=1时,有三个交点;当r>1时,有0个交点.。
人教版数学九年级上册《第24章圆》单元测试有答案AlHKPH
人教版数学九年级上册《第24章圆》单元测试一.选择题(共10小题,满分30分,每小题3分)1.在△ABC中,∠C为锐角,分别以AB,AC为直径作半圆,S1﹣S2=,过点B,A,C作,如图所示.若AB=4,AC=2,则S3﹣S4的值是()A.B.C.D.2.一个小圆沿着一个五边形的边滚动,如果五边形的各边长都和小圆的周长相等,那么当小圆滚动到原来位置时,小圆自身滚动的圈数是()A.4 B.5 C.6 D.103.在半径为10cm圆中,两条平行弦分别长为12cm,16cm,则这两条平行弦之间的距离为()A.28cm或4cm B.14cm或2cm C.13cm或4cm D.5cm或13cm4.如图,DC是以AB为直径的半圆上的弦,DM⊥CD交AB于点M,CN ⊥CD交AB于点N.AB=10,CD=6.则四边形DMNC的面积()A.等于24 B.最小为24 C.等于48 D.最大为485.如图,已知⊙O的半径为5,弦AB=6,M是AB上任意一点,则线段OM的长可能是()A.2.5 B.3.5 C.4.5 D.5.56.如图,在平台上用直径为100mm的两根圆钢棒嵌在大型工件的两侧,测量大的圆形工件的直径D,测得两根圆钢棒与地的两个接触点之间的距离为400mm,则工件直径D(mm)用科学记数法可表示为()mm.A.4×104B.0.4×105C.20000 D.4×1027.图中的五个半圆,邻近的两半圆相切,两只小虫同时出发,A3GB路线爬行,乙虫沿ACB路线爬行,则下列结论正确的是()A.甲先到B点B.乙先到B点C.甲、乙同时到B D.无法确定8.“圆材埋壁”是我国古代著名的数学著作《九章算术》中的一个问题,“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问锯几何?”用现代的数学语言表述是:“如图,CD为⊙O的直径,弦AB ⊥CD垂足为E,CE=1寸,AB=10寸,求直径CD的长”,依题意,CD长为()A.12寸B.13寸C.24寸D.26寸9.⊙O的半径为10cm,圆心角∠AOB=60°,那么圆心O到弦AB的距离为()A.10cm B.cm C.5cm D.cm10.如图,点A,B,C均在⊙O上,若∠A=66°,则∠OCB的度数是()A.24°B.28°C.33°D.48°二.填空题(共6小题,满分18分,每小题3分)11.如图,四边形ABCD内接于半圆O,其中点A,D在直径上,点B,C在半圆弧上,AB∥CD,∠B=90°,若AO=3,∠BAD=120°,则BC=.12.如图,在网格中(每个小正方形的边长均为1个单位)选取9个格点(格线的交点称为格点).如果以A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内,则r的取值范围为.13.如图,∠O=30°,C为OB上一点,且OC=6,以点C为圆心,半径为3的圆与OA的位置关系是.14.如图,把正六边形各边按同一方向延长,使延长的线段与原正六边形的边长相等,顺次连接这六条线段外端点可以得到一个新的正六边形,重复上述过程,经过10次后,所得到的正六边形是原正六边形边长的倍.15.在一个圆中,如果60°的圆心角所对弧长为6πcm,那么这个圆所对的半径为cm.16.如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=4,则阴影部分图形的面积为.三.解答题(共8小题,满分72分)17.(8分)已知,有一直径是1m的圆形铁皮,要从中剪出一个最大的圆心角时90°的扇形ABC(如图),用剪下的扇形铁皮围成一个圆锥,该圆锥的底面圆的半径是多少?18.(8分)现将一个长为4厘米,宽为3厘米的长方形,分别绕它的长、宽所在的直线旋转一周,得到不同的圆柱体,它们的体积分别是多大?19.