示波器 物理实验报告

合集下载

大学物理实验实验报告——示波器的使用

大学物理实验实验报告——示波器的使用

大学物理实验实验报告——示波器的使用篇一:大物实验示波器的使用实验报告实验二十三示波器的使用班级自动化153班姓名廖俊智学号6101215073日期2019 3.21指导老师代国红【实验目的】1、了解示波器的基本结构和工作原理,学会正确使用示波器。

2、掌握用示波器观察各种电信号波形、测量电压和频率的方法。

3、掌握观察利萨如图形的方法,并能用利萨如图形测量未知正弦信号的频率。

【实验仪器】固纬GOS-620型双踪示波器一台,GFG-809型信号发生器两台,连线若干。

【实验原理】示波器是利用示波管内电子束在电场或磁场中的偏转,显示电压信号随时间变化波形的一种电子观测仪器。

在各行各业与各个研究领域都有着广泛的应用。

其基本结构与工作原理如下1、示波器的基本结构与显示波形的基本原理本次实验使用的是台湾固纬公司生产的通用双踪示波器。

基本结构大致可分为示波管(CRT)、扫描同步系统、放大与衰减系统、电源系统四个部分。

“示波管(CRT)”是示波器的核心部件如图1所示的。

可细分为电子枪,偏转系统和荧光屏三部分。

1)电子枪电子枪包括灯丝F,阴极K,控制栅极G,第一阳极A1,第二阳极A2等。

阴极被灯丝加热后,可沿轴向发射电子。

并在荧光屏上显现一个清晰的小圆点。

2)偏转系统偏转系统由两对互相垂直的金属偏转板x和y组成,分别控制电子束在水平方向和竖直方向的偏转。

从电子枪射出的电子束若不受横向电场的作用,将沿轴线前进并在荧光屏的中心呈现静止的光点。

若受到横向电场的作用,电子束的运动方向就会偏离轴线,F灯丝,K阴极,G控制栅极,A1、A2第一、第二阳极,Y、X 竖直、水平偏转板图1示波管结构简图屏上光点的位置就会移动。

x偏转板之间的横向电场用来控制光点在水平方向的位移,y偏转板用来控制光点在竖直方向的位移。

如果两对偏转板都加上电场,则光点在二者的共同控制下,将在荧光屏平面二维方向上发生位移。

3)荧光屏。

示波器的实验报告(共7篇)

示波器的实验报告(共7篇)

篇一:电子示波器实验报告一、名称:电子示波器的使用二、目的:2.学会使用常用信号发生器;掌握用示波器观察电信号波形的方法。

3.学会用示波器测量电信号电压、周期和频率等电参量。

三、器材:2、ee1641b型函数信号发生器/计数器。

四、原理:1、示波器的基本结构:y输入外触发x输入 2、示波管(crt)结构简介:3、电子放大系统:竖直放大器、水平放大器(2)触发电路:形成触发信号。

#内触发方式时,触发信号由被测信号产生,满足同步要求。

#外触发方式时,触发信号由外部输入信号产生。

5、波形显示原理:只在竖直偏转板上加正弦电压的情形示波器显示正弦波原理只在水平偏转板上加一锯齿波电压的情形五、步骤:1、熟悉示波器的信号发声器面板各旋钮的作用,并将各开关置于指定位3、将信号发生器输出的频率为500hz和1000hz的正弦信号接入示波器,通过调整相应的灵敏度开关和扫描速度选择开关,使波形不超出屏幕范围,显示2~3个周期的波形。

4、将time/div顺时针旋到底至"x-y"位置,分别调节y1通道和y2六、记录:七、预习思考:1、示波器上观察到的正弦波形和李萨如图形实际上分别是哪两个波形的合成?答:正弦波形:是两组磁场使电子受力改变运动状态,然后将不同电子打到荧光屏上不同的位置而形成的;2、用示波器观察待测信号波形和用示波器观察李萨如图形时,示波器的工作方式有什么不同?3、当开启示波器的电源开关后,在屏上长时间不出现扫描线或点时,应如何调节各旋钮?八、操作后思考题1、如果y轴信号的频率?x比x轴信号的频率?y大很多,示波器上看到什么情形?相反又会看到什么情形?答:因为 ?y / ?x=nx / ny ,当?x /?y=1:1时,示波器上是一个圆柱,当?x /?y=2:1时,示波器上是一个横向的8,当?x /?y=3:1时,示波器上是三个横向的圆。

所以?y如果越大的话,横向圆的数量就越多。

篇二:示波器的原理与使用实验报告大连理工大学大学物理实验报告院(系)材料学院专业材料物理班级 0705 姓名童凌炜学号 200767025 实验台号实验时间 2008 年 11 月 18 日,第13周,星期二第 5-6 节实验名称示波器的原理与使用教师评语实验目的与要求:(1)了解示波器的工作原理(2)学习使用示波器观察各种信号波形(3)用示波器测量信号的电压、频率和相位差主要仪器设备:yb4320g 双踪示波器, ee1641b型函数信号发生器实验原理和内容: 1. 示波器基本结构电子枪的作用是释放并加速电子束。

最新大学物理实验——示波器的使用实验报告.

最新大学物理实验——示波器的使用实验报告.

