过程控制课程设计报告
plc过程控制课程设计
plc过程控制课程设计一、教学目标本课程的教学目标是使学生掌握PLC(可编程逻辑控制器)过程控制的基本原理、编程方法和应用技能。
通过本课程的学习,学生应能理解PLC的工作原理、熟悉各种编程指令、掌握PLC在工业过程中的应用和调试方法。
1.掌握PLC的基本工作原理和结构。
2.熟悉PLC的编程语言和指令系统。
3.了解PLC在工业过程中的应用和调试方法。
4.能够使用PLC编程软件进行程序设计。
5.能够根据实际应用需求进行PLC程序的调试和优化。
6.能够进行PLC系统的故障排查和维修。
情感态度价值观目标:1.培养学生对自动化技术的兴趣和热情,提高学生的创新意识。
2.培养学生团队合作精神和实践能力,提高学生在实际工程问题中的解决能力。
二、教学内容本课程的教学内容主要包括PLC的基本原理、编程方法和应用实践。
1.PLC的基本原理:介绍PLC的工作原理、硬件结构和软件系统。
2.PLC的编程方法:讲解PLC的编程语言、指令系统以及编程规范。
3.PLC的应用实践:介绍PLC在工业过程中的应用案例,如自动化生产线、控制系统等,并进行实际操作演练。
三、教学方法为了提高教学效果,本课程将采用多种教学方法相结合的方式进行教学。
1.讲授法:通过教师的讲解,使学生掌握PLC的基本原理和编程方法。
2.案例分析法:通过分析实际应用案例,使学生了解PLC在工业过程中的具体应用。
3.实验法:通过实际操作演练,使学生掌握PLC编程和应用技能。
四、教学资源为了支持本课程的教学,我们将准备以下教学资源:1.教材:选用权威、实用的教材,为学生提供系统的理论知识。
2.参考书:提供相关的参考书籍,丰富学生的知识体系。
3.多媒体资料:制作课件、视频等多媒体资料,提高学生的学习兴趣。
4.实验设备:准备PLC实验设备,为学生提供实践操作的机会。
五、教学评估为了全面、客观地评估学生的学习成果,本课程将采用多种评估方式相结合的方法。
1.平时表现:通过课堂参与、提问、讨论等方式,评估学生的学习态度和理解能力。
过程控制与自动化仪表课程设计
过程控制与自动化仪表课程设计前言过程控制与自动化仪表课程是工程领域中非常重要的基础课程之一,它涉及到工程研发、生产运营以及企业管理等多个方面。
本文将介绍一种基于实践的课程设计方法,旨在让学生深入掌握过程控制与自动化仪表的基础知识。
设计目标•确定学生对过程控制与自动化仪表的基本概念和技术掌握程度。
•培养学生的设计和实验能力,让他们能够运用所学知识分别设计并完成过程控制实验和自动化仪表实验。
•提高学生的团队合作和沟通能力,通过设计项目的过程,激发学生的创新潜力。
设计内容过程控制实验设计实验一:温度控制系统设计在该实验中,学生需要设计一个基于PID控制算法的温度控制系统。
通过调整控制器的参数,让温度快速稳定在设定值附近,并且能够在温度变化时快速响应和自适应调整。
实验二:流量控制系统设计在该实验中,学生需要设计一个基于比例控制算法的流量控制系统。
通过调整控制器的参数,让流量在设定值附近稳定,并且能够在流量变化时快速响应和自适应调整。
自动化仪表实验设计实验三:温度传感器的实现在该实验中,学生需要实现一个基于热电偶的温度传感器。
通过校准测试,让学生了解测量误差来源和校准方法。
实验四:流量计的实现在该实验中,学生需要实现一个流量计,通过实验测试让学生了解其特性和测量误差来源。
设计方法阶段一:学习基础概念和技术在本阶段,学生需要学习过程控制和自动化仪表的基础概念和技术,包括控制系统、PID控制器、量程、精度等方面的知识。
阶段二:组建设计小组在本阶段,每个小组需要选择一个相对复杂的课程设计内容,进行深入的研究和讨论,拟定初步设计方案。
阶段三:设计与实现在本阶段,学生需要分成小组,负责具体的实验设计与实现。
在设计的过程中,需要充分考虑过程控制和自动化仪表的基本原理和设计要求。
在实现的过程中,需要用到软件工具和实验平台。
阶段四:实验测试与评价在本阶段,学生需要对实验设计进行测试,并记录数据处理结果。
测试过程中需要考虑实验中的各种随机与不确定因素。
过程控制课程设计
过程控制 课程设计一、课程目标知识目标:1. 让学生理解过程控制的基本概念,掌握其原理和分类。
2. 使学生掌握过程控制系统中常用的数学模型及其应用。
3. 引导学生了解过程控制系统的设计方法和步骤。
技能目标:1. 培养学生运用数学模型分析和解决过程控制问题的能力。
2. 培养学生设计简单过程控制系统的能力,能根据实际需求选择合适的控制策略。
3. 提高学生运用现代工具(如计算机软件)进行过程控制系统仿真的技能。
情感态度价值观目标:1. 培养学生对过程控制学科的兴趣和热情,激发他们探索未知、勇于创新的科学精神。
2. 培养学生具备良好的团队合作意识,学会与他人共同分析问题、解决问题。
3. 引导学生认识到过程控制在工业生产、环境保护等领域的重要作用,增强他们的社会责任感和使命感。
分析课程性质、学生特点和教学要求,本课程目标旨在让学生掌握过程控制的基本知识和技能,培养他们解决实际问题的能力。
通过课程学习,学生将能够:1. 理论联系实际,运用所学知识分析、解决过程控制问题。
2. 掌握过程控制系统的设计方法和步骤,具备一定的控制系统设计能力。
3. 提高自身的科学素养,培养良好的团队合作精神和创新意识。
4. 关注过程控制在社会生产中的应用,为我国工业发展和环境保护做出贡献。
二、教学内容1. 过程控制基本概念:包括过程控制定义、分类、发展历程及其在工业中的应用。
教材章节:第一章 绪论2. 过程控制系统数学模型:介绍控制系统的传递函数、状态空间表达式、方块图及其相互转换。
教材章节:第二章 数学模型3. 过程控制策略:讲解比例、积分、微分控制规律,以及串级、比值、前馈等复合控制策略。