(8分)如图,在⊙O中,点C是弧AB的中点,过点C分别作半径OA、OB的垂线,交⊙O于E、F两点,垂足分别为M、N,求证:ME=NF.20.(8分)如图为桥洞的形状,其正视图是由和矩形ABCD构成.O点为所在⊙O的圆心,点O又恰好在AB为水面处.若桥洞跨度CD为8米,拱高(OE⊥弦CD于点F )EF为2米.求所在⊙O的半径DO.21.(10分)如图在Rt△ACB中,∠C=90°,点O在AB上,以O为圆心,OA长为半径圆与AC,AB分别交于点D,E,且∠CBD=∠A.(1)判断直线BD与⊙O的位置关系,并证明你的结论;(2)若AD:AO=8:5,BC=3,求BD的长.22.(8分)如图,已知O为坐标原点,点A的坐标为(2,3),⊙A的半径为1,过A作直线l平行于x轴,点P在l上运动.(1)当点P运动到圆上时,求线段OP的长.(2)当点P的坐标为(4,3)时,试判断直线OP与⊙A的位置关系,并说明理由.23.(10分)已知等边三角形ABC,AB=12,以AB为直径的半圆与BC边交于点D,过点D作DF⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连接GD,(1)求证:DF与⊙O的位置关系并证明;(2)求FG的长.24.(12分)如图,等边△ABC的边长为2,E是边BC上的动点,EF∥AC交边AB于点F,在边AC上取一点P,使PE=EB,连接FP.(1)请直接写出图中与线段EF相等的两条线段;(不再另外添加辅助线)(2)探究:当点E在什么位置时,四边形EFPC是平行四边形?并判断四边形EFPC是什么特殊的平行四边形,请说明理由;(3)在(2)的条件下,以点E为圆心,r为半径作圆,根据⊙E与平行四边形EFPC四条边交点的总个数,求相应的r的取值范围.参考答案一.选择题1.D.2.C.3.B.4.A.5.C.6.D.7.C.8.D.9.C.10.A.二.填空题11.3.12.<r≤3.13.相切.14.243.15.1816..三.解答题17.解:连接BC,AO,∵∠BAC=90°,OB=OC,∴BC是圆0的直径,AO⊥BC,∵圆的直径为1,则AC==m,弧BC的长l==πm,则2πR=π,解得:R=.故该圆锥的底面圆的半径是m.18.解:绕长所在的直线旋转一周得到圆柱体积为:π×32×4=36πcm3.绕宽所在的直线旋转一周得到圆柱体积:π×42×3=48πcm3.19.证明:连接OC,∵OA⊥CE,OB⊥CF,∴EM=CM,NF=CN,∠CMO=∠CNO=90°,∵C为的中点,∴∠AOC=∠BOC,在△CNO与△CNO中,∵,∴△CNO≌△CNO,∴CM=CN,∴EM=NF.20.解:∵OE⊥弦CD于点F,CD为8米,EF为2米,∴EO垂直平分CD,DF=4m,FO=DO﹣2,答:所在⊙O的半径DO为5m.21.解:(1)直线BD与⊙O的位置关系是相切.证明:连结OD,DE.∵∠C=90°,∴∠CBD+∠CDB=90°.∵∠A=∠CBD,∴∠A+∠CDB=90°.∵OD=OA,∴∠A=∠ADO.∴∠ADO+∠CDB=90°.∴∠ODB=180°﹣90°=90°.∴OD⊥BD.∵OD为半径,∴BD是⊙O的切线.(2)∵AD:AO=8:5,∴,∴由勾股定理得AD:DE:AE=8:6:10.∵∠C=90°,∠CBD=∠A.∴△BCD∽△ADE.∴DC:BC:BD=DE:AD:AE=6:8:10.∵BC=3,∴BD=22.解:(1)如图,设l与y轴交点为C.当点P运动到圆上时,有P1、P2两个位置,∴;.(2)连接OP,过点A作AM⊥OP,垂足为M.∵P(4,3),∴CP=4,AP=2.在Rt△OCP中.∵∠APM=∠OPC,∠PMA=∠PCO=90°,∴△PAM∽△POC.∴,,∴,∴直线OP与⊙A相离.23.