【精品ppt课件】ga 遗传算法简介
遗传算法
2019/12/10
4
轮盘法
6.5% 25.4%
42.2%
(1) 计算每个染色体xi 的适应度f(xi);
35.9%
popsize
(2) 找出群体的适应度之和;SUM f ( xi )
群体(population) 由染色体组成的集合。
代遗传操作 遗传操作作用于群体而产生新的群体。
2019/12/10
2
二、基本算法
用于比较不同的解以 确定哪 一个解是更好 的一个措施。
2019/12/10
3
三、基本遗传算子
选择算子(Selection)
用于模拟生物界去劣存优的自然选择现象。它从旧 种群中选择出适应性强的某些染色体,放人匹配集(缓 冲区),为染色体交换和变异运算产生新种群作准备。
1
一、相关概念
染色体(chromosome)或个体(individual) 把每一个 可能的解编码为一个向量,用来描述基本的遗传结构。 例如,用0,1 组成的串可以表示染色体。
基因
向量中的每一个元素
适应度(fitness) 每个染色体所对应的一个适应值。 在优化问题中,适应度来自于一个目标评价函数。
(7) 重复执行(5)(6)直到缓冲区中有足够多的染色体。
2019/12/10
5
交叉算子(Crossover)
具体做法:
(1) 缓冲区中任选两个染色体(双染色体);
(2) 随机选择交换点位置J,0<J<L(染色体长度);
(3) 交换双亲染色体交换点右边的部分。(单点交叉)
GA遗传算法概述
GA遗传算法概述GA(Genetic Algorithm,遗传算法)是一种模拟自然界中生物进化过程的优化算法,具有全局能力和适应性优化能力。
1980年由美国的John Holland提出,并在优化问题领域取得了许多成功的应用。
遗传算法的基本思想是通过模拟自然选择、基因交叉和变异等操作来问题的最优解。
具体而言,遗传算法从一个初始群体(种群)开始,通过不断的迭代进化,逐渐产生接近于最优解的个体。
其中,每个个体都可以看作是问题的一种解决方案。
遗传算法的主要步骤包括:初始化种群、适应度评估、选择操作、交叉操作、变异操作和终止条件。
下面将对这些步骤逐一进行介绍。
首先,初始化种群。
在该步骤中,需要确定种群的规模、编码方式以及初始个体的生成方式。
种群的规模一般较大,以增加空间的覆盖度。
编码方式是将问题的解表示为一个个体的基因型(即染色体),常见的编码方式有二进制编码和实数编码等。
初始个体的生成方式也需根据具体问题来确定。
其次,进行适应度评估。
适应度函数是衡量个体优劣的标准,通常是问题的目标函数。
适应度函数的设计要充分考虑问题的特点,使得适应度高的个体拥有更大的生存概率。
然后,进行选择操作。
选择操作的目的是根据适应度函数的评估结果,选择优秀个体作为下一代个体的父代。
常见的选择方法有轮盘赌选择、竞争选择和排名选择等。
轮盘赌选择法根据个体的适应度进行选择,适应度高的个体被选择概率大。
接着,进行交叉操作。
交叉操作是通过基因交换产生新的个体,以增加种群的多样性。
交叉操作的方式有很多,如一点交叉、多点交叉和均匀交叉等。
一般会在较高适应度个体之间进行交叉操作,以保留优良的基因。
然后,进行变异操作。
变异操作是通过基因突变产生新的个体,以增加种群的多样性。