最新大学物理实验——示波器的使用实验报告.实验目的:1. 熟悉示波器的基本结构和工作原理。

2. 掌握使用示波器观察和分析不同类型电信号的方法。

3. 学习测量电信号的基本参数,如幅度、周期、频率和相位差。

实验仪器:1. 示波器(型号:DSO-XXXXX)2. 函数信号发生器3. 电阻、电容等基本电子元件4. 电烙铁及焊接工具5. 电源实验步骤:1. 首先,将示波器接通电源,并进行预热。

2. 打开函数信号发生器,设置所需的频率和幅度,产生标准电信号。

3. 使用探头将函数信号发生器的输出连接到示波器的输入端。

4. 调整示波器的垂直和水平控制钮,使屏幕上显示清晰的波形。

5. 观察并记录波形的幅度和周期,使用示波器的内置测量工具计算信号的频率。

6. 改变函数信号发生器的输出频率和幅度,重复步骤4和5,观察不同参数下的波形变化。

7. 通过串联和并联电阻、电容等元件,生成复杂的电路,观察示波器上显示的波形变化。

8. 实验结束后,关闭所有设备并断开连接。

实验数据与分析:1. 记录不同频率和幅度下的波形图像,并列出测量到的信号参数。

2. 分析波形的变化趋势,如频率增加时波形的变化,幅度变化对波形的影响。

3. 讨论可能出现的误差源,例如探头的接地问题、示波器的校准误差等。

实验结论:通过本次实验,我们成功地使用示波器观察并分析了不同电信号的特性。

我们了解了示波器的基本操作方法,并能够准确地测量电信号的基本参数。

此外,我们还学习了如何通过改变电路参数来观察波形的变化,这将对我们未来在电子实验和研究中起到重要的帮助作用。

示波器 实验报告 -回复

示波器 实验报告 -回复

示波器实验报告-回复:什么是示波器,以及它的工作原理和应用领域。

第一部分:引言示波器(Oscilloscope)是一种用来显示电信号的波形和测量各种电信号参数的仪器。

它在电子领域广泛应用,能够帮助工程师更好地理解和分析电路的性能。

本文将介绍示波器的工作原理和应用领域。

第二部分:示波器的工作原理示波器的基本工作原理是通过测量信号在时间和电压上的变化,并将其转换为显示在示波器屏幕上的波形。

这一过程包括以下几个关键步骤:1. 信号采集:示波器通过探头或直接连接到被测电路上,将被测信号采集到示波器的输入端。

示波器的输入电路通常具有不同的探头、电阻和电容等组成,以适应不同的信号源。

2. 信号放大:被采集到示波器的信号通常较小,需要经过一系列的放大才能使其达到适合显示的范围。

示波器的放大电路可以将信号的幅度放大到适当的电平。

3. 信号采样:为了显示连续的波形,示波器需要对采集到的信号进行离散化处理。

它将信号进行快速的采样和量化,将每个采样点的幅度和时间信息记录下来。

4. 波形显示:通过将量化后的数据转换为示波器屏幕上的波形,用户可以直观地观察被测信号的变化。

示波器通常采用CRT(阴极射线管)或LCD (液晶显示屏)等显示技术,以实时显示信号的波形。

第三部分:示波器的应用领域示波器在电子领域有着广泛的应用,以下是几个常见的应用领域:1. 电子开发和测试:示波器在电子开发和测试过程中起到至关重要的作用。

通过观察和分析信号的波形,工程师能够更好地了解电路的性能、检测故障和验证设计。

2. 通信和网络:示波器广泛应用于通信和网络领域,用于分析和调试信号的传输与接收。

它可以帮助工程师检测信号失真、测量噪声和观察调制技术的效果等。

3. 医学和生物科学:示波器在医学和生物科学研究中也有一定的应用。

例如,在心电图仪中,示波器被用来显示心脏的电信号,以帮助医生诊断心脏疾病。

4. 教育和科学研究:示波器在教育和科学研究中被广泛应用,帮助学生和科研人员更好地理解和探索电子技术和电路原理。

示波器使用大学物理实验报告1

示波器使用大学物理实验报告1

示波器使用大学物理实验报告1一、实验目的1、了解示波器的基本结构和工作原理。

2、掌握示波器的基本操作方法,包括示波器的调节、信号的输入与显示等。

3、学会使用示波器测量正弦波、方波等信号的电压、频率和周期等参数。

二、实验仪器示波器、函数信号发生器、探头、连接线等。

三、实验原理示波器是一种用于显示电信号波形的电子仪器。

它通过将输入的电信号转换为光信号,并在荧光屏上显示出来,从而使我们能够观察到信号的变化情况。

示波器主要由电子枪、偏转系统和荧光屏三部分组成。

电子枪产生高速电子束,经过偏转系统的作用,使电子束在荧光屏上按照输入信号的变化规律进行偏转,从而形成信号的波形。

示波器的显示原理是基于电子束在电场和磁场中的偏转。

当在垂直偏转板和水平偏转板上分别加上适当的电压时,电子束就会在垂直和水平方向上发生偏转,从而在荧光屏上显示出相应的波形。

四、实验内容及步骤1、示波器的调节(1)打开示波器电源,预热一段时间。

(2)调节辉度和聚焦旋钮,使荧光屏上的亮点清晰可见。

(3)调节水平和垂直位移旋钮,将亮点移至屏幕的中心位置。

(4)选择适当的触发方式和触发电平,使示波器能够稳定地显示输入信号的波形。

2、正弦波信号的测量(1)将函数信号发生器的输出端与示波器的输入端连接,设置函数信号发生器输出正弦波信号,频率为 1kHz,峰峰值为 5V。

(2)调节示波器的垂直灵敏度和水平扫描速度,使正弦波的波形在屏幕上显示完整且清晰。

(3)测量正弦波的峰峰值、有效值、频率和周期。

峰峰值:通过示波器的垂直刻度读取正弦波的峰峰值。

有效值:根据公式 U 有效值= U 峰峰值/√2 计算正弦波的有效值。

频率:根据示波器水平刻度上一个周期所对应的时间,计算出正弦波的频率。