教材章节:第三章 控制策略4. 过程控制系统设计方法:阐述控制系统的设计原则、步骤和方法,包括稳定性分析、性能指标和控制器设计。
教材章节:第四章 系统设计与分析5. 过程控制系统仿真:介绍过程控制系统仿真软件及其应用,通过实例演示仿真过程。
教材章节:第五章 系统仿真与实现6. 过程控制案例分析:分析典型过程控制系统的实际问题,探讨解决方案。
过程控制工程课程设计
过程控制工程课程设计作为一个重要的工程学科,过程控制工程涉及到许多重要的技术和理论,主要用于实现对工业生产过程的控制。
这一方面需要广泛的专业视野和深厚知识储备,同时也需要实践操作技能的支撑。
为了培养学生的过程控制技术能力,大学里需要设计一些相关的课程。
本文将主要探讨如何设计过程控制工程课程。
一、强化理论与基础知识在设计过程控制工程课程时,理论知识是不可或缺的。
同学们需要清楚知道各种重要的数学、物理、电子等学科的知识,才能更好的理解过程控制的基本概念和实践方法。
在课程教学中,老师应该注重让学生掌握数学、物理、电子等学科的常见方法和技术,以帮助学生理解复杂的过程控制技术内容。
此外,在教学过程中还要注重学生的基本功训练。
如计算、编程、实验技能等,这些能力增强了学生的实践应用能力。
教师还要着重介绍最新技术的发展和应用,同时辅助学生查阅相关的资料和文献,让学生了解国内外研究方向和应用领域,为学生应对未来的自主研究和开展实际应用奠定良好的基础。
二、注重实际操作与案例教学无论是理论还是实践,过程控制都需要具备实际操作技能。
因此,在过程控制工程课程设计中,教师应该充分考虑实践操作环节。
实践操作主要包括实验训练和仿真练习。
重点在于增加学生的实践经验,强化学生学习和理解知识。
通过实验训练,可以让学生更加深入地掌握硬件和软件的运作原理与操作技巧。
而通过仿真练习,以软件化模拟实现物理世界中的过程控制,建立学生对过程控制工程技术全面的认知。
教师应该选取合适的实验和仿真机型,对学生进行具体的实践操作指导,帮助学生掌握操作流程和操作技巧。
在过程控制工程课程教学过程中,讲解典型案例的知识也是必不可少的。
一方面,案例教学可以加深学生对理论知识的理解,同时增加对实际操作技能的应用能力;另一方面,案例教学也可以给学生提供典型问题的解决方法,激发学生的探究精神和实际感悟,提高学生真正的发现和解决问题的能力。
三、培养团队协作与沟通能力过程控制工程是一门高度综合性学科,它需要团队合作和高效沟通。
过程控制工程课程设计(doc 15页)
过程控制工程课程设计(doc 15页)(二)先修课程要求熟悉控制原理、检测仪表、控制仪表、过程控制工程、集散控制系统等课程的专业知识,掌握控制系统设计的基本原理,掌握控制系统工程制图的原理、方法,熟悉带控制点的工艺流程图,熟悉各控制设备的操作要领,具备综合应用所学基础理论和专业知识解决控制工程中一般技术问题的能力;具有独立完成控制工程项目设计的初步能力。
(三)编写规范写出不少于5000字的课程设计说明书。
说明书中除了在封面应有题目、班级、姓名、学号和课程设计日期、地点以外,其正文一般有如下几个方面的内容:1)学生要认真复习教材,阅读有关规范、设计手册等资料,独立按时完成任务;2)设计工艺流程和要求的简单说明;3)装置原有控制回路和重要控制策略介绍;4)确定控制方案,利用组态软件进行组态仿真设计的过程5)控制参数调整步骤和方法;6)仪表的选型,编写有关的仪表信息设计文件。
课程设计成绩四、课程设计内容(包括:现场的实际过程控制策略、以及相应的组态软件介绍,针对具体被控对象,设计4-5个简单回路和至少包含一个复杂控制系统的控制策略,并利用组态软件进行动态仿真设计,调节系统控制参数,使控制系统达到要求的控制效果,写出设计说明书。
设计说明书包括:设计思想、指标论证、方案确定、参数计算、元器件选择、原理分析等步骤做出说明,并对所完成的设计做出评价,总结整个设计工作中经验教训和收获。
)过程控制工程课程设计报告书“过程控制工程课程设计”是“过程控制”课程的一个重要组成部分,通过对扬子石化实际丁二烯车间生产流程的认识、控制方案的选择以及现场工程图纸的绘制等基础设计的学习,培养了自己理论与实践相结合能力、工程设计能力和创新能力。
过程控制系统设计是为实现生产过程自动化,应用图纸资料和文字资料来表达设计思想和工程实现方法。
设计大致可以分为两个阶段:设计前期工作和设计工作。
在设计前期工作中,要查阅一些现场生产技术资料,这主要以我们在扬子石化生产实习时所搜集的一些资料为主,同时还要根据具体情况确定自己想要实现的自动控制范围,进而再对被控对象动态特性进行分析,确定控制系统的被调量和调节量,确定控制质量指标和报警设限,最后根据对现场安全等方面因素的考虑,提出仪表选型原则,包括现场测量、检测变送、调节以及执行仪表的选型。
过程控制工程课程设计
过程控制工程 课程设计一、课程目标知识目标:1. 让学生掌握过程控制工程的基本概念,理解控制系统的结构、原理及分类。
2. 使学生了解过程控制系统中各环节的作用,掌握主要参数的测定与调整方法。
3. 帮助学生理解过程控制系统的数学模型,并学会运用相关理论分析控制系统的性能。
技能目标:1. 培养学生运用所学理论知识,分析实际过程控制工程问题的能力。
2. 培养学生设计简单的过程控制系统方案,并进行模拟与优化的能力。
3. 培养学生团队协作、沟通表达和动手实践的能力。
情感态度价值观目标:1. 培养学生对过程控制工程的兴趣,激发他们探究未知、解决问题的热情。
2. 培养学生严谨、务实的科学态度,使他们具备良好的工程素养。
3. 引导学生关注过程控制工程在国民经济和生活中的应用,提高他们的社会责任感。