变异操作是在交叉操作后进行的,其方式有变异率和变异步长等。
变异率决定了个体基因发生变异的概率,变异步长则决定了基因变异的程度。
最后,根据终止条件判断是否终止迭代。
终止条件可以是达到预定的迭代次数、找到满足要求的解或运行时间超过设定的阈值等。
GA 遗传算法简介概述
适应性》中首先提出的,它是一类借鉴生物界自然选择和
自然遗传机制的随机化搜索算法。GA来源于达尔文的进化 论、魏茨曼的物种选择学说和孟德尔的群体遗传学说。其
基本思想是模拟自然界遗传机制和生物进化论而形成的一
种过程搜索全局最优解的算法。
一、遗传算法概述
2、生物进化理论和遗传学基本知识
(1) 达尔文的自然选择说
三、遗传算法的原理
标准遗传算法(Standard genetic algorithm, SGA)
Step1 在搜索空间U上定义一个适应度函 数f(x),给定种群规模N,交叉率Pc和变异 率Pm,代数T; Step2 随机产生U中的N个个体s1, s2, …, sN,组成初始种群S={s1, s2, …, sN},置代 数计数器t=1; Step3 计算S中每个个体的适应度f(x); Step4 若终止条件满足,则取S中适应度最大的个体作为所求结果,算 法结束。否则,转Step5;
四、遗传算法的应用
用遗传算法求解:
f ( x) x sin(10 x) 2.0
分析:由于区间长度为3,求解结果精确到6位小数,因此可将自变量
定义区间划分为3×106等份。又因为221 < 3×106 < 222 ,所以本例的 二进制编码长度至少需要22位,编码过程实质上是将区间[-1,2]内对 应的实数值转化为一个二进制串(b21b20…b0)。
循环交叉(Cycle Crossover)
交叉模拟了生物进化过程中的繁殖现象,通过两个染色体的交换 组合,来产生新的优良品种!
二、遗传算法的基本操作
3 变异(mutation)
变异就是改变染色体某个(些)位上的基因 例如,设染色体s=11001101,将其第三位上的0变为1, 即
GA遗传算法ppt课件
0
if f(X)+Cmin ≤ 0
其中,Cmin为一个适当地相对比较小的数,它可用下面方法之一来选取:
• 预先指定的一个较小的数。
• 进化到当前代为止的最小目标函数值。
• 当前代或最近几代群体中的最小目标函数值。
方法二:对于求目标函数最小值的优化问题,变换方法为:
F(X) =
Cmax - f(X) if f(X) Cmax
遗传算法中的自然法则
遗传算法将“优胜劣汰,适者生存”的生物进化原理引入优化参数形成的编 码串联群体中,按所选择的适应度函数并通过遗传中的复制、交叉及变异对 个体进行筛选,使适应度高的个体被保留下来,组成新的群体,新的群体既 继承了上一代的信息,又优于上一代。这样周而复始,群体中个体适应度不 断提高,直到满足一定的条件。遗传算法的算法简单,可并行处理,并能得 到全局最优解。
遗传算法(Genetic Algorithm)
Keynote :尤志强
遗传算法与模拟退火算法一样是为解决组合优化问题而提出!
人工智能在信息处理和解决组合爆炸方面遇到的困难越来越明显迫使 寻求一种适合于大规模问题并具有自组织、自适应、自学习能力的算 法,基于生活进化论的遗传算法被提出!
