ICMLC 2010
IEEE拒绝收录的138个会议列表-推荐下载
IEEE拒绝收录的138个会议列表2011-10-27 14:54:18| 分类:EI、ISTP检索国际 | 标签:ieee 收录 138 会议列表 |字号大中小订阅IEEE拒绝收录的138个会议列表138个会议名单如下:2010 2nd Asia-Pacific Conference on Information Processing (APCIP)2010 2nd International Asia Symposium on Intelligent Interaction and Affective Computing & 2010 2nd International onInnovation Management (ASIA-ICIM)2010 2nd International Conference on Future Computer and Communication (FCC) 2010 2nd International Conference on Information and Multimedia Technology (ICIMT)2010 2nd International Conference on Intellectual Technique in Industrial Practice (ITIP 2010)2010 2nd International Conference on Multimedia and Computational Intelligence (ICMCI)2010 2nd International Conference on Research Challenges in Computer Science (ICRCCS)2010 2nd International Symposium on Computer Network and Multimedia Technology (CNMT 2010)2010 3rd International Conference on Computational Intelligence and Industrial Application (PACIIA)2010 3rd International Conference on Environmental and Computer Science (ICECS) 2010 3rd International Conference on Machine Vision (ICMV)2010 3rd International Conference on Power Electronics and Intelligent Transportation System (PEITS)2010 4th International Conference on Intelligent Information Technology Application (IITA)2010 6th International Conference on MEMS, NANO, and Smart Systems (ICMENS) 2010 First International Conference on Cellular, Molecular Biology, Biophysics and Bioengineering (CMBB)2010 IIS 2nd International Conference on Signal Processing, Robotics and Automation (ICSRA 2010)2010 International Asia Conference on Optical Instrument and Measurement (ACPIM)2010 International Conference on Bio-Inspired Systems and Signal Processing (ICBSSP)2010 International Conference on Biology, Environment and Chemistry (ICBEC) 2010 International Conference on Broadcast Technology and MultimediaCommunication (BTMC)2010 International Conference on Circuit and Signal Processing (ICCSP)2010 International Conference on Communication and Vehicular Technology (ICCVT)2010 International Conference on Computational Intelligence and Vehicular System (CIVS)2010 International Conference on Computer and Computational Intelligence (ICCCI) 2010 International Conference on Computer and Software Modeling (ICCSM)2010 International Conference on Computer Science and Sports Engineering (CSSE) 2010 International Conference on Computer-Aided Manufacturing and Design (CMD)2010 International Conference on Construction and Project Management (ICCPM) 2010 International Conference on Digital Enterprise and Digital Manufacturing (DEDM)2010 International Conference on E-business, Management and Economics (ICEME) 2010 International Conference on Economics, Business and Management (ICEBM) 2010 International Conference on Electrical Engineering and Automatic Control (ICEEAC)2010 International Conference on Embedded Systems and Microprocessors (ICESM) 2010 International Conference on Engineering Education and Educational Technology (EEET)2010 International Conference on Future Biomedical Information Engineering (FBIE) 2010 International Conference on Future Computer, Control and Communication (FCCC)2010 International Conference on Future Industrial Engineering and Application (ICFIEA)2010 International Conference on Future Information Technology (ICFIT)2010 International Conference on Future Information Technology and Computing (FITC)2010 International Conference on Graphic and Image Processing (ICGIP)2010 International Conference on Information and Finance (ICIF)2010 International Conference on Information Security and Artificial Intelligence (ISAI)2010 International Conference on Intelligence and Information Technology (ICIIT) 2010 International Conference on Intelligent Network and Computing (ICINC)2010 International Conference on Management Science (ICMS)2010 International Conference on Management Science and Information Engineering (ICMSIE)2010 International Conference on Manufacturing Science and Technology (ICMST) 2010 International Conference on Measurement and Control Engineering (ICMCE) 2010 International Conference on Mechanical and Aerospace Engineering (ICMAE) 2010 International Conference on Mechanical Engineering, Robotics and Aerospace (ICMERA)2010 International Conference on Modeling, Simulation and Control (ICMSC 2010)2010 International Conference on Nano Science and Technology (ICNST)2010 International Conference on Nanotechnology and Biosensors (ICNB)2010 International Conference on Nuclear Energy and Engineering Technology (NEET)2010 International Conference on Physics Science and Technology (ICPST)2010 International Conference on Psychology, Psychological Sciences and Computer Science (PPSCS)2010 International Conference on Remote Sensing (ICRS)2010 International Conference on Semiconductor Laser and Photonics (ICSLP)2010 International Conference on Services Science, Management and Engineering (SSME)2010 International Conference on Signal and Information Processing (ICSIP)2010 International Conference on Software and Computing Technology (ICSCT) 2010 International Conference on Sport Medicine, Sport Science, and Computer Science (SMSSCS)2010 ISECS International Colloquium on Computing, Communication, Control, and Management (CCCM 2010)2010 Second International Conference on E-Learning, E-Business, Enterprise Information Systems, and E-Government(EEEE)2010 Second International Conference on Test and Measurement (ICMT)2010 Second International Seminar on Business and Information Management (ISBIM)2010 Third International Conference on Computer and Electrical Engineering (ICCEE)2010 Third International Conference on Education Technology and Training (ETT) 2010 Third International Symposium on Intelligent Ubiquitous Computing and Education (IUCE)2010 Third Pacific-Asia Conference on Web Mining and Web-Based Application (WMWA)2011 15th Global Chinese Conference on Computers in Education (GCCCE)2011 2nd Asia-Pacific Conference on Wearable Computing Systems (APWCS)2011 2nd International Conference on Biomedical Engineering and Computer Science (ICBECS)2011 2nd International Conference on Biotechnology and Food Science (ICBFS) 2011 2nd International Conference on Data Storage and Data Engineering (DSDE) 2011 2nd International Conference on Environmental Science and Technology (ICEST)2011 2nd International Conference on Financial Theory and Engineering (ICFTE) 2011 2nd International Conference on Mechanical, Industrial, and Manufacturing Technologies (MIMT)2011 2nd Intl Conf on Innovative Computing & Communication and 2010 Asia-Pacific Conf on Information Technology &Ocean Engineering, (CICC-ITOE)2011 2nd World Congress on Computer Science and Information Engineering (CSIE) 2011 3rd IEEE International Conference on Information Management and Engineering (ICIME)2011 3rd International Conference on Bioinformatics and Biomedical Technology (ICBBT 2011)2011 3rd International Conference on Computer and Automation Engineering (ICCAE)2011 3rd International Conference on Computer and Network Technology (ICCNT) 2011 3rd International Conference on Computer Design and Applications (ICCDA 2011)2011 3rd International Conference on Computer Modeling and Simulation (ICCMS) 2011 3rd International Conference on E-business and Information System Security (EBISS)2011 3rd International Conference on Machine Learning and Computing (ICMLC) 2011 3rd International Conference on Networks Security, Wireless Communications and Trusted Computing (NSWCTC)2011 3rd International Conference on Signal Acquisition and Processing (ICSAP) 2011 3rd International Workshop on Education Technology and Computer Science (ETCS)2011 4th IEEE International Conference on Computer Science and Information Technology (ICCSIT 2011)2011 IEEE International Conference on Information and Education Technology (ICIET)2011 IEEE International Conference on Smart Grid and Clean Energy Technologies (ICSGCE)2011 International Conference on Applied Physics and Mathematics (ICAPM 2011) 2011 International Conference on Bioinformatics and Computational Biology (ICBCB)2011 International Conference on Bioscience, Biochemistry and Bioinformatics (ICBBB)2011 International Conference on Communication and Electronics Information (ICCEI)2011 International Conference on Computer and Communication Devices (ICCCD) 2011 International Conference on Computer Applications and Network Security (ICCANS)2011 International Conference on Computers, Communications, Control and Automation (CCCA)2011 International Conference on Control, Robotics and Cybernetics (ICCRC)2011 International Conference on Data Engineering and Internet Technology (DEIT) 2011 International Conference on Database and Data Mining (ICDDM)2011 International Conference on Digital Convergence (ICDC)2011 International Conference on Economics and Finance Research (ICEFR)2011 International Conference on Economics, Business and Marketing Management (CEBMM)2011 International Conference on Economics, Trade and Development (ICETD) 2011 International Conference on Electrical Energy and Networks (ICEEN)2011 International Conference on Energy and Environment (ICEE)2011 International Conference on Engineering and Information Management (ICEIM) 2011 International Conference on Environment Science and Engineering (ICESE) 2011 International Conference on Environmental Science and Development (ICESD) 2011 International Conference on Future Environment and Energy (ICFEE 2011) 2011 International Conference on Fuzzy Systems and Neural Computing (FSNC) 2011 International Conference on Information and Computer Applications (ICICA) 2011 International Conference on Information and Computer Networks (ICICN) 2011 International Conference on Information and Industrial Electronics (ICIIE) 2011 International Conference on Information Engineering and Mechanical Engineering (IEME)2011 International Conference on Innovation and Information Management (ICIIM) 2011 International Conference on Intelligent Information Networks (ICIIN)2011 International Conference on Knowledge Discovery (ICKD)2011 International Conference on Life Science and Technology (ICLST)2011 International Conference on Manufacturing and Industrial Engineering (ICMIE) 2011 International Conference on Mechanical and Aerospace Engineering (ICMAE) 2011 International Conference on Medical Information and Bioengineering (ICMIB) 2011 International Conference on Network Communication and Computer (ICNCC) 2011 International Conference on Product Development and Renewable Energy Resources (ICPDRE)2011 International Conference on Security Science and Technology (ICSST)2011 International Conference on Social Science and Humanity (ICSSH)2011 International Conference on Solid-State and Integrated Circuit (ICSIC)2011 International Conference on System Design and Data Proceesing (ICSDDP) 2011 International Conference on System。
2010年全国研究生数学建模竞赛优秀论文C2
4
图 4-1 软件 Neuron 运行的部分截图 提取命令行生成的数据,使用批处理命令将数据导入到 excel 文件中。 可以看出软件生成了一些属性,如 Number of stems, Number of terminals 等。经过统计分析,处理后的结果包含 78 个特征属性,记为 A0 ,A1,…,A77。 其中有 4 个特征属性(分别是 Minimum branch order,Min path distance,Min eucl. Distance,Min comp. length)对于全体数据集均为 0,可认为是无用属 性直接删除。剩下 74 个属性可以完全刻画神经元的几何形态。 经过筛选后的部分数据如下图所示:
2 问题分析与解题思路
本题是一个结合属性选择、分类、聚类、预测等多个统计学习方面的综合问 题。 该题的关键点有如下几个: 1.大规模数据集的预处理。 通过软件或编程计算, 得出一定数量的去量纲化的特征属性。2.建立基于特征属性的分类模型。通过模 型的特性,可以分析总结出各类神经元的空间几何特征,并据此分类。3.对于超 出已有类别的特殊数据,归纳出其特征属性的取值,总结其特征。4.对于所有数 据,在类别未知的情况下,归纳出特征明显的多类,并总结这些特征。5.提取同 一类别神经元在不同物种内的特征。6.统计回归神经元生长的模型,并依次进行 预测。7.确保分类模型对生长变化的神经元外形特征的包容性。
参赛队号 10491004 队员姓名 余超、曾文聪、韩增新 中山大学承办
1
参赛密码 (由组委会填写)
目
录
目 录...................................................... 1 1 问题重述.................................................. 3 2 问题分析与解题思路........................................ 3 3 部分符号说明.............................................. 4 4 数据搜集及预处理.......................................... 4 4.1 数据搜集.............................................. 4 4.2 数据预处理............................................ 4 5 问题 1——属性选择......................................... 5 5.1 问题分析 .............................................. 5 5.2 模型建立 .............................................. 6 5.2.1 特征选择 .......................................... 6 5.2.2 构造朴素贝叶斯分类器 .............................. 8 5.3 模型求解............................................. 10 6 问题 2——样本预测 ....................................... 11 6.1 问题分析............................................. 11 6.2 模型建立............................................. 11 6.3 模型求解............................................. 13 7 问题 3——分类识别 ....................................... 16 7.1 问题分析............................................. 16 7.2 模型建立............................................. 17 7.3 模型求解............................................. 19 8 问题 4——比较分析不同物种的同类神经元形态特征 ........... 23 8.1 问题分析............................................. 23 8.2 问题求解............................................. 23 8.2.1 对比猪和鼠的普肯野神经元: ....................... 23 8.2.2 对比猫和鼠的脊髓运动神经元....................... 24 8.2.3 对比猴子和人类的椎体神经元....................... 25 8.2.4 对比 6 个种类的不同物种的不同神经元............... 26 9 问题 5——预测神经元生长变化 ............................. 28 9.1 问题分析............................................. 28 9.2 模型的建立与求解..................................... 28 9.2.1 聚类分析......................................... 28 9.2.2 特征提取......................................... 29 9.2.3 贝叶斯分类模型建立............................... 29 9.2.4 成长期排序....................................... 30 9.2.5 预测模型验证..................................... 31 10 模型的评价与改进........................................ 32 10.1 创新点与优势........................................ 32 10.2 不足与改进.......................................... 32 11 参考文献................................................ 33
重庆大学研究生学位论文格式
重庆大学研究生学位论文格式内容摘要:重庆大学研究生学位论文格式,重庆大学研究生论文模板 1 引言的质量,便利研究生学位论文的收集、存储、处理、加工、检索、利用、交流、传播。
1.2 本标准... 重庆大学研究生学位论文格式,重庆大学研究生论文模板1 引言的质量,便利研究生学位论文的收集、存储、处理、加工、检索、利用、交流、传播。
1.2 本标准适用于申请硕士学位、博士学位的学位论文的编写格式。
1.3 本标准是参照中华人民共和国国家标准《科学技术报告、学位论文和学术论文的编写格式》和《文后参考文献著录规则》制订的。
2 学位论文2.1 硕士学位论文硕士学位论文应能表明作者确已在本门学科上掌握了坚实的基础理论和系统的专业知识,并对所研究课题有新的见解,有从事科学研究工作或独立担负专门技术工作的能力。
2.2 博士学位论文博士学位论文应能表明作者确已在本门学科上掌握了坚实宽广的基础理论和系统深入的专门知识,并具有独立从事科学研究工作的能力,在科学或专门技术上做出了创造性的成果。
3 编写要求3.1 学位论文须用16K标准白纸、使用简化汉字、计算机打印、复制。
3.2 学位论文页边距按以下标准设置:上边距:2.8cm;下边距:2.5cm;左边距:2.5cm;右边距:2.5cm;装订线:0.5cm;页眉:1.6cm;页脚:1.5cm。
3.3 页眉从摘要页开始到最后,在每一页的最上方,用5号宋体,左对齐为“重庆大学博士(或硕士)学位论文”,右对齐为各章章名,页眉之下划1条线。
双面复制的论文,左页页眉居中为“重庆大学硕士(或博士)学位论文”,右页页眉居中为各章章名。
3.4 学位论文字间距设置为标准字间距(小四号宋体)或加宽0.2磅(五号宋体);行间距设置为加宽0.2磅。
也可参考上述值按每页32字×36行(小四字宋体)或34字×36行(五号宋体)设置。
4 编写格式4.1 学位论文章、节的编号采用阿拉伯数字分级编号(见6.2.1)。
大学物理仿真实验室申报书
起止时间 2008.1-2010.12经费25万参与哈尔滨工业大学
项目。60773065
2.项目名称弱Topos理论与应用的研究经费0.8万元起止年
月2002-2004审批机关黑龙江省教育厅科学技术研究项目
项目主持人。
3.项目名称数学建模课程建设的研究与实践经费1万元项目
2.赵宝江,李士勇.Convergence Analysis of a Class of Adaptive Ant
Colony Algorithm. Proceedings of the 6th World Congress on
Control and Automation, June, 2006, China. 3524-3527. EI
2011,47(21):153-156. 教学
科研
主要
成果 二、
专著和教材
1.蚁群优化及其在系统辨识和智能控制中的应用专著黑龙江教育
出版社2007. 独立作者18万字.
2.高等数学. 哈尔滨出版社,2003.第二作者.
3.高等数学文科类. 清华大学出版社2010.主审.
检索: 071510541880.