本课程针对高年级学生,结合过程控制工程学科特点,注重理论与实践相结合,旨在提高学生的专业知识水平、实际操作能力和综合素养。
课程目标明确、具体,便于教师进行教学设计和评估,同时有利于学生明确学习方向,提高学习效果。
二、教学内容1. 过程控制工程基本概念:控制系统定义、分类、性能指标。
教材章节:第一章第一节2. 控制系统数学模型:传递函数、方框图、信号流图。
教材章节:第一章第二节3. 控制系统元件及环节:传感器、执行器、控制器、滤波器等。
教材章节:第二章4. 过程控制系统设计:系统建模、控制器设计、系统仿真。
教材章节:第三章5. 常见过程控制系统分析:PID控制、模糊控制、自适应控制。
教材章节:第四章6. 过程控制系统应用实例:化工、热工、电力等领域。
教材章节:第五章教学内容安排和进度:第一周:过程控制工程基本概念第二周:控制系统数学模型第三周:控制系统元件及环节第四周:过程控制系统设计第五周:常见过程控制系统分析第六周:过程控制系统应用实例教学内容根据课程目标进行选择和组织,确保科学性和系统性。
通过制定详细的教学大纲,明确教材章节和内容,有助于教师按计划进行教学,同时便于学生跟进学习进度。
过程控制系统课程设计
过程控制系统课程设计过程控制系统课程设计引言:过程控制系统是工程技术中的重要组成部分,它负责对工业过程进行监控与控制,以确保工艺的稳定性和高效性。
在过程控制系统课程设计中,学生将探讨过程控制系统的原理与应用,并通过实践设计一个实际的过程控制系统。
一、绪论过程控制系统又称作工业控制系统,它广泛应用于化工、电力、机械制造等领域。
过程控制系统的主要目标是监控和控制工业过程,以确保产品质量、提高生产效率和降低能源消耗。
通过对传感器的采集和执行器的控制,过程控制系统可以实现自动化的生产。
二、过程控制系统的组成1.传感器与执行器:传感器负责采集工业过程中的各项参数,如温度、压力、流量等。
执行器则负责根据控制系统的指令,对工艺过程进行调节和控制。
2.控制器:控制器是过程控制系统的核心,它根据传感器采集到的数据,通过算法和控制策略进行分析和判断,产生相应的控制信号送往执行器。
3.人机界面:人机界面是人与过程控制系统之间的桥梁,它提供了一个直观、友好的操作界面,使操作人员可以实时地监控和控制生产过程。
三、过程控制系统的设计步骤1.确定系统的目标:在设计过程控制系统前,首先需要明确系统的目标,即要控制的工艺过程中所需达到的标准和要求。
2.收集和分析数据:通过传感器采集工艺过程中的数据,并进行数据分析,了解工艺过程的变化规律和特点。
3.建立模型:根据收集到的数据,建立工艺过程的数学模型,用于后续的控制系统设计。
4.选择控制策略:根据工艺过程的性质和目标要求,选择合适的控制策略,如PID控制、模糊控制、神经网络控制等。
5.设计控制算法:根据选择的控制策略,设计相应的控制算法,并将其实现在控制器中。
6.仿真和优化:使用仿真工具对设计好的控制系统进行仿真,并进行调整和优化,以使系统的性能符合要求。
7.实现与调试:根据控制器的设计方案,采购和安装相应的硬件设备,并进行调试和验证。
8.监控与维护:设计好的过程控制系统需要持续地进行监控和维护,以确保系统的稳定性和可靠性。
过程控制系统课程设计
过程控制系统课程设计在过程控制系统课程设计中,学生需要综合运用所学的理论和技能,设计一个能够有效控制和监控工业过程的系统。
本文将介绍一个典型的过程控制系统课程设计流程,并着重介绍设计中需要考虑的关键要素和实施步骤。
一、引言过程控制系统是现代工业中必不可少的一部分,它能够监测和控制工业过程中的各种参数,保证生产的高效性和安全性。
因此,对于学习过程控制系统的专业学生而言,掌握设计过程控制系统的能力非常重要。
本课程设计旨在帮助学生深入了解过程控制系统,并通过实践提高他们的设计能力。
二、设计要素在进行过程控制系统的课程设计时,需要考虑以下关键要素:1. 系统需求分析:了解工业过程的特点和需求,明确系统的功能、性能和稳定性要求。
2. 控制策略选择:根据系统需求分析,选择适合的控制策略,如PID控制、最优控制等。
3. 传感器选择与布置:根据需求确定需要监测的参数,并选择合适的传感器进行测量,并合理布置传感器。
4. 控制器选择与配置:选择合适的控制器,并通过配置参数来实现所需的控制策略。
5. 人机界面设计:设计一个直观、易用的人机界面,以方便操作人员实时监测和控制过程。
6. 安全性考虑:确保系统具备安全性,采取相应的防护措施,防止事故的发生。
三、课程设计步骤以下是一个典型的过程控制系统课程设计步骤,供学生参考:1. 系统需求分析:对于一个给定的工业过程,分析其特性和需求,确定系统的功能、性能和稳定性要求。
2. 控制策略选择:根据需求分析,选择适合的控制策略,如PID控制、模糊控制等,并解释其原理和适用范围。
3. 传感器选择与布置:根据需求确定需要监测的参数,选择合适的传感器进行测量,并合理布置传感器,以保证测量的准确性和可靠性。
4. 控制器选择与配置:根据选择的控制策略,选择合适的控制器,并通过配置参数来实现所需的控制策略。
5. 人机界面设计:设计一个直观、易用的人机界面,以方便操作人员实时监测和控制过程。
界面应包括实时数据显示、报警功能等。
过程控制课程设计--前馈-反馈控制系统的设计与整定
过程控制课程设计--前馈-反馈控制系统的设计与整定北华航天工业学院课程设计报告(论文)设计课题:过程控制专业班级:学生姓名:指导教师:设计时间:201311.25-2013.12.06北华航天工业学院电子工程系过程控制课程设计任务书指导教师:教研室主任:2013年12月6日内容摘要自本世纪30年代以来,自动化技术获得了惊人的成就,已在工业和国民经济各行各业起着关键的作用。
自动化水平已成为衡量各行各业现代化水平的一个重要标志。