遗传算法
遗传算法简称GA(Genetic Algorithms)是1962年由美国Michigan大学的Holland教授提出的模 拟自然界遗传机制和生物进化论而成的一种并行随机搜索最优化方法。 遗传算法是以达尔文的自然选择学说(适者生存)以及Mendel遗传学说(基因遗传原理)为基 础发展起来的。 算法思路: GA将问题的求解表示成“染色体”的适者生存过程,通过“染色体”群的一 代代不断进化,包括复制、交叉、变异等操作,最终收敛到“最适应环境”的个体,从 而求得问题的最优解或满意解。
《遗传算法详解》课件
遗传算法具有全局搜索能力、对问题 依赖性小、可扩展性强、鲁棒性高等 特点。
遗传算法的基本思想
初始化
随机生成一组解作为初始种群。
适应度评估
根据问题的目标函数计算每个解 的适应度值。
选择操作
根据适应度值的大小,选择优秀 的解进行遗传操作。
迭代更新
重复以上过程,直到满足终止条 件。
变异操作
对某些基因进行变异,增加解的 多样性。
《遗传算法详解》 ppt课件
• 遗传算法概述 • 遗传算法的基本组成 • 遗传算法的实现流程 • 遗传算法的优化策略 • 遗传算法的改进方向 • 遗传算法的未来展望
目录
Part
01
遗传算法概述
定义与特点
定义
遗传算法是一种模拟生物进化过程的 优化算法,通过模拟基因遗传和变异 的过程来寻找最优解。
Part
05
遗传算法的改进方向
混合遗传算法的研究
混合遗传算法
结合多种优化算法的优点,提高遗传算法的全局搜索能力和收敛速 度。
混合遗传算法的原理
将遗传算法与其他优化算法(如梯度下降法、模拟退火算法等)相 结合,利用各自的优势,弥补各自的不足。
混合遗传算法的应用
在许多实际问题中,如函数优化、路径规划、机器学习等领域,混 合遗传算法都取得了良好的效果。
自适应交叉率
交叉率控制着种群中新个体的产生速度。自适应交叉率可以根据种群中个体的适应度差 异进行调整,使得适应度较高的个体有更低的交叉率,而适应度较低的个体有更高的交 叉率。这样可以提高算法的搜索效率。
自适应变异率
变异率决定了种群中新个体的产生速度。自适应变异率可以根据种群中个体的适应度进 行调整,使得适应度较高的个体有更低的变异率,而适应度较低的个体有更高的变异率
遗传算法基本概念
遗传算法基本概念一、引言遗传算法(Genetic Algorithm,GA)是一种基于生物进化原理的搜索和优化方法,它是模拟自然界生物进化过程的一种计算机算法。
遗传算法最初由美国科学家Holland于1975年提出,自此以来,已经成为了解决复杂问题的一种有效工具。
二、基本原理遗传算法通过模拟自然界生物进化过程来求解最优解。
其基本原理是将问题转换为染色体编码,并通过交叉、变异等操作对染色体进行操作,从而得到更优的解。
1. 染色体编码在遗传算法中,问题需要被转换成染色体编码形式。
常用的编码方式有二进制编码、实数编码和排列编码等。
2. 适应度函数适应度函数是遗传算法中非常重要的一个概念,它用来评价染色体的适应性。
适应度函数越高,则该染色体越有可能被选中作为下一代群体的父代。
3. 选择操作选择操作是指从当前群体中选择出适应度较高的个体作为下一代群体的父代。
常用的选择方法有轮盘赌选择、竞赛选择和随机选择等。
4. 交叉操作交叉操作是指将两个父代染色体的一部分基因进行交换,产生新的子代染色体。
常用的交叉方法有单点交叉、多点交叉和均匀交叉等。
5. 变异操作变异操作是指在染色体中随机改变一个或多个基因的值,以增加种群的多样性。
常用的变异方法有随机变异、非一致性变异和自适应变异等。
三、算法流程遗传算法的流程可以概括为:初始化种群,计算适应度函数,选择父代,进行交叉和变异操作,得到新一代种群,并更新最优解。
具体流程如下:1. 初始化种群首先需要随机生成一组初始解作为种群,并对每个解进行编码。
2. 计算适应度函数对于每个染色体,需要计算其适应度函数值,并将其与其他染色体进行比较。