(1)证明:连接OD,∵以等边三角形ABC的边AB为直径的半圆与BC边交于点D,∴∠B=∠C=∠ODB=60°,∴OD∥AC,∵DF⊥AC,∵OD是以边AB为直径的半圆的半径,∴DF是圆O的切线;(2)∵OB=OD=AB=6,且∠B=60°,∴BD=OB=OD=6,∴CD=BC﹣BD=AB﹣BD=12﹣6=6,∵在Rt△CFD中,∠C=60°,∴∠CDF=30°,∴CF=CD=×6=3,∴AF=AC﹣CF=12﹣3=9,∵FG⊥AB,∴∠FGA=90°,∵∠FAG=60°,∴FG=AFsin60°=.24.解:(1)如图,∵△ABC是等边三角形,∴∠B=∠A=∠C=60°.又∵EF∥AC,∴∠BFE=∠A=60°,∠BEF=∠C=60°,∴△BFE是等边三角形,PE=EB,∴EF=BE=PE=BF;(2)当点E是BC的中点时,四边形是菱形;∵E是BC的中点,∴EC=BE,∴PE=EC,∵∠C=60°,∴△PEC是等边三角形,∴PC=EC=PE,∵EF=BE,∴EF=PC,又∵EF∥CP,∴四边形EFPC是平行四边形,∵EC=PC=EF,∴平行四边形EFPC是菱形;(3)如图所示:当点E是BC的中点时,EC=1,则NE=ECcos30°=,当0<r<时,有两个交点;当r=时,有四个交点;当<r<1时,有六个交点;当r=1时,有三个交点;当r>1时,有0个交点.。
人教版九年级数学上册第24章圆单元测试题含答案[1]
人教版九年级数学上册第24章圆单元测试题含答案(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(人教版九年级数学上册第24章圆单元测试题含答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为人教版九年级数学上册第24章圆单元测试题含答案(word版可编辑修改)的全部内容。
人教版九年级数学上册第24章圆单元测试题(含答案)一.选择题(共10小题)1.下列说法,正确的是()A.弦是直径B.弧是半圆C.半圆是弧D.过圆心的线段是直径2.如图,在半径为5cm的⊙O中,弦AB=6cm,OC⊥AB于点C,则OC=()A.3cm B.4cm C. 5cm D.6cm(2题图)(3题图)(4题图) (5题图)(8题图)3.一个隧道的横截面如图所示,它的形状是以点O为圆心,5为半径的圆的一部分,M是⊙O 中弦CD的中点,EM经过圆心O交⊙O于点E.若CD=6,则隧道的高(ME的长)为() A.4 B. 6 C.8 D.94.如图,AB是⊙O的直径,==,∠COD=34°,则∠AEO的度数是() A.51°B.56°C.68°D.78°5.如图,在⊙O中,弦AC∥半径OB,∠BOC=50°,则∠OAB的度数为() A.25°B.50°C.60°D.30°6.⊙O的半径为5cm,点A到圆心O的距离OA=3cm,则点A与圆O的位置关系为( ) A.点A在圆上B.点A在圆内C.点A在圆外D.无法确定7.已知⊙O的直径是10,圆心O到直线l的距离是5,则直线l和⊙O的位置关系是() A.相离B.相交C.相切D.外切8.如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM和的长分别为()A.2,B.2,πC.,D.2,9.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠B=135°,则的长() A.2πB.π C.D.10.如图,直径AB为12的半圆,绕A点逆时针旋转60°,此时点B旋转到点B′,则图中阴影部分的面积是()A.12πB.24πC.6πD.36π二.填空题(共10小题)11.如图,AB是⊙O的直径,CD为⊙O的一条弦,CD⊥AB于点E,已知CD=4,AE=1,则⊙O的半径为.(9题图) (10题图)(11题图) (12题图)12.如图,在△ABC中,∠C=90°,∠A=25°,以点C为圆心,BC为半径的圆交AB于点D,交AC于点E,则的度数为.13.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为的中点.