周期:直接从示波器上读取正弦波的周期。

3、方波信号的测量(1)设置函数信号发生器输出方波信号,频率为 500Hz,峰峰值为 3V。

(2)按照上述方法测量方波信号的峰峰值、频率和周期。

示波器的使用实验报告

示波器的使用实验报告

示波器的使用实验报告一、实验目的本实验旨在掌握示波器的使用方法,通过观察不同信号的波形,加深对电子信号的理解。

具体目标如下:1. 掌握示波器的操作方法;2. 能够正确使用示波器观察信号波形;3. 通过对不同信号的观察,提高对电子信号的理解。

二、实验设备与工具1. 示波器;2. 电源适配器;3. 接地线;4. 信号发生器;5. 镊子;6. 纸笔。

三、实验步骤与操作方法1. 打开示波器,并将电源适配器插入电源插座,确保接地线正确接地。

2. 将示波器的探头插孔与信号发生器的输出端连接,确保连接稳定。

3. 将示波器的通道选择开关置于合适的通道,以便观察不同信号的波形。

4. 使用镊子调整信号发生器的输出幅度和频率,观察示波器上的波形变化。

可以通过示波器上的垂直和水平旋钮进行放大和移动,以便更清晰地观察波形。

5. 在观察过程中,需要记录不同信号的波形特点,并做好相关记录。

6. 实验完成后,断开信号发生器与示波器的连接,关闭示波器。

四、实验结果与分析1. 实验结果展示:示波器上的波形图(请在此处插入示波器上的波形图)通过观察示波器上的波形图,可以发现不同信号的波形特点。

例如,正弦波、方波、脉冲波等。

同时,可以通过调整信号发生器的输出幅度和频率,观察示波器上波形的变化情况。

2. 实验结果分析:示波器的使用原理示波器是一种常用的电子测量仪器,通过显示电子信号的波形来分析电路性能。

示波器利用高速电子枪射出的电子束打到荧光屏上,从而在荧光屏上产生对应的图像。

通过调节垂直和水平轴的旋钮,可以放大和移动波形,以便更清晰地观察和分析。

示波器的波形显示具有较高的分辨率和灵敏度,可以用于测量电压、频率、时间等参数。

五、实验总结与思考通过本次实验,我们掌握了示波器的使用方法,并观察了不同信号的波形特点。

通过对比和分析,加深了对电子信号的理解。

在实验过程中,需要注意探头的使用方法、信号发生器的输出幅度和频率的调整以及实验后的清理工作。

大学物理实验示波器实验报告

大学物理实验示波器实验报告

了解信号发生器的功能和 使用方法。
注意示波器的探头选择和 使用方法,避免损坏设备 或影响测量结果。
02
示波器操作指南
示波器面板功能介绍
显示屏幕
用于显示波形图像,可调整屏幕亮度、 对比度等参数。
垂直控制
包括通道选择、垂直位移、垂直灵敏度 等调节旋钮,用于调整波形的垂直显示 位置及幅度。
水平控制
包括时基选择、水平位移等调节旋钮, 用于调整波形的水平显示宽度及位置。
改进建议提
仪器校准
定期对示波器进行校准和维护,确 保其精度和稳定性。
环境控制
在实验过程中,尽量控制环境因素 对实验结果的影响,如保持恒温、 恒湿等。
操作规范
提高操作人员的熟练程度和规范性, 减少操作误差的产生。
实验方案优化
根据实验结果和讨论,对实验方案 进行优化和改进,提高实验的准确 性和可靠性。
触发控制
包括触发源选择、触发方式选择、触发 电平等调节旋钮,用于设置触发条件, 确保波形稳定显示。
信号发生器使用方法
频率设置
通过调节频率旋钮或按键,设置所需信
号频率。
波形选择
根据需要选择正弦波、方波、三角波等 不同波形。
幅度设置
通过调节幅度旋钮或按键,设置所需信 号幅度。
输出连接
将信号发生器输出端与示波器输入端正 确连接,确保信号正常传输。
解决方案
根据排查结果采取相应的 解决方案,如更换损坏的 部件、调整设置参数等, 以确保实验顺利进行。
04
实验数据分析与讨论
数据处理过程展示
数据采集
详细记录了示波器的各项参数,包括 电压、频率、相位等,确保数据的准 确性和完整性。
图表绘制
根据处理后的数据,绘制了相应的图 表,如波形图、相位图等,以便更直 观地展示数据特征。

示波器实验报告

示波器实验报告
1.测量示波器自备方波输出信号周期
方波信号(HZ)
序号
1
2
3
选择时基(ms)
0.1
0.2
0.5
方波信号(HZ)
1000
1000
1000
2.选择信号发生器的对称方波接y输入(幅度和y轴量程任选),信号频率为200Hz~2kHz(每隔200Hz测一次),选择示波器合适的时基,测量对应频率的厘米数、周期和频率。
序号
1
2
3
4
5
6
7
8
9
10
时基
0.5
0.5
0.5
0.5
0.2
0.2
0.2
0.2
0.2
0.2
厘米
5.0
2.5
1.7
1.2
5.0
4.0
3.5
3.0
2.8
2.4
周期
5.00
2.50
1.6
1.25
1.00
0.8
0.7
0.6
0.55
0.50
频率
200
400
600
800
1000
1202000
序号
1
2
3
fx/fy
1
0.5
2
公用信号频率
1149.5
537.6
1977.3
序号
1
2
3
4
已知频率
500
1000
1500
2000
三角信号上升时间
1.2
0.6
0.4
0.3
三角信号下降时间
1.2
0.6
0.4
0.3

大学物理实验实验报告——示波器的使用

大学物理实验实验报告——示波器的使用

大学物理实验实验报告——示波器的使用篇一:大物实验示波器的使用实验报告实验二十三示波器的使用班级自动化153班姓名廖俊智学号6101215073日期2019 3.21指导老师代国红【实验目的】1、了解示波器的基本结构和工作原理,学会正确使用示波器。