自动控制按输入量的变化规律分类,可分恒值控制系统(Fixed Set-Point Control System)、随动控制系统(Follow-up Control System)、过程控制系统(Process Control System)。
前馈-反馈控制系统的设计与整定,采用自动控制技术,实现对水箱液位的过程控制。
首先对被控对象的模型进行分析。
然后,根据被控对象模型和被控过程特性并加入PID调节器设计流量控制系统,采用动态仿真技术对控制系统的性能进行分析。
关键词:自动化过程控制PID目录一概述 (1)二方案设计与论证 (2)2.1 前馈控制 (2)2.2 反馈控制 (2)2.3 前馈-反馈控制 (3)2.4前馈-反馈控制系统PID算法 (4)2.5 控制方案的论证 (5)2.5.1控制方案的可靠性 (5)2.5.2控制方案的安全性 (5)2.5.3控制方案的经济性 (5)三仪表的选择与参数的设定………………………………………………………6 3.1 设备型号 (6)3.2 调节器及其参数的设置 (7)3.3 仪器仪表的组合安装 (8)3.4 计算机的参数设置 (9)四实验步骤…………………………………………………………………………9 五实验结果………………………………………………………………………10 六结论 (11)七心得体会………………………………………………………………………12 八参考文献………………………………………………………………………13一、概述PCT—I型过程控制实验装置是基于工业过程物理模拟对象,它集自动化仪表技术,计算机技术,通讯技术,自动控制技术为一体的多功能实验装置。
过程控制工程第四版课程设计
过程控制工程第四版课程设计一、概述本文档是对过程控制工程第四版课程设计的说明和实现。
该课程设计旨在通过实例学习,培养学生的过程控制工程设计能力和实践能力,提高学生的综合素质,为其今后从事过程控制工程行业打下基础。
二、课程设计要求1. 课程设计主题课程设计的主题是生产实现一个完整的过程控制工程项目。
该项目包括以下内容:传感器获取数据、PLC控制、人机界面设计等模块。
2. 设计内容2.1 项目设计参考工业领域实际生产需求,对过程控制工程要求进行具体规划和设计,明确项目的功能、要求和流程。
2.2 编程设计使用PLC编程软件,实现数据的采集、处理和传输,控制生产过程。
2.3 人机界面设计通过人机界面,实现对PLC的管理、监控、调试和诊断,方便用户进行操作。
3. 课程设计要求3.1 设计理念设计要以可行性为原则,注重实现过程的可操作性、可维护性和可扩展性,尽可能满足工业应用需求。
3.2 设计模块和功能设计需要分模块实现,可分为数据采集、数据处理、数据传输、控制模块等多个模块。
每个模块需要满足相应的功能需求,模块之间需要具备良好的兼容性。
3.3 设计效果设计需在实体机器上进行验证测试,能正常运行并达到设计效果。
三、实施步骤1. 需求分析通过理解工业过程控制的需求,明确本项目目标,为后续的设计提供依据。
2. 方案设计根据需求分析结果,设计过程控制系统的硬件组成和软件实现。
3. 硬件构建使用所需的硬件,如PLC、传感器、人机界面等,组成过程控制系统。
4. 软件编写使用PLC编程软件编写程序,并进行测试,确保与硬件系统正确互动。
5. 功能测试对系统实际进行运行测试,检查系统的各项功能是否可正常发挥作用。
6. 优化改进根据测试结果及用户反馈,对系统进行调整及优化改进。
7. 可行性验证最终在实际产线应用中对系统进行长期运行测试,验证系统的可用性。
四、总结本次过程控制工程第四版课程设计旨在培养学生的过程控制工程设计能力和实践能力,提高学生的综合素质。
过程控制系统课程设计报告.doc
目录第一章概述 (1)1.1 设计目的 (1)1.2 具体任务 (1)1.3 氧化铝生产的意义 (2)第二章氧化铝高压溶出工序介绍 (3)2.1 铝工业的国内外现状 (3)2.2 氧化铝生产过程 (4)2.3 高压溶出工序 (9)第三章氧化铝高压溶出工序生产设备及控制要求 (12)3.1 双程预热器 (12)3.2 溶出器 (12)3.3 自蒸发器 (13)3.4 蒸汽缓冲器 (14)第四章氧化铝高压溶出工序3#溶出器温度控制系统设计 (16)4.1 方案论证 (16)4.2 硬件设计 (17)4.3 控制算法 (20)4.4 软件设计 (21)第五章总结 (24)5.1 方案评价及改进方向 (24)5.2 收获及体会 (24)参考文献 (26)第一章概述现代工业生产过程,随着生产规模的不断扩大,生产过程的强化,对产品质量的严格要求,以及各公司的激烈竞争,人工操作与控制已远远不能满足现代化生产的要求,工业过程控制系统已成为工业生产过程必不可少的设备,因为,它是保证现代企业安全、优化、低功耗和高效益生产的主要技术手段。
由于工业生产过程各种各样而且非常复杂,工业生产过程可分连续的生产过程和离散的生产过程。
因此,在设计工业生产过程控制系统时,必须花大量的时间和精力了解该工业生产过程的基本原理、操作过程和过程特性,这是设计和实现一个工业生产过程控制系统的首要条件。
工业生产过程由简单到复杂,规模由小到大。
至今,已有各种各样的生产工业过程,生产出各种各样的产品满足人们的生活需要。
作为工业生产过程的一部分的工业过程控制系统也在不断发展和提高。
在工业生产过程中,通常需要测量和控制变量有:温度、压力、流量、物位(液位)、物质成分和物性(PH值)等。
1.1 设计目的经过一个学期的过程控制系统课程的学习,对过程控制有了一个基本的了解。
然而仅仅在理论方面是远远不够的,需要将所学的应用于实际生产过程中,只有这样才能真正的对过程控制有一个比较深入的认识,为以后的学习和工作打下一个良好的基础。
