函数的概念与表示
函数的概念及表示
函数的概念及表示知识点1:函数的概念1.函数的定义:一般地,设A,B是两个非空的数集,如果按某种对应法则f,对于集合A 中的每一个元素x,在集合B中都有唯一的元素y和它对应,那么这样的对应叫做从A到B 的一个函数,通常记为:y=f(x),x∈A.其中,所有的输入值x组成的集合A叫做函数y=f(x)的定义域.2.规律方法:(1)判断一个对应关系是否是函数,要从以下三个方面去判断,即A、B必须是非空数集;A 中任何一个元素在B中必须有元素与其对应;A中任一元素在B中必有唯一元素与其对应.(2)函数的定义中“每一个元素”与“有唯一的元素y”说明函数中两变量x,y的对应关系是“一对一”或者是“多对一”而不能是“一对多”.考点1:函数的判定典型例题例1 判断下列对应f是否为从集合A到集合B的函数.(1)A=N,B=R,对于任意的x∈A,x→±x;(2)A=R,B=N*,对于任意的x∈A,x→|x-2|;(3)A={1,2,3},B=R,f(1)=f(2)=3,f(3)=4;(4)A=[-1,1],B={0},对于任意的x∈A,x→0.例2 下列从集合A到集合B的对应关系中,不能构成从A到B的函数的是________.(只填序号)①集合A={x|1≤x≤2},B={y|1≤y≤4},f:x→y=x2;②集合A={x|2≤x≤3},B={y|4≤y≤7},f:x→y=3x-2;③集合A={x|1≤x≤4},B={y|0≤y≤3},f:x→y=-x+4;④集合A={x|1≤x≤2},B={y|1≤y≤4},f:x→y=4-x2;⑤集合A={(x,y)|x∈R,y∈R},B=R,对任意(x,y)∈A,f:(x,y)→x+y.知识点2:函数的图像1.概念:将自变量的一个值x0作为横坐标,相应的函数值f(x0)作为纵坐标,就得到坐标平面上的一个点(x0,f(x0)),当自变量取遍函数定义域A中的每一个值时,就得到一系列这样的点,所有这些点组成的集合(点集)为{(x,f(x))|x∈A},即{(x,y)|y=f(x),x∈A},所有这些点组成的图形就是函数y=f(x)的图象.2.作函数图像的方法:(1)利用描点法作函数图象的基本步骤:求定义域→化简解析式→列表→描点→连线(2)在画定义域为某一区间的函数图象时,要注意端点值的画法,闭区间画实心点,开区间画空心圈.考点1:画函数的图象 典型例题例1 作下列函数的图象(1)y =x 2+x (-1≤x ≤1); (2)y =2x (-2≤x <1,且x ≠0).(3)y =1+x (x ∈Z); (4)y =x 2-2x ,x ∈[0,3).考点2:函数图象的识别例1 设abc >0,二次函数f (x )=ax 2+bx +c 的图象可能是________.(填序号)例2 如图所示,函数y =ax 2+bx +c 与y =ax +b (a ≠0)的图象可能是________(填序号).考点3:函数图象的应用例1 画出函数f(x)=-x2+2x+3的图象,并根据图象回答下列问题:(1)比较f(0)、f(1)、f(3)的大小;(2)若x1<x2<1,比较f(x1)与f(x2)的大小;(3)求函数f(x)的值域;(4)若关于x的方程f(x)=k在[-1,2]内仅有一个实根,求k的取值范围.例2 若方程-x2+3x-m=3-x在x∈(0,3)内有唯一解,求实数m的取值范围.考点4:函数图像在实际问题中的应用例1 某商场销售一批进价是30元/件的商品,在市场试销中发现,此商品的销售单价x元与日销售量y件之间有如下关系(见表):(1)在所给的坐标系中,根据表中提供的数据描出实数对(x,y)对应的点,并确定y与x的一个函数关系式y=f(x);(2)设销售此商品的日销售利润为P元,根据上述关系写出P关于x的函数关系式,并指出销售单价x为多少元时,才能获得最大日销售利润?知识点3:函数的定义域1.概念:函数的定义域是指自变量x的范围2.函数定义域的求解方法:(1)若()x f为整式,则定义域为R.(2)若()x f是分式,则其定义域是分母不为0的实数集合(3)若()x f 是偶次根式,则其定义域是使根号下式子不小于0的实数的集合; (4)若()x f 是由几部分组成的,其定义域是使各部分都有意义的实数的集合; (5)实际问题中,确定定义域要考虑实际问题. 考点1:具体函数定义域求解 例1 求下列函数的定义域:⑴y =⑵y =⑶01(21)111y x x =+-++-考点2:抽象函数定义域求解例1 设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;例 2 若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x+的定义域为 .例3 已知()x f 的定义域为[]1,0,求函数()⎪⎭⎫⎝⎛++=342x f x f y 的定义域.