2、掌握用示波器观察各种电信号波形、测量电压和频率的方法。

3、掌握观察利萨如图形的方法,并能用利萨如图形测量未知正弦信号的频率。

【实验仪器】固纬GOS-620型双踪示波器一台,GFG-809型信号发生器两台,连线若干。

【实验原理】示波器是利用示波管内电子束在电场或磁场中的偏转,显示电压信号随时间变化波形的一种电子观测仪器。

在各行各业与各个研究领域都有着广泛的应用。

其基本结构与工作原理如下1、示波器的基本结构与显示波形的基本原理本次实验使用的是台湾固纬公司生产的通用双踪示波器。

基本结构大致可分为示波管(CRT)、扫描同步系统、放大与衰减系统、电源系统四个部分。

“示波管(CRT)”是示波器的核心部件如图1所示的。

可细分为电子枪,偏转系统和荧光屏三部分。

1)电子枪电子枪包括灯丝F,阴极K,控制栅极G,第一阳极A1,第二阳极A2等。

阴极被灯丝加热后,可沿轴向发射电子。

并在荧光屏上显现一个清晰的小圆点。

2)偏转系统偏转系统由两对互相垂直的金属偏转板x和y组成,分别控制电子束在水平方向和竖直方向的偏转。

从电子枪射出的电子束若不受横向电场的作用,将沿轴线前进并在荧光屏的中心呈现静止的光点。

若受到横向电场的作用,电子束的运动方向就会偏离轴线,F灯丝,K阴极,G控制栅极,A1、A2第一、第二阳极,Y、X 竖直、水平偏转板图1示波管结构简图屏上光点的位置就会移动。

x偏转板之间的横向电场用来控制光点在水平方向的位移,y偏转板用来控制光点在竖直方向的位移。

如果两对偏转板都加上电场,则光点在二者的共同控制下,将在荧光屏平面二维方向上发生位移。

3)荧光屏荧光屏的作用是将电子束轰击点的轨迹显示出来以供观测。

物理实验报告示波器的使用

物理实验报告示波器的使用

物理实验报告示波器的使用YUKI was compiled on the morning of December 16, 2020(一)实验名称:示波器的使用我们常用的同步示波器是利用示波管内电子束在电场中的偏转,显示随时间变化的电信号的一种观测仪器。

它不仅可以定性观察电路(或元件)中传输的周期信号,而且还可以定量测量各种稳态的电学量,如电压、周期、波形的宽度及上升、下降时间等。

自1931年美国研制出第一台示波器至今已有70年,它在各个研究领域都取得了广泛的应用,根据不同信号的应用,示波器发展成为多种类型,如慢扫描示波器、取样示波器、记忆示波器等,它们的显像原理是不同的。

已成为科学研究、实验教学、医药卫生、电工电子和仪器仪表等各个研究领域和行业最常用的仪器。

(二)实验目的1、了解示波器的基本结构和工作原理,掌握示波器的调节和使用方法;2、掌握用示波器观察各种电信号波形、测量电压和频率的方法;3、掌握观察利萨如图形的方法,并能用利萨如图形测量未知正弦信号的频率。

(三)实验仪器示波器、信号发生器、公共信号源(四)实验原理1、示波器的基本结构示波器的结构如图1所示,由示波管(又称阴极射线管)、放大系统、衰减系统、扫描和同步系统及电源等部分组成。

图1 示波器的结构图为了适应多种量程,对于不同大小的信号,经衰减器分压后,得到大小相同的信号,经过放大器后产生大约20V左右电压送至示波管的偏转板。

示波管是示波器的基本构件,它由电子枪、偏转板和荧光屏三部分组成,被封装在高真空的玻璃管内,结构如图2所示。

电子枪是示波管的核心部分,由阴极、栅极和阳极组成。

图2 示波管的结构(1)阴极――阴极射线源:由灯丝(F)和阴极(K)构成,阴极表面涂有脱出功较低的钡、锶氧化物。

灯丝通电后,阴极被加热,大量的电子从阴极表面逸出,在真空中自由运动从而实现电子发射。

(2)栅极――辉度控制:由第一栅极G1(又称控制极)和第二栅极G2(又称加速极)构成。

大学物理实验报告示波器的使用

大学物理实验报告示波器的使用

大学物理实验报告示波器的使用引言示波器是一种常用于实验室、工程领域的仪器,用于观察电信号波形的仪器。

在物理实验中,示波器常常被用来测量和显示电压、电流和频率等物理量,能够直观地观察到波形的变化。

本实验将重点介绍示波器的基本原理、操作方法和使用技巧。

一、基本原理示波器主要由示波管、水平和垂直系统以及触发系统组成。

1. 示波管示波管是示波器核心部件,通过控制电子束的运动和偏转,将电信号转化为可视化的波形。

示波管属于真空管,内部有阴极、阳极和偏转板等元件。

当加上适当的电压后,阴极会发射出电子,通过偏转板的控制,电子束会在荧光屏上形成一条亮线。

2. 水平和垂直系统水平和垂直系统分别用于控制示波器的水平和垂直方向上的偏转。

水平系统负责控制时间轴的水平位置和扫描速率,而垂直系统则负责控制信号的垂直放大倍数和偏移量。

3. 触发系统触发系统用于控制示波器何时开始显示电信号。

通过触发电路的设置,可以使示波器在信号达到一定条件时进行显示,以确保波形的稳定性和重复性。

二、操作方法使用示波器需要注意以下几个关键步骤:1. 连接测试电路首先需要将待测信号的电路正确连接到示波器的输入端口。

一般示波器会有不同的通道,根据需要选择合适的通道连接测试电路。

2. 调节垂直和水平控制根据待测信号的幅值范围,调节垂直控制旋钮,使信号的波形适当放大或缩小。

同时,根据信号的频率和时间跨度,调节水平控制旋钮,使波形在示波器的屏幕上完整显示。

3. 设置触发条件根据需要,设置触发条件以确保信号的稳定显示。

可以设置触发电平、触发边沿和触发源等参数,使示波器在信号满足设定条件时开始显示。

4. 观察和分析波形将示波器的时间基准和垂直基准调整到合适的位置后,即可观察到待测信号的波形。

可以通过改变时间和垂直基准的位置,观察不同的波形细节,并对信号进行分析和测量。

三、使用技巧在实际操作示波器时,还有一些常用的技巧可以提高使用效果:1. 选择合适的探头示波器通常配备了多种类型的探头,如10:1和1:1的差分探头、高阻抗探头等。