3.赵宝江,李士勇.Design of a Fuzzy Logic Controller by Ant Colony
Algorithm with Application to an Inverted Pendulum System.IEEE International Conference on Systems, Man, and
省级 批准时间
实
验
教
学
示
2010年IEEE138个未检索国际会议列表
2010 International Conference on Nanotechnology and Biosensors (ICNB)
2010 International Conference on Nuclear Energy and Engineering Technology (NEET)
2010 International Conference on Computer and Software Modeling (ICCSM)
2010 International Conference on Computer Science and Sports Engineering (CSSE)
2010 International Conference on Future Biomedical Information Engineering (FBIE)
2010 International Conference on Future Computer, Control and Communication (FCCC)
2010 International Conference on Measurement and Control Engineering (ICMCE)
2010 International Conference on Mechanical and Aerospace Engineering (ICMAE)
2010 3rd International Conference on Machine Vision (ICMV)
基于BP神经网络的变压器故障诊断研究毕业设计
……………………. ………………. …………………毕业设计装题目:基于BP神经网络的变压器故障诊断研究订线……………….……. …………. …………. ………毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。
尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。
对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。
作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。
作者签名:日期:学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。
除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。
对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。
本人完全意识到本声明的法律后果由本人承担。
作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。
本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。
涉密论文按学校规定处理。
作者签名:日期:年月日导师签名:日期:年月日注意事项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。
发表高级别论文的心得(五篇模版)
发表高级别论文的心得(五篇模版)第一篇:发表高级别论文的心得【转载】发表高级别论文的心得(转贴)2010年01月28日星期四 07:53 P.M.发表论文的一些体会如何发表高水平论文SCI/EI/ISTP/一级期刊的基本知识;如何利用数据库和查找文献;如何寻找领域前沿;如何撰写高水平论文和投稿;把握数量和质量的平衡。
SCI索引SCI(科学引文索引,英文全称Science Citation Index)是美国科学情报研究所(Institute for Scientific Information,简称ISI)拥有的世界著名的期刊文献检索工具。
SCI是SCI的光盘核心库;而SCI-Expanded(简称SCIE)是SCI的扩展库。
国内高校在统计论文索引情况时一般对SCI和SCIE都认可为SCI索引。
ISTP会议录索引ISI Proceedings(ISTP-Index to Scientific & Technical Proceedings),ISTP科学技术会议录索引是美国ISI编辑出版的查阅各种会议录的网络数据库。
目前国内很多高校也在统计ISTP索引的数量。
一般而言SCI索引的会议必然会被ISTP同时索引,但是反之不然。
影响因子IF 期刊引用报告JCR(Jorunal Citation Reports)是ISI对其SCI索引的期刊进行的参数化评价,影响因子IF(Impact Factor)是其中一项最有代表性的参数。
IF是当年其它SCI论文引用该刊此前2年所发表文章次数除以该刊前2中发表的文章数目,其值越大,说明该期刊越重要。
影响因子IF举例2004年计算机软件工程大类方面的76种期刊中,影响因子最大的是JOURNAL OF MACHINE LEARNING RESEARCH(5.952),最小的是COMPUTER GRAPHICS WORLD为0,国内最高水平的JOURNAL OF COMPUTER SCIENCE&TECHNOLOGY为0.28,2004年LNCS的影响因子为0.513 需要强调单篇文章的引用次数问题,自引与他引的问题。
参考文献
[1]卢汉清,刘静.基于图学习的自动图像标注[J]. 计算机学报,2008,31(9):1630-1645.[2]李志欣,施智平,李志清,史忠植.融合语义主题的图像自动标注[J].软件学报,2011,22(4):801-812.[3]Minyi Ke, Shuaihao Li, Yong Sun, Shengjun Cao . Research on similarity comparison by quantifying grey histogram based on multi-feature in CBIR [J]// Proceedings of the 3th International Conference on Education Technology and Training .IEEE Press.2010:422-424.[4] Wang Ke-Gang, Qi Li-Ying. Classification and Application of Images Based on Color Texture Feature[C]// Proceedings of 4th IEEE International Conference on Computer Science and Information Technology .IEEE Press. 2011:284-290.[5]Mohamed Maher Ben Ismail. Image Database Categorization based on a Novel Possibilistic Clustering and Feature Weighting Algorithm[C] // Proceedings of 2012 International Conference on Network and Computational Intelligence. 2012:122-127.[6]Du Gen-yuana, Miao Fang, Tian Sheng-li, Liu Ye.A modified fuzzy C-means algorithm in remote sensing image segmentation[C]// Proceedings of Environmental Science and Information Application Technology. 2009: 447-450.[7]Jeon J., Lavrenko V., Manmatha R. Automatic image annotation and retrieval using cross- media relevance models[C]// ACM SIGIR.ACM Press,2003:119- 126.[8]苗晓光,袁平波,何芳,俞能海. 一种新颖的自动图像标注方法[C].// 第十三届中国图象图形学术会议.2006:581-584参考文献正解[1] Smeulders A W M, Worring M, Santini S, et al. Content-based image retrieval at the end ofthe early years[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on,22(12),2000: 1349-1380.[2] Datta R, Joshi D, Li J, et al. Image retrieval: ideas, influences, and trends of the new age[J].ACM Computing Surveys (CSUR),40(2),2008: 5.[3] Mller H, Mller W, Squire D M G, et al. Performance evaluation in content-based imageretrieval: overview and proposals[J]. Pattern Recognition Letters,22(5),2001: 593-601.[4]Müller H, SO H E S. Text-based (image) retrieval[J]. HES SO//Valais, Sierre, Switzerland[Online] http://thomas. deselaers. de/teaching/files/tutorial_icpr08/03text Based Retrieval. pdf [Accessed 25 July 2010], 2007.[5]Zhao R, Grosky W I. Narrowing the semantic gap-improved text-based web document retrievalusing visual features[J]. Multimedia, IEEE Transactions on, 2002, 4(2): 189-200.[6]卢汉清,刘静.基于图学习的自动图像标注[J]. 计算机学报,2008,31(9):1630-1645.[7]李志欣,施智平,李志清.史忠植.融合语义主题的图像自动标注[J].软件学报,2011,22(4):801-812.[8] Li J, Wang JZ. Automatic linguistic indexing of pictures by a statistical modeling approach.IEEE Trans. on Pattern Analysis and Machine Intelligence, 2003,25(9):1075−1088. [doi:10.1109/TPAMI.2003.1227984][9] Chang E, Goh K, Sychay G, Wu G. CBSA: Content-Based soft annotation for multimodalimage retrieval using Bayes point machines. IEEE Trans. on Circuits and Systems for Video Technolo gy, 2003,13(1):26− 38. [doi: 10.1109/TCSVT.2002.808079][10]Carneiro G, Chan AB, Moreno PJ, Vasconcelos N. Supervised learning of semantic classes forimage annotation and retrieval. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2007,29(3):394 − 410. [doi: 10.1109/TPAMI.2007.61][11]Blei DM, Jordan MI. Modeling annotated data. In: Proc. of the 26th Int’l ACM SIGIR Conf.on Research and Development in Information Retrieval. New York: ACM Press, 2003. 127− 134. [doi: 10.1145/860435.860460][12]Barnard K, Duygulu P, Forsyth D, de Freitas N, Blei DM, Jordan MI. Matching words andpictures. Journal of Machine Learning Research, 2003,3(2):1107 − 1135. [doi:10.1162/153244303322533214][13] LA VRENKO V, JEON J. Automatic image annotation and retrieval using cross-mediarelevance models. [C]//Proceeding of the 26th ACM SIGIR Conf. on Research and Development in Information Retrieval . New York: ACM, 2003: 119 − 126.[14]MINVI KE, SHUAIHAO LI, YONG SUN, SHENGJUN CAO. Research on similaritycomparison by quantifying grey histogram based on multi-feature in CBIR [C]//Proceeding of the 3rd International Conference on Education Technology and Training .IEEE,2010:422-424.[15] WANGKE GANG, QILI YING. Classification and application of images based on colortexture feature[C]// Proceedings of 4th IEEE International Conference on Computer Science and Information Technology .IEEE, 2011:284-290.[16]Mohamed Maher Ben Ismail. Image Database Categorization based on a Novel PossibilisticClustering and Feature Weighting Algorithm[C] // Proceedings of 2012 International Conference on Network and Computational Intelligence. 2012:122-127.[17]Du Gen-yuana, Miao Fang, Tian Sheng-li, Liu Ye.A modified fuzzy C-means algorithm inremote sensing image segmentation[C]// Proceedings of Environmental Science and Information Application Technology. 2009: 447-450.[18] Wang Ke-Gang, Qi Li-Ying. Classification and Application of Images Based on ColorTexture Feature[C]// Proceedings of 4th IEEE International Conference on Computer Science and Information Technology .IEEE Press. 2011:284-290.[19]Jeon J., Lavrenko V., Manmatha R. Automatic image annotation and retrieval using cross-media relevance models[C]// ACM SIGIR.ACM Press,2003:119- 126.[20]苗晓光,袁平波,何芳,俞能海. 一种新颖的自动图像标注方法[C].// 第十三届中国图象图形学术会议.2006:581-584.[21] Duygulu P, Barnard K, de Freitas J F G, et al. Object recognition as machine translation:Learning a lexicon for a fixed image vocabulary[M]//Computer Vision—ECCV 2002.Springer Berlin Heidelberg, 2002: 97-112.[22]王科平,王小捷,钟义信.加权特征自动图像标注方法[J].北京邮电大学学报,.2011:34(5):6-9.[23] Chen K, Li J, Ye L. Automatic Image Annotation Based on Region Feature[M]//Multimediaand Signal Processing. Springer Berlin Heidelberg, 2012: 137-145.[24]刘丽, 匡纲要. 图像纹理特征提取方法综述[J]. 中国图象图形学报, 2009, 14(4): 622-635.[25] 杨红菊, 张艳, 曹付元. 一种基于颜色矩和多尺度纹理特征的彩色图像检索方法[J]. 计算机科学, 2009, 36(9): 274-277.[26]Minyi Ke, Shuaihao Li, Yong Sun, Shengjun Cao . Research on similarity comparison byquantifying grey histogram based on multi-feature in CBIR [J]// Proceedings of the 3th International Conference on Education Technology and Training .IEEE Press.2010:422-424 [27] Mohamed Maher Ben Ismail. Image Database Categorization based on a Novel Possibilistic Clustering and Feature Weighting Algorithm[C] // Proceedings of 2012 International Conference on Network and Computational Intelligence. 2012:122-127.[28]Khalid Y I A, Noah S A. A framework for integrating DBpedia in a multi-modality ontologynews image retrieval system[C]//Semantic Technology and Information Retrieval (STAIR).IEEE, 2011: 144-149.[29]Celik T, Tjahjadi T. Bayesian texture classification and retrieval based on multiscale featurevector[J]. Pattern recognition letters, 2011, 32(2): 159-167.[30]Min R, Cheng H D. Effective image retrieval using dominant color descriptor and fuzzysupport vector machine[J]. Pattern Recognition, 2009, 42(1): 147-157.[31]Feng H, Shi R, Chua T S. A bootstrapping framework for annotating and retrieving WWWimages[C]//Proceedings of the 12th annual ACM international conference on Multimedia.ACM, 2004: 960-967.[22]Ke X, Chen G. Automatic Image Annotation Based on Multi-scale SalientRegion[M]//Unifying Electrical Engineering and Electronics Engineering.New York, 2014: 1265-1273.[33]Wartena C, Brussee R, Slakhorst W. Keyword extraction using wordco-occurrence[C]//Database and Expert Systems Applications (DEXA).IEEE, 2010: 54-58. [34]刘松涛, 殷福亮. 基于图割的图像分割方法及其新进展[J]. 自动化学报, 2012, 38(6):911-922.[35]陶文兵, 金海. 一种新的基于图谱理论的图像阈值分割方法[J]. 计算机学报, 2007, 30(1):110-119.[36]谭志明. 基于图论的图像分割及其嵌入式应用研究[D][J]. 博士学位论文) 上海交通大学,2007.[37] Shi J, Malik J. Normalized cuts and image segmentation[J]. Pattern Analysis and MachineIntelligence,2000, 22(8): 888-905.[38] Huang Z C, Chan P P K, Ng W W Y, et al. Content-based image retrieval using color momentand Gabor texture feature[C]//Machine Learning and Cybernetics (ICMLC), 2010 International Conference on. IEEE, 2010, 2: 719-724.[39]王涛, 胡事民, 孙家广. 基于颜色-空间特征的图像检索[J]. 软件学报, 2002, 13(10).[40] 朱兴全, 张宏江. iFind: 一个结合语义和视觉特征的图像相关反馈检索系统[J]. 计算机学报,2002, 25(7): 681-688.[41]Sural S, Qian G, Pramanik S. Segmentation and histogram generation using the HSV colorspace for image retrieval[C]//Image Processing. 2002. Proceedings. 2002 International Conference on. IEEE, 2002, 2: II-589-II-592 vol. 2.[42]Ojala T, Rautiainen M, Matinmikko E, et al. Semantic image retrieval with HSVcorrelograms[C]//Proceedings of the Scandinavian conference on Image Analysis. 2001: 621-627.[43]Yu H, Li M, Zhang H J, et al. Color texture moments for content-based imageretrieval[C]//Image Processing. 2002. Proceedings. 2002 International Conference on. IEEE, 2002, 3: 929-932.[44]Sun L, Ge H, Yoshida S, et al. Support vector description of clusters for content-based imageannotation[J]. Pattern Recognition, 2014, 47(3): 1361-1374.[45]Hiremath P S, Pujari J. Content based image retrieval using color, texture and shapefeatures[C]//Advanced Computing and Communications, 2007. ADCOM 2007.International Conference on. IEEE, 2007: 780-784.[46]Zhang D, Lu G. Generic Fourier descriptor for shape-based image retrieval[C]//Multimediaand Expo, 2002. ICME'02. Proceedings. 2002 IEEE International Conference on. IEEE, 2002, 1: 425-428.[47]Gevers T, Smeulders A W M. Pictoseek: Combining color and shape invariant features forimage retrieval[J]. Image Processing, IEEE Transactions on, 2000, 9(1): 102-119.[48] Bailloeul T, Zhu C, Xu Y. Automatic image tagging as a random walk with priors on thecanonical correlation subspace[C]//Proceedings of the 1st ACM international conference on Multimedia information retrieval. ACM, 2008: 75-82.[16]MOHAMED MAHER, BEN ISMAIL. Image database categorization based on a novelprobability clustering and feature weighting algorithm[C] // Proceedings of 2012 International Conference on Network and Computational Intelligence, 2012:122-127.[17]DU GENYUANA, TIAN SHENGLI, LIU YE.A modified fuzzy c-means algorithm in remotesensing image segmentation[C]// Proceedings of Environmental Science and Information Application Technology, 2009: 447-450.[18]SIVIC J, RUSSELL BC. Discovering objects and their location in images.[C] //Proceedingsof the 10th IEEE Int’l Conf. on Computer Vision .IEEE Computer Society, 2005:370 − 377.[19] DUYGULU P, BARNARD K, FORSYTH D. Object recognition as machine translation [J].//Learning a lexicon for a fixed image vocabulary In: HEYDEN A, NIELSEN M, JOHANSEN P, eds. Lecture Notes in Computer Science 2353,2002,45(1): 97−112.[20]JEON J, MANMA THA R. Automatic image annotation and retrieval using cross- mediarelevance models[C]// ACM SIGIR.ACM,2003:119- 126.[21]G K RAMANI and T ASSUDANI. Tag recommendation for photos[J].In Stanford CS229Class Project, 2009,23(1):130 − 145.[22] D. ZHANG and G. LU. A review on automatic image annotation techniques[J]. PatternRecognition, 2011,145(1):346–362.[23]K.BARNARD,P.DUGGULU,N FREITAS,D FORSYTH, D BLEI. Matching words andpictures [J].Journal of Machine Learning Research,2003,132(2):1107-1135.