例4 已知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围.知识点4:函数的值域1.概念:函数的值域指因变量y 的范围2.函数值域的求解方法: (1)观察法 (2)判别式法 (3)配方法 (4)换元法 (5)不等式法 (6)图像法 (7)分离常数法 考点1:用观察法求值域 例1 求下列函数的值域:(1)2415+-=x x y (2)123422--+-=x x x x y考点2:用配方法求值域例1 求函数242y x x =-++([1,1]x ∈-)的值域.考点3:用反解+判别式法求值域例1 求函数3274222++-+=x x x x y 的值域考点4:用换元法求值域 例1 求函数12--=x x y 的值域考点5:用不等式法求值域例1 求函数()22415≥+-=x x x y 的值域考点6:用图像法求值域 例1 求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈例2 画出函数[]5,1,642∈+-=x x x y 的图像,并根据其图像写出该函数的值域。
函数的概念及其表示
函数的概念及其表示知识梳理1.函数的基本概念(1)函数的定义一般地,设A,B是两个非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)与之对应;那么就称:f:A→B为从集合A 到集合B的一个函数.记作y=f(x),x∈A.(2)函数的定义域、值域在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合叫做函数的值域.(3)函数的三要素是:定义域、值域和对应关系.(4)表示函数的常用方法有:解析法、列表法和图象法.(5)分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.2.函数定义域的求法要点一、函数的概念例1、设集合M={x|0≤x≤2},N={y|0≤y≤2},那么下面的4个图形中,能表示集合M 到集合N的函数关系的有()A.①②③④B.①②③C.②③D.②例2、下列四组函数中,表示同一函数的是()A.f(x)=|x|,g(x)=B.f(x)=lg x2,g(x)=2lg xC.f(x)=,g(x)=x+1D.f(x)=•,g(x)=例3、下列集合A,B及其对应法则,不能构成函数的是()A.A=B=R f(x)=|x|B.A=B=RC.A={1,2,3,4),B={2,3,4,5,6}f(x)=x+1D.A={x|x>0},B={1}f(x)=x0答案:C A B练习1、下列四个图形中不可能是函数y=f(x)图象的是()A.B.C.D.2、已知函数f(x)的定义域A={x|0≤x≤2},值域B={y|1≤y≤2},下列选项中,能表示f (x)的图象的只可能是()A.B.C.D.3、下列四组函数中的f(x)和g(x)相等的是()A.B.C.D.4、下列对应是从集合A到B的函数的是()A.A=N,B=R,对应关系f:“求平方根”B.A=N*,B=N*,对应关系f:x→y=|x﹣3|C.A=R,B={0,1},对应关系f:D.A=Z,B=Q,对应关系5、中国清朝数学家李善兰在1859年翻译《代数学》中首次将“function”译做:“函数”,沿用至今,为什么这么翻译,书中解释说“凡此变数中函彼变数者,则此为彼之函数”.1930年美国人给出了我们课本中所学的集合论的函数定义,已知集合M={﹣1,1,2,4},N={1,2,4,16},给出下列四个对应法则:①,②y=x+1,③y=|x|,④y=x2,请由函数定义判断,其中能构成从M到N的函数的是()A.①③B.①②C.③④D.②④要点二、函数的定义域例4、函数的定义域是()A.(1,2]B.(1,2)C.(2,+∞)D.(﹣∞,2)例5、已知函数y=f(x+1)的定义域是[﹣1,2],则函数y=f(﹣x)的定义域为()A.[﹣3,0]B.[﹣1,2]C.[0,3]D.[﹣2,1]例6、若函数y=的定义域为R,则a的取值范围为()A.(0,4]B.[4,+∞)C.[0,4] D.(4,+∞)答案: B A C 练习6、函数f (x )=+的定义域为( )A .(﹣3,0]B .(﹣3,1]C .(﹣∞,﹣3)∪(﹣3,0]D .(﹣∞,﹣3)∪(﹣3,1] 7、函数f (x )=(x ﹣5)0+(x ﹣2)的定义域为( )A .{x ∈R |2<x <5或x >5}B .{x ∈R |x >2}C .{x ∈R |x >5}D .{x ∈R |x ≠5且x ≠2}8、若函数f (x )的定义域为[1,2],则函数y=f (x 2)的定义域为( ) A .[1,4]B .[1,] C .[﹣,] D .[﹣,﹣1]∪[1,]9、若函数f (3﹣2x )的定义域为[﹣1,2],则函数f (x )的定义域是( ) A .B .[﹣1,2]C .[﹣1,5]D .10、已知函数的定义域为R ,则实数a 的取值范围是( ) A .