示波器 南昌大学 物理实验

示波器  南昌大学 物理实验

南昌大学物理实验报告
课程名称:普通物理实验
实验名称:数字示波器的使用
学院:理学院专业班级:应用物理学152班学生姓名:学号:
实验地点:B211 座位号:26 实验时间:第五周星期四上午10点开始
一、实验目的:
1、了解解示波器各主要组成部分及功能。

熟悉使用示波器的基本使用方法。

2、学会用示波器测量波形的电压幅度和频率。

3、以及熟悉低频信号发射器基本使用方法。

二、实验原理:
利用示波管内电子束在电场或磁场中的偏转,显示电压信号随时间变化波形
1、双踪示波器的原理:
电子开关使两个待测电压信号YCH1和YCH2周期性地轮流作用在Y偏转板,这样在荧光屏上忽而显示YCH1信号波形,忽而显示YCH2信号波形。

由于荧光屏荧光物质的余辉及人眼视觉滞留效应,荧光屏上看到的是两个波形。

当扫描信号的周期与被测信号的周期一致或是整数倍,屏上一般会显示出完整周期的正弦波形。

2、示波器显示波形原理:
如果在示波器的YCH1或YCH2端口加上正弦波,在示波器的X偏转板加上示波器内部的锯齿波,当锯齿波电压的变化周期与正弦电压的变化周期相等时,则在荧光屏上将显示出完整周期的正弦波形。

3、数字存储示波器的基本原理:
f x n y
三、实验仪器:
双踪示波器,信号发生器,探头
四、实验内容和步骤:。

示波器实验报告数据(共8篇)

示波器实验报告数据(共8篇)

篇一:示波器使用大学物理实验报告示范及数据处理《示波器的使用》实验报告物理实验报告示范文本:包含数据处理李萨如图【实验目的】 1.了解示波器显示波形的原理,了解示波器各主要组成部分及它们之间的联系和配合; 2.熟悉使用示波器的基本方法,学会用示波器测量波形的电压幅度和频率;3.观察李萨如图形。

【实验仪器】1、双踪示波器 gos-6021型 1台2、函数信号发生器 yb1602型 1台3、连接线示波器专用 2根示波器和信号发生器的使用说明请熟读常用仪器部分。

[实验原理]示波器由示波管、扫描同步系统、y轴和x轴放大系统和电源四部分组成,1、示波管如图所示,左端为一电子枪,电子枪加热后发出一束电子,电子经电场加速以高速打在右端的荧光屏上,屏上的荧光物发光形成一亮点。

亮点在偏转板电压的作用下,位置也随之改变。

在一定范围内,亮点的位移与偏转板上所加电压成正比。

示波管结构简图示波管内的偏转板 2、扫描与同步的作用如果在x轴偏转板加上波形为锯齿形的电压,在荧光屏上看到的是一条水平线,如图图扫描的作用及其显示如果在y轴偏转板上加正弦电压,而x轴偏转板不加任何电压,则电子束的亮点在纵方向随时间作正弦式振荡,在横方向不动。

我们看到的将是一条垂直的亮线,如图如果在y轴偏转板上加正弦电压,又在x轴偏转板上加锯齿形电压,则荧光屏上的亮点将同时进行方向互相垂直的两种位移,其合成原理如图所示,描出了正弦图形。

如果正弦波与锯齿波的周期(频率)相同,这个正弦图形将稳定地停在荧光屏上。

但如果正弦波与锯齿波的周期稍有不同,则第二次所描出的曲线将和第一次的曲线位置稍微错开,在荧光屏上将看到不稳定的图形或不断地移动的图形,甚至很复杂的图形。

由此可见:(1)要想看到y轴偏转板电压的图形,必须加上x轴偏转板电压把它展开,这个过程称为扫描。

如果要显示的波形不畸变,扫描必须是线性的,即必须加锯齿波。

(2)要使显示的波形稳定,y轴偏转板电压频率与x轴偏转板电压频率的比值必须是整数,即:fyfx?n n=1,2,3,示波器中的锯齿扫描电压的频率虽然可调,但要准确的满足上式,光靠人工调节还是不够的,待测电压的频率越高,越难满足上述条件。