[24]苗晓光,袁平波,何芳,俞能海. 一种新颖的自动图像标注方法[C].// 第十三届中国图象图形学术会议.2006:581-584.[25] 王科平,王小捷, 钟义信.加权特征自动图像标注方法[J].北京邮电大学学报,2011,34(5):6−9.[26] JIN R, KANG F, SUKTHANKAR R. Correlated label propagation with application tomulti-label learning [C]. //Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.2006:119-126.[27]YANG C.B, DONG, M, HUA J. Region-based image annotation using asymmetrical supportvector machine-based multiple-instance learning[C].// Proceeding of the CVPR.2006:2057–2063.[28] CARNEIRO G, V ASCONCELOS N. A database centric view of semantic image annotationand retrieval[C].// Proceeding of ACM SIGIR. 2005:559–566.[29] CUSANO C, CIOCCA G, SCHETTINI R. Image annotation using SVM[C].// Proceeding ofthe Internet Imaging, 2004: 330–338.[30]R Y AN, A HAUPTMANN, R JIN. Multimedia search with pseudo-relevancefeedback[C].//Proceeding of IEEE conference on Content-based Image and Video Retrieval.2007:238-247.[31] J W ANG, S KUMAR, S CHANG. Semi-supervised hashing for scalable imageretrieval[C].//Proceeding of IEEE conference on Computer Vision.2009:1-8.[32]M KOKARE, B CHATTERJI, P BISWAS. Comparison of similarity metrics for texture imageretrieval[C].//Proceeding of IEEE conference on Convergent Technologies for Asia-Pacific Region.2003:571-575.[33]EDWARD CHANG, KINGSHY GOH, GERARD SYCHAY, GANG WU. Content-base softannotation for multimodal image retrieval using bays point machines[J].CirSysVideo,2003,13(1):26-38.[34]SHI J, MALIK J. Normalized cuts and image segmentation[J].IEEE Transactions on PatternAnalysis and Machine Intelligence,2000,22(8):888-905.[35]ZHOU D, BOUSQUET O. Learning with local and global consistency[C].//Proceeding ofAdvances in Neural Information Proceeding Systems,2004:321-328.[36]Minyi Ke, Shuaihao Li, Yong Sun, Shengjun Cao . Research on similarity comparison byquantifying gray histogram based on multi-feature in CBIR [J]// Proceedings of the 3th International Conference on Education Technology and Training .IEEE Press.2010:422-424 [37] Wang Ke-Gang, Qi Li-Ying. Classification and Application of Images Based on ColorTexture Feature[C]// Proceedings of 4th IEEE International Conference on Computer Science and Information Technology .IEEE Press. PP:284-290 ,2011[38] Chen K, Li J, Ye L. Automatic Image Annotation Based on Region Feature[M]//Multimediaand Signal Processing. Springer Berlin Heidelberg, 2012: 137-145.[39]Lu Z, Ip H H S. Generalized relevance models for automatic image annotation [M]//Advancesin Multimedia Information Processing-PCM 2009. Springer Berlin Heidelberg, 2009: 245-255.[40]Fournier J, Cord M. A Flexible Search-by-Similarity Algorithm for Content-Based ImageRetrieval[C]//JCIS. 2002: 672-675.论文3[1]Zhang C, Chai J Y, Jin R. User term feedback in interactive text-based image retrieval[C]//Proceedings of the 28th annual international ACM SIGIR conference on Research and development in information retrieval. ACM, 2005: 51-58.[2]Akgül C B, Rubin D L, Napel S, et al. Content-based image retrieval in radiology: currentstatus and future directions[J]. Journal of Digital Imaging, 2011, 24(2): 208-222.[7]Zhang D, Islam M, Lu G. Structural image retrieval using automatic image annotation and region based inverted file[J]. Journal of Visual Communication and Image Representation, 2013, 24(7): 1087-1098.[8]Datta R, Joshi D, Li J, et al. Image retrieval: Ideas, influences, and trends of the new age[J]. ACM Computing Surveys (CSUR), 2008, 40(2): 111-115.[9]Li ZX, Shi ZP, Li ZQ, Shi ZZ. A survey of semantic mapping in image retrieval[J]. Journal of Computer-Aided Design and Computer Graphics, 2008,20(8):1085−1096 (in Chinese with English abstract).[10]Zhang D, Islam M M, Lu G. A review on automatic image annotation techniques[J]. Pattern Recognition, 2012, 45(1): 346-362.[11] Li J, Wang J Z. Automatic linguistic indexing of pictures by a statistical modeling approach[J]. Pattern Analysis and Machine Intelligence,2003, 25(9): 1075-1088.[12] Chang E, Goh K, Sychay G, et al. CBSA: content-based soft annotation for multimodal image retrieval using Bayes point machines[J]. Circuits and Systems for Video Technology,2003, 13(1): 26-38.[13]Jeon J, Lavrenko V, Manmatha R. Automatic image annotation and retrieval using cross-media relevance models[C]//Proceedings of the 26th annual international ACM SIGIR conference on Research and development in information retrieval. ACM,2003: 119−126.[14] Lavrenko V, Manmatha R, Jeon J. A Model for Learning the Semantics of Pictures[C]//NIPS. 2003: 11-18.[15]Feng S L, Manmatha R, Lavrenko V. Multiple bernoulli relevance models for image and video annotation[C]//Proceedings of the IEEE Computer Society conference onComputer Vision and Pattern Recognition.IEEE, 2005: 51-58.[16]Tian D, Zhao X, Shi Z. An Efficient Refining Image Annotation Technique by Combining Probabilistic Latent Semantic Analysis and Random Walk Model[J]. Intelligent Automation & Soft Computing, 2014 (ahead-of-print): 1-11.。
基于随机效应Wiener退化模型的剩余寿命预测
基于随机效应Wiener退化模型的剩余寿命预测冯海林;李秀秀【摘要】针对退化率较高的产品具有不稳定的退化路径以及产品个体差异对退化过程的影响,建立了一种新的随机效应退化模型,即漂移参数和扩散参数均为随机变量且两者之间呈线性关系的Wiener退化过程模型.基于该模型获得了产品剩余寿命分布与可靠度函数,同时设计了估计模型参数的EM(expectation maximization)算法.最后,通过分析钛合金疲劳裂纹数据以及与现有模型结果的比较,验证了所建模型的有效性和准确性.【期刊名称】《浙江大学学报(理学版)》【年(卷),期】2018(045)006【总页数】6页(P679-683,693)【关键词】Wiener过程;随机效应;剩余寿命;EM算法【作者】冯海林;李秀秀【作者单位】西安电子科技大学数学与统计学院 ,陕西西安710126;西安电子科技大学数学与统计学院 ,陕西西安710126【正文语种】中文【中图分类】O211.670 引言随着科学技术的快速发展,航空航天、电子工业、机械等领域出现了大量具有高可靠性与长寿命的产品,即在常应力下很难观测到产品失效,在加速寿命试验中也很少甚至无失效数据. 这给传统的基于寿命数据的可靠性分析带来了极大挑战. 在此背景下,基于性能退化的建模思想,为这些长寿命、高可靠性产品的可靠性分析提供了新的途径[1-2]. 从产品性能退化的角度分析其失效情况,一般需要选择一个与产品寿命或可靠性高度相关且可以测量的或从测量数据中可以提取的变量,称其为性能可靠性特征量[3-4].刻画产品性能退化所提取的特征量称为性能退化量,性能退化量受产品使用环境等因素的影响,且随时间的变化而变化,具有一定的随机性.因此,建立合理的性能退化随机过程模型是准确预测产品剩余寿命的关键环节之一. 基于标准Wiener过程所衍生的性能退化过程模型是近年来广受关注且可描述多种典型产品性能退化的一类随机过程,其一般形式为X(t)=vΛ(t)+σB(Λ(t)),(1)其中,{X(t):t≥0}表示产品性能的退化量.v是漂移参数,σ是扩散参数,且v和σ均为常数. B(·)是标准的Wiener过程,Λ(·)通常表示时间尺度的单调增函数,且Λ(0)=0和B(0)=0.实际应用中,产品性能的退化具有个体差异性,为此,PENG等[5]首次将个体差异性视为随机影响引入Wiener退化模型的漂移参数中. WANG[6]将个体差异性建模为漂移参数和扩散参数随机化,并用EM算法估计模型参数. YE 等[7]提出了一类新的随机效应Wiener退化模型,漂移参数是随机的,扩散参数与其正相关,符合产品高退化率和较高波动性的高可靠性特点. 实际上,受测量工具及使用方法等因素影响,测得的产品性能退化(疲劳裂纹长度、磁头磨损等)量存在一定误差,文献[7]未考虑测量误差对退化率与波动性的影响. 本文在文献[7]模型的基础上,建立了新的随机效应Wiener过程模型,通过引入误差变量a,a~N(μa,,即考虑了测量误差的影响,使模型更符合实际产品的退化数据.但模型精确化的同时也令计算更困难.本文的另一工作是解决参数估计问题.根据以上随机效应Wiener过程模型和当前的性能退化量,建立剩余寿命的退化模型,获得剩余寿命的概率密度函数和可靠度函数. 通过分析退化模型参数,可知模型的参数含有随机效应,对数似然函数比较复杂,很难最优化. 因此,选用EM算法进行参数估计,再融合同类产品的退化数据,对该Wiener退化模型中的未知参数进行估计,并与已有模型进行对比,以说明本模型的实用性和精确性.1 含随机效应的Wiener退化模型令X(t)为产品在t时刻的性能退化量的测量值,建立随机效应Wiener退化模型为X(t)=vΛ(t)+(ζv+a)B(Λ(t)),(2)其中,{X(t):t≥0}表示产品性能的退化量, v为漂移参数,ζv+a为扩散参数,a为误差项,表示测量误差,且v和a都是随机的,即v~N(μ, w2), a~N(μa, ,B(·)是标准的Wiener过程,Λ(·)通常表示时间尺度的单调增函数,且Λ(0)=0和B(0)=0.由于产品制造工艺、制造材料的差异以及受工作环境的动态影响,同类型不同产品的性能退化过程存在差异. 为描述这种差异性,在退化模型中常采用将相关参数随机化的方法,即将Wiener退化模型(1)中的漂移参数设成正态分布.模型(2)与模型(1)相比,有σ=ζv+a,表示v和σ呈线性关系. 通过加入误差项a,缩小了性能退化测量值与真实值之间的偏差,从而提高了产品可靠性评估的精确度. 该Wiener模型不仅体现了产品个体在同时具有高退化率与高波动性的性质,而且也解决了产品的退化性能在测量时会产生误差的问题;同时,大大降低了计算难度,更符合实际产品的退化数据,从而能更准确地预测产品的剩余寿命.根据Wiener退化模型(1),考虑漂移参数的随机效应,可知模型(2)中退化量X(t)的概率密度函数(PDF)为fX(t)(t)=×.(3)2 基于Wiener退化过程的剩余寿命预测本文的主要目的是利用新随机效应Wiener退化模型(2)描述产品的退化轨迹,最终预测产品的剩余寿命. 下面将由首达时的概念推导随机效应Wiener退化模型(2)计算的剩余寿命的分布形式. 为此,首先给出Wiener过程首达时的分布.2.1 Wiener过程首达时的分布给定产品的失效阈值ξ,产品的寿命T为性能退化量X(t)首次达到失效阈值ξ的时间,则T=inf(t|X(t)≥ξ,t>0).(4)考虑模型(2)中的漂移参数μ和a是随机变量,则产品的寿命T的根率密度函数(PDF)为(5)其相应的概率分布函数为(6)因此,产品的可靠度函数可表示为R(t)=P(T>t)=1-fT(t)dt=1-Φ×Φ.(7)2.2 产品的剩余寿命预测为预测某产品的剩余寿命,首先须建立此产品的剩余寿命预测模型. 假定特定产品在时刻tk和t+tk的性能退化量为X(tk)和X(t+tk). 按照Wiener过程独立增量的性质,可得X(t+tk)=X(tk)+vΛ(t)+(ζv+a)B(Λ(t)).(8)产品的剩余寿命是指从当前时刻到产品失效时刻的时间间隔. 如果已知当前的性能退化量为X(tk),根据寿命的定义可知产品在时刻tk的剩余寿命t为M=inf(t|X(t+tk)≥ξ, t>0).(9)获得产品剩余寿命的关键是找到剩余寿命的概率密度函数(PDF).由Wiener过程独立增量性质知,M= inf(t|X(t+tk)≥ξ,t>0)=inf(t|X(t+tk)-X(tk)≥ξ-X(tk),t>0)=inf(t|X(t)≥ξ-X(tk),t>0),(10)则产品的剩余寿命t的PDF为(11)3 Wiener退化模型的参数估计由退化数据估计参数θ=(μ,w2,μa,,ζ,β′)′,(12)其中β为Λ(t;β)中未知参数的集合. 当一个产品的性能退化量可观察时,能够更新v的分布. 假定可获得N个实验产品的退化数据,当时间为(t1,t2,…,tn)′时观察的退化量为x=(x1,x2,…,xn)′,令Δx=(Δx1,Δx2,…,Δxn)′,其中Δx1=x1和Δxj=xj-xj-1. 类似地,令λ1=Λ(t1)和λj=Λ(tj)-Λ(tj-1),1<j≤n. 基于贝叶斯理论,v分布可由式(13)更新为式(12):f(v|Δx)∝∝,(13)其中,,.令vi为第i个产品已实现的随机效应. 以vi为条件,第i个产品的退化量{Xi(t);vi,t>0}有独立的增量. ΔXi=(ΔXi1,ΔXi2,…,ΔXini)为退化量增量,其中ΔXij=X(tij)-X(tij-1),j=1,2,…,ni,ΔXi1=X(ti1). Δxi是增量的观察值,N个产品的观察数集D={Δxi,i=1,2,…,N}. 由对数似然函数得到极大似然估计,式(13)可改写为式(14).(14)因式中含有随机效应,对数似然函数较复杂,很难最优化. 因此,可用EM算法估计新随机效应Wiener退化模型中的未知参数. 给定参数估计θ(m),经EM算法反复迭代Eθ(m)[l(θ)]后,用θ更新θ(m).EM算法的求解分2步:E-step 给定观测数据集D={Δxi,i=1,2,…,N}和初始参数值θ(0),计算对数似然函数l(θ)关于未知参数θ的期望. 定义对数似然函数的期望Q(θ|θ(m))=E[l(θ;D)|θ(m),D],θ(m)表示m次迭代的估计参数 . vi关于Δxi和θ的条件分布为f(vi|Δ×.(15)由式 (15)可改写为式(14),有E[vi|ΔΔxi,.然后用ui和vi分别表示E[vi|Δxi,θ(m)]和Δxi,θ(m)]. θ(m)中相应的参数通过依次迭代参数获得和.M-step 最大化期望值Q(θ|θ(m)),即找到一个θ(m+1),θ|θ(m)),由式(14)知,Q函数可分解成两部分. 第1部分为Q1(θ|θ(m))=,(16)式(16)可改写为式(15),可求得μa,,μ和w2的最大值:μ(m+1)),(w2)(m+1)=,;第2部分为Q2(θ λij+,利用Q2(θ|θ(m))对ζ2求导,且令导数为0,式(18)改写为式(17):.(18)将式(18)代入式(17),得到β|θ(m))=,(19)从β开始最大化式(18),得到β(m+1),且将结果代入式(17),得到(ζ2)(m+1).4 数据分析基于本文的Wiener退化模型数据分析,以文献[8]中2024-T351铝合金样本的疲劳裂纹扩展数据为例(在同一恒定振幅下获得数据),所有样品的初始裂纹长度相同;每个样品的裂纹长度增量是在10 000个时间周期后测量的,每间隔5 000个时间周期测量1次,直到40 000个时间周期止. 实验数据见表1[8],得到的裂纹增长路径图见图1.表1 5种Wiener过程模型的MLE和AICTable 1 MLEs and AICs of the five Wiener process models模型MLEAICSM^v=0.0223,^σ=0.0386,^b=1.53180.2RDV^μ=34.44,^ω=11.43,^ζ=1. 08,^b=1.42-4.4RD^μ=0.0294,^ω=0.0095,^σ=0.0407,^b=1.4586.6RDRV^r=0.035,^δ=1 .175,^θ=2.458,^μ=0.0284,^b=1.4019.1NRDV^μ=40.84,^ω=9.98,^μa=0.14 ,^ωa=2.17,^ζ=0.45,^b=1.28-4.76图1 30个样本的裂纹增长路径Fig.1 Fatigue crack growth paths of 30 testingWU等[8]通过纵向数据分析技术拟合数据,本文使用Wiener过程分析此组数据. 研究中,简单模型式(1)记为SM,其中参数v和σ为固定常数;由YE等[7]提出的随机效应模型记为RDV,其漂移参数v~N(μ,w2),扩散参数σ=ζv;由PENG 等[5]提出的随机效应模型记为RD,其v~N(μ,w2);由WANG[6]提出的随机效应模型记为RDRV,其漂移参数[v|σ]~N(μ,θσ2),扩散参数σ-2~Ga(r,δ);本文的随机效应模型记为NRDV,其漂移参数v~N(μ,w2),扩散参数σ=ζv+a;对这几种模型进行参数估计和AIC值计算.通常认为裂纹增长遵循幂律,表示为Λ(t)=tb. 表1为SM(固定效应)、RDV(随机效应模型)、RD(单一效应模型)、RDRV(混合效应模型)和NRDV(新随机效应模型)5种模型参数的极大似然估计及对应的AIC(Akaike information criterion). AIC=2k-2 ln l,其中,k为参数的数量,l为模型似然函数的最大值. AIC值越小,表示模型越符合实际. 由表1 知,“NRDV”最符合实际数据,因此,由该模型预测的剩余寿命更精确.下面给出NRDV最优的解释. 使用简单的Wiener退化模型(1)分别验证30个样本的退化路径,测得的30组数据均有一个共同的指数参数b. 分别给出该数据的30对估计值,,如图2所示.图2 参数和之间的散点图Fig.2 Scatter plot of the estimated drift parameter and estimated volatility parameter .从图2中可以看出,估计的漂移参数和扩散参数呈线性分布,且一次拟合系数为0.583 6. 说明当产品有更高的退化率时,其退化路径会随退化率的变化而波动. 本文提出的模型可以更好地解释这一现象.为进一步评估该模型的拟合优度,注意到(Δxij-viλij)/(ζ是独立的标准正态随机变量,vi是第i个单元的随机效应,因此可以考虑分位数(Q-Q)图. 然而,在标准的正态随机变量中所涉及的所有参数都应由数据的估计值代替,则拟合的差异取决于参数值和样本大小. 因此,本文是在相同情景和相同样本下模拟获得的极大似然估计值,并以该估计值为参数进行Q-Q图评估,见图3.由图3知,该模型拟合良好.图3 参数vi的标准正态Q-Q图Fig.3 Standard normal Q-Q plot for parameter5 结论高退化率产品也具有高波动性,这是一种常见现象. 由于均值和方差是2个互相独立的参数,以前研究的Wiener退化过程不易描绘上述问题. 为了克服这一缺陷,本文提出了新随机效应的Wiener过程模型,即在简单的Wiener退化模型上,引入随机效应,对v施加一个正态分布,并将扩散参数与漂移参数设定成线性关系,此模型较现有随机效应维纳过程模型(扩散参数和漂移参数都相互独立)更符合实际情况. 对新的随机效应模型进行统计推断,并用EM算法估计模型参数,验证了本文模型的有效性和准确性.本模型可用于退化试验,以评估产品的可靠性,也可预测已知当前退化量产品的剩余寿命. 结果表明,本模型更接近实际应用. 因此,利用本模型估计的可靠性和预测的剩余使用寿命更准确. 同时,本模型还具有扩展性,而现有随机效应模型中的假设是有所限制的. 需要指出的是:除了正态分布外,截断正态分布也常用来表示随机效应分布.参考文献(References):【相关文献】[1] MEEKER W Q, HAMADA M. Statistical tools for the rapid development and evaluationof high-reliability products[J]. IEEE Transactions on Reliability, 1995, 44(2): 187-198. [2] LU C J, MEEKER W Q, ESCOBAR L A. A comparison of degradation and failure-time analysis methods for estimating a time-to-failure distribution[J]. Statistica Sinica,1996,6(3):531-546.[3] 金光.基于退化的可靠性技术[M]. 北京:国防工业出版社, 2014.JIN G.Reliability Technology Based on Degradation[M]. Beijing: National Defense Industry Press,2014.[4] 訾佼佼, 刘宏昭, 蒋喜,等. 基于退化量分布的电主轴可靠性评估[J]. 中国机械工程, 2014,25(6):807-812.ZI J J, LI H Z, JIANG X, et al. Reliability assessment of electric spindle based on degradation values distribution[J]. China Mechanical Engineering, 2014,25(6): 807-812. [5] PENG C Y, TSENG S T. Mis-specification analysis of linear degradation models[J]. IEEE Transactions on Reliability, 2009, 58(3): 444-455.[6] WANG X. Wiener processes with random effects for degradation data[J]. Journal of Multivariate Analysis, 2010, 101(2): 340-351.[7] YE Z S, CHEN N, SHEN Y. A new class of Wiener process models for degradation analysis[J]. Reliability Engineering & System Safety, 2015, 139: 58-67.[8] WU W F, NI C C. A study of stochastic fatigue crack growth modeling through experimental data[J]. Probabilistic Engineering Mechanics, 2003, 18(2): 107-118.。
DIRART (Deformable Image Registration and Adaptive Radiotherapy) Software Suite
1
Table of Content DIRART (Deformable Image Registration and Adaptive Radiotherapy) Software Suite.............. 1 (Version 1.0a) ................................................................................................................................. 1 User Instruction Manual ................................................................................................................. 1 Version 0.1...................................................................................................................................... 1 Deshan Yang, PhD...................................................................................................................... 1 Issam El Naqa, PhD .................................................................................................