3. 选择父代根据适应度函数值大小,从当前种群中选择出若干个较优秀的染色体作为下一代群体的父代。
4. 进行交叉和变异操作通过交叉和变异操作,在选出来的父代之间产生新的子代染色体。
5. 更新最优解对于每一代种群,需要记录下最优解,并将其与其他染色体进行比较,以便在下一代中继续优化。
遗传算法简介
遗传算法的定义
遗传算法是从代表问题可能潜在的解集的一个种群( 遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,而 )开始的, 一个种群则由经过基因(gene)编码的一定数目的个体(individual)组成。每 一个种群则由经过基因( )编码的一定数目的个体 组成。 组成 个个体实际上是染色体(chromosome)带有特征的实体。染色体作为遗传物质 带有特征的实体。 个个体实际上是染色体 带有特征的实体 的主要载体,即多个基因的集合,其内部表现(即基因型)是某种基因组合, 的主要载体,即多个基因的集合,其内部表现(即基因型)是某种基因组合, 它决定了个体的形状的外部表现, 它决定了个体的形状的外部表现,如黑头发的特征是由染色体中控制这一特征 的某种基因组合决定的。因此, 的某种基因组合决定的。因此,在一开始需要实现从表现型到基因型的映射即 编码工作。由于仿照基因编码的工作很复杂,我们往往进行简化,如二进制编 编码工作。由于仿照基因编码的工作很复杂,我们往往进行简化, 初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代( 码,初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代(generation) ) 演化产生出越来越好的近似解,在每一代,根据问题域中个体的适应度( 演化产生出越来越好的近似解,在每一代,根据问题域中个体的适应度(fitness) ) 大小选择( 大小选择(selection)个体,并借助于自然遗传学的遗传算子(genetic )个体,并借助于自然遗传学的遗传算子( operators)进行组合交叉(crossover)和变异(mutation),产生出代表新 ),产生出代表新 )进行组合交叉( )和变异( ), 的解集的种群。 的解集的种群。这个过程将导致种群像自然进化一样的后生代种群比前代更加适 应于环境,末代种群中的最优个体经过解码( ),可以作为问题近似最 应于环境,末代种群中的最优个体经过解码(decoding),可以作为问题近似最 ), 优解。 优解。
GA算法
遗传算法的基本运算 ⑴ 选择运算 ⑵ 交换操作 ⑶ 变异
●选择运算
——从旧的种群中选择适应度高的染色体,放入匹配集(缓冲 区),为以后染色体交换、变异,产生新的染色体作准备。 选择方法——适应度比例法(转轮法) 按各染色体适应度大小比例来决定其被选择数目的多少。 某染色体被选的概率:Pc
Pc
f ( xi )
2、遗传算法的收敛性分析
• 遗传算法要实现全局收敛,首先要求任意 初始种群经有限步都能到达全局最优解, 其次算法必须由保优操作来防止最优解的 遗失。与算法收敛性有关的因素主要包括 种群规模、选择操作、交叉概率和变异概 率。
种群规模对收敛性的影响
• 通常,种群太小则不能提供足够的采样 点,以致算法性能很差;种群太大,尽 管可以增加优化信息,阻止早熟收敛的 发生,但无疑会增加计算量,造成收敛 时间太长,表现为收敛速度缓慢。
f ( xi )
xi 为种群中第i个染色体,
具体步骤
1)计算各染色体适应度值 2)累计所有染色体适应度值,记录中间累加值S - mid 和最
后累加值 sum = ∑f(xi)
3) 产生一个随机数 N,0〈 N 〈 sum 4) 选择对应中间累加值S - mid 的第一个染色体进入交换集 5) 重复(3)和(4),直到获得足够的染色体。
步骤2)选择种群数P 和初始个体,计算适应度值, P = 50; 步骤3)确定选择方法;交换率PC;变异率Pm。