大物实验示波器的使用实验报告

大物实验示波器的使用实验报告

大物实验示波器的使用实验报告大物实验示波器的使用实验报告引言:示波器是一种用于显示电信号波形的仪器,广泛应用于电子工程、通信工程、生物医学工程等领域。

本次实验旨在掌握大物实验示波器的使用方法,通过观察和分析电信号波形,加深对电路原理的理解,并提高对实验数据的处理能力。

实验一:基本操作1.1 示波器的连接与调节首先,将示波器的输入端与待测电路的信号源相连,确保连接稳定可靠。

然后,调节示波器的触发电平,使波形在屏幕上稳定显示。

调节示波器的水平和垂直扫描速度,以便观察到完整的波形。

1.2 示波器的触发模式示波器提供多种触发模式,如自由运行触发、外部触发和单次触发等。

通过选择合适的触发模式,可以获得更清晰、稳定的波形。

在本实验中,我们选择了自由运行触发模式,以便连续观察波形的变化。

实验二:波形测量与分析2.1 波形的幅度测量示波器可以直接读取波形的幅度值。

在本实验中,我们通过示波器的幅度测量功能,测量了待测电路输出信号的峰峰值、峰值和平均值。

通过比较不同测量结果,我们可以了解信号的最大、最小和平均变化范围。

2.2 波形的频率测量示波器还可以测量波形的频率。

通过示波器的频率测量功能,我们可以准确地获取待测电路输出信号的频率信息。

在本实验中,我们测量了待测电路输出信号的频率,并与理论值进行对比,验证了电路的工作状态。

实验三:相位差测量与波形显示3.1 相位差测量示波器可以帮助我们测量信号之间的相位差。

在本实验中,我们通过示波器的相位差测量功能,测量了待测电路不同信号之间的相位差。

通过观察相位差的变化,我们可以了解信号在电路中的传递情况。

3.2 波形显示示波器不仅可以显示简单的波形,还可以显示复杂的信号波形。

在本实验中,我们通过示波器的波形显示功能,观察了待测电路在不同工作状态下的波形变化。

通过分析波形的特点,我们可以进一步了解电路的性能和工作原理。

实验四:信号发生器的使用4.1 信号发生器的连接与调节信号发生器是一种用于产生不同频率、幅度和波形的信号的设备。

(2023)大学物理实验实验报告示波器的使用(一)

(2023)大学物理实验实验报告示波器的使用(一)

(2023)大学物理实验实验报告示波器的使用(一)大学物理实验实验报告-示波器的使用实验目的•掌握示波器的基本原理和使用方法•学会如何使用示波器测量电压信号的幅度和频率•熟练掌握示波器调节和校准技能实验原理示波器是一种用于观察和测量电信号的电子仪器。

它通过将电信号的变化转换成屏幕上的图形来表示电信号随时间的变化规律。

示波器通常由控制电路、放大器、水平和竖直偏转电路、阴极射线示波管组成。

实验步骤1.连接线路:将电路连接到示波器上,注意观察正负极的接线。

2.打开示波器电源:拨动示波器电源开关,此时示波器打开并发出高压声,屏幕上出现了一个亮点。

3.调节幅度:按照实验要求,选择合适的电压档和时间档,调节幅度,使信号在示波器屏幕上显示出来。

4.调节时间:同样选择合适的时间档,调节时间,使信号的周期在示波器屏幕上显示出来。

5.观察信号:根据示波器传送到屏幕上的信号,可以观察到电信号的频率、振幅、波形等特征。

实验结果通过示波器测量,我们得出下面的实验结果: - 电路产生的电压信号是一个正弦波,振幅为2V,频率为50Hz - 改变电路传输的电压信号,示波器会显示不同的电压波形实验结论本实验通过测量电路的电压信号,我们学会了使用示波器的基本方法。

我们可以利用示波器观察电信号的波形、幅度等特征,为后续研究提供了基础。

实验注意事项•实验时应仔细阅读仪器的说明书,并正确使用连线和接头。

•操作时要轻拿轻放,以免损坏示波器。

•注意安全,不要接触高压部分,防止触电。

实验设备•示波器•信号发生器•电阻、电容等元件•小型电路板以上就是关于大学物理实验实验报告-示波器的使用的全部内容。

在进行示波器的使用时,一定要注意操作方法,并积极发现问题、解决问题。

实验拓展除了基本的示波器使用,我们还可以通过一些拓展实验来深入了解示波器的应用:1.观察不同波形的频谱分布:利用示波器和频谱仪,可以观察不同频率的信号在频谱上的分布情况。

这对于信号处理和分析十分重要。

示波器使用心得体会

示波器使用心得体会

示波器使用心得体会【篇一:示波器的原理与使用实验报告】大学物理实验报告实验名称示波器的原理与使用实验目的与要求:(1)了解示波器的工作原理(2)学习使用示波器观察各种信号波形(3)用示波器测量信号的电压、频率和相位差主要仪器设备:yb4320g双踪示波器, ee1641b型函数信号发生器实验原理和内容: 1. 示波器基本结构示波器主要由示波管、放大和衰减系统、触发扫描系统和电源四部分组成,其中示波管是核心部分。

示波管的基本结构如下图所示,主要由电子枪、偏转系统和荧光屏三个部分组成,由外部玻璃外壳密封在真空环境中。

电子枪的作用是释放并加速电子束。

其中第一阳极称为聚焦阳极,第二阳极称为加速阳极。

通过调节两者的共同作用,可以使电子束打到荧光屏上产生明亮清晰的圆点。

偏转系统由x、y两对偏转板组成,通过在板上加电压来使电子束偏转,从而对应地改变屏上亮点的位置。

荧光屏上涂有荧光粉,电子打上去时能够发光形成光斑。

不同荧光粉的发光颜色与余辉时间都不同。

放大和衰减系统用于对不同大小的输入信号进行适当的缩放,使其幅度适合于观测。

扫描系统的作用是产生锯齿波扫描电压(如左上图所示),使电子束在其作用下匀速地在荧光屏周期性地自左向右运动,这一过程称为扫描。

扫描开始的时间由触发系统控制。

2. 示波器的显示波形的原理如果只在竖直偏转板加上交变电压而x偏转板上五点也是,电子束在竖直方向上来回运动而形成一条亮线,如左图所示:如果在y偏转板和x偏转板上同时分别加载正弦电压和锯齿波电压,电子受水平竖直两个方向的合理作用下,进行正弦震荡和水平扫描的合成运动,在两电压周期相等时,荧光屏上能够显示出完整周期的正弦电压波形,显像原理如右图所示:3. 扫描同步为了完整地显示外界输入信号的周期波形,需要调节扫描周期使其与外界信号周期相同或成合适的关系。