运动过程控制课程设计
运动过程控制课程设计一、课程目标知识目标:1. 学生能理解运动过程控制的基本概念,掌握运动学的基本公式,并能够运用这些知识分析简单的运动过程。
2. 学生能够描述和解释运动过程中的速度、加速度、位移等物理量的关系和变化。
3. 学生能够运用物理原理,解释运动过程中控制参数对运动轨迹和运动状态的影响。
技能目标:1. 学生能够设计简单的运动控制实验,运用实验方法和数据分析技巧来探究运动过程。
2. 学生通过实际操作,掌握运动控制器的基本使用方法,能够进行基础的编程和调试。
3. 学生能够运用数学工具,解决运动过程中的计算问题,具备一定的数学建模能力。
情感态度价值观目标:1. 学生通过本课程的学习,培养对物理科学的兴趣,激发探索自然界运动规律的欲望。
2. 学生在学习中培养合作精神,通过团队协作完成实验和问题探究,增强集体荣誉感。
3. 学生通过解决实际运动控制问题,认识到科学技术在现实生活中的应用,增强创新意识和实践能力。
课程性质:本课程属于理科学科,以理论讲授与实验操作相结合的方式进行,注重理论与实践的融合。
学生特点:考虑到学生处于高中年级,具备一定的物理基础和数学运算能力,同时具有较强的求知欲和动手能力。
教学要求:教学中应注重启发式教学,鼓励学生主动思考,通过案例分析、实验探究等形式,提高学生的参与度和实践操作能力。
同时,注重培养学生的科学态度和创新思维,将知识目标、技能目标和情感态度价值观目标有效结合,促进学生的全面发展。
二、教学内容1. 基本概念与原理:- 运动过程控制的基本定义与分类- 速度、加速度、位移等物理量的关系和计算- 牛顿运动定律及其在运动控制中的应用2. 运动控制实验与分析:- 运动控制器的基本原理与操作方法- 编程与调试基础,实现简单的运动控制- 实验数据分析与处理技巧3. 运动过程控制案例分析:- 案例一:直线运动控制- 案例二:曲线运动控制- 案例三:圆周运动控制4. 教学内容的安排与进度:- 第一周:基本概念与原理学习- 第二周:运动控制器操作与编程基础- 第三周:运动控制实验与数据分析- 第四周:案例分析与应用实践教材关联:- 教材第一章:运动过程控制基本概念与原理- 教材第二章:运动控制器及其编程- 教材第三章:运动控制实验设计与数据分析- 教材第四章:运动过程控制案例分析教学内容确保科学性和系统性,注重理论与实践相结合,使学生能够通过本课程的学习,掌握运动过程控制的基本知识和技能。
过程控制系统课程设计
过程控制系统课程设计过程控制系统是现代工程中不可或缺的一部分,它在工业生产中起着至关重要的作用。
在过程控制系统的课程设计中,我们需要根据实际情况选择合适的设计方案,并进行详细的设计和实施。
本文将介绍过程控制系统课程设计的相关要点和步骤。
一、设计目标和要求在进行过程控制系统课程设计之前,首先要明确设计的目标和要求。
这包括所要控制的过程、控制系统的性能要求、安全要求等。
只有明确了设计目标和要求,才能有针对性地进行设计。
二、系统建模和仿真在过程控制系统课程设计中,系统建模和仿真是非常重要的步骤。
通过对待控对象进行建模,可以更好地理解和描述系统的动态特性。
然后,可以使用仿真软件进行仿真实验,验证设计的有效性。
三、控制系统设计在控制系统设计过程中,需要选择合适的控制策略和控制器参数。
控制策略可以根据具体情况选择,如比例-积分-微分(PID)控制、模糊控制、自适应控制等。
同时,要根据系统的动态特性和性能要求,调整控制器的参数以实现良好的控制效果。
四、硬件和软件实现在过程控制系统课程设计中,需要选择合适的硬件设备和软件工具进行实现。
硬件方面包括传感器、执行器和控制器等设备的选择和搭建。
软件方面可以采用各种编程语言或软件平台进行开发和编码。
五、系统调试和优化在实施和实施过程中,需要进行系统调试和优化。
这包括对传感器和执行器的校准、控制器参数的优化调整以及整个系统的调试和测试。
通过优化和调试,可以提高系统的控制性能和稳定性。
六、结果分析与总结在过程控制系统课程设计完成后,需要对设计结果进行分析和总结。
对系统的控制性能进行评价,分析系统存在的问题,并提出改进的建议。
同时,总结设计的经验和教训,为今后的工程实践提供参考。
总结:过程控制系统课程设计是一个综合性的实践性项目,要求学生在理论和实践中相结合,从实际出发,进行系统性的设计和实现。
通过这个设计项目,可以提高学生的工程实践能力和解决问题的能力。
希望本文所介绍的过程控制系统课程设计的要点和步骤,能对读者有所帮助。
过程控制课程设计大纲
过程控制课程设计大纲一、教学目标本课程的教学目标是使学生掌握过程控制的基本概念、原理和方法,能够运用所学的知识分析和解决实际问题。
具体来说,知识目标包括:了解过程控制的基本概念、熟悉过程控制的基本原理、掌握过程控制的基本方法。
技能目标包括:能够运用过程控制理论分析实际问题、具备一定的动手实践能力、能够撰写相关论文和报告。
情感态度价值观目标包括:培养学生对过程控制的兴趣和热情、增强学生的创新意识和团队合作精神、培养学生的社会责任感和职业道德。
二、教学内容本课程的教学内容主要包括过程控制的基本概念、原理和方法。
具体包括:过程控制的基本概念、过程控制的基本原理、过程控制的基本方法。
其中,过程控制的基本概念包括过程控制的概念、分类和应用;过程控制的基本原理包括过程控制的原理、过程控制的数学模型;过程控制的基本方法包括过程控制的设计方法、过程控制的实现方法和过程控制的优化方法。
三、教学方法为了实现本课程的教学目标,我们将采用多种教学方法,包括讲授法、讨论法、案例分析法、实验法等。
讲授法主要用于传授基本概念和原理,讨论法主要用于探讨实际问题,案例分析法主要用于分析具体案例,实验法主要用于动手实践。