选择方法用竞争法; PC = 0.25, Pm = 0.01
遗传算法数学基础
• (1)模式定理 • (2)积木块假设
模式
模式是指种群个体基因串中的相似样板, 它用来描述基因串中某些特征位相同的结 构。在二进制编码中,模式是基于三个字 符集(0,1,*)的字符串,符号*代表任意字符, 即 0 或者 1。
并行遗传算法
1、遗传算法(GA)概述GA是一类基于自然选择和遗传学原理的有效搜索方法,它从一个种群开始,利用选择、交叉、变异等遗传算子对种群进行不断进化,最后得到全局最优解。
生物遗传物质的主要载体是染色体,在GA中同样将问题的求解表示成“染色体Chromosome”,通常是二进制字符串表示,其本身不一定是解。
首先,随机产生一定数据的初始染色体,这些随机产生的染色体组成一个种群(Population),种群中染色体的数目称为种群的大小或者种群规模。
第二:用适值度函数来评价每一个染色体的优劣,即染色体对环境的适应程度,用来作为以后遗传操作的依据。
第三:进行选择(Selection),选择过程的目的是为了从当前种群中选出优良的染色体,通过选择过程,产生一个新的种群。
第四:对这个新的种群进行交叉操作,变异操作。
交叉、变异操作的目的是挖掘种群中个体的多样性,避免有可能陷入局部解。
经过上述运算产生的染色体称为后代。
最后,对新的种群(即后代)重复进行选择、交叉和变异操作,经过给定次数的迭代处理以后,把最好的染色体作为优化问题的最优解。
GA通常包含5个基本要素:1、参数编码:GA是采用问题参数的编码集进行工作的,而不是采用问题参数本身,通常选择二进制编码。
2、初始种群设定:GA随机产生一个由N个染色体组成的初始种群(Population),也可根据一定的限制条件来产生。
种群规模是指种群中所含染色体的数目。
3、适值度函数的设定:适值度函数是用来区分种群中个体好坏的标准,是进行选择的唯一依据。
目前主要通过目标函数映射成适值度函数。
4、遗传操作设计:遗传算子是模拟生物基因遗传的操作,遗传操作的任务是对种群的个体按照它们对环境的适应的程度施加一定的算子,从而实现优胜劣汰的进化过程。
遗传基本算子包括:选择算子,交叉算子,变异算子和其他高级遗传算子。
5、控制参数设定:在GA的应用中,要首先给定一组控制参数:种群规模,杂交率,变异率,进化代数等。
遗传算法详解ppt课件
A1’=01100 A2’=11001
一般的交叉操作过程:
图5-2 交叉操作
遗传算法的有效性主要来自于复制和交叉操作。复制虽然能够从旧种 群中选择出优秀者,但不能创造新的个体;交叉模拟生物进化过程中 的繁殖现象,通过两个个体的交换组合,来创造新的优良个体。
遗传算法在以下几个方面不同于传统优化 方法
① 遗传算法只对参数集的编码进行操作,而不是 参数集本身。
② 遗传算法的搜索始于解的一个种群,而不是单 个解,因而可以有效地防止搜索过程收敛于局部 最优解。
③ 遗传算法只使用适值函数,而不使用导数和其 它附属信息,从而对问题的依赖性小。
④ 遗传算法采用概率的、而不是确定的状态转移 规则,即具有随机操作算子。
表6-3列出了交叉操作之后的结果数据,从中可以看出交叉操作 的具体过程。首先,随机配对匹配集中的个体,将位串1、2配对,位
串3、4配对;然后,随机选取交叉点,设位串1、2的交叉点为k=4,
二者只交换最后一位,从而生成两个新的位串,即 串 串 1 2 : : 1 01 11 00 0 1 0 1 01 11 00 01 0 新 新 1 2串 串
图5–3
遗传算法的工作原理示意图
5.2 遗传算法应用中的一些基本问题
5.2.1 目标函数值到适值形式的映射
适值是非负的,任何情况下总希望越大越好;而目标 函数有正、有负、甚至可能是复数值;且目标函数和适值 间的关系也多种多样。如求最大值对应点时,目标函数和 适值变化方向相同;求最小值对应点时,变化方向恰好相 反;目标函数值越小的点,适值越大。因此,存在目标函 数值向适值映射的问题。