138个已实现EI检索的被取消国际会议
截止2011年9月IEEE官方取消了136个已实现EI检索的国际会议,这些国际会议以赢利为目的,只管收钱,文章质量太差,不取消才怪呢。
2010 2nd Asia-Pacific Conference on Information Processing (APCIP)2010 2nd International Asia Symposium on Intelligent Interaction and Affective Computing & 2010 2nd International on Innovation Management (ASIA-ICIM)2010 2nd International Conference on Future Computer and Communication (FCC)2010 2nd International Conference on Information and Multimedia Technology (ICIMT)2010 2nd International Conference on Intellectual Technique in Industrial Practice (ITIP 2010) 2010 2nd International Conference on Multimedia and Computational Intelligence (ICMCI)2010 2nd International Conference on Research Challenges in Computer Science (ICRCCS)2010 2nd International Symposium on Computer Network and Multimedia Technology (CNMT 2010)2010 3rd International Conference on Computational Intelligence and Industrial Application (PACIIA)2010 3rd International Conference on Environmental and Computer Science (ICECS)2010 3rd International Conference on Machine Vision (ICMV)2010 3rd International Conference on Power Electronics and Intelligent Transportation System (PEITS)2010 4th International Conference on Intelligent Information Technology Application (IITA)2010 6th International Conference on MEMS, NANO, and Smart Systems (ICMENS)2010 First International Conference on Cellular, Molecular Biology, Biophysics and Bioengineering (CMBB)2010 IIS 2nd International Conference on Signal Processing, Robotics and Automation (ICSRA 2010)2010 International Asia Conference on Optical Instrument and Measurement (ACPIM)2010 International Conference on Bio-Inspired Systems and Signal Processing (ICBSSP)2010 International Conference on Biology, Environment and Chemistry (ICBEC)2010 International Conference on Broadcast Technology and Multimedia Communication (BTMC) 2010 International Conference on Circuit and Signal Processing (ICCSP)2010 International Conference on Communication and Vehicular Technology (ICCVT)2010 International Conference on Computational Intelligence and Vehicular System (CIVS)2010 International Conference on Computer and Computational Intelligence (ICCCI)2010 International Conference on Computer and Software Modeling (ICCSM)2010 International Conference on Computer Science and Sports Engineering (CSSE)2010 International Conference on Computer-Aided Manufacturing and Design (CMD)2010 International Conference on Construction and Project Management (ICCPM)2010 International Conference on Digital Enterprise and Digital Manufacturing (DEDM)2010 International Conference on E-business, Management and Economics (ICEME)2010 International Conference on Economics, Business and Management (ICEBM)2010 International Conference on Electrical Engineering and Automatic Control (ICEEAC)2010 International Conference on Embedded Systems and Microprocessors (ICESM)2010 International Conference on Engineering Education and Educational Technology (EEET) 2010 International Conference on Future Biomedical Information Engineering (FBIE)2010 International Conference on Future Computer, Control and Communication (FCCC)2010 International Conference on Future Industrial Engineering and Application (ICFIEA)2010 International Conference on Future Information Technology (ICFIT)2010 International Conference on Future Information Technology and Computing (FITC)2010 International Conference on Graphic and Image Processing (ICGIP)2010 International Conference on Information and Finance (ICIF)2010 International Conference on Information Security and Artificial Intelligence (ISAI)2010 International Conference on Intelligence and Information Technology (ICIIT)2010 International Conference on Intelligent Network and Computing (ICINC)2010 International Conference on Management Science (ICMS)2010 International Conference on Management Science and Information Engineering (ICMSIE) 2010 International Conference on Manufacturing Science and Technology (ICMST)2010 International Conference on Measurement and Control Engineering (ICMCE)2010 International Conference on Mechanical and Aerospace Engineering (ICMAE)2010 International Conference on Mechanical Engineering, Robotics and Aerospace (ICMERA) 2010 International Conference on Modeling, Simulation and Control (ICMSC 2010)2010 International Conference on Nano Science and Technology (ICNST)2010 International Conference on Nanotechnology and Biosensors (ICNB)2010 International Conference on Nuclear Energy and Engineering Technology (NEET)2010 International Conference on Physics Science and Technology (ICPST)2010 International Conference on Psychology, Psychological Sciences and Computer Science (PPSCS)2010 International Conference on Remote Sensing (ICRS)2010 International Conference on Semiconductor Laser and Photonics (ICSLP)2010 International Conference on Services Science, Management and Engineering (SSME)2010 International Conference on Signal and Information Processing (ICSIP)2010 International Conference on Software and Computing Technology (ICSCT)2010 International Conference on Sport Medicine, Sport Science, and Computer Science (SMSSCS)2010 ISECS International Colloquium on Computing, Communication, Control, and Management (CCCM 2010)2010 Second International Conference on E-Learning, E-Business, Enterprise Information Systems, and E-Government (EEEE)2010 Second International Conference on Test and Measurement (ICMT)2010 Second International Seminar on Business and Information Management (ISBIM)2010 Third International Conference on Computer and Electrical Engineering (ICCEE)2010 Third International Conference on Education Technology and Training (ETT)2010 Third International Symposium on Intelligent Ubiquitous Computing and Education (IUCE) 2010 Third Pacific-Asia Conference on Web Mining and Web-Based Application (WMWA)2011 15th Global Chinese Conference on Computers in Education (GCCCE)2011 2nd Asia-Pacific Conference on Wearable Computing Systems (APWCS)2011 2nd International Conference on Biomedical Engineering and Computer Science (ICBECS) 2011 2nd International Conference on Biotechnology and Food Science (ICBFS)2011 2nd International Conference on Data Storage and Data Engineering (DSDE)2011 2nd International Conference on Environmental Science and Technology (ICEST)2011 2nd International Conference on Financial Theory and Engineering (ICFTE)2011 2nd International Conference on Mechanical, Industrial, and Manufacturing Technologies (MIMT)2011 2nd Intl Conf on Innovative Computing & Communication and 2010 Asia-Pacific Conf on Information Technology & Ocean Engineering, (CICC-ITOE)2011 2nd World Congress on Computer Science and Information Engineering (CSIE)2011 3rd IEEE International Conference on Information Management and Engineering (ICIME) 2011 3rd International Conference on Bioinformatics and Biomedical Technology (ICBBT 2011) 2011 3rd International Conference on Computer and Automation Engineering (ICCAE)2011 3rd International Conference on Computer and Network Technology (ICCNT)2011 3rd International Conference on Computer Design and Applications (ICCDA 2011)2011 3rd International Conference on Computer Modeling and Simulation (ICCMS)2011 3rd International Conference on E-business and Information System Security (EBISS)2011 3rd International Conference on Machine Learning and Computing (ICMLC)2011 3rd International Conference on Networks Security, Wireless Communications and Trusted Computing (NSWCTC)2011 3rd International Conference on Signal Acquisition and Processing (ICSAP)2011 3rd International Workshop on Education Technology and Computer Science (ETCS)2011 IEEE International Conference on Information and Education Technology (ICIET)2011 International Conference on Applied Physics and Mathematics (ICAPM 2011)2011 International Conference on Bioinformatics and Computational Biology (ICBCB)2011 International Conference on Bioscience, Biochemistry and Bioinformatics (ICBBB)2011 International Conference on Communication and Electronics Information (ICCEI)2011 International Conference on Computer and Communication Devices (ICCCD)2011 International Conference on Computer Applications and Network Security (ICCANS)2011 International Conference on Computers, Communications, Control and Automation (CCCA) 2011 International Conference on Control, Robotics and Cybernetics (ICCRC)2011 International Conference on Data Engineering and Internet Technology (DEIT)2011 International Conference on Database and Data Mining (ICDDM)2011 International Conference on Digital Convergence (ICDC)2011 International Conference on Economics and Finance Research (ICEFR)2011 International Conference on Economics, Business and Marketing Management (CEBMM) 2011 International Conference on Economics, Trade and Development (ICETD)2011 International Conference on Electrical Energy and Networks (ICEEN)2011 International Conference on Energy and Environment (ICEE)2011 International Conference on Engineering and Information Management (ICEIM)2011 International Conference on Environment Science and Engineering (ICESE)2011 International Conference on Environmental Science and Development (ICESD)2011 International Conference on Future Environment and Energy (ICFEE 2011)2011 International Conference on Fuzzy Systems and Neural Computing (FSNC)2011 International Conference on Information and Computer Applications (ICICA)2011 International Conference on Information and Computer Networks (ICICN)2011 International Conference on Information and Industrial Electronics (ICIIE)2011 International Conference on Information Engineering and Mechanical Engineering (IEME)2011 International Conference on Innovation and Information Management (ICIIM)2011 International Conference on Intelligent Information Networks (ICIIN)2011 International Conference on Knowledge Discovery (ICKD)2011 International Conference on Life Science and Technology (ICLST)2011 International Conference on Manufacturing and Industrial Engineering (ICMIE)2011 International Conference on Mechanical and Aerospace Engineering (ICMAE)2011 International Conference on Medical Information and Bioengineering (ICMIB)2011 International Conference on Network Communication and Computer (ICNCC)2011 International Conference on Product Development and Renewable Energy Resources (ICPDRE)2011 International Conference on Security Science and Technology (ICSST)2011 International Conference on Social Science and Humanity (ICSSH)2011 International Conference on Solid-State and Integrated Circuit (ICSIC)2011 International Conference on System Design and Data Proceesing (ICSDDP)2011 International Conference on System Modeling and Optimization (ICSMO)2011 International Conference on Systems Engineering and Modeling (ICSEM)2011 International Conference on Technological Advancements in Civil Engineering (ICTACE) 2011 International Conference on Traffic and Logistic Engineering (ICTLE)2011 International Conference on Traffic and Transportation Engineering (ICTTE)2011 WASE International Conference on Information Engineering (ICIE)。
可以报销师生论文出版费的国际会议暂行办法201103[1]
可以报销师生论文出版费的国际会议暂行办法
各位老师:
大家好!目前学科部关于国际会议的资助问题面临以下困难:一是2011年的版面费和差旅费不足以支持目前的论文发表费用,特别是国际会议注册费;二是目前很多国际会议影响力不大,赢利目的很重;三是2010年7月16日,责任教授会已经提出制定期刊和国际会议标准的指示;四是某校领导在一级学科博士点预答辩会上,质疑国际会议论文的质量;五是国内多家大学,包括一些非“211工程”大学,已经在教师职称评审和研究生毕业环节上不再承认国际会议论文。
因此,为引导研究生提高学术论文水平,并增强学科的学术交流层次,自2010年9月份开始,在杨金福、严爱军、张利国、许家群、柴伟、王亮、李秀智7位老师的协助下,学科部整理了一份国际会议名单(见附件1)。
(IFAC World Congress、IEEE Conference on Decision and Control、American Control Conference、Chinese Control and Decision Conference4个国际会议不用统计)。
经各位责任教授同意,自即日起学科部规定关于国际会议论文出版费的暂行办法如下:
(1)对于名单内的会议,学科部给予资助。
(2)不在该名单内的会议,如果能够提供会议为顶级会议或A类会议的相关证明,则学科部可以给予支持,并将其加入到会议名单中。
(3)其他会议由各个团队自行解决。
自动化学科部
2011年3月
附件1
黑名单:计算机仿真、计算机应用研究(增刊)微计算机信息、计算机应用系统、计算机工程与应用、现代电子技术。
消失了的EI会议
/bbs/viewthread.php?tid=3440777最新消息:IITA/IACSIT从去年开始的会议大都从IEEE会议列表消失了。
大家小心!详情见IEEE网站/publications ... oc/index.html#sect6的这个表格2005_present_list_of_titles .xls:(1)统计一下"IITA"举办的会议,警示后人!!!!!/bbs/viewthread.php?tid=31715701 、 CICC-ITOE2011, 2011年3月,澳门。
IEEE出版,未入IEEE库,未EI 检索。
2 IITA2010, 2010年12月7号秦皇岛,未入库,未检索 (IEEE EXCEL中消失20110715)4 2011 ICEE 2011.1.28 深圳 (IEEE EXCEL中消失20110715)5 CCCA 2011(2011年1月份,香港)尚未检索 (IEEE EXCEL中消失20110715)6 ICRS 2010, 2010.10.5-10.6, 浙江杭州,未入库,未检索 (IEEE EXCEL 中消失20110715)7 ACPIM2010 去年10月份未入库未检索 (IEEE EXCEL中消失20110715)8 APEED2010,2010年5月的会议,至今未检索 (IEEE EXCEL 中消失20110715)9 ICRS 2010, 2010.10.5-10.6, 浙江杭州,未入库,未检索 (IEEE EXCEL 中消失20110715)10 2010年10月的ICSLP2010会议,未入库,未检索 (IEEE EXCEL中消失20110715)-------------------------------------------------------------------------------(2)2010的IITA会后3个月以上未进IEEE库会议调查------前66楼共29个会议已整理备查/bbs/viewthread.php?tid=316587513. CCCM2010.08.20 扬州 (IEEE EXCEL中消失20110715) 14. ITIP2010.09.08 长沙 (IEEE EXCEL中消失20110715) 15. WNSI2010.12.13 重庆 (IEEE EXCEL中消失20110715) 17. ETT2010.11.27 武汉 (IEEE EXCEL中消失20110715) 19. FCC2010.09.28 上海, (IEEE EXCEL 中消失20110715)20.CMBB2010.12.26 齐齐哈尔大学 (IEEE EXCEL中消失20110715)21.ACPIM2010.11.20 深圳 (IEEE EXCEL中消失20110715) 22.ICMS2010.06.4 无锡江南大学 (IEEE EXCEL中消失20110715)23.BTMC2010.12.13 重庆 (IEEE EXCEL中消失20110715) 24.ICCSP2010.12.25 上海 (IEEE EXCEL中消失20110715) 26.ESSG2010 2010.12.17 (IEEE EXCE L中消失20110715)27.paciia2010.12.04 武汉 (IEEE EXCEL中消失20110715) 28.ICMS2010.10.19 昆明 (IEEE EXCEL中消失20110715) 29.ISBIM2010.09.13 黄冈 (IEEE EXCEL中消失20110715) 30.FBIE2010.12.26 齐齐哈尔,此会议与第10个会议同期举办, (IEEE EXCEL 中消失20110715)32. ICAI 2010.07.10 大连,40楼的提供的会议地点是上海,但是查到的是大连(IEEE EXCEL中消失20110715)34.ICMCI 2010.09 武汉 (IEEE EXCEL中消失20110715) 35.ICIEA2010.12.17 深圳 (IEEE EXCEL中消失20110715) 36.APCIP 2010.09.17 南昌 (IEEE EXCEL中消失20110715) 37.JCAI2010.12.25 上海 (IEEE EXCEL中消失20110715) 39.PEITS2010.11.13 深圳 (IEEE EXCEL中消失20110715)3 ICRCCS 2010 12月常州11 EEEE 2010 9月的。
IEEE 取消检索的会议