通过多样化的教学方法,我们将激发学生的学习兴趣和主动性,提高学生的学习效果。
四、教学资源为了支持本课程的教学内容和教学方法的实施,我们将选择和准备适当的教学资源。
教材方面,我们将采用《过程控制》一书作为主教材,同时辅以《过程控制原理与应用》等参考书。
多媒体资料方面,我们将收集和制作相关的教学PPT、视频等资料。
实验设备方面,我们将准备相关的实验设备和器材,以供学生动手实践使用。
通过丰富的教学资源,我们将丰富学生的学习体验,提高学生的学习效果。
五、教学评估本课程的评估方式将包括平时表现、作业、考试等多个方面,以全面客观地评价学生的学习成果。
平时表现评估将关注学生在课堂上的参与度、提问回答、小组讨论等,旨在培养学生的主动思考和交流能力。
过程控制系统课程设计
熟悉常用的控制算法、控制 器设计和优化方法。
了解过程控制系统的性能指 标评价方法,能够对所设计 的系统进行性能分析和优化 。
课程设计流程
01 02 03 04 05
确定设计任务和要求,明确设计目标。
进行系统分析和设计,包括被控对象特性分 析、控制算法选择、控制器设计等。
完成系统实现,包括硬件选型、软件编程、 系统调试等。
通过参加科研项目、实践实习等方式,加强实践 能力培养,提高解决实际问题的能力。
谢谢聆听
01
实验注意事项
02
确保数学模型的准确性;
03
合理选择控制器参数;
04
注意仿真实验的边界条件。
实验结果分析与讨论
实验结果展示
通过图表等形式展示实验结果,包括系统响应曲线、误差曲线等 。
结果分析
对实验结果进行分析,包括系统性能评估、控制器性能评估等。
结果讨论
根据实验结果,讨论控制策略的有效性、可行性以及改进方向等 。
过程控制分类
根据控制对象的不同,过程控制可分为温度控制、压力控制、流量控制、液位 控制等;根据控制策略的不同,过程控制可分为开环控制和闭环控制。
过程控制系统组成
A
被控对象
被控对象是过程控制系统中需要调节的工艺参 数,如温度、压力、流量等。
测量变送器
测量变送器用于将被控对象的参数转换为 标准信号,以便控制器进行处理。
针对特定应用场合进行流量控制系统的优化设计,如减少管道阻力、 提高阀门调节性能等,以提高系统的控制精度和稳定性。
06 过程控制系统仿真与实验
MATLAB/Simulink仿真工具介绍
MATLAB概述
MATLAB是一款由MathWorks公司开发的高级编程语言和交互式环境,广泛应用于算 法开发、数据可视化、数据分析以及数值计算等领域。
过程控制系统课程设计
2 目录一、设计目的 2二、设计要求 3三、实现过程3 1、 系统概述 (3)1.1加热炉 (3)1.2加热炉工艺过程 ...................................................... 4 13控制参数的选择及控制燃烧方案的确定 . (5)1.4加热炉的工艺结构及其设备组成 (6)1.5生产线的特点 ........................................................ 6 2、 设计与分析 .. (7)2.1加热炉生产工艺和控制要求 (7)2.2燃烧控制系统及仿真 (7)四、总结 11五、附录 12六、参考文献12 一、设计目的经过一个学期的过程控制系统课程的学习,对过程控制有了一个基本的了 解。
然而仅仅在理论方面是远远不够的,需要将所学的应用于实际生产过程中, 惟独这样才干真正的对过程控制有一个比较深入的认识,为以后的学习和工作打 下一个良好的基础。
通过这次课程设计,我们可以了解具体生产工业过程控制系 统设计的基本步骤和方法。
同时也对氧化铝的生产工艺有一个大概的认识,惟独 弄清晰生产工艺对控制的具体要求,才干去设计一个过程控制系统。
同时:1、 提高对所学自动化仪表和过程控制的原理、结构、特性的认识和理解, 加深对所学知识的巩固和融会贯通。
2、针对一个小型课题的设计开辟,培养查阅参考书籍资料的自学能力,通过独立思量,学会分析问题的方法。
3、综合运用专业及基础知识,解决实际工程技术问题的能力。
4、培养学生严谨的工作作风,相互合作的团队精神,提髙其综合素质,获得初级工程应用经验,为将来从事专业工作建立基础。
二、设计要求燃烧量对蒸汽母线压力:G(s)= —?——r+ 100^+11、査阅资料,深入掌握钢铁工业过程的工作原理及控制要求,绘制出钢铁工业生产过程工艺流程图。
2、设计控制方案。
(1)根据燃烧对象特性及控制要求,完成燃烧量的选择、执行器、变送器的选择、控制仪表选择等方案设计。
过程控制技术课程设计
过程控制技术课程设计一、课程目标知识目标:1. 理解过程控制技术的基本概念,掌握其原理和分类;2. 学习过程控制系统的数学模型,了解各参数对系统性能的影响;3. 掌握过程控制策略的设计与优化方法;4. 了解过程控制技术在工业生产中的应用案例。
技能目标:1. 能够运用所学知识对过程控制系统进行分析,建立数学模型;2. 能够设计简单的过程控制策略,并进行仿真与优化;3. 能够运用过程控制技术解决实际工程问题,具备一定的实际操作能力。
情感态度价值观目标:1. 培养学生对过程控制技术的兴趣,激发其探索精神和创新意识;2. 培养学生严谨的科学态度,注重实践与理论相结合;3. 增强学生的团队协作能力,提高沟通与交流能力;4. 培养学生关注过程控制技术在工业生产中的应用,提高其社会责任感和使命感。
课程性质:本课程为高年级专业课程,旨在帮助学生建立过程控制技术的理论体系,提高实际操作能力。
学生特点:学生具备一定的专业基础知识,具有较强的逻辑思维能力和动手能力。
教学要求:结合课程性质和学生特点,注重理论与实践相结合,充分调动学生的主观能动性,提高其解决问题的能力。
通过本课程的学习,使学生能够掌握过程控制技术的基本原理和方法,具备实际工程应用能力。