5.遗传算法
第8章遗传算法
第8章遗传算法第8章遗传算法1.引⾔遗传算法(GeneticAlgorithms简称GA)是由美国Michigan⼤学的JohnHolland教授创建的。
它来源于达尔⽂的进化论、魏茨曼的物种选择学说和孟德尔的群体遗传学说。
其基本思想是模拟⾃然界遗传机制和⽣物进化论⽽形成的⼀种过程搜索最优解的算法。
其特点是⼏乎不需要所求问题的任何信息⽽仅需要⽬标函数的信息,不受搜索空间是否连续或可微的限制就可找到最优解。
依据它的并⾏性,⾮常适⽤于⼤规模并⾏计算机。
因此,遗传算法⼴泛的应⽤于⾃动控制、计算科学、模式识别、⼯程设计、智能故障诊断、管理科学和社会科学领域,适⽤于解决复杂的⾮线性和多维空间寻优问题。
2.遗传算法的发展1)20世纪60年代,John Holland教授和他的数位博⼠受到⽣物模拟技术的启发,认识到⾃然遗传可以转化为⼈⼯遗传算法。
1962年John Holland提出了利⽤群体进化模拟适应性系统的思想,引进了群体、适应值、选择,变异、交叉等基本概念。
2)1967年,J.D.Bagely在其博⼠论⽂中⾸次提出了“遗传算法”的概念。
3)1975年,Holland出版了《⾃然与⼈⼯系统中的适应性⾏为》(Adaptation in Natural and Artificial System)。
该书系统地阐述了遗传算法的基本理论和⽅法,提出了遗传算法的基本定理—模式定理,从⽽奠定了遗传算法的理论基础。
同年,De Jong在其博⼠论⽂中⾸次把遗传算法应⽤于函数优化问题,对遗传算法的机理与参数进⾏了较为系统地研究,并建⽴了著名的五函数测试平台。
4)20世纪80年代初,Holland教授实现了第⼀个基于遗传算法的机器学习系统—分类器系统(Classifier System简称CS),开创了基于遗传算法的机器学习的新概念。
5)1989年,David Goldberg出版了《搜索、优化和机器学习中的遗传算法》(Genetic Algorithms in Search Optimization and Machine Learning)。
数学建模-遗传算法(GA)
初始化种群
种群规模 基因链长度 进化代数
交叉概率 pc 变异概率 pm
适应度函数
Pc取值0.4~0.99 Pm取值0.01~0.1且Pm随 Pc取值增大而减小
选择操作
求解每个个体的适应度,从 父代与子代中选取出适应度 高的个体,再以这些选出的 个体作为父本继续进化,直 到达到迭代次数或满足算法 的收敛准则。
实战演练
我方有一个基地,经度和纬度为(70,40)。 假设我方飞机的速度为1000 公里/小时。 我方派一架飞机从基地出发,侦察完敌方所 有目标,再返回原来的基地。在敌方每一目 标点的侦察时间不计,求该架飞机所花费的 时间(假设我方飞机巡航时间可以充分长)。
交叉前
P1 (0.1 0.9 0.2 | 0.4 0.6 0.5 0.7 0.8 0.3) P2 (0.4 0.5 0.9 | 0.1 0.8 0.7 0.6 0.2 0.3)
交叉后
P1 (0.4 0.5 0.9 | 0.4 0.6 0.5 0.7 0.2 0.3) P2 (0.1 0.9 0.2 | 0.1 0.8 0.7 0.6 0.8 0.3)
有序交叉:
产生两个交叉点,让中间部分基因先复制到下 一代,从一个双亲路径的第二个划分点开始, 从另外一个双亲路径中来的城市按相同的顺序 复制。当字符串的结尾到达时,转从字符串的 开始处继续,最终得到两个子代
交叉前
P1 (1 9 2 | 4 6 5 7 | 8 3) P2 (4 5 9 | 1 8 7 6 | 2 3)
交叉操作
定义:从种群中所选择的每一对母体, 以一定的交叉概率 Pc 交换它们之间的 部分基因。
注意:交叉概率太大,适应度高的个 体很快被破坏;若太小,又影响算法 效率
第7章 遗传算法