(0, B .(﹣∞,C .,+∞)D .[1,+∞)要点三、函数的解析式例7 (1)已知f ⎝⎛⎭⎫2x +1=lg x ,求f (x )的解析式.(2) f (x )为二次函数且f (0)=3,f (x +2)-f (x )=4x +2.试求出f (x )的解析式(3) 定义在(-1,1)内的函数f (x )满足2f (x )-f (-x )=lg(x +1),求函数f (x )的解析式. (4)定义在R 上的函数f (x )满足f (x +1)=2f (x ).若当0≤x ≤1时,f (x )=x (1-x ),则当-1≤x ≤0时,f (x )=________.练习11、已知函数,则( )A .f (x )=x 2+2x +1B .f (x )=x 2﹣2x +3(x ≥1)C .f (x )=x 2﹣2x +1D .f (x )=x 2+2x +3(x ≥1)12、若函数f (x )满足f ()=x ,则f (x )的解析式为( )A.f(x)=(x≠1)B.f(x)=,(x≠﹣1)C.f(x)=(x≠1)D.f(x)=(x≠﹣1)13、已知函数f(x)=2x+3,若f(g(x))=6x﹣7,则函数g(x)的解析式为()A.g(x)=4x﹣10B.g(x)=3x﹣5C.g(x)=3x﹣10D.g(x)=4x+414、若函数f(x)对于任意实数x恒有3f(x)﹣2f(﹣x)=5x+1,则f(x)=.15、已知f(x)是定义在R上的奇函数,当x>0时,f(x)=+1,则f(x)=.答案:1、C 2、D 3、C 4、C 5、C 6、C 7、A 8、D 9、C 10、C 11、B 12、A 13、B 14、x+1。
函数的概念及其表示
一、函数的概念及其表示函数是刻画变量之间对应关系的数学模型和工具。
函数的共同特征:(1)都包含两个非空数集,用A 、B 来表示;(2)都有一个对应关系;(3)尽管对应关系的表示方法不同,但它们都有如下特性:对于数级A 中的任意一个数x ,按照对应关系,在数集B 中都有唯一确定的数y 和它对应。
事实上,除了解析式、图象、表格外,还有其他表示对应关系的方法。
为了表示方便,我们引进符号f 统一表示对应关系。
一般地,设A 、B 是非空的实数集,如果对于集合A 中的任意一个数x,按照某种确定的对应关系f ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A →B 为从集合A 到集合b 的一个函数,记作().,A x x f y ∈=其中x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合(){}A x x f ∈|叫做函数的值域。
我们所熟悉的一次函数y=kx+b ,k ≠0的定义域是R ,值域也是R 。
对应关系f 把r 中的任意一个数x ,对应到R 中唯一确定的数kx+b 。
二次函数)0(2≠++=a c bx ax y 的定义域是R ,值域是B 。
当A>0时,B=⎭⎬⎫⎩⎨⎧-≥a b ac y y 44|2;当A<0时,B=⎭⎬⎫⎩⎨⎧-≤a b ac y y 44|2。
对应关系f 把R 中任意一个数x,对应到B 中唯一确定的数)0(2≠++a c bx ax 。
由函数的定义可知,一个函数的构成要素为:定义域、对应关系和值域。
因为值域是由定义域和对应关系决定的,所以如果两个函数的定义域相同,并且对应关系完全一致,即相同的自变量对应的函数值也相同,那么这两个函数是同一个函数。
两个函数如果仅有对应关系相同,但定义域不相同,那么它们不是同一个函数。
函数的三种表示方法:解析法、列表法和图象法。
解析法,就是用数学表达式表示两个变量之间的对应关系;列表法,就是列出表格来表示两个变量之间的对应关系;图象法,的就是用图象表示两个变量之间的对应关系。
函数的概念及其表示方法
教学内容知识梳理知识点一、函数的概念1.函数的定义设A 、B 是非空的数集,如果按照某个确定的是非空的数集,如果按照某个确定的对应关系对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f:A→B 为从集合A 到集合B 的一个函数. 记作:y=f(x),x A .其中,x 叫做叫做自变量自变量,x 的取值范围A 叫做函数的叫做函数的定义域定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)|x A}叫做函数的值域. 2.构成函数的三要素:定义域、对应关系和值域①构成函数的三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全—致,即称这两个函数相等(或为同一函数);②两个函数相等当且仅当它们的定义域和对应关系完全—致,而与表示自变量和函数值的致,而与表示自变量和函数值的字母字母无关. 