教学过程中,将目标分解为具体的学习成果,以便后续的教学设计和评估。
二、教学内容1. 过程控制技术基本概念与原理:包括过程控制定义、分类、发展历程及在工业生产中的应用。
教材章节:第一章2. 过程控制系统的数学模型:介绍数学模型的基本概念,分析过程控制系统中各参数对系统性能的影响。
教材章节:第二章3. 过程控制策略设计与优化:学习PID控制、模糊控制、自适应控制等策略,并进行仿真与优化。
教材章节:第三章4. 过程控制设备与系统:介绍过程控制系统中常用的传感器、执行器、控制器等设备,以及系统的组成和原理。
教材章节:第四章5. 过程控制技术在工业生产中的应用:分析典型工业生产过程中过程控制技术的应用案例,如化工、热工、电力等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.绪论过程控制通常是指连续生产过程的自动控制,是自动化技术最重要的组成部分之一。
其应用范围涵盖石油、化工、制药、生物、医疗、水利、电力、冶金、轻工、核能、环境等许多领域,在国民经济中占有重要的地位。
1.1过程控制系统的组成及特点过程控制系统通常由被控对象和过程检测仪表组成。
被控对象是指被控制的工艺生产设备装置。
常见的有:锅炉、加热炉、分馏塔、反应釜、干燥炉、压缩机、旋转窑等生产设备或储存物料的槽,罐以及传递物料的管段等。
过程检测控制仪表是指检测变送器,控制器以及执行器。
过程控制系统的特点包括:1)被控过程复杂多样,具有非线性、时变、时滞及不确定等特点,难以获得精确的过程数学模型。
2)控制过程多属缓慢过程,具有一定的时间常数和时滞,控制并不需在极短时间完成。
3)控制方案多样。
统一被控过程,因受扰动不同,需采用不同的控制方案;同一控制方案可适用于不同的生产过程控制,控制方案适应性强。
4)过程控制的常用控制形式为定值控制。
5)过程能够控制实施手段多样性。
可以方便地在计算机控制装置上实现,可以方便地在控制室或现场获得仪表的信息,可以直接进行仪表的校验和调整。
1.2 过程控制设计的发展概况近几十年来,随着自动化技术工具的发展以及新型过程控制系统的出现,设计工作的内容、程序和方法有了较大的变化。
尤其当进入20世纪80年代以后,微电子技术推动了计算机的迅猛发展,使得过程控制所采用的仪表、设备等发生了根本性的改变。
这些更促使控制工程设计工作进行全曲的调整。
在20世纪50、60年代,当时在工业过程中,尤其在石油、化工生产过程中,大量使用气动仪表,以满足防爆的要求。
而常用的控制系统仅仅是单回路反馈控制系统(简单调节系统)或少量的串级、均匀和比值控制系统。
因此控制工程设计工作相对来说较为简单。
随着电动单元组合仪表的出现,一直到DDZ—Ⅲ型仪表问世,本质安全防爆的性能,根本上满足了工业过程的防爆要求:于是,在控制工程设计中,电动仪表逐步取代气动仪表。
然而,无论是气动仪表或是电动仪表,都属于常规仪表。
因此,在控制工程设计,基本的程序和方法内容是相似的。
中国在70、80、90年代分别制定了有关控制工程设计的施工图内容深度规定,作为控制专业使用常规仪表进行工程设计的指导性文件。
20世纪80年代中期,分散控制系统(Distributed Control System , DCS也称集散控制系统)开始在工业过程中得到了应用。
分散控制系统与传统常规仪表的控制有着决然不同的方式与内涵,控制工程设计工作也发生了很大的变化。
为适应改革、开放的经济政策,我国的工程设计必须与国际接轨。
因此,在进入21世纪前,总结了国内外控制工程设计的经验,开始推行国际通用设计体制和方法,使得控制工程设计工作更为规范有序。
2 主要元器件介绍本次课设采用,小巧精致,功能比较齐全,性能价格比高。
SAC-JGK小型过程控制实验装置的组成包括被控对象:两水槽液位,两电机转速。
检测装置:两个液位变送器,两个测速编码器。
执行机构:两个固态继电器及两台直流电机。
控制系统:西门子小型PLC。
2.1 双容水箱双容水箱是本实验系统的控制对象,被测对象由两个不同容积的数学水箱串联组成,故称其为双容对象。
实际工业对象的复杂性即可以是一阶的也可以是高阶的,在此实验中,将相邻水箱之间相连通就可以构成二阶对象,阀门开度大小还可以改变具体对象的模型参数。
实际对象通常具有一定时延,为了模拟对象时延还可以人为加入软件延时以达到纯延时的效果。
实验结果证实这样的构思达到了很好的效果。
实际控制系统往往存在各式各样的扰动,扰动的作用点也不同。
在此实验装置中,我们设计了旁路阀门的开启对控制系统的扰动影响,考核控制参数的优劣和系统抗干扰的能力,观察系统克服外扰的响应过程。
这些扰动作用的大小和扰动的快慢都可以由人为决定。
通常工业对象的控制参数在很大范围内变动,实验在设计上提供了设定值和PID参数的设置选项,通过设定不同的参数满足不同的控制要求。
电磁阀图2.1 双容水箱流程示意图在双容水箱实验中,上下水箱之间的连接阀阀门保持适当的开度不变,水箱出、入水阀门存在干扰信号的情况下,设计适当的控制算法,根据液位传感器检测的液位信号与设定值之间的偏差发出调控信号,调节相应水箱的阀门开度,从而控制其入水流量,使得上水箱或下水箱的液位保持在设定值。
上下水箱系统是一个较为典型的有自平衡能力的对象,当水的流入量与流出量相等时,液位保持不变。
流入侧的进水阀门突然开大,水的流入量阶跃增多,水位随即上升;随着水位的上升,水箱内的液体静压力增高,使水的流出量相应增大,这一趋势将使水的流出量再次等于流入量,液位在新的平衡下稳定下来。
水箱系统硬件与微机相连后,运行系统软件便可以开始实验了。
系统运行后,界面如图2所示。
左侧为系统装置图,示意了水箱、阀门等相对位置,并显示液位值与流量值。