1.2010 2nd Asia-Pacific Conference on Information Processing (APCIP)2.2010 2nd International Asia Symposium on Intelligent Interaction and Affective Computing& 2010 2nd International on Innovation Management (ASIA-ICIM)3.2010 2nd International Conference on Future Computer and Communication (FCC)4.2010 2nd International Conference on Information and Multimedia Technology (ICIMT)5.2010 2nd International Conference on Intellectual Technique in Industrial Practice (ITIP2010)6.2010 2nd International Conference on Multimedia and Computational Intelligence (ICMCI)7.2010 2nd International Conference on Research Challenges in Computer Science (ICRCCS)8.2010 2nd International Symposium on Computer Network and Multimedia Technology(CNMT 2010)9.2010 3rd International Conference on Computational Intelligence and Industrial Application(PACIIA)10.2010 3rd International Conference on Environmental and Computer Science (ICECS)11.2010 3rd International Conference on Machine Vision (ICMV)12.2010 3rd International Conference on Power Electronics and Intelligent TransportationSystem (PEITS)13.2010 4th International Conference on Intelligent Information Technology Application (IITA)14.2010 6th International Conference on MEMS, NANO, and Smart Systems (ICMENS)15.2010 First International Conference on Cellular, Molecular Biology, Biophysics andBioengineering (CMBB)16.2010 IIS 2nd International Conference on Signal Processing, Robotics and Automation(ICSRA 2010)17.2010 International Asia Conference on Optical Instrument and Measurement (ACPIM)18.2010 International Conference on Bio-Inspired Systems and Signal Processing (ICBSSP)19.2010 International Conference on Biology, Environment and Chemistry (ICBEC)20.2010 International Conference on Broadcast Technology and Multimedia Communication(BTMC)21.2010 International Conference on Circuit and Signal Processing (ICCSP)22.2010 International Conference on Communication and Vehicular Technology (ICCVT)23.2010 International Conference on Computational Intelligence and Vehicular System (CIVS)24.2010 International Conference on Computer and Computational Intelligence (ICCCI)25.2010 International Conference on Computer and Software Modeling (ICCSM)26.2010 International Conference on Computer Science and Sports Engineering (CSSE)27.2010 International Conference on Computer-Aided Manufacturing and Design (CMD)28.2010 International Conference on Construction and Project Management (ICCPM)29.2010 International Conference on Digital Enterprise and Digital Manufacturing (DEDM)30.2010 International Conference on E-business, Management and Economics (ICEME)31.2010 International Conference on Economics, Business and Management (ICEBM)32.2010 International Conference on Electrical Engineering and Automatic Control (ICEEAC)33.2010 International Conference on Embedded Systems and Microprocessors (ICESM)34.2010 International Conference on Engineering Education and Educational Technology(EEET)35.2010 International Conference on Future Biomedical Information Engineering (FBIE)36.2010 International Conference on Future Computer, Control and Communication (FCCC)37.2010 International Conference on Future Industrial Engineering and Application (ICFIEA)38.2010 International Conference on Future Information Technology (ICFIT)39.2010 International Conference on Future Information Technology and Computing (FITC)40.2010 International Conference on Graphic and Image Processing (ICGIP)41.2010 International Conference on Information and Finance (ICIF)42.2010 International Conference on Information Security and Artificial Intelligence (ISAI)43.2010 International Conference on Intelligence and Information Technology (ICIIT)44.2010 International Conference on Intelligent Network and Computing (ICINC)45.2010 International Conference on Management Science (ICMS)46.2010 International Conference on Management Science and Information Engineering(ICMSIE)47.2010 International Conference on Manufacturing Science and Technology (ICMST)48.2010 International Conference on Measurement and Control Engineering (ICMCE)49.2010 International Conference on Mechanical and Aerospace Engineering (ICMAE)50.2010 International Conference on Mechanical Engineering, Robotics and Aerospace(ICMERA)51.2010 International Conference on Modeling, Simulation and Control (ICMSC 2010)52.2010 International Conference on Nano Science and Technology (ICNST)53.2010 International Conference on Nanotechnology and Biosensors (ICNB)54.2010 International Conference on Nuclear Energy and Engineering Technology (NEET)55.2010 International Conference on Physics Science and Technology (ICPST)56.2010 International Conference on Psychology, Psychological Sciences and Computer Science(PPSCS)57.2010 International Conference on Remote Sensing (ICRS)58.2010 International Conference on Semiconductor Laser and Photonics (ICSLP)59.2010 International Conference on Services Science, Management and Engineering (SSME)60.2010 International Conference on Signal and Information Processing (ICSIP)61.2010 International Conference on Software and Computing Technology (ICSCT)62.2010 International Conference on Sport Medicine, Sport Science, and Computer Science(SMSSCS)63.2010 ISECS International Colloquium on Computing, Communication, Control, andManagement (CCCM 2010)64.2010 Second International Conference on E-Learning, E-Business, Enterprise InformationSystems, and E-Government (EEEE)65.2010 Second International Conference on Test and Measurement (ICMT)66.2010 Second International Seminar on Business and Information Management (ISBIM)67.2010 Third International Conference on Computer and Electrical Engineering (ICCEE)68.2010 Third International Conference on Education Technology and Training (ETT)69.2010 Third International Symposium on Intelligent Ubiquitous Computing and Education(IUCE)70.2010 Third Pacific-Asia Conference on Web Mining and Web-Based Application (WMWA)71.2011 15th Global Chinese Conference on Computers in Education (GCCCE)72.2011 2nd Asia-Pacific Conference on Wearable Computing Systems (APWCS)73.2011 2nd International Conference on Biomedical Engineering and Computer Science(ICBECS)74.2011 2nd International Conference on Biotechnology and Food Science (ICBFS)75.2011 2nd International Conference on Data Storage and Data Engineering (DSDE)76.2011 2nd International Conference on Environmental Science and Technology (ICEST)77.2011 2nd International Conference on Financial Theory and Engineering (ICFTE)78.2011 2nd International Conference on Mechanical, Industrial, and ManufacturingTechnologies (MIMT)79.2011 2nd Intl Conf on Innovative Computing & Communication and 2010 Asia-Pacific Confon Information Technology & Ocean Engineering, (CICC-ITOE)80.2011 2nd World Congress on Computer Science and Information Engineering (CSIE)81.2011 3rd IEEE International Conference on Information Management and Engineering(ICIME)82.2011 3rd International Conference on Bioinformatics and Biomedical Technology (ICBBT2011)83.2011 3rd International Conference on Computer and Automation Engineering (ICCAE)84.2011 3rd International Conference on Computer and Network Technology (ICCNT)85.2011 3rd International Conference on Computer Design and Applications (ICCDA 2011)86.2011 3rd International Conference on Computer Modeling and Simulation (ICCMS)87.2011 3rd International Conference on E-business and Information System Security (EBISS)88.2011 3rd International Conference on Machine Learning and Computing (ICMLC)89.2011 3rd International Conference on Networks Security, Wireless Communications andTrusted Computing (NSWCTC)90.2011 3rd International Conference on Signal Acquisition and Processing (ICSAP)91.2011 3rd International Workshop on Education Technology and Computer Science (ETCS)92.2011 IEEE International Conference on Information and Education Technology (ICIET)93.2011 IEEE International Conference on Smart Grid and Clean Energy Technologies(ICSGCE)94.2011 International Conference on Applied Physics and Mathematics (ICAPM 2011)95.2011 International Conference on Bioinformatics and Computational Biology (ICBCB)96.2011 International Conference on Bioscience, Biochemistry and Bioinformatics (ICBBB)97.2011 International Conference on Communication and Electronics Information (ICCEI)98.2011 International Conference on Computer and Communication Devices (ICCCD)99.2011 International Conference on Computer Applications and Network Security (ICCANS) 100.2011 International Conference on Computers, Communications, Control and Automation (CCCA)101.2011 International Conference on Control, Robotics and Cybernetics (ICCRC)102.2011 International Conference on Data Engineering and Internet Technology (DEIT)103.2011 International Conference on Database and Data Mining (ICDDM)104.2011 International Conference on Digital Convergence (ICDC)105.2011 International Conference on Economics and Finance Research (ICEFR)106.2011 International Conference on Economics, Business and Marketing Management (CEBMM)107.2011 International Conference on Economics, Trade and Development (ICETD)108.2011 International Conference on Electrical Energy and Networks (ICEEN)109.2011 International Conference on Energy and Environment (ICEE)110.2011 International Conference on Engineering and Information Management (ICEIM) 111.2011 International Conference on Environment Science and Engineering (ICESE)112.2011 International Conference on Environmental Science and Development (ICESD)113.2011 International Conference on Future Environment and Energy (ICFEE 2011)114.2011 International Conference on Fuzzy Systems and Neural Computing (FSNC)115.2011 International Conference on Information and Computer Applications (ICICA)116.2011 International Conference on Information and Computer Networks (ICICN)117.2011 International Conference on Information and Industrial Electronics (ICIIE)118.2011 International Conference on Information Engineering and Mechanical Engineering (IEME)119.2011 International Conference on Innovation and Information Management (ICIIM)120.2011 International Conference on Intelligent Information Networks (ICIIN)121.2011 International Conference on Knowledge Discovery (ICKD)122.2011 International Conference on Life Science and Technology (ICLST)123.2011 International Conference on Manufacturing and Industrial Engineering (ICMIE)124.2011 International Conference on Mechanical and Aerospace Engineering (ICMAE)125.2011 International Conference on Medical Information and Bioengineering (ICMIB)126.2011 International Conference on Network Communication and Computer (ICNCC)127.2011 International Conference on Product Development and Renewable Energy Resources (ICPDRE)128.2011 International Conference on Security Science and Technology (ICSST)129.2011 International Conference on Social Science and Humanity (ICSSH)130.2011 International Conference on Solid-State and Integrated Circuit (ICSIC)131.2011 International Conference on System Design and Data Proceesing (ICSDDP)132.2011 International Conference on System Modeling and Optimization (ICSMO)133.2011 International Conference on Systems Engineering and Modeling (ICSEM)134.2011 International Conference on Technological Advancements in Civil Engineering (ICTACE)135.2011 International Conference on Traffic and Logistic Engineering (ICTLE)136.2011 International Conference on Traffic and Transportation Engineering (ICTTE)137.2011 W ASE International Conference on Information Engineering (ICIE)。
王书海情况简介
王书海情况简介1. 基本情况王书海,男,1969年6月生。
石家庄铁道大学教授,工学博士,硕士生导师,继续教育学院院长。
1993年毕业于石家庄铁道学院,留校后在计算中心工作。
曾任现代教育技术中心副主任,信息工程系副主任、副书记,计算机与信息工程分院副院长,信息科学与技术学院副院长,研究生学院副院长,继续教育学院党总支书记,现任继续教育学院院长。
2006年获第七届河北省青年科技奖,河北省新世纪“三三三人才工程”第二层次人才。
河北省计算机教育研究会副理事长,河北省计算机学会理事。
铁道部铁路信息技术教学指导委员会委员。
参加工作以来,一直从事计算机基础教育的教学工作和计算机应用技术研究与开发工作。
近年来,为本科生和研究生主讲课程10门,其中3门被评为河北省精品课程。
主持、参加各类科研项目30余项,科研经费500多万元。
获河北省科技进步一等奖2 项,二等奖5项,三等奖2项,获河北省教学成果一等奖1项,二等奖1项,发表学术论文30余篇,编写教材4部。
2. 研究领域计算机信息系统、软件工程、智能教学系统3. 教学情况为本科生和研究生主讲10门课:z实用研究方法论z智能教学系统z信息技术基础z C语言程序设计z Visual Basic程序设计z Visual FoxPro程序设计z软件工程z网络安全技术z网络数据库技术z网络课程设计与开发4. 科研项目z中铁13局综合项目管理系统平台开发(补充合同),2012年~2014年,研究经费70万元,课题组长;z中铁13局综合项目管理系统平台开发,横向课题,2010年~2014年,研究经费245万元,课题副组长;z客运专线无砟轨道机械化施工过程信息管理研究,河北省科技支撑计划项目,2009年~2011年,研究经费9万元,主持人;z河北省山区创业奖励网络评审系统研究与开发,河北省山区开发建设计划项目,2010年~2012年,研究经费10万元,主持人;z沧州科技奖励网络评审系统研究与开发,沧州科技支撑计划项目,2010年~2011年,研究经费15万元,第二负责人;z邯郸科技奖励网络评审系统研究与开发,邯郸科技支撑计划项目,2010年~2011年,研究经费30万元,第二负责人;z河北省科技奖励网络评审系统研究与开发,河北省科技支撑计划项目,2010年~2011年,研究经费60万元,主持人;z河北省科技成果网络评审系统建设,河北省科技攻关项目,2007年~2009年,研究经费50万元,主持人;z河北科技信息可视化研究,国家科技基础条件平台课题(子课题2005DKA64201-06-05),2008年~2010年,研究经费6.9万元,主持人;z高校计算机实验教学示范中心建设探索与实践(O8020359),河北省教育科学研究“十一五”规划课题,2008年~2010年,研究经费0.4万元,主持人;z法人单位基础信息库标准体系研发,河北省标准化研究院,2007年~2008年,研究经费18万元,主持人;z法人单位基础信息服务系统软件研发,河北省标准化研究院,2007年~2008年,研究经费8万元,主持人;z高速铁路无砟轨道施工过程管理系统,铁道部科技攻关项目,2008年~2009年,研究经费15万元,主持人;z信息安全控制技术在法人单位信息交换中的应用研究,河北省科技指导性计划项目,2007年~2008年,主研;z河北省科技成果网络评审系统建设,河北省科技攻关项目,2007年~2008年,研究经费20万元,主持人;z电子政务安全架构及其技术研究(F2005000515),河北省自然科学基金资助项目,2005年~2006年,研究经费10万元,第2主研;z河北省科技资源数据库建设,河北省重大科技攻关项目,2006年~2008年,研究经费200万元,第3主研;z河北网上技术市场建设(042835102D),河北省科学技术研究与发展计划项目,2004年~2006年,研究经费20万元,第2主研;z河北省技术交易网络信息系统(04783512D),河北省科学技术研究与发展计划项目,2004年~2005年,研究经费70万元,第2主研;z智能卡系统安全应用的技术研究及实现(F2004000427),河北省自然科学基金资助项目,2004年~2005年,研究经费8万元,第4主研;z河北省社会应急联动系统研究(2005-03),河北省信息化重点课题,2005年,研究经费2万元,第7主研;z电子政务建设的绩效评价研究(03579325A),石家庄市科学技术研究与发展计划项目,2003年~2004年,研究经费2万元,第5主研;z基于GIS的铁路线路设计系统,铁道部科技攻关项目,1999年~2002年,研究经费10万元,第4主研;z电子商务中的信息安全机制研究与应用(2000227),河北省教委科研计划项目,2000年~2002年,研究经费2万元,第4主研;z网络银行安全支付系统软件开发,河北省数据通信局项目,1999年~2000年,研究经费5万元,第6主研;z分布式IC卡管理系统及其应用(98213404D),河北省科技攻关项目,1998年~1999年,研究经费5万元,第4主研;z IC卡系统的安全性研究与实现,公安部,2003年~2005年,研究经费4万元,第6主研;z城镇职工医疗保险管理信息系统推广,河北省科技厅,2002年~2004年,研究经费20万元,第2主研;z开放式计算机实验室综合管理系统,河北省教育厅项目,2003年~2004年,研究经费2万元,主持人;z基于Web的应用系统统一安全认证模式研究,院青年基金重点资助项目,2002年~2003年,研究经费0.6万元,主持人;z多媒体画面语言与自然语言、影视语言的比较研究,全国教育科学“十五”规划课题,2004年~2005年,研究经费1万元,主持人;z基于Internet的远程教学支撑平台的设计与实现,河北省重点项目,2003年~2004年,研究经费1万元,第2主研;;z建立信息技术教学质量保障体系的探讨与实践,学院重点资助教改项目,2003年~2004年,研究经费0.2万元,第2主研;z无线电负荷控制系统,河北省自动化设备厂,1995年~1996年,研究经费5万元;z长大隧道施工无线移动调度通信系统,中国铁道建筑总公司,1996年~1998年,研究经费8万元,参研;z铁路接触网冷滑检测系统开发,中国铁道建筑总公司,1993年~1994年,研究经费2万元,参研。