3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;无穷区间;(3)区间的数轴表示.区间的数轴表示. 区间表示:区间表示:{x|a≤x≤b}=[a ,b];; ;. 知识点二、函数的表示法1.函数的三种表示方法:解析法:用数学解析法:用数学表达式表达式表示两个变量之间的对应关系.表示两个变量之间的对应关系. 优点:简明,给自变量求函数值. 图象法:用图象表示两个变量之间的对应关系.图象法:用图象表示两个变量之间的对应关系. 优点:直观形象,反应变化趋势. 列表法:列出列表法:列出表格表格来表示两个变量之间的对应关系.来表示两个变量之间的对应关系. 优点:不需计算就可看出函数值. 2.分段函数:分段函数的解析式不能写成几个不同的分段函数的解析式不能写成几个不同的方程方程,而应写函数几种不同的表达式并用个左大括号括起来,并分别注明各部分的自变量的取值情况.各部分的自变量的取值情况.知识点三、映射与函数1.映射定义:设A 、B 是两个非是两个非空集空集合,如果按照某个对应法则f ,对于集合A 中的任何一个元素,在集合B 中都有唯一的元素和它对应,这样的对应叫做从A 到B 的映射;记为f :A→B.象与原象:象与原象:如果给定一个从集合如果给定一个从集合A 到集合B 的映射,的映射,那么那么A 中的元素a 对应的B 中的元素b 叫做a 的象,a 叫做b 的原象. 注意:(1)A 中的每一个元素都有象,且唯一;中的每一个元素都有象,且唯一;(2)B 中的元素未必有原象,即使有,也未必唯一;中的元素未必有原象,即使有,也未必唯一;(3)a 的象记为f(a). 2.函数:设A 、B 是两个非空数集,若f :A→B 是从集合A 到集合B 的映射,这个映射叫做从集合A 到集合B 的函数,记为y=f(x). 注意:注意:(1)函数一定是映射,映射不一定是函数;函数一定是映射,映射不一定是函数;(2)函数三要素:定义域、值域、对应法则;函数三要素:定义域、值域、对应法则(3)B中的元素未必有原象,即使有原象,也未必唯一;中的元素未必有原象,即使有原象,也未必唯一;(4)原象集合=定义域,值域=象集合. 原象集合例题讲解类型一、函数概念1.下列各组函数是否表示同一个函数?下列各组函数是否表示同一个函数?(1)(2)(3)(4)】判断下列命题的真假真假【变式1】判断下列命题的(1)y=x-1与是同一函数;是同一函数;(2)与y=|x|是同一函数;是同一函数;(3)是同一函数;是同一函数;(4)与g(x)=x2-|x|是同一函数. 2.求下列函数的定义域(用区间表示). 求下列函数的定义(1);(2);(3). 】求下列函数的定义域:【变式1】求下列函数的定义域:(1);(2);(3). 3.已知函数f(x)=3x2+5x-2,求f(3),,f(a),f(a+1). 【变式1】已知函数.(1)求函数的定义域;域;(2)求f(-3),的值;的值;f(a-1)的值. (3)(3)当a>0时,求f(a)×f(a)×f(a-1)【变式2】已知f(x)=2x2-3x-25,g(x)=2x-5,求:,求: (1)f(2),g(2);(2)f(g(2)),g(f(2));(3)f(g(x)),g(f(x)) 4. 求值域(用区间表示):(1)y=x 2-2x+4;. 类型二、映射与函数5. 下列下列对应关系对应关系中,哪些是从A 到B 的映射,哪些不是?如果不是映射,如何修改可以使其成为映射? (1)A=R ,B=R ,对应法则f :取倒数;:取倒数;(2)A={平面内的平面内的三角形三角形},B={平面内的圆},对应法则f :作三角形的:作三角形的外接圆外接圆;(3)A={平面内的圆},B={平面内的三角形},对应法则f :作圆的:作圆的内接内接三角形.三角形.【变式1】判断下列两个对应是否是】判断下列两个对应是否是集合集合A 到集合B 的映射?的映射?①A={1,2,3,4},B={3,4,5,6,7,8,9},对应法则②A=N *,B={0,1},对应法则f:x→x 除以2得的得的余数余数; ③A=N ,B={0,1,2},f :x→x 被3除所得的余数;除所得的余数;④设X={0,1,2,3,4},【变式2】已知映射f :A→B ,在f 的作用下,判断下列说法是否正确?的作用下,判断下列说法是否正确?(1)任取x ∈A ,都有唯一的y ∈B 与x 对应;对应;(2)A 中的某个元素在B 中可以没有象;中可以没有象;(3)A 中的某个元素在B 中可以有两个以上的象;中可以有两个以上的象;(4)A 中的不同的元素在B 中有不同的象;中有不同的象;(5)B 中的元素在A 中都有原象;中都有原象; (6)B 中的元素在A 中可以有两个或两个以上的原象. 【变式3】下列对应哪些是从A 到B 的映射?是从A 到B 的一一映射吗?是从A 到B 的函数吗?的函数吗?