右侧为显示与设定区,上部为液位的实时曲线,下部为参数设定,可选择实验水箱、设定值、阀门开度、PID值等参数。
图2.2 组态王画面2.2 S7-200 PLC可编程控制器(Programmable Controller)是计算机家族中的一员,是为工业控制应用而设计制造的。
早期的可编程控制器称作可编程逻辑控制器(Programmable Logic Controller),简称PLC,它主要用来代替继电器实现逻辑控制。
PLC实质是一种专用于工业控制的计算机,其硬件结构基电源:一般交流电压波动在+10%(+15%)范围内,可以不采取其它措施而将PLC直接连接到交流电网上去。
中央处理单元(CPU)中央处理单元(CPU):是PLC的控制中枢。
它按照PLC系统程序赋予的功能接收并存储从编程器键入的用户程序和数据;检查电源、存储器、I/O以及警戒定时器的状态,并能诊断用户程序中的语法错误。
当PLC投入运行时,首先它以扫描的方式接收现场各输入装置的状态和数据,并分别存入I/O映象区,然后从用户程序存储器中逐条读取用户程序,经过命令解释后按指令的规定执行逻辑或算数运算的结果送入I/O映象区或数据寄存器内。
等所有的用户程序执行完毕之后,最后将I/O映象区的各输出状态或输出寄存器内的数据传送到相应的输出装置,如此循环运行,直到停止运行。
存储器:存放系统软件的存储器称为系统程序存储器。
存放应用软件的存储器称为用户程序存储器。
输入输出接口电路:1、现场输入接口电路由光耦合电路和微机的输入接口电路,作用是PLC与现场控制的接口界面的输入通道。
2、现场输出接口电路由输出数据寄存器、选通电路和中断请求电路集成,作用PLC通过现场输出接口电路向现场的执行部件输出相应的控制信号。
功能模块:如计数、定位等功能模块通信模块:如以太网、RS485、Profibus-DP通讯模块等 S7-200 PLC是SMIATIC S7家族中的小型可编程控制器,适用于各行各业、各种应用场合中的检测、监测及控制的自动化。
S7-200的使用范围可覆盖从替代继电器的简单控制,到极复杂的自动化控制,应用领域极为广泛。
S7-200的应用范围覆盖所有与自动检测、自动化控制有关的工业及民用领域,包括各种机床、机械、电力设施、民用设施、环境保护设备等。
图2.3 S7-200-CPU224SAC-JGK小型过程控制实验装置集成14输入/10输出共24个数字量I/O点。
可连接7个扩展模块,最大扩展至168路数字量I/O点或35路模拟量I/O 点。
13K字节程序和数据存储空间。
6个独立的30kHz高速计数器,2路独立的20kHz高速脉冲输出,具有PID控制器。
1个RS485通讯/编程口,具有PPI通讯协议、MPI 通讯协议和自由方式通讯能力。
I/O端子排可很容易地整体拆卸。
是具有较强控制能力的控制器。
3 设计内容及步骤3.1设计内容利用西门子PLC设计水箱水位的控制系统,编写程序,实现液位转速串级控制系统。
实现如下功能:1)电机1给水槽1、2供水,水槽2的液位经液位变送器2变为电信号送到计算机中,在PLC内进行PID运算或在计算机中进行其他控制算法运算,其结果作为对电机1转速进行控制的给定值。
2)在PLC内进行PID运算或在计算机中进行其他控制算法运算,其输出用来调节固态继电器1,达到调节水槽2液位的目的。
3)电机2的转速作为干扰信号,即计算机产生的干扰信号控制固态继电器2(SSR2)以调节电机2,使电机2对水槽2的进水流量产生扰动。
4)在计算机上用组态王模拟实验现场流程图,并进行参数设定。
3.2 方案设计单回路控制系统解决了工艺生产过程自动化中大量的参数定值问题。
但是,随着现代工业生产的迅速发展,工艺操作条件的要求更加严格,对安全运行和经济性及对控制质量的要求也更高。
但回路控制系统往往不能满足生产工艺的要求,在这样的情况下,串级控制系统就应运而生。
3.2.1串级控制系统的结构串级控制系统是改善控制质量的有效方法之一,在过程控制中得到广泛地应用,串级控制系统是指不止采用一个控制器,而是将两个或几个控制器相串级,是将一个控制器的输入作为下一个控制器设定值的控制系统。
当生产过程处于稳定状态时,它的控制量与被控量都稳定在某一定值。
图3.1 串级控制原理图当扰动破坏了平衡工况时,串级控制系统便开始了其控制过程。
根据不同扰动,分为三种情况:(1)在副对象上的扰动副对象加上扰动后,副调节就立即发出校正信号,控制执行对象(工程上一般是调节阀的开度,而本实验装置中是泵电机的转速)动作,以克服扰动对主被控参数的影响。
如果扰动量不大,经过副回路的及时控制一般不影响被控量,如果扰动的幅值较大,虽然经过副回路的及时校正,但还将影响被控量;此时再有主回路的进一步调节,从而使被控量回到平衡时的值。
(2)主对象上的扰动主对象加上扰动后,主回路产生校正作用,由于副回路的存在加快了校正作用,使扰动对被控量的影响比单回路系统时要小。
(3)一次扰动和二次扰动同时存在如果一、二次扰动的作用使主,副被控参数同时增大或减少时,主、副调节器对调节阀(或泵电机转速)的控制方向一致的,即大幅度关小或开大阀门(或大幅度地使泵电机加速或减速),加强控制作用,使主被控量很快地回到给定值上。
如果一、二次扰动的作用使主、副被控参数一个增大,另一个减少,此时主、副调节器控制调节阀的方向是相反的,调节阀的开度只要作较小变动即满足控制要求。
3.2.2 主、副回路的设计串级控制系统的主回路是一个定值控制系统。
串级控制系统的设计主要是副参数的选择和副回路的设计以及主、副回路关系的考虑。
设计时应注意以下原则:1)副回路应力求包括主要的干扰,即变化频繁、幅度较大的干扰,尽可能包括其他次要的干扰,这样能充分发挥副回路的作用,把影响主被控变量的干扰作用抑制到最低程度。