遗传算法问题举例:求 Max f (x) x2 , x [0,31]
(1)编码: x 00000 ~ 11111
此时取均长为5,每个染色体 {0,1}5
(2)初始群体生成:群体大小视情况而定,此处设
置为4,随机产生四个个体:
编码: 01101,11000,01000,10011
解码: 13
24 8
w1 w2 …… wn 由于是回路,记wn+1= w1。 要注意w1,w2 ,……,wn是互不相同的。
15
遗传算法的基本机理——适应度函数
2. 适应度函数
通过适应度函数来决定染色体的优劣程度,它体现了自然 进化中的优胜劣汰原则. 对于优化问题,适应度函数就是目标函数,要能够有效地反 映每一个染色体与问题最优解染色体之间的差距. 例如:TSP的目标是路径总长度为最短,路径总长度的倒数 就可以为TSP的适应度函数:
2) 优化目标不受目标函数解析表示的限制,不要求目标 函数连续可微,甚至不要求优化目标具有函数形式, 仅用适应度函数来评价个体。
3) SGA的处理过程具有内在的并行性。 4) SGA不采用确定性规则,而是采用概率变迁规则来指
f 1170
10011 361 0.31 10011
淘汰
24
转轮法
转轮法把种群中所有个体位串适值的总和看作一个轮子的圆 周,而每个个体位串按其适值在总和中所占的比例占据轮子 的一个扇区。上题中可绘制如图所示的转轮。 复制时,只要简单地转动这个按权重划分的转轮4次,从而
产生4个下一代的种群。 例如对于表中的位串1, 其适值为169,为总适值的14.4%。 因此,每旋转一次转轮指向该位串 的概率为0.144。每当需要下一个后 代时,就旋转一下这个按权重划分 的转轮,产生一个复制的候选者。 这样位串的适值越高,在其下代中 产生的后代就越多。
基本遗传算法(GA)
2.1 基本遗传算法描述
遗传算法在自然与社会现象模拟、工程计算等方面得到了广泛的应用。在各 个不同的应用领域,为了取得更好的结果,人们对GA进行了大量的改进,为了 不至于混淆,我们把Holland提出的算法称为基本遗传算法,简称 GA、SGA (Simple Genetic Algorithm )、CGA(Canonical Genetic Algorithm),将其它
其中, 为二进制编码的编码精度,其公式为:
=
Umax umin
2l 1
(2) 解码 假设某一个体的编码是:
x: bl bl-1 bl-2……b2b1
则对应的解码公式为:
U umin x = umin + ( bi · i-1 ) · max 2 i=l 2l 1
1
[例]
设 -3.0 ≤ x ≤ 12.1 , 精度要求 =1/10000,由公式: =
M——群体大小; F——个体适应度评价函数; s——选择操作算于; c——交叉操作算子: m——变异操作算于; pc——交叉概率; pm——变异概率;
2.1.3 基本遗ቤተ መጻሕፍቲ ባይዱ算法描述
Procedure GA Begin initialize P(0); t=0; while (t<=T) do for i=1 to M do Evaluate fitness of P(t); end for for i=1 to M do Select operation to P(t); end for for i=1 to M/2 do Crossover operation to P(t); end for for i=1 to M do Mutation operation to P(t); end for for i=1 to M do P(t+1) = P(t); end for t=t+1 end while end
GA
7
遗传算法
Holland图式理论 图式理论 ------图式定理 图式定理
f (H ) δ (H ) m( H , t + 1) ≥ m( H , t ) • • (1 − Pc • − O( H ) • Pm ) l −1 f