(1)A=N ,B={1,-1},f :x→y=(x→y=(-1)-1)x ; (2)A=N ,B=N +,f :x→y=|x x→y=|x-3|-3|;(3)A=R ,B=R ,(4)A=Z ,B=N ,f :x→y=|x|;(5)A=N ,B=Z ,f :x→y=|x|;(6)A=N ,B=N ,f :x→y=|x→y=|x|. x|. 6. 已知A=R,B={(x,y)|x,y R},f:A→B是从集合A到集合B的映射,f:x→(x+1,x2+1),求A中的元素是从集合的象,B中元素的原象. 的映射,其中【变式1】设f:A→B是集合A到集合B的映射,其中(1)A={x|x>0},B=R,f:x→x2-2x-1,则A中元素的象及B中元素-1的原象分别为什么?的原象分别为什么?y)→(x-y-y,x+y),则A中元素(1,3)的象及B中元素(1,3)的原象分别为什(2)A=B={(x,y)|x∈R,y∈R},f:(x,y)→(x么?么?类型三、函数的表示方法7. 求函数的求函数的解析式解析式(1)若f(2x-1)=x2,求f(x);(2)若f(x+1)=2x2+1,求f(x). 【变式1】(1) 已知f(x+1)=x2+4x+2,求f(x);(2)已知:,求f[f(-1)]. 8.作出下列函数的作出下列函数的图象图象. (1);(2);类型四、分段函数9. 已知,求f(0),f[f(-1)]的值. 【变式1】已知,作出f(x)的图象,求f(1),f(-1),f(0),f{f[f(-1)+1]}的值. 10. 某市郊空调公共汽车的票价按下列规则制定:某市郊空调公共汽车的票价按下列规则制定:(1)乘坐汽车5公里以内,票价2元;元;(2)5公里以上,每增加5公里,票价增加1元(不足5公里按5公里计算),已知两个相邻的公共汽车站间相距约解析式,并画出个汽车站,请根据题意,写出票价与里程之间的函数解析式为1公里,如果沿途(包括起点站和终点站)设20个汽车站,请根据题意,写出票价与里程之间的函数函数的图象. 【变式1】移动公司开展了两种通讯业务:“全球通”,月租50元,每通话1分钟,付费0.4元;“神州行”不缴月租,每通话1分钟,付费0.6元,若一个月内通话x分钟,两种通讯方式的费用分别为y1,y2(元),之间的函数关系式?Ⅰ. 写出y1,y2与x之间的函数关系式?一个月内通话多少分钟,两种通讯方式的费用相同?Ⅱ. 一个月内通话多少分钟,两种通讯方式的费用相同?元,应选择哪种通讯方式?话费200元,应选择哪种通讯方式?若某人预计一个月内使用话费Ⅲ. 若某人预计一个月内使用一、选择题1.判断下列各组中的两个函数是同一函数的为( ) ⑴,;⑵,;⑶,;⑷,;⑸,.A.⑴、⑵.⑴、⑵ B.⑵、⑶.⑶、⑸.⑷ D.⑶、⑸.⑵、⑶ C.⑷2.函数y=的定义域是() 0≤x≤1 1 D.{-1,1} x≤-1-1或x≥1 C.0≤x≤A.-1≤x≤1B.x≤3.函数的值域是( ) A.(-(-∞∞,)∪(,+∞)B.(-(-∞∞,)∪(,+∞)C.R D.(-(-∞∞,)∪(,+∞) 4.下列从.下列从集合的对应中:集合A到集合B的对应中:①A=R,B=(0,+∞),f:x→y=x2;②③④A=[-2,1],B=[2,5],f:x→y=x 2+1;⑤A=[-3,3],B=[1,3],f:x→y=|x|其中,不是从其中,不是从集合集合A 到集合B 的映射的个数是( ) A . 1 B . 2 C . 3 D . 4 5.已知映射f:A→B ,在f 的作用下,下列说法中不正确的是( ) A . A 中每个元素必有象,但B 中元素不一定有原象中元素不一定有原象 B . B 中元素可以有两个原象中元素可以有两个原象 C . A 中的任何元素有且只能有唯一的象中的任何元素有且只能有唯一的象 D . A 与B 必须是非空的必须是非空的数集数集 6.点(x ,y)在映射f 下的象是(2x-y ,2x+y),求点(4,6)在f 下的原象( ) A .(,1)B .(1,3) C .(2,6)D .(-1,-3) 7.已知集合P={x|0≤x≤4}, Q={y|0≤y≤2},下列各,下列各表达式表达式中不表示从P 到Q 的映射的是( ) A .y=B .y=C .y=x D .y=x 28.下列.下列图象图象能够成为某个函数图象的是( ) 9.函数的图象与的图象与直线直线的公共点数目是( ) A .B .C .或D .或10.已知集合,且,使中元素和中的元素对应,则的值分别为( ) A . B .C .D . 11.已知,若,则的值是( ) A .B .或C .,或D .12.为了得到函数的图象,可以把函数的图象适当平移,这个平移是( ) 的图象适当平移A.沿轴向右平移个单位个单位 B.沿轴向右平移个单位个单位C.沿轴向左平移个单位个单位个单位 D.沿轴向左平移个单位二、填空题1.设函数则实数的取值范围是_______________.2.函数的定义域_______________.3.函数f(x)=3x-5在区间上的值域是_________.上的值域4.