当某些因素改变致使周期发生变化时,使用扫描同步功能,能够使扫描起点自动跟踪外界信号变化,从而稳定地显示波形。

大学物理实验示波器的使用实验报告

大学物理实验示波器的使用实验报告

大学物理实验示波器的使用实验报告一、实验目的。

本实验旨在通过使用示波器,掌握示波器的基本使用方法,了解示波器的工作原理,学习使用示波器测量电压、频率和波形等基本物理量。

二、实验仪器。

1. 示波器。

2. 信号发生器。

3. 直流电源。

4. 电阻、电容等元件。

5. 示波器探头。

三、实验原理。

示波器是一种用来观察电压随时间变化的仪器,它可以显示电压随时间的波形图像。

示波器的工作原理是利用电子束在示波管内的偏转来显示电压信号的变化。

当外加电压信号作用于示波器的输入端时,示波器会将这个信号转换成屏幕上的波形图像。

四、实验步骤。

1. 连接示波器,首先将信号发生器的输出端与示波器的输入端连接,然后将示波器的地线接地。

2. 调节示波器,打开示波器,调节示波器的时间/电压刻度,使得屏幕上可以清晰地显示出信号波形。

3. 测量直流电压,将直流电源的正负极分别连接到示波器的输入端,通过示波器可以测量直流电压的大小。

4. 测量交流电压,将信号发生器的正负极分别连接到示波器的输入端,通过示波器可以测量交流电压的大小。

5. 测量频率,调节信号发生器的频率,通过示波器可以观察到频率随时间的变化情况。

6. 测量波形,通过改变信号发生器的波形,可以观察到不同波形在示波器上的显示情况。

五、实验结果与分析。

通过本次实验,我们成功地掌握了示波器的基本使用方法,了解了示波器的工作原理,并且学会了使用示波器测量电压、频率和波形等基本物理量。

在实验过程中,我们发现示波器对电压信号的显示非常直观,可以清晰地观察到电压随时间的变化情况,这对于电路分析和故障排除非常有帮助。

六、实验总结。

本次实验通过使用示波器,使我们对示波器有了更深入的了解,掌握了示波器的基本使用方法。

在今后的物理实验和工程实践中,我们将能够更加熟练地运用示波器进行电路分析和故障排除,为我们的实验和工程工作提供更加可靠的数据支持。

七、参考文献。

1. 《电子技术基础》。

2. 《示波器使用手册》。

示波器实验报告4篇

示波器实验报告4篇

示波器实验报告示波器实验报告4篇我们眼下的社会,报告的使用成为日常生活的常态,不同的报告内容同样也是不同的。

在写之前,可以先参考范文,下面是小编帮大家整理的示波器实验报告,仅供参考,欢迎大家阅读。

示波器实验报告1一、【实验名称】示波器的使用二、【实验目的】1.了解示波器的基本结构和工作原理,掌握示波器的调节和使用方法2.掌握用示波器观察电信号波形的方法3.学会使用双踪示波器观察李萨如图形和控制示波管工作的电路三、【实验原理】双踪示波器包括两部分,由示波管和控制示波管的控制电路构成1.示波管示波管是呈喇叭形的玻璃泡,抽成高真空,内部装有电子枪和两队相互垂直的偏转板,喇叭口的球面壁上涂有荧光物质,构成荧光屏,高速电子撞击在荧光屏上会使荧光物质发光,在荧光屏上就能看到一个亮点。

Y偏转板是水平放置的两块电极。

在Y偏转板上和X偏转板上分别加上电压,可以在荧光屏上得到相应的图形。

2.双踪示波器的原理双踪示波器控制电路主要包括:电子开关,垂直放大电路,水平放大电路,扫描发生器,同步电路,电源等;其中,电子开关使两个待测电压信号YCH1和YCH2周期性的轮流作用在Y偏转板,这样在荧光屏上忽而显示YCH1信号波形,忽而显示YCH2信号波形,由于荧光屏荧光物质的余晖及人眼视觉滞留效应,荧光屏上看到的是两个波形。

如果正弦波与锯齿波电压的周期稍不同,屏上呈现的是一移动的不稳定图形,这是因为扫描信号的周期与被测信号的周期不一致或不呈整数倍,以致每次扫描开始时波形曲线上的起点均不一样所造成的,为了获得一定数量的完整周期波形,示波器上设有“Time/div”调节旋钮,用来调节锯齿波电压的周期,使之与被测信号的周期呈合适的关系,从而显示出完整周期的正弦波性。