可以报销师生论文出版费的国际会议暂行办法201103[1]
可以报销师生论文出版费的国际会议暂行办法
各位老师:
大家好!目前学科部关于国际会议的资助问题面临以下困难:一是2011年的版面费和差旅费不足以支持目前的论文发表费用,特别是国际会议注册费;二是目前很多国际会议影响力不大,赢利目的很重;三是2010年7月16日,责任教授会已经提出制定期刊和国际会议标准的指示;四是某校领导在一级学科博士点预答辩会上,质疑国际会议论文的质量;五是国内多家大学,包括一些非“211工程”大学,已经在教师职称评审和研究生毕业环节上不再承认国际会议论文。
因此,为引导研究生提高学术论文水平,并增强学科的学术交流层次,自2010年9月份开始,在杨金福、严爱军、张利国、许家群、柴伟、王亮、李秀智7位老师的协助下,学科部整理了一份国际会议名单(见附件1)。
(IFAC World Congress、IEEE Conference on Decision and Control、American Control Conference、Chinese Control and Decision Conference4个国际会议不用统计)。
经各位责任教授同意,自即日起学科部规定关于国际会议论文出版费的暂行办法如下:
(1)对于名单内的会议,学科部给予资助。
(2)不在该名单内的会议,如果能够提供会议为顶级会议或A类会议的相关证明,则学科部可以给予支持,并将其加入到会议名单中。
(3)其他会议由各个团队自行解决。
自动化学科部
2011年3月
附件1
黑名单:计算机仿真、计算机应用研究(增刊)微计算机信息、计算机应用系统、计算机工程与应用、现代电子技术。
6位中国数学家应邀在ICM2010做45分钟报告
首届陈省身奖章将于 21 年 8 1 00 月 9日在 印度 Hy ea a 年轻 学 者 , 对 其 取 得 特 殊 的突 破 性 成 果 的 认 可 . 斯 奖 则 是 drb d 是 高 召 开 的 国际 数 学 家 大会 (C 2 1 )开 幕 式 上 颁 奖 . I M 0 0
对 开 创 实 际应 用 新 领 域 的数 学 成 果 的 肯 定 .
I MU在 每 4 召 开 一 次 的 I M 大 会 上 。 发 有 “ 学诺 贝 年 C 颁 数
省 身 奖 章 , 纪 念 国 际 著 名 数 学 家 陈 省 身 (9 1— 2 0 . 尔 奖 ”之 称 的 菲 尔 兹 奖 章 ( i d dl) 始 于 13 以 11 0 4 Fe sMeas , l 9 6年 ; 白
s u i n f hi s t m c n e bt i d. Fi ly, by h e e e a y r ns o ma i n, t ol to o t s ys e a b o ane nal t e lm nt r t a f r to he f nd me a e of o utons n t s e i l ol to a d h n e r l o u i n f h p i a u a nt ls t s l i a d he p ca s u i n n t e g ne a s l to o t e rm l
6位 中国 数 学 家 应 邀在 I M2 C 0 4 1 0做 5分 钟 报 告
据 2 1 年 国 际数 学 家 大 会 (C .00 00 I M 2 1)官 方 网 站 , 有 学 ) 程 崇 庆 ( 力 系 统 及 常 微 分 方 程 组 . 京 大 学 ) 陈 恕 行 约 , 动 南 ,
论文的参考文献标准模版
参考文献标准模版一、参考文献书写格式1)期刊[序号] 主要作者. 文献题名[J]. 刊名,出版年份,卷号(期号):起止页码.例如:[1] 袁庆龙,候文义. Ni-P合金镀层组织形貌及显微硬度研究[J]. 太原理工大学学报,2001,32(1):51-53.2)专著[序号] 主要作者. 专著名[M].出版地:出版者,出版年份,起止页码.[4] 王芸生. 六十年来中国与日本[M]. 北京:三联书店,1980,161-172.3)专利文献[序号] 专利所有者. 专利题名[P]. 专利国别:专利号,发布日期.[7] 姜锡洲. 一种温热外敷药制备方案[P]. 中国专利:881056078,1983-08-12.4)报纸文章[序号] 主要作者. 文献题名[N]. 报纸名,出版日期(版次).[11] 谢希德. 创造学习的思路[N]. 人民日报,1998-12-25(10).二、文献名称标识期刊文章[J]、专著[M]、论文集[C]、学位论文[D]、专利[P]、标准[S]、报纸文章[N]、报告[R]、资料汇编[G]、其他文献[Z][1] 纪钢. 一种对周期性信号采样的新方法[J]. 仪表技术,1998,(4):31-34.[2] 李晓陆. 带通采样定理在降低功耗问题中的实际应用[J]. 桂林电子工业学院学报,2004,24(5):36-38.[3] 李思坤,苏显渝,陈文静. 一种新的小波变换空间载频条纹相位重建方法[J]. 中国激光,2010,37(12):3060-6065.[4] Wang Chuandan,Zhang Zhongpei,Li Shaoqian. INTERFERENCE MITIGATINGBASED ON FRACTIONAL FOURIER TRANSFORM IN TRANSFORM DOMAIN COMMUNICATION SYSTEM [J]. Journal of Electronics(China),电子科学学刊(英文版),2007(2):1327-1350.[5] S.C.Chan,T.S.Ng. TRANSFORM DOMAIN CONJUGATE GRADIENTALGORITHM FOR ADAPTIVE FILTERING [J]. Journal of Electronics(China),电子科学学刊(英文版),2000,17(1):69-76.[6] Li Ke,Shi Xinhua,Zhang Eryang. TRANSFORM DOMAIN SMART ANTENNASALGORITHM FOR MAI SUPPRESSION [J]. Journal of Electronics(China),电子科学学刊(英文版),2004,21(4):289-295.[7] 谢艾纾,徐成,赵利平,邓绍伟,赵嫦花. 变换域维纳滤波及其改进[J]. 计算机工程与应用,2011,11(24):1-8.[8] 焦李成,孙强. 多尺度变换域图像的感知与识别:进展和展望[J]. 计算机学报,2006,29(2):177-193.[9] 李栋. 模拟信号的数字化[J]. 中国新闻科技,1999(8):4-9.[10] 周超. 多带模拟信号的采样与重构[J]. 传感器与微系统,2011,30(5):83-85.[11] 山磊. 模拟信号的数字传输[J]. 南宁职业技术学院学报,2005,10(1):92-95.[12] 徐洪浩. 带限信号谱估计的一个新算法[J]. 哈尔滨船舶工程学院学报,1985(3):36-42.[13] 沈彩耀,李红波,张颋,曾繁景. 带限信号时延估计快速算法研究[J]. 信息工程大学学报,2007,8(1):77-80.[14] 王飞雪,郭桂蓉. 多通带带限信号的采样定理[C]. 第九届全国信号处理学术年会(CCSP-99),1999(10)-1.[15] 邓林旺,曹建航,何睿,倪琰. 一种模拟信号采样装置[P]. 比亚迪股份有限公司,2001(3)-2.[16] 木青. 高速A/D转换器的基本原理与结构比较[J]. 微电子学,1987,17(5):8-11.[17] 崔庆林,蒋和全. 高速A/D转换器动态参数的计算机辅助测试[J]. 微电子学,2004,34(5):505-509.[18] 王萍,石寅. 一种用于高速A/D转换器的高精度参考电压电阻网络[J]. 电子学报,2000,28(12):48-51.[19] 崔庆林,蒋和全. 高速A/D转换器测试采样技术研究[J]. 微电子学,2006,36(1):52-55.[20] David L. Donoho. Compressed sensing[J]. IEEE Transactions on InformationTheory,2006,52(4): 1289-1306[21] E.J. Candes and J Romberg. Quantitative robust uncertaninty principles and optimallysparse decompositions[J]. Foundations of Comput Math,2006,6(2) :227-254 [22] D. L. Donoho,Y Tsaig. Extensions of compressed sensing[J]. Signal Processing.2006,86(3) :533-548.[23] E.J. Candes. Monoscale ridgelets for the rep resentation of images with edges.Stanford:Stanford University,1999.[24] E.J. Candes and J Romberg. Practical signal recovery from random projections InProc.SPIE Computational Imaging,2005,5674:76-86[25] E.J.Candes. Compressive sampling.Int. Congress of Mathematics,2006,3:1433-1452[26] R. Baraniuk. Compressive sensing. IEEE Signal Processing Magazine,2007,24(4):448-121.[27] 石光明,刘丹化,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081.[28] Olshausen B A, Field D J. Emergency of simple-cell receptive field properties bylearning a sparse coding for natural images. Nature,1996,381(6583): 607-609. [29] Olshausen B A, Field D J. Sparse coding with an overcomplete basis set: a strategyemployed by V1? Visual Research,1997,37(33): 3311-3325.[30] 程文波,王华军. 信号稀疏表示的研究及应用[J].西南石油大学学报(自然科学版),2008,30(5):148-151.[31] 何昭水,谢胜利. 信号的稀疏性分析[J]. 自然科学进展,2006,16(9):1167-1173.[32] 李映,张艳宁,许星. 基于信号稀疏表示的形态成分分析:进展和展望[J]. 电子学报,2009,37(1):146-152.[33] 傅予力,谢胜利,何昭水. 稀疏信号的参数分析[J]. 武汉大学学报(工学版),2006,36(9):101-121.[34] 王世一编著. 《数字信号处理》(修订版). 北京理工大学出版社,1997.[35] Xiaoyan Xing,Lisheng Xu,Jilie Ding,Xiaobo Deng and Hailei Liu. The Preliminaryanalysis of Guizhou short-term climate change characteristics using the information theory[C]. 2010 International Conference on Remote Sensing (ICRS 2010),2010(10).[36] 廖斌,许刚,王裕国. 二维匹配跟踪自适应图像编码[J]. 计算机辅助设计与图形学学报,2003,15(9):1084-1090.[37] 尹忠科,王建英,Pierre Vandergheynst. 在低维空间实现的基于MP的图像稀疏分解. 电讯技术,2004,44(3):12-15.[38] M.Lustig,D.L.Donoho,J.M.Pauly. Sparse MRI:The application of compressedsensing for rapid MR imaging. Magnetic Resonance in Medicine. 2007,58(6):1182-1195.[39] Chen,S.A.Billings,and W. Luo. Orthogonal least squares and their application tonon-linear system identification. International Journal of Control,1989,50(5):1873-1896.[40] R. Baraniuk,P. Steeghs,Compressive radar imaging. IEEE Radar Conference,Waltham,Massachusetts,April 2007.[41] W. Bajwa,J. Haupt,A. Sayeed,etc. Compressive wireless sensing. Int. Conf. onInformation Processing in Sensor Networks(IPSN),Nashville,Tennessee,2006:134-142.[42] W. Bajwa,J. Haupt,A. Sayeed,etc. Compressive wireless sensing. Proceedings of thefifth International Conference on Information Processing in Sensor Networks,IPSN’06. New York: Association for Computing Machinery. 2006:134-142.[43] G.Quer,R.Masiero,D.Munaretto,etc. On the Interplay Between Routing and SignalRepresentation for Compressive Sensing in Wireless Sensor Networks. Information Throry and Applications Workshop(ITA 2009),San Diego,CA.[44] 黄萍莉,岳军. 图像传感器CCD技术[J]. 信息记录材料,2005,6(1):50-55.[45] 赵瑾娜. 攻擂方:CMOS技术前景无限[N]. 中国计算机报,2001-05-28(D03).[46] 青山. CMOS技术:还有很长的路要走[N]. 中国电子报,2001-03-16(006).[47] 俊平. CMOS技术有望再领风骚15年[N]. 电子资讯时报,2002-12-05(B04).[48] 陈辰. 基于CCD和CMOS技术的混合数字图像传感器技术兼有低成本和高性能两大优点[J]. 电子产品世界,1998,Z1:143.[49] 王东. 基于数码相机的CCD与CMOS技术[J]. 今日印刷,2002,8(12):56-59.[50] 康为民,李延彬,高伟志. 数字微镜阵列红外动态景象模拟器的研制[J]. 红外与激光工程,2008,37(5):753-756.[51] D. Takhar,V. Bansal,M. Wakin,etc. A compressed sensing camera: New theory andan implementation using digital micromirrors[C]. SPIE Electronic Imaging: Computational Imaging. San Jose. 2006[52] M. Duarte,M. Davenport,D. Takhar,etc. Single-pixel imaging via compressivesampling[C]. IEEE Signal Processing Magazine,2008,25(2):82-91.[53] CAO Wenhua,LIU Songhao,Wuyi University. Optical pulse compression using anonlinear optical loop mirror constructed from dispersion decreasing fiber[J]. Science in China(Series E: Technological Sciences),中国科学(E辑:技术科学)(英文版),2004,47(1):33-50.[54] 孟藏珍,袁俊泉,徐向东. 海杂波背景下自适应脉冲压缩的性能与分析[J]. 雷达科学与技术,2006,4(5):305-308.[55] 商枝江. 基于压缩感知的稀疏多径信道估计算法研究[D]. 电子科技大学,2011.[56] Emmanuel Candes,Justin Romberg,T. Tao,Robust uncertainty principles: exactsignal reconstruction from highly incomplete frequency information, IEEE Transactions on Information Theory,2006,52(2):489-509.[57] E. Candes,J. Romberg,T. Tao. Stable signal recovery from incomplete andinaccurate measurements. Communications on Pure and Applied Mathematics,2006,59(8):1207-1223.[58] Hong Fang,Quanbing Zhang,Sui Wei. A Method of image Reconstruction Based onSub-Gaussian Random Projection[J]. Journal of Computer Research and Development,2008,45(8):1402-1407.[59] Hong Fang,Quanbing Zhang,Sui Wei. Method of image reconstruction based on verysparse random projection[J]. Computer Engineering and Applications,2007,43(22):25-27.[60] E.Candes,T.Tao.Near optimal signal recovery from random projections: Universalencoding strategies?[J]. IEEE Transactions on Information Theory,2006,52(12): 5406-5425.[61] W.Yin,S.P.Morgan,J.Yang,Y.Zhang,Practical compressive sensing with Toeplitzand circulant matrices[C]. Rice University CAAM Technical Report TR10-01,Submitted to VCIP 2010.[62] W.Bajwa,J.Haupt,G.Raz,S.J.Wright,R.D.Nowak. Toeplitz-structured compressedsensing matrices[C]. Proceedings of the IEEE Workshop on Statistical Signal Processing,Washington D.C.,USA:IEEE,2007,294-298.[63] F.Sebert,Y.M.Zou,L.Ying. Toeplitz block matrices in compressed sensing and theirapplications in imaging. [C]. Proceedings of International Conference on Technology and Applications in Biomedicine,Washington D.C.,USA:IEEE,2008,47-50. [64] Holger Rauhut. Circulant and Toeplitz matrices in compressed sensing[C]. InProcessing SPARS’09,Saint Malo,2009.[65] Radu Berinde,Pintr Indyk,Sparse recovery using sparse random matrices,2008,preprint.[online],Available:/cs.[66] T.T.Do,T.D.Trany,L.Gan,Fast compressive with structurally random matrices,Proceedings of the IEEE International Conference on Acoustics[C]. Speech and signal Processing,Washington D.C.,USA:IEEE,2008,3369-3372.[67] Lorne Applebaum,Stephen Howard,Stephen Searle,Robert Calderbank,Chirpsensing codes: Deterministic compressed sensing measurements for fast recovery.2008,preprint.[online],Available:/cs.[68] Justin Romberg,compressive sensing by random convolution[J]. SIAM Jouranl onImagining Sciences,Nov.2009,2(4):1098-1128.[69] Richard Baraniuk,Mark Davenport,Ronald Dcvore,Michael Wakin. A simple proofof the restricted Isometry property for random matrices[J]. Comstructive Approximation, Dec.2008,28(3):253-263.[70] Richard Baraniuk. Compressive sensing. IEEE Signal Processing Magazine[J]. July2007,24(4):118-121.[71] E.Candes,T.Tao. Decoding by linear Programming[J]. IEEE Transactions onInformation Theory,2005,51(12):4203-4215.[72] Ronald,A. DeVore. Deterministic constructions of compressed sensing matrices[J].Journal of Complexity,2007,23(4-6):918-925.[73] P.Wojtaszczyk. Stability and instance optimality for Gaussian measurement incompressed sensing,Feb,2008.[74] 常彦勋. 有限域的本原元性质[J]. 数学杂志,1993,13(1):59-63.[75] 李海合,王三福. 有限域上的同余方程组[J]. 渭南师范学院学报,2009,24(5):9-10.[76] 白志东. 大维随机矩阵理论及其应用[R]. 东北师范大学,2009.[77] 李云龙. 一类凸规划最优解的形式表达式[J]. 哈尔滨科学技术大学学报,1993,17(1):78-83.[78] 陈景达,陈向晖. 特殊矩阵[M]. 北京:清华大学出版社,2001.[79] 张贤达. 矩阵分析与应用[M]. 北京:清华大学出版社,2004.[80] 胡星星. 线性规划的组合方向算法[D]. 杭州电子科技大学,2011.[81] S.B.Chen,D.L.Donoho,M.A.Saunders. Atomic decomposition by basis pursuit[J].SIAM Journal on Scientific Computing,1998,20(1):33-61.[82] Kim S,Koh K,Lustig M,Boyd S,Gorinevsky D. An interior-point method forlarge-scale l1 regularized least squares[C]. IEEE Journal of Selected Topics in Signal Processing,2007,1(4):606-617.[83] Fiqueiredo MAT,Nowak R D,Wright S J. Gradient projection for sparsereconstruction:Application to compressed sensing and other inverse problems[C].IEEE Journal of Selected Topics in Signal Processing,2007,1(4):586-598.[84] 伍杰. 求解对称非线性方程组的共轭梯度法[D]. 湖南大学,2010.[85] D. L. Donoho,Y Tsaig. Fast solution of l1-norm minimization problems when thesolution may be sparse[J]. Technical Report,Department of Statistics,Stanford University,USA,2008.[86] Tropp J,Gilbert A. Signal recovery from random measurements via orthogonalmatching pursuit[J]. Transactions on Information Theory,2007,53(12):4655-4666.[87] Needell D,Vershynin R. Uniform uncertainty principle and signal rccovery viaregularized orthogonal matching pursuit[J]. Found Comput Math,2008,in press. [88] Needell D,Tropp J A. CoSaMP:Iterative signal recovery from incomplete andinaccurate samples[J]. ACM Technical Report 2008-01,California Institute of Technology,Pasadena,2008.7.[89] Thong T Do,Lu Gan,Nam Nguyen and Trac D Tran. Sparsely adaptive matchingpursuit algorithm for practical compressed sensing[J]. Asilomar Conference on Signals Systems,and Computers,Pacific Grove,California,2008.10.[90] Dai W,Milenkovic O. Subspace pursuit for compressive sensing signalreconstruction[J]. 2008 5th International Symposium on Turbo Codes and Related Topics,TURBOCODING,2008:402-407.[91] 刘亚新,赵瑞珍,胡绍海,姜春晖. 用于压缩感知信号重建的正则化自适应匹配追踪算法[J]. 电子与信息学报,2010,32(11):2713-2717.[92] Kingsbury N G. Complex wavelets for shift invariant analysis and filtering of comlexwavelets for shift invariant analysis and filtering of signals[J]. Journal of Applied and Computational Harmonic Analysis,2001,10(3):234-253.[93] Herrity K.K,Gilbert A C,Tropp J A. Sparse approximation via iterative shareholding.In: Proceedings of the IEEE International Conference on Acoustics[C]. Speech and signal Processing,Washington D.C.,USA:IEEE,2006,624-627.[94] E.Candes,D.L.Donoho. New Tight Frames of Curvelets and Optimal Representationsof Objects with Piecewise C2 Singularities Communications on Pure and Applied Mathematics[C],2003,57(2):219-266.[95] Vinje W E,Gallant J L. Sparse coding and décor-relation in primary visual cortexduring natural vision[J]. Science,2000,287(5456): 1273-1276.[96] Olshausen B A,Field D J. Emergency of simple-cell receptive field properties bylearning a sparse coding for natural images[J]. Nature,1996,381(6583): 607-609.[97] Olshausen B A,Field D J. Sparse coding with an overcomplete basisset:a strategyemployed by V1? [J]. Visual Research,1997,37(33): 3311-3325.