若最大值为,则这个二次函数的表,且函数的最大值.若二次函数二次函数的图象与x轴交于,且函数的达式是_______________.5.函数的定义域是_____________________.6.函数的最小值是_________________.三、解答题1.求函数的定义域.的定义域.2.求函数的值域.的值域.3.根据下列条件,求函数的解析式:.根据下列条件,求函数的解析式(1)已知f(x)是一次函数,且f(f(x))=4x-1,求f(x);(2)已知f(x)是二次函数,且f(2)=-3,f(-2)=-7,f(0)=-3,求f(x);(3)已知f(x-3)=x 2+2x+1,求f(x+3);(4)已知; (5)已知f(x)的定义域为R ,且2f(x)+f(-x)=3x+1,求f(x). 课后作业一.选择题一.选择题1.下列四种说法正确的一个是.下列四种说法正确的一个是( ) A .)(x f 表示的是含有x 的代数式 B .函数的值域也就是其定义中的.函数的值域也就是其定义中的数集数集B C .函数是一种特殊的映射.函数是一种特殊的映射D .映射是一种特殊的函数2.已知f 满足f (ab )=f (a )+ f (b),且f (2)=p ,q f =)3(那么)72(f 等于等于 ( ) A .q p +B .q p 23+C .q p 32+D .23q p + 3.下列各组函数中,表示同一函数的是.下列各组函数中,表示同一函数的是( ) A .xx y y ==,1 B .1,112-=+´-=x y x x y C .33,x y x y == D . 2)(|,|x y x y == 4.已知函数23212---=x x x y 的定义域为的定义域为( ) A .]1,(-¥ B .]2,(-¥C .]1,21()21,(-Ç--¥D . ]1,21()21,(-È--¥ 5.设ïîïíì<=>+=)0(,0)0(,)0(,1)(x x x x x f p ,则=-)]}1([{f f f ( )A .1+pB .0 C .pD .1- 6.设函数x x x f =+-)11(,则)(x f 的表达式为( ) A .x x -+11 B . 11-+x x C .xx +-11 D .12+x x 7.已知)(x f 的定义域为)2,1[-,则|)(|x f 的定义域为的定义域为( ) A .)2,1[- B .]1,1[- C .)2,2(- D .)2,2[-8.设îíì<+³-=)10()],6([)10(,2)(x x f f x x x f 则)5(f 的值为(的值为( ) A .10 B .11 C .12 D .13二、填空题9.已知x x x f 2)12(2-=+,则)3(f = . 10.若记号“*”表示的是2*b a b a +=,则用两边含有“*”和“+”的运算对于任意三个”的运算对于任意三个实数实数“a ,b ,c ”成立一个恒等式 . 11.集合A 中含有2个元素,集合A 到集合A 可构成可构成 个不同的映射. 12.设函数.)().0(1),0(121)(a a f x x x x x f >ïïîïïíì<³-=若则实数a 的取值范围是的取值范围是 。
函数的概念与表示法课件(共19张PPT)
( x 1) 1 x 的定义域为_____ (2)函数 y ( x 1)
解题回顾:求函数f(x)的定义域,只需使解析式有 意义,列不等式组求解.
抽象函数定义域问题:
抽象函数 :没有给出具体解析式的函数 2. (1)已知函数 y
1 y f ( x 1) 的定义域为______ 2
探究提高: 分段函数是一类重要的函数模型.解决分段函数问题,
关键要抓住在不同的段内研究问题.
如本例,需分x>0时,f(x)=x的解的个数
和x≤0时,f(x)=x的解的个数.
“分段函数分段考察”
五 抽象函数
定义在R上的函数f(x)满足f(x+y)=f(x)+f(y)+2xy(x,y∈R),
f(1)=2,则f(-3)等于( C ) A.2 B.3 C.6
推广,函数是一种特殊的映射,要注意构成函数 的两个集合A、B必须是非空数集.
典型例题:
一:函数的基本概念:
1.设集合M={x|0≤x≤2},N={y|0≤y≤2},那么下面 的4个图形中,能表示集合M到集合N的函数关系的有 ( )
A.①②③④
B.①②③
C.②③
D.②
解析:由函数的定义,要求函数在定义域上都有图 象,并且一个x对应着一个y,据此排除①④,选C.
A
B
x
f ( x)
(2)函数的定义域、值域: 在函数 y f ( x ), x A 中,x叫做自变量,x的取 值范围A叫做函数的定义域;与x的值相对应的y值 叫做函数值,函数值的集合f ( x) x A 叫做函数的 值域。 (3)函数的三要素:定义域、值域和对应法则 . (4)相等函数:如果两个函数的定义域和对应法则完 全一致,则这两个函数相等,这是判断两函数相等的 依据.
函数的概念.