若∠A=40°,则∠B=度.(13题图) (14题图) (15题图) (17题图)14.如图所示,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(﹣3,0),将⊙P 沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为.15.如图,点O是正五边形ABCDE的中心,则∠BAO的度数为.16.已知一条圆弧所在圆半径为9,弧长为π,则这条弧所对的圆心角是.17.如图,在边长为4的正方形ABCD中,先以点A为圆心,AD的长为半径画弧,再以AB边的中点为圆心,AB长的一半为半径画弧,则两弧之间的阴影部分面积是(结果保留π).18.已知圆锥的底面圆半径为3,母线长为5,则圆锥的全面积是.19.如果圆柱的母线长为5cm,底面半径为2cm,那么这个圆柱的侧面积是.20.半径为R的圆中,有一弦恰好等于半径,则弦所对的圆心角为.三.解答题(共5小题)21.如图,已知圆O的直径AB垂直于弦CD于点E,连接CO并延长交AD于点F,且CF⊥AD.(1)请证明:E是OB的中点;(2)若AB=8,求CD的长.22.已知:如图,C,D是以AB为直径的⊙O上的两点,且OD∥BC.求证:AD=DC.23.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作⊙O 的切线DF,交AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为4,∠CDF=22。
人教版数学九年级上册第24章:《圆》 整章水平测试(含答案)
人教版数学九年级上册第24章《圆》整章水平测试一.选择题1.如图,∠A=35°,∠E=40°,则∠BOD 等于( ) A .75° B .80° C .135° D .150°2.已知Rt △ABC 的周长为24,其内切圆的半径长为2,则它斜边长为( ) A .6 B .8 C .9 D .103.如图,⊙O 内切于四边形ABCD ,AB=16,CD=10,则四边形的周长为( ) A .50 B .52 C .54 D .564.已知平面内两圆的半径分别为4和7,圆心距是2,则这两个圆的位置关系是( ) A .相交 B .内切 C .内含 D .外离5.如图,⊙O 1、⊙O 2相交于A 、B 两点,直线O 1O 2交两圆于C 、D ,若∠O 1AO 2=40°, 则∠CBD 等于( ) A .110° B .120° C .130° D .140°6.如果每张方格纸上都画有一个圆,只用一把不带刻度的的直尺就能确定圆心位置的是( )7.直线a上有一点到圆心O 的距离等于⊙O 的半径,则直线a与⊙O 的位置关系是( ) A .相离 B .相切 C .相切或相交 D .相交8.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm 2,则该半圆的半径为( )A . (45) cmB . 9 cmC . 45. 2二.填空题:(每小题4分,共24分)9.过⊙O 内一点M 的最长弦为10 cm ,最短弦长为8cm ,则OM 的长为 .10.若⊙A 的半径为5,圆心A 的坐标是(3,4),点P 的坐标是(5,8),你认为点P 的位置为 . 11.已知相切两圆的半径分别为3 cm 和2 cm ,则它们的圆心距等于 cm .12.△ABC 中,AB=3,AC=4,∠A=90°,把△ABC 绕直线AC 旋转一周,得到一个圆锥,其表面积为S 1,把△ABC 绕直线AB 旋转一周,得到一个圆锥,其表面积为S 2,则S 1∶S 2等于___________.13.如图,小圆的圆心在原点,半径为3,大圆的心坐标为(a ,0)半径为5.如果两圆内含,那么a的取值范围是______________.(第1题图)(第3题图) (第5题图) (第6题图)(第8题图)14.