[98] V. K. Goyal,K. Alyson,et al. Compressive sampling and lossy compression[C].IEEE SIGNAL PROCESSING MAGAZINE,2008,25(2):48-56.[99] E. J. Candes,M. B. Wakin. An introduction to compressive sampling:Asending/sampling parading that goes against the common knowledge in data acquisition[C]. IEEE Signal Processing Magazine,2008,25(5):21-30.[100] 郭天圣. 基于小波变换的图像去噪研究[D]. 兰州理工大学,2010.[101] L.M.Bregman. The method of successive projection for finding a common point of convex sets[J]. Doklady Mathematics,1965,(6):688-692.[102] David L,Donoho,Yaakov Tsaig,Iddo Drori ,Jean-Luc Starck. Sparse Solution of Underdetermined Linear Equations by Stagewise Orthogonal Matching Pursuit[J],2006.[103] 王潇,尹忠科,王建英,杨郑. 应用基追踪的信号分离的算法[C]. 2008年中国西部青年通信学术会议论文集,2008(12):446-449.l-regularized [104] S.J.Kim,K.Koh,M.Lusting,et al. A method for large-scale1 least-squares[C]. IEEE Journal on Selected Topics in Signal Processing,2007,4(1):606-617.[105] I.Daubechies,M.Defrise,C.D.Mol. An iterative thresholding algorithm for linear inverse problems with a sparsely constraint[P]. Comm.Pure.,2004,57(11):1413-1457. [106] A.C.Gilbert,S.Guha,P.Indyk,et al. Near-optimal sparse Fourier representations via sampling[P]. Proceedings of the Annual ACM Symposium on Theory of Computing.Montreal,Que.,Canada: Association for Computing Machinery,2002:152-161.[107] A.C.Gilbert,S.Muthukrishnan,M.J.Strauss. Improved time bounds for neat-optimal sparse Fourier representation[P]. Proceedings of SPIE,Waveles XI,Belingham WA: International Society for Optical Engineering,2005,5914:1-15.[108] A.C.Gilbert,M.J.Strauss,J.Tropp. Algorithmic linear dimension reduction in thel1 norm for sparse vectors[N]. /files/cs/allerton2006GSTV.pdf. [109] A.C.Gilbert,M.J.Strauss,J.Tropp.One sketch for all:Fast algorithms for compressed sensing. Proceedings of the 39th Annual ACM Symposium on Theory of Computing,New York:Association for Computing Machiner,2007:237-246.[110] Takigawa I,Kudo M,Toyama J. Performance analysis of minimuml-norm1 solutions for underdetermined source separation[J]. IEEE Transactions on Signal Processing,2004,52(3): 582-591.。
有限域上低差分函数研究进展
有限域上低差分函数研究进展屈龙江;陈玺;牛泰霖;李超【期刊名称】《计算机研究与发展》【年(卷),期】2018(55)9【摘要】为了抵抗差分密码攻击,密码算法设计希望使用低差分函数.完全非线性函数(perfect nonlinear function,PN函数)、几乎完全非线性函数(almost perfect nonlinear function,APN函数)和4差分置换(differentially 4-uniform permutition)是最重要的几类低差分函数(low differential uniformity function).总结了近年来在PN函数、APN函数和4差分置换等低差分函数研究方面的主要进展.1)回顾了PN函数与半域等数学对象的联系,梳理了PN函数的已有构造以及伪平面函数的构造;2)分析了APN函数的性质与判定,总结了APN函数的已有构造以及它们之间等价性分析方面的结果;3)对于4差分置换,总结了其已有构造及其等价性分析结果;4)介绍了低差分函数在实际密码算法设计中的应用;5)对低差分函数的下一步研究进行了展望.【总页数】15页(P1931-1945)【作者】屈龙江;陈玺;牛泰霖;李超【作者单位】国防科技大学文理学院长沙410073;国防科技大学文理学院长沙410073;国防科技大学文理学院长沙410073;国防科技大学文理学院长沙410073【正文语种】中文【中图分类】TP309.7【相关文献】1.有限域上广义部分Bent函数与广义Bent函数的关系 [J], 元彦斌;金栋梁;赵亚群;张肃2.有限域Fpn上与逆函数仿射等价的密码函数计数问题 [J], 袁峰;江继军;杨旸;欧海文;王敏娟3.有限域多项式环上的GCD和函数与LCM和函数的均值 [J], 李欣4.用有限域上迹函数构造ε-ASU Hash函数 [J], 张建中;肖国镇;胡予濮5.有限域F_(2^(n))上一类幂函数的差分谱及应用 [J], 满玉莹;夏永波因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ONLINE TOPIC DETECTION AND TRACKING OF FINANCIAL NEWS BASEDON HIERARCHICAL CLUSTERINGXIANG-YING DAI, QING-CAI CHEN, XIAO-LONG WANG, JUN XUIntelligence Computing Research Center, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055,ChinaE-MAIL: michealdai@, qingcai.chen@, wangxl@, hit.xujun@Abstract:In this paper, we apply TDT technology to the vertical search engine in the financial field. The returned results are grouped into several topics with the stock as the unit. Then we show the topics to the users in time series order. As a result, users can easily learn about the important events which belong to a stock. Moreover, the causes and the effects of these events can also be found out easily. We improve the common agglomerative hierarchical clustering algorithm based on average-link method, which is then used to implement the retrospective topic detection and the online topic detection of news stories of the stocks. Additionally, the improved single pass clustering algorithm is employed to accomplish topic tracking. We consider that the feature terms which occur in the title of a news story contribute more during the similarity calculation and increase their corresponding weights. Experiments are performed on two datasets which are annotated by human judgment. The results show that the proposed method can effectively detect and track the online financial topics.Keywords:Topic Detection and Tracking; Agglomerative Hierarchical Clustering; Vector Space Model1. IntroductionFor the financial information service, users hope that they can hold the important events of a stock as well as the causes and the effects of these events. There exist several drawbacks to the finance portals, such as the coverage of a stock’s news stories is not extensive and news stories which belong to different stocks are mixed together. Meanwhile, massive similar and follow-up news stories about the same event are published via different news media. What’s worse, the reprints of web pages cause that there exit a large quantity of repeated news stories. All of the deficiencies make it hard to search the related news stories of a stock by browsing finance portals. The vertical search engine in the financial field, such as Google Finance, can provide browsing service of news stories by stock for users. However, the results arenot organized by topic and time. As a result, it is not convenient for users to browse the first story of an event and track the causes and the effects of the event. Therefore, how to detect and track the important events from the searched results, then showing these events to the users in time series order and in the form of topics will be the next problem to be resolved for the vertical search in the financial field.In this paper, we use the topic detection and tracking (TDT) technology to solve the above problem. TDT is a kind of technology which can organize the news stories into the news topics. All the news stories come from news story streams. A topic consists of many news stories related to it. These related stories cover from the initial news story to the follow-up news stories. In order to accomplish this task, we need to do the following jobs. Firstly, it is necessary to detect the existing topics from the previous story collection before running the online topic detection and tracking in the system. We call this procedure retrospective topic detection. Secondly, we need to process the online news stories as they arise for the detection of the new topics contained in them. This is the implementation of the online topic detection. Lastly, when the news stories arise, we process them immediately to decide whether the news stories are the related ones of the previous topics. We refer to this procedure as the implementation of the online topic tracking. The followings are the corresponding examples. The detection of the topic “China CITIC Bank had bought a 70.32% stake in CITIC International Financial Holdings Ltd.” from the previous story collection is an example of the retrospective topic detection. Detecting a new topic “China CITIC Bank promote sound financial plan” from the follow-up stories belongs to the online topic detection. Finally, “China CITIC Bank had bought a 70.32% stake in CITIC International Financial Holdings Ltd., and kicked off the process of internationalization” is a story which is related to the topic “China CITIC Bank had bought a 70.32% stake in CITIC International Financial Holdings Ltd.”, and the detection of the story from the follow-up stories is an example of the topic33412010 IEEE 978-1-4244-6525-5/10/$26.00 ©Proceedings of the Ninth International Conference on Machine Learning and Cybernetics, Qingdao, 11-14 July 2010tracking.The rest of the paper is organized as follows. In section 2, we discuss the related work of TDT. In section 3, we improve the agglomerative hierarchical clustering method, and apply it to the retrospective topic detection and the online topic detection. Additionally, to implement topic tracking, we employ the improved single pass clustering method. Section 4 describes the corpus used in our experiments and the evaluation metrics. In section 5, we present our experiments and the results while section 6 concludes the paper with the observations on our results.2.Related workTDT contains two main subtasks, topic detection and topic tracking. The topic detection consists of the retrospective topic detection and the online topic detection. The main technologies used in these tasks are the agglomerative hierarchical clustering method [1, 2] and the single pass clustering method [1, 3, 4, 5].For the retrospective topic detection, we need to find out the topics that exist in the previous story collection, many works have already been done for this task. In 1998, Yang of CMU proposed the retrospective event detection which is a study of the retrospective topic detection [1]. Moreover, considering more on modeling events in probabilistic manners as well as the better representations of articles and events, Li proposed a probabilistic method to incorporate both content and time information in a unified framework [6].For the online topic detection, the new topics should be detected from the follow-up news stories. Most of the researchers focus on the selection of the clustering methods. Furthermore, single-pass clustering method is used widely [1, 3].In the topic tracking task, the related stories of the previous topics should be detected from the follow-up news stories. In UMASS’s method [7], the relevance of the current topic model and the follow-up news stories are computed based on the statistical methods. Then they recognize the related story by the relevance and combine it into the corresponding topic. Lastly, the topic model is rebuilt.3.Topic detection and tracking based on clusteringWe implement the retrospective topic detection and the online topic detection independently, and the retrospective topic detection is the infrastructure of the online topic detection. Firstly, the improved agglomerative hierarchical clustering method is used to detect topics from the previous story collection. Secondly, considering the phenomenon that most of stories about one certain topic usually burst in a short period of time, we adopt the improved agglomerative hierarchical clustering method to generate the set of candidate topics by clustering stories which occur in a shorttime intervalt∆, and during this process, the average-link method is used to compute similarity between topics. Then, the incremental clustering method [9] is employed to process the candidate topics one by one. If the similarity between a candidate topic and each single previous topic within thelatest period of timeT∆is smaller than the threshold nθ, we consider that a new topic occurs.3.1.Pre-process and story representationFor keeping in step with TDT, we think the title part and the content part of a web page constitute a story.During preprocessing, the first step is to remove the redundant stories. Secondly, word segmentation is performed. After the two steps, we remove the stopwords. It is importantto point out that not only the common stopwords but also the special stopwords in the financial field are removed. At last,we use the vector space model to represent a story. That is to say, a story is represented as a term vector.In the related research of the retrospective topic detection [1], TF-IDF model was employed to compute the feature weight. Besides, the incremental TF-IDF model was adopted to do the same task in much online topic detection research [1, 3, 4]. Due to the good performance the two models have achieved in our experiments, we use TF-IDF model in the retrospective topic detection, whereas the incremental TF-IDF model is employed for implementing the online topic detection. Meanwhile, during calculating the feature weight, we assign higher weight to the words which occur in the title part of the story.In the retrospective topic detection, feature weight is calculated using TF-IDF model. Then we normalized the gained feature vector. TF (term frequency) is calculated as follows:⎩⎨⎧∉∈∗=TtdtTFTtdtTFdttfif),(if),(),(α(1) where),(dtTF means the number of times term t occurs inthe story d, T represents the term set which consist of terms occurring in the title part of the story, and αis the weight coefficient. In our experiments, we find the system can achieve the best performance when αis set to 1.4. Formula (2) is used to calculate the feature weight, where N denotesthe whole number of stories contained in the corpus used inthe retrospective topic detection, whiletdf represents thenumber of stories in which term t occurs.3342Proceedings of the Ninth International Conference on Machine Learning and Cybernetics, Qingdao, 11-14 July 2010∑++∗++∗=∈dt t t df N d t tf df N d t tf d t weight '2'')))5.0/()1log((),(())5.0/()1log((),(),( (2)During the implementation of the online topic detection, we make use of the incremental TF-IDF model to calculate the feature weight and then normalize the obtained feature vector. In this part, after processing a news story, we need to update the inverse document frequency (IDF) immediately. The IDF in the incremental TF-IDF model is calculated as follows:)),(/log(),(c t n N c t idf c = (3)where c represents the current time, N c means the total number of stories at the current time c , ),(c t n denotes the total number of stories which contain term t at the current time c . In our system, we run our system every half a day, hence, we can determine value of c . The following formula is used to calculate the feature weight.