函数的概念函数是数学中非常重要的概念,它描述了变量之间的依赖关系,帮助我们更好地理解数学中的各种关系。
本文将从函数的定义、表示、性质、运算以及实际应用等方面进行介绍。
1.函数的定义函数是一个数学表达式,它表示了一个或多个自变量的输入值与对应因变量的输出值之间的关系。
在数学中,用符号“f”表示函数,其中f后面的括号内是自变量的取值范围,而f右侧的表达式则是因变量的取值范围。
例如,一个简单的函数可以定义为y=x+2,其中x 是自变量,y是因变量。
2.函数的表示函数的表示方法有多种,包括解析法、表格法和图象法等。
解析法是用数学符号和公式来表示函数关系的一种方法,如y=x+2。
表格法是用表格形式表示函数关系的一种方法,它适用于离散变量函数,如阶跃函数等。
图象法则是用函数图象表示函数关系的一种方法,适用于连续变量函数。
3.函数的性质函数的性质包括单调性、奇偶性、周期性等。
单调性是指函数在某一区间内随着自变量的增加,因变量的值也相应增加,反之亦然。
奇偶性是指函数在原点对称或旋转对称时具有的性质。
周期性是指函数按照一定的周期重复出现的现象。
4.函数的运算函数的运算包括函数的加、减、乘、除等基本运算以及复合运算等。
函数的加、减、乘、除等基本运算可以类比于代数中的运算,而复合运算则是将两个或多个基本函数组合成一个新函数的过程。
5.函数的实际应用函数在实际生活中有着广泛的应用,例如在物理学、工程学、经济学等领域中都有函数的身影。
例如,在物理学中,牛顿第二定律F=ma就描述了力与加速度之间的关系;在经济学中,成本函数、收益函数等都是描述经济变量的重要工具;在工程学中,各种系统模型也都是用函数来描述的。
此外,函数还在计算机科学、统计学等领域中有着广泛的应用。
总之,函数是数学中非常重要的概念之一,它描述了变量之间的依赖关系,并为我们提供了分析问题、解决问题的重要工具。
通过深入理解函数的定义、表示、性质、运算以及实际应用等方面,我们可以更好地掌握函数这一重要概念,并为解决实际问题提供有力的支持。
函数的概念及表示方法
函数及其表示方法1.函数的概念:一般的,设A ,B 是 非空实数集,如果按照某种确定的 对应关系f ,使对于集合A 中的 每一个实数,在集合B 中都有 唯一确定的实数)(x f y =和x 对应,那么就称 f 为从集合A 到集合B 的一个函数,记作 )(x f y = , 其中 x 叫做自变量,x 的取值范围A 叫做 定义域 ,与x 的值相对应的y 值叫做 函数值 ,函数值的集合 叫做函数的 值域,显然,值域是集合B 的子集。
注意: ○1“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”; ○2函数符号“y=f(x)”中的f(x)表示与x 对应的函数值,一个数,而不是f 乘x . 2.构成函数的三要素: 值域 , 定义域 , 对应关系 .3. 函数相等:若两个函数的 定义域 相同,且 对应关系 在本质上也是相同的,则称两个函数相等。
4、函数的三种表示方法(1)解析法:_用解析式把把x 与y 的对应关系表述出来,最常见的一种表示函数关系的方法。
举例:如222321,,2,6y x x S r C r S t ππ=++===等。
优点:⎩⎨⎧函数值;意一个自变量所对应的可以通过解析式求出任量间的关系;简明,全面地概括了变(2)列表法:用表格的方式把x 与y 的对应关系一一列举出来.比较少用.举例: 如:平方表,三角函数表,利息表,列车时刻表,国民生产总值表等。
优点:不需要计算,就可以直接看出与自变量的值相对应的函数值。
(3)图象法:在坐标平面中用曲线的表示出函数关系,比较常用,经常和解析式结合起来理解函数的性质.优点:直观形象地表示自变量的变化。
5、分段函数:在函数的定义域内,对于自变量x 的不同取值区间不同的对应关系,这样的函数通常叫做 分段函数 。
拓展一 判断相同函数例1、下列函数f (x )与g (x )是表示同一个函数的是? ( )A. f ( x ) = (x -1) 0;g ( x ) = 1 ;B. f ( x ) = x ; g ( x ) = 2x C .f ( x ) = x 2;f ( x ) = (x + 1) 2 、D. f ( x ) = | x | ;g ( x ) = 2x 拓展二 函数的判断例2、下列函数图像中不能作为函数y=f(x)的图像的是 ( )拓展三 求函数的定义域函数定义域的一般求法(开偶次方根,分式,零次幂)例3、(1) ()x x f 2=+()01+x (2)1()(12)(1)f x x x =-+;(3)()4f x x =-复合函数求定义域若)(u f y =,又)(x g u =,且)(x g 值域与)(u f 定义域的交集不空,则函数)]([x g f y =叫x 的复合函数,其中)(u f y =叫外层函数,)(x g u =叫内层函数,简而言之,所谓复合函数就是由一些初等函数复合而成的函数。
函数的概念及其表示法
时,有x=f^(-1)(y),则称x=f^(-1)(y)为y=f(x)的反函数。
性质
02
原函数和反函数在相应的区间上单调性相同。
求导法则
03
原函数的导数等于反函数的导数的倒数。
05 函数的实际应用
一次函数的应用
01
02
03
线性回归分析
一次函数是线性回归分析 的基础,通过拟合数据点, 可以预测因变量的变化趋 势。