m(H,t):t代群体中符合图式H的串数量 代群体中符合图式H
f
f (H )
从初始群体(即问题解的串集)开始搜索。 从初始群体(即问题解的串集)开始搜索。 求解时使用特定问题的信息极少,容易形成通用算法程序。 求解时使用特定问题的信息极少,容易形成通用算法程序。 有很强的容错能力 选择、交换、突变都是随机操作,不是确定的精确规则。 选择、交换、突变都是随机操作,不是确定的精确规则。 具有隐含的并行性
① ② ③ ④
20
遗传算法
旅行商问题
旅行商问题( 旅行商问题(Traveling Salesman Problem,TSP)又 , ) 译为旅行推销员问题、货郎担问题,简称为TSP问题,是 问题, 译为旅行推销员问题、货郎担问题,简称为 问题 最基本的路线问题, 最基本的路线问题,该问题是在寻求单一旅行者由起点出 通过所有给定的需求点之后, 发,通过所有给定的需求点之后,最后再回到原点的最小 路径成本。 路径成本。
19
遗传算法
结束语
遗传算法对于组合优化中的NP问题非常有效。 遗传算法对于组合优化中的 问题非常有效。例如遗传算法已经 问题非常有效 在求解旅行商问题、 背包问题、装箱问题、 在求解旅行商问题、 背包问题、装箱问题、图形划分问题等方面得 到成功的应用。 此外, 也在生产调度问题 自动控制、机器人学、 也在生产调度问题、 到成功的应用。 此外,GA也在生产调度问题、自动控制、机器人学、 图象处理、人工生命、遗传编码和机器等方面获得了广泛的运用。 图象处理、人工生命、遗传编码和机器等方面获得了广泛的运用。 但是遗传算法还有大量的问题待研究。 但是遗传算法还有大量的问题待研究。 在变量多、取值范围大或无给定范围时, 在变量多、取值范围大或无给定范围时,收敛速度下降 在最有解附近徘徊, 在最有解附近徘徊,无法定位最优解位置 参数选择尚未有定量方法 如何有效配合使用交叉和变异操作
GA遗传算法概述
GA遗传算法概述1.初始化种群:通过随机生成的方式,创建一个原始的解空间种群。
种群中的每个个体即为一个解的候选解。
初始种群的大小可以根据问题的复杂程度和计算资源来决定。
2.评估适应度:对每个个体进行适应度评估,这个评估函数可以根据问题的特点来设计。
适应度函数通常将问题的目标函数作为评估指标,用来度量个体的适应度。
3.选择操作:根据适应度值,选择一部分个体作为父代,并生成下一代的种群。
选择操作一般通过轮盘赌算法,按照每个个体的适应度值来决定其被选中的概率。
4.交叉操作:对选出的父代个体进行交叉操作,生成新的子代个体。
交叉操作通过模拟生物的基因组合与变异的过程,将两个或多个父代个体的染色体片段进行交叉,并产生新的染色体。
5.变异操作:对新的子代个体进行变异操作,引入一定的随机性,以增加解空间的能力。
变异操作比交叉操作更为随机,可以对染色体的一些基因进行改变。
6.重复以上步骤:通过多次迭代,不断优化种群中的个体,直至达到满足终止条件为止。
终止条件可以是达到最大迭代次数,或者满足特定的目标条件等。
GA遗传算法的主要优点是能够在较短的时间内找到问题的近似最优解,对于解空间复杂、目标函数非线性等问题具有较好的能力。
但是,由于遗传算法是一种随机算法,其结果可能无法完全符合问题的要求,需要在实际问题中进行调整和改进。
在实际应用中,GA遗传算法已广泛应用于组合优化问题、函数优化问题、调度问题等领域。
例如,在组合优化问题中,GA遗传算法可用于求解旅行商问题(TSP)以及图着色问题。
在函数优化问题中,GA遗传算法可以利用模拟进化的方式求解函数的最大值或最小值。
在调度问题中,GA遗传算法可以用于求解生产调度、车辆路径规划等问题。
总而言之,GA遗传算法通过模拟自然进化过程,通过遗传、交叉和变异等操作机制来解空间中的最优解。
它是一种强大的优化算法,可以应用于多领域的问题求解中。
虽然其结果可能不是绝对的最优解,但可以在实际问题中取得较好的效果。