已知A 、B 、C 、D 在⊙O 上,且AB ∥CD ,AB=24cm ,CD=10cm ,⊙O 的直径为26cm ,则梯形ABCD 的面积是_______cm 2. 15.如图,在平面直角坐标系中,⊙M 与y 轴相切于原点O ,平行于x 轴的直线分别交⊙M 于P 、Q 两点(点P 在点Q 的右边),若点P 的坐标是(﹣1,2),则点Q 的坐标是 .16.如图,将半径为cm 2的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长为 cm . 三、解答题:17.如图,在平面直角坐标系中,以A (5,1)为圆心,以2个单位长度为半径的⊙A 交x 轴于点B 、C .解答下列问题:(1)将⊙A 向左平移____▲_____个单位长度与y 轴首次..相切,得到⊙A 1.此时点A 1的坐标为____▲_____,阴影部分的面积S =____▲_____; (2)求BC 的长.18.如图,AB 是⊙O 的直径,弦DE 垂直平分半径OA ,C 为垂足,弦DF 与半径OB 相交于点P ,连结EF 、EO ,若32=DE ,︒=∠45DPA .(1)求⊙O 的半径; (2)求图中阴影部分的面积.19.如图,⊙O 的直径AB =10,弦AC =8,连接BC .(1)尺规作图:作弦CD ,使CD =BC (点D 不与B 重合),连接AD ;(保留作图痕迹,不写作法) (2)在(1)所作的图中,求四边形ABCD 的周长.20. 如图是某城市一个主题雕塑的平面示意图,它由置放于地面l 上两个半径均为2米的半圆与半径为4米的⊙AA 分别与两个半圆相切于点E 、F ,BC 长为8米.求EF 的长.B21.如图,AB 为⊙O 的直径,C 为⊙O 上一点,D 为的中点.过点D 作直线AC 的垂线,垂足为E ,连接OD .(1)求证:∠A =∠DOB ;(2)DE 与⊙O 有怎样的位置关系?请说明理由.22. 如图,正六边形ABCDEF 内接于⊙O ,BE 是⊙O 的直径,连接BF ,延长BA ,过F 作FG ⊥BA ,垂足为G . (1)求证:FG 是⊙O 的切线;(2)已知FG =2,求图中阴影部分的面积.23.小平所在的学习小组发现,车辆转弯时,能否顺利通过直角弯道的标准是,车辆是否可以行驶到和路的边界夹角是45°的位置(如图1中错误!未找到引用源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《第24章圆》2010年五三中学整章测试(A)
15、如图,在同心圆⊙O中,AB是大圆的直径,AC是大圆的弦,AC与小圆相切于点D,若小圆的半径为3cm,则BC=6cm.
考点:切线的性质。
分析:连接OD,因为D点小圆的切线,故OD⊥AC;根据垂径定理可证D点为AC的中点,又O点为AB的中点,所以OD为△ABC的中位线;又因为OD=3,根据中位线定理,可知BC=2OD=6cm.
解答:解:连接OD,
根据题意,D点为小圆的切点,
故OD⊥AC,
在大圆中,有D点为AC的中点.
所以OD为△ABC的中线,
且OD=3cm,
故BC=2OD=6cm.
点评:本题考查了切线和垂径定理以及三角形中位线定理在圆中的综合运用.
16、如图,⊙O1与⊙O2相交与点A B,且O1A是⊙O2的切线,O2A是⊙O1的切线,A是切点,若⊙O1与⊙O2的半径分别为3cm和4cm,则公共弦AB的长为错误!未找到引用源。
cm.
© 2011 菁优网
考点:相交两圆的性质。
分析:连接O1O2交AB于C,由题可知∠O1AO2=90°,然后利用勾股定理求解.
解答:解:连接O1O2交AB于C
∵O1A是⊙O2的切线,O2A是⊙O1的切线,
∴∠O1AO2=90°,
∴O1O2=错误!未找到引用源。
=5,
∴AC=3×4÷5=2.4,
∴AB=2AC=4.8.
点评:此题综合运用了相交两圆的性质、勾股定理以及直角三角形斜边上的高等于两条直角边的乘积除以斜边.