∑∗∗=∈dt c t idf d t tf c t idf d t tf d t weight '2'')),(),((),(),(),( (4)3.2. Similarity calculationIn this paper, we use cosine similarity to calculate thesimilarity between two stories. For instance, similaritybetween story 1d and 2d is calculated as follows:∑∗∑∑∗=∈∈∩∈2222211211212121),(),(),(),(),(d t d t d d t d t weight d t weight d t weight d t weight d d similarity (5)3.3. Retrospective topic detection The agglomerative hierarchical clustering is a kind of bottom-up clustering method. We view each story as a topic at the beginning, and then enter into the following iterations. In each iteration, we combine the two most similar topics into a single topic firstly, and then recalculate the similaritybetween the new topic and the other topics. The iterations areperformed until the maximum similarity is smaller than thepredefined threshold. In this paper, we improve the group-average agglomerative hierarchical clustering algorithm [1] through splitting the original algorithm into the following two steps. In the first step, we calculate thesimilarity of each pair of two topics, and directly combine the two topics if the similarity between them is higher than some threshold 1θ. Then we rebuild the topic model. In the second step, we perform the universal agglomerative hierarchical clustering algorithm. In our experiments, 1θis determined empirically, the system achieves the best performance when 1θis set to 0.7.The procedure of clustering is described as follows:1. Preprocess all stories, and represent each of them by afeature vector, then view each story as a topic.2. Let <similarity ,<topic1, topic2>> denote a two-tuple oftwo different topics and their similarity. After calculating the similarity of each pair of two different topics, generate a list of two-tuples in descending order of the calculated similarity.3. For those two-tuples whose corresponding similarity ishigher than the threshold 1θ, process each of them by combining the corresponding two topics into a new topic.4. Rebuild the topic model for the new topics, which areused to replace the original topics. Finally, recalculate the similarity of each pair of two different topics and regenerate the list of two-tuples in descending order of the calculated similarity.5. If the similarity of the first two-tuple is higher than thethreshold 2θ(1θ>2θ), combine the corresponding two topics into a new topic. Then replace the two topics with the new topic, and go to the step 4. Otherwise, the algorithm terminates.3.4. Online topic detectionIn this section, the improved single-pass clustering method is used to implement our system. The process of clustering is described as follows: 1. Process the stories every time interval t ∆using theimproved agglomerative hierarchical clusteringalgorithm, and all those processed stories are the oneswhich arise in t ∆. We can get the set of candidate topics, i.e. CTS.2. Get a topic ct from CTS, and calculate the similarity between ct and each single previous topic within the latest period of time T ∆. If the maximum similarity issmaller than the threshold n θ, we consider ct a new topic.3. Delete ct from CTS, if CTS is empty, then the algorithm terminates. Otherwise, the algorithm goes to step 2. 3.5. Topic tracking based on clustering The topic tracking and online topic detection are performed simultaneously in our system. The process of clustering used in the topic tracking is described as follows: 1. Process the stories every time interval t ∆using theimproved agglomerative hierarchical clustering3343Proceedings of the Ninth International Conference on Machine Learning and Cybernetics, Qingdao, 11-14 July 2010algorithm, and all those processed stories are the ones which arise in t ∆. We can get the set of candidate topics, i.e. CTS.2. Get a topic ct from CTS, and calculate the similaritybetween ct and each single previous topic within the latest period of time T ∆. If the maximum similarity, which is the similarity between ct and the previous topic c T , is not smaller than the threshold n θ, we consider that ct is related to c T .3. Combine the topic ct into the previous topic c T , andrebuild the topic model.4. Delete ct from CTS, if CTS is empty, then the algorithmterminates. Otherwise, the algorithm goes to step 2. 4. Dataset and evaluation metrics 4.1.DatasetOur experiments are performed on two Chinese datasets, which are constructed from web pages downloaded from various financial portals. We annotate only the web pages which are published from June 1 to Aug 31 in 2009. The part of the corpus from June 1 to July 31 in 2009 is used to perform the retrospective topic detection, while the rest is employed to perform the online topic detection and tracking.Dataset1: This dataset contains 471 news stories with 15 topics, and there are 11 topics contained in the part of corpus from June 1 to July 31 in 2009. In the rest of the corpus, 4 new topics are contained. The maximum topic has 93 news stories, while the minimum one has 11 news stories.Dataset2: This dataset contains 1325 news stories with 29 topics, and there are 22 topics contained in the part of corpus from June 1 to July 31 in 2009. In the rest of the corpus, 7 new topics are contained. The maximum topic has 367 news stories, while the minimum one has 9 news stories. 4.2.Evaluation metricIn this paper, we adopt the traditional evaluation metrics which are widely used in clustering and Information Retrieval [10]: Recall, Precision and F-measure. In addition, we don’t evaluate each part of the system but view the three parts of the system as a whole. Then we calculate the Precision, Recall and F-measure on the whole corpus to observe the global performance of the system.We call the topic which is generated by our system a cluster, while the actual topic which is created by manual annotation is referred to as a class. And Precision, Recall and F-measure are calculated by [11]:jij n n j i ecision =),(Pr (7) iij n n j i call =),(Re(8)where i n and j n are the sizes of class i and cluster j , respectively. ij n denotes the number of members of class i in cluster j . Then, the F-measure of cluster j and class i is defined by [11]:),(Pr ),(Re ),(Pr *),(Re *2),(j i ecision j i call j i ecision j i call j i F +=(9) F-measure of each class i is defined as:)),((max arg j i F F ji =(10)Similarly, the Precision and Recall of class i are defined as the corresponding values. We call Precision, Recall and F-measure of the class i i P ,i R and i F , respectively. We can get the global Precision, Recall and F-measure by calculating the weighted mean value for the corresponding metric as follows [11]:i iiP nn ecision ∑=Pr (11) i iiR nn call ∑=Re(12)i iinn F ∑=(13)where n is the total number of stories in the corpus. 5. Experiments and discussion 5.1.Experiment resultsOur algorithm is based on the agglomerative hierarchical clustering (AHC) method, which is improved by bringing in two-step operation. And we use average-link method to compute the similarity between topics. We consider the importance of the title part in a story. That is if a term occurs in the title, it will be assigned higher weight. In our experiments, we compare the performance of the original algorithm and the improved one under different weight coefficients on dataset1 and dataset2, respectively.T ABLE 1. P ERFORMANCE COMPARISON BETWEEN TWO ALGORITHMS ON DATASET 1 (WEIGHT COEFFICIENTS OF TITLE WORDS ARE SET TO 1).Method Precision Recall F-measure AHC 95.63% 99.15% 97.29% Imp-AHC 95.63% 99.15% 97.29%3344Proceedings of the Ninth International Conference on Machine Learning and Cybernetics, Qingdao, 11-14 July 2010T ABLE 2.P ERFORMANCE COMPARISON BETWEEN TWO ALGORITHMS ONDATASET1(WEIGHT COEFFICIENTS OF TITLE WORDS ARE SET TO 1.4).Method Precision Recall F-measureAHC 95.65%99.36%97.40%Imp-AHC 95.83% 99.15% 97.40%T ABLE 3.P ERFORMANCE COMPARISON OF AHC UNDER TWO DIFFERENT WEIGHT COEFFICIENTS OF TITLE WORDS ON DATASET1.Coefficient Precision Recall F-measureα=1 95.63% 99.15% 97.29%α=1.4 95.65% 99.36% 97.40%T ABLE 4.P ERFORMANCE COMPARISON OF IMPROVED AHC UNDER TWODIFFERENT WEIGHT COEFFICIENTS OF TITLE WORDS ON DATASET1.Coefficient Precision Recall F-measureα=1 95.63% 99.15% 97.29%α=1.4 95.83% 99.15% 97.40%T ABLE 5.P ERFORMANCE COMPARISON BETWEEN TWO ALGORITHMS ONDATASET2(WEIGHT COEFFICIENTS OF TITLE WORDS ARE SET TO 1).Method Precision Recall F-measureAHC 89.39%93.43%90.40%Imp-AHC 89.48% 93.43% 90.43%T ABLE 6.P ERFORMANCE COMPARISON BETWEEN TWO ALGORITHMS ONDATASET2(WEIGHT COEFFICIENTS OF TITLE WORDS ARE SET TO 1.4).Method Precision Recall F-measureAHC 90.46%93.66%90.99%Imp-AHC 89.54% 96.22% 92.06%T ABLE 7.P ERFORMANCE COMPARISON OF AHC UNDER TWODIFFERENT WEIGHT COEFFICIENTS OF TITLE WORDS ON DATASET2.Coefficient Precision Recall F-measureα=1 89.39% 93.43% 90.40%α=1.4 90.46% 93.66% 90.99%T ABLE 8.P ERFORMANCE COMPARISON OF IMPROVED AHC UNDER TWODIFFERENT WEIGHT COEFFICIENTS OF TITLE WORDS ON DATASET2.Coefficient Precision Recall F-measureα=1 89.48% 93.43% 90.43%α=1.4 89.54% 96.22% 92.06%Tables 1-8 describe the performance of the two algorithms under different weight coefficients of title terms on dataset1 and dataset2. From these tables, we can see that on dataset1, the Precision, Recall and F-measure run up to 95.6%, 99.1% and 97.2%, respectively. And on dataset2, the three corresponding values are as high as 89.3%, 93.4%, 90.4%. The performance is good enough to satisfy the need of our application.5.2.Results analysisFrom Table3, Table4, Table7 and Table8, we can find out that Precision, Recall and F-measure are all improved when we assign terms which occur in the title part much higher weight. The reason is that the title part of the story is the simplification of the content part, therefore terms which occur in the title is more representative. Those terms occur in the content part frequently, and most of them are the members of the feature vector. So, we can improve the system performance by increasing the weight of these terms.Although the improved agglomerative hierarchical clustering algorithm doesn’t improve the performance of system on dataset1, it does improve the performance on the dataset2. Table 5 and Table 6 illustrate this obviously. The algorithm directly combines the two topics between which the similarity is higher than1θ. This is helpful to create the better topic model. When the size of the corpus is small, we can’t observe this advantage. However, if the size is big enough, especially when there are a large number of stories in one topic, we can get better performance by applying the improved algorithm.6.ConclusionsIn this paper, an improved agglomerative hierarchical clustering method is proposed, which is applied to the topic detection of financial news. What’s more, we implement retrospective topic detection, online topic detection and topic tracking with this method, respectively.First, we split the original agglomerative hierarchical clustering method into two steps and consider the time factor. Then we compare a candidate topic only with the previous topics occur in the latest time intervalT∆. Second, we view the title and the content as a whole story, and consider assigning different weight to the title terms during the similarity calculation [2]. Then we study the effect on the similarity between two stories.The experiment results show that our method performs well on the online topic detection and tracking of financial news.AcknowledgementsThis work is supported by Natural Scientific Research Innovation Foundation in China ( No. 6070301 and No. 60973076).3345Proceedings of the Ninth International Conference on Machine Learning and Cybernetics, Qingdao, 11-14 July 2010References[1] Y. M. Yang, T. Pierce, J. Carbonell. A Study on Retrospective and On-Line event detection. Proceedings of the 21st Annual International ACM SIGIR Conference, Melbourne, Australia. pp. 37-45, 1998.[2] C. H. Wang, M. Zhang, S. P. Ma, et al. Automatic online news issue construction in web environment. Proceeding of the 17th International Conference on World Wide Web, Beijing,China, pp. 21-25, April 2008.[3] J. Allan, R. Papka, V. Lavrenko V. On-Line New Event Detection and Tracking. Proceedings of the 21st Annual International ACM SIGIR Conference, Melbourne, Australia, pp. 37-45, 1998.[4] B. Thorsten, C. Francine, F. Ayman. A System for New Event Detection. Proceedings of the 26th Annual International ACM SIGIR Conference, New York, USA, pp. 330-337, 2003[5] G. Kumaran, J. Allan. Text Classification and Named Entities for New Event Detection. Proceedings of the 27th Annual International ACM SIGIR Conference, Sheffield, UK,pp. 297-304, 2004[6] Z. W. Li, B. Wang, M. J. Li, W. Y. Ma. A Probabilistic Model for Retrospective News Event Detection. Proceedings of the 28th Annual International ACM SIGIR, Salvador, Brazil, pp. 06-113, 2005.[7] J. Allan, V. Lavrenko, D. Frey, V. Khandelwal. UMass at TDT 2000. Proceedings of Topic Detection and Tracking Workshop, 2000.[8] Y. Hong, Y. Zhang, T. Liu, S. Li. Topic Detection and Tracking Review. Journal of Chinese Information Processing , 21(6):71-87, 2007.[9] N. Sahoo, J. Callan, R. Krishnan, G. Duncan, R. Padman. Incremental hierarchical clustering of text documents. Proceedings of the 15th ACM International Conference on Information and knowledge management, Arlington,Virginia,USA, pp. 06-11, November 2006.[10] C. J. van Rijsbergen. Information Retrieval, second edition. Buttersworth, London, 1989.[11] M. Steinbach, G. Karypis, V. Kumar. A comparison of document clustering techniques. KDD-2000 Workshop on Text Mining, Boston,MA,USA, pp. 1-20, August 2000.3346Proceedings of the Ninth International Conference on Machine Learning and Cybernetics, Qingdao, 11-14 July 2010。