(看到稳定波形的条件:只有一个信号同步)当扫描信号的周期与被测信号的周期一致或是整数倍,屏上一般会显示出完整周期的正弦波形,但由于环境或其他因素的影响,波形会移动,为此示波器内装有扫描同步电路,同步电路从垂直放大电路中取出部分待测信号,输入到扫描发生器,迫使锯齿波与待测信号同步,此称为“内同步”;反之则为“外同步”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[实验仪器与用具]
SS-5702A双踪示波器、XD1信号发生器、XD2信号发生器。
[数据记录与处理]
1、观察未加信号的光点,练号,从大到小逐步改变扫描时间,观察和体会光点的扫描动作。
2、和练习测量示波器内部产生的校准信号。
物理实验报告
专业班级: 学号: 姓名
实验班号: 实验号:
实验八 示波器的原理和使用
[实验目的]
1、 了解示波器的工作原理;
2、 学会示波器的基本使用方法,为以后的实验打下基础。
[实验原理]
1、 示波器的基本组成部分:示波管、竖直放大器、水平放大器、扫描发生器、触发同步和直流电源等。
2、 如果图形不稳定,总是向左或向右移动,该如何调节?
答:图形不稳定的原因是扫描电压的周期与被测信号的周期不相等或不成整数倍,以致每次扫描开始时曲线上的起点均不一样,屏幕上显示的波形每次都不重叠,好像波形在向左或向右移动。为获得稳定的波形,可以调节示波器上的"扫描时间"和"扫描微调"旋钮,使扫描锯齿波电压的周期与被测信号的周期成合适关系,从而得到所需数目的、完整的、稳定的被测波形。另外,还可打开示波器的"扫描同步"装置,让锯齿波的扫描起点自动跟着被测信号改变,消除外界因素对其造成的影响。
测量示波器校准信号的峰峰值列表(固定扫描时间)
扫描时间
ms/DIV Y分度值
V/DIV 周期T
(格数) 周期T
ms 频率f
Hz U(PP)
(格数) U(PP)
V 0.2
3用示波器测量正弦信号的有效值
将示波器的Y轴分度值微调钮置于校准位置,区分度值2V/DIV,将XD2A信号接入示波器,依次取XD2A交流电压表的示值为1.00V、2.00V、3.00V、4.00V、5.00V。读出相应的峰峰值的格数,计算相应的峰峰值U(PP),再由公式U(eff)=U(PP)/2计算出电压有效值U(eff),将其与示值U比较,计算出△U,在坐标纸上作出校准曲线。
2、 示波管左端为一电子枪,电子枪加热后发出一束电子,电子经电场加速以高速打在右端的荧光屏上,屏上的荧光物发光形成一亮点。亮点在偏转板电压的作用下,位置也随之改变。在一定范围内,亮点的位移与偏转板上所加电压成正比。
3、 示波器显示波形的原理:如果在X轴偏转板加上波形为锯齿形的电压,在荧光屏上看到的是一条水平线,如果在Y轴偏转板上加正弦电压,而X轴偏转板不加任何电压,则电子束的亮点在纵方向随时间作正弦式振荡,在横方向不动。我们看到的将是一条垂直的亮线,如果在Y轴偏转板上加正弦电压,又在X轴偏转板上加锯齿形电压,则荧光屏上的亮点将同时进行方向互相垂直的两种位移,两个方向的位移合成就描出了正弦图形。如果正弦波与锯齿波的周期(频率)相同,这个正弦图形将稳定地停在荧光屏上。但如果正弦波与锯齿波的周期稍有不同,则第二次所描出的曲线将和第一次的曲线位置稍微错开,在荧光屏上将看到不稳定的图形或不断地移动的图形,甚至很复杂的图形。要使显示的波形稳定,扫描必须是线性的,即必须加锯齿波;Y轴偏转板电压频率与X轴偏转板电压频率的比值必须是整数。示波器中的锯齿扫描电压的频率虽然可调,但光靠人工调节还是不够准确,所以在示波器内部加装了自动频率跟踪的装置,称为"同步"。在人工调节到接近满足式频率整数倍时的条件下,再加入"同步"的作用,扫描电压的周期就能准确地等于待测电压周期的整数倍,从而获得稳定的波形。
有效值并作校准曲线(Y分度值=2 V/DIV)
U/V 1.00 2.00 3.00 4.00 5.00 竖直格数 U(PP)/V U(eff)/V △U
校准曲线:
4、观察李萨如图形,测量未知信号的频率
将两台信号发生器的信号分别从示波器的X、Y端口接入,为避免外界影响,将负极接地。将Y端口输入的信号固定作为待测信号,取其值为120Hz,调节X端口的输入信号,使
① 固定Y轴分度值为0.1V/DIV,分别换用不同的扫描时间(0.2ms/DIV,0.5ms/DIV)
测量示波器校准信号的周期和频率列表(固定Y分度值)
Y分度值
V/DIV 扫描时间
ms/DIV 周期T
(格数) 周期T
ms 频率f
Hz U(PP)
(格数) U(PP)
V 0.1 ②固定扫描时间为0.2ms/DIV,分别换用不同的Y轴分度值(0.2V/DIV,0.5V/DIV)
答:
可能原因 解决方法 X偏转电压过大,使亮点偏离了屏幕 调节X轴位移钮 Y偏转电压过大,使亮点偏离了屏幕 调节Y轴位移钮 "垂直开关"VERT MODE 未调好 将VERT MODE 开关调至相应位置 触发源选择开关未调好 将触发源选择开关相应的置于CH1或CH2 GND开关已按下 将GND开关弹起
3、 如果Y轴信号的频率f(y)比X轴扫描信号的频率f(x)大很多,示波器上将看到什么情行?相反若f(y)比f(x)小很多,又看到什么情形?
答:如果f(y)比f(x)大很多,示波器上显示的波形将会是纵向很密集的波形,和横轴的交点很少;反之,则会看到横向很密集的波形,和纵轴的交点很少。
4、 李萨如图形的基本原理:如果同时从示波器的x轴和y轴输入频率相同或成简单整数比的两个正弦电压,则屏幕上将呈现出特殊形状的、稳定的光点轨迹,这种轨迹图称为李萨如图形。李萨如图形的形成规律为:如果沿x,y分别作一条直线,水平方向的直线做多可得的交点数为N(x),竖直方向最多可得的交点数为N(y),则x和y方向输入的两正弦波的频率之比为 f(x):f(y)=N(y):N(x)。
f(y):f(x)的值分别为1:1,2:1,3:1,3:2,5:2。微调X信号尽可能使示波器上出现稳定的波形,记录X信号的频率。画出相应的李萨如图形,根据所得数据算出待测频率的平均值。
f(y):f(x) f(x)
图形
[思考题]
1、 如果打开示波器的电源开关后,在屏幕上既看不到扫面线又看不到光点,可能有哪些原因?因分别做怎么样的调节?
相关文档
最新文档