二、解答题(共12小题,满分60分)
17、如图已知A、B两点,
求作(1)经过A、B两点的圆⊙O;(要求写作法)
(2)Rt△ABC,使得Rt△ABC内接于⊙O.
考点:三角形的外接圆与外心。
专题:作图题。
分析:使以O为圆心的圆经过A、B、C三点,即作直角三角形的外接圆,圆心是Rt△ABC斜边的中点.
解答:解:作法如下:
以AB的中点O为圆心,OA长为半圆画圆,则圆O即为所求作的圆.
点评:此题主要考查了如何确定直角三角形外接圆的圆心:直角三角形外接圆的圆心是斜边的中点.
18、(2002•扬州)如图所示,破残的圆形轮片上,弦AB的垂直平分线交弧AB于点C,交弦AB于点D.已知:AB=24cm,CD=8cm.
(1)求作此残片所在的圆(不写作法,保留作图痕迹);
(2)求(1)中所作圆的半径.
考点:确定圆的条件。
专题:作图题。
分析:(1)、由垂径定理知,垂直于弦的直径是弦的中垂线,故作AC,BC的中垂线交于点O,则点O是弧ACB所在圆的圆心;
(2)、在Rt△OAD中,由勾股定理可求得半径OA的长.
解答:解:(1)作弦AC的垂直平分线与弦AB的垂直平分线交于O点,以O为圆心OA长为半径作圆O就是此残片所在的圆,如图.
(2)连接OA,设OA=x,AD=12cm,OD=(x﹣8)cm,
则根据勾股定理列方程:
x2=122+(x﹣8)2,
解得:x=13.
答:圆的半径为13cm.
点评:本题利用了垂径定理,中垂线的性质,勾股定理求解.
22、如图所示,⊙O的直径AB和弦CD交于E,已知AE=6cm,EB=2cm,∠CEA=30°,求CD.
考点:垂径定理;勾股定理。
分析:根据AE=6cm,EB=2cm,可求出圆的半径=4,从点O向CD作垂线,交点为F则OF=2,再根据勾股定理求CF 的长,从而求出CD的长.
解答:解:∵AE=6cm,EB=2cm,
∴OA=(6+2)÷2=4,
∴OE=4﹣2=2,
过点O作OF⊥CD于F,
∵∠CEA=30°,
∴OF=1,
连接OC,
根据勾股定理可得CD=2CF=2错误!未找到引用源。
=2错误!未找到引用源。
=2错误!未找到引用源。
cm.
点评:本题的关键是作OF⊥CD于F,先求OE,再求OF,最后用勾股定理求CD.
23、如图,⊙O的半径是5,P是⊙O外一点,PO=8,∠OPA=30°,求AB和PB的长.
考点:垂径定理;切割线定理。
分析:延长PO交⊙O于点C,过点O作OE⊥AB于E,∠OPA=30°,PO=8,可得OE=4;在Rt△OBE中,OB为半径,可以得出BE的长度,即可得到AB;再根据割线定理,有PD•PC=PB•PA,即可得出PB.
解答:解:延长PO交AB=6,⊙O与点C,过点O作OE⊥AB于E
根据题意,∠OPA=30°,且PO=8,在Rt△OPE中,
OE=错误!未找到引用源。
OP=4;
在Rt△OBE中,OB=5,OE=4,
所以BE=3,即AB=2BE=6;
又PD•PC=PB•PA,
即PD•PC=PB•(PB+AB),
即得PB=错误!未找到引用源。
.
即AB=6;
PB=错误!未找到引用源。
.
点评:本题综合考查了垂径定理和割线定理在圆中的应用.
24、如图,在⊙O中,∠B=50°,∠C=20°,求∠BOC的大小.
考点:圆周角定理。
分析:欲求∠BOC的度数,只需求出∠BAC即可,连接OA,即△OAB和△OAC均为等腰三角形,且∠B和∠C已知,即得∠BAC=∠B+∠C.
解答:解:连接OA,
∴∠BAO=∠B=50°,
∠CAO=∠C=20°
∴∠BAC=70°,
∴∠BOC=2∠BAC=140°.
点评:考查了圆周角和圆心角之间的关系,要求熟练运用.
25、已知:如图,AB是⊙O的直径,直线l与⊙O相切于点C,AD⊥l,垂足是D.
求证:AC平分∠DAB.
考点:切线的性质。
专题:证明题。
分析:连接OC,易得OC∥AD,根据平行线的性质就可以得到∠DAC=∠ACO,再根据OA=OC得到∠ACO=∠CAO,就可以证出结论.
解答:解:连接OC,
∵直线l与⊙O相切于点C,
∴OC⊥CD;
又∵AD⊥CD,
∴AD∥OC,
∴∠DAC=∠ACO;
又∵OA=OC,
∴∠ACO=∠CAO,
∴∠DAC=∠CAO,
即AC平分∠DAB.
点评:本题主要考查了切线长定理,常用辅助线是连接过切点的半径,利用切线的性质解决问题.
26、如图,AB是⊙O的直径,直线PQ过⊙O上的点C,PQ是⊙O的切线.求证:∠BCP=∠A.
考点:切线的性质。
专题:证明题。
分析:连接OC,满足切线的性质定理.再根据直径所对的边是直角就可以证出结论.
解答:证明:连接OC.
∵PQ是⊙O的切线,
∴∠OCP=∠OCB+∠BCP=90°.
∵OB=OC,
∴∠B=∠OCB∠B+∠BCP=90°.
∵AB是圆的直径,
∴∠B+∠A=90°,
∴∠BCP=∠A.
点评:本题主要考查了圆的切线的性质定理,以及圆的直径所对的圆周角是直角.
28、(2001•福州)不过圆心的直线l交⊙O于C、D两点,AB是⊙O的直径,AE⊥l于E,BF⊥l于F.
(1)如图,在下面三个圆中分别补画出满足上述条件的具有不同位置关系的图形;
(2)请你观察(1)中所画的图形,写出一个各图都具有的两条线段相等的结论(不再标注其它字母,找结论的过程中所连辅助线不能出现在结论中,不写推理过程);
(3)请你选择(1)中的一个图形,证明(2)所得出的结论.
考点:垂径定理。
专题:作图题;证明题。
分析:(1)考查你的画图能力和思维能力,这里要渗透发散思维,要分情况而论;
(2)利用平行线的性质即可找出EC=FD;
(3)利用垂径定理即可证明.
解答:解:(1)如下图所示.
(2)EC=FD或ED=FC.
证明:①EC=FD.
根据垂径定理,CH=DH,
根据中位线定理,EH=FH,
所以EH﹣CH=FH﹣DH,
故EC=DF.
②ED=FC.
因为ED=EF+DF,
FC=EF+EC,
由①可得,
EC=DF,
所以ED=FC.
(3)以①图为例来证明.
过O作OH⊥l于H,
∵AE⊥l,BF⊥l,
∴AE∥OH∥BF,
又∵OA=OB,
∴EH=HF,再由垂径定理可得CH=DH,
∴EH﹣CH=FH﹣DH,
即EC=FD.
以②图为例来证明.
过O作OH⊥l于H,
∵AE⊥l,BF⊥l,
∴AE∥OH∥BF,
又∵OA=OB,
∴EH=HF,再由垂径定理可得CH=DH,
∴EH﹣CH=FH﹣DH,
即EC=FD.
点评:本题综合考查了学生的几何知识,做几何题画图是关键,所以学生一定要养成画图的习惯.
参与本试卷答题和审题的老师有:
mmll852;心若在;gsls;张鑫扬;lanchong;HLing;bjf;kuaile;CJX;zhehe;ww461284285;mengcl;zjy;zhangCF;dddccc;开心;星期八;算术;zhjh;caicl;Liuzhx;73zzx;ln_86。
(排名不分先后)
菁优网
2011年10月22日。