函数的概念及其表示法
目录
• 函数的基本概念 • 函数的表示法 • 函数的定义域和值域 • 函数的运算 • 函数的实际应用
01 函数的基本概念
函数的定义
01
函数是一种特殊的对应关系,它 使得集合A中的每一个元素都能通 过某种法则对应到集合B中的唯一 一个元素。
02
函数通常用大写字母表示,如f(x), g(x)等,其中x是自变量,f(x)是因 变量。
初等函数
由代数函数和三角函数经过有限次四则运算 得到的函数。
三角函数
与三角学相关的函数,如正弦函数、余弦函 数等。
超越函数
不能表示为有限次四则运算的初等函数的函 数,如自然对数函数、正切函数等。
02 函数的表示法
解析法
解析法
使用数学表达式来表示函数,如 $f(x) = x^2 + 2x + 1$。解析法 精确地描述了函数与自变量之间的数学关系,适用于需要精确计算 的情况。
表格法
01 02
表格法
列出自变量和因变量的若干组对应数值,以表格的形式表示函数。适用 于已知部分函数值的情况,可以通过插值或拟合的方法确定其他点的函 数值。
优点
简单、直观,能够提供一定程度的近似值。
函数的概念及其表示
函数的概念及其表示一、什么是函数?1、函数的定义:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数(function )。
记作: y=f(x),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域(domain );与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)| x ∈A }叫做函数的值域(range ). 注意:1) “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”。
2) 函数符号“y=f(x)”中的f(x)表示与x 对应的函数值,是一个数;而f()表示的是对应关系。
(用集合关系讲解)2、映射与函数函数的特殊的映射二、构成函数的三要素:定义域、对应关系和值域1、函数是一个整体“y=f(x),x ∈A .”表示一个函数。
函数=定义域+对应关系+值域2、比喻理解:定义域f −−→值域 等价于 原材料f −−→产品 一个函数就是一个完整过程,定义域是原材料、对应关系f 是生产设备、值域是生产的产品,而我们是老板,老板刷题就是从三要素出发不断地管理匹配这个生产过程3、举例说明:21,y x x R =+∈问:定义域?值域是?对应关系是?三、求函数定义域主要题型:偶次方被开方数为非负;分式的分母不为零;零次幂的底数不为零;对数真数大于零;指数对数的底数大于零且不等于1例题讲解:1、1()f x x x =-2、1()11f x x=+ 3、()f x =4、2()ln(1)f x x =- 5、()1f x x =- 四、求函数解析式1、函数的三种表达方法解析式法+图像法+列表法 因此我们可以看出解析式是函数的表达方式之一,也是我们学习过程中接触最多的。
2、函数解析式求法1) 配凑法由已知条件(())()f g x F x =,可以将()F x 改写成关于()g x 的表达式,然后以x 替代()g x 例题:已知2222(1))3x f x x ++=-,求()f x 解析式 2) 待定系数法如已知函数类型(如一次函数、二次函数)可用待定系数法例题:已知()f x 是一次函数,且满足3(1)()29f x f x x +-=+,求函数()f x 的解析式3) 换元法若已知(())f g x 的解析式,可用换元法 例题:已知2222(1))3x f x x ++=-,求()f x 解析式 4) 解方程组法已知关于()f x 与1()f x 或者()f x -与()f x 的表达式,可根据条件构造出另外一个等式,组成方程组求解例题:已知()f x +21()f x=3x ,则求()f x 的解析式。
函数的概念及表示方法
特级教师 王新敞
3.两个函数的相等: 函数的定义含有三个要素, 即定义域A、值域C和对应法则 f. 当函数的定义 域及从定义域到值域的对应法则确定之后,函 数的值域也就随之确定 .因此,定义域和对应法 则为函数的两个基本条件,当且仅当两个函数 的定义域和对应法则都分别相同时,这两个函 数才是同一个函数 .
由映射和函数的定义可知,函数是一类特 殊的映射,它要求 A、B非空且皆为数集 .
特级教师 王新敞
特级教师 王新敞
5.映射的概念中象、原象的理解: (1) A中每
一个元素都有象 ;(2)B中每一个元素不一定都有原
象,不一定只一个原象; (3)A中每一个元素的象
唯一. 6.分段函数:如
? x2 f (x) ? ?
特级教师 王新敞
练习
1.购买某种饮料 x听,所需钱数为 y元. 若每听2元, 试分别用解析法、列表法、图象法将 y表示成x (x∈{1,2,3,4})的函数,并y指出该函数的值域 . 解:(1)解析法:
y=2x, x∈{1,2,3,4}. 8
(2)列表法:
6
X/听 1 2 3 4
4
Y/元 2 4 6 8
特级教师 王新敞 特级教师 王新敞
特级教师 王新敞
特级教师
王新敞
例 1 已知函数 f (x) =
3 3x ? 1
的定义域
ax 2 ? ax ? 3
是 R,则实数 a 的取值范围是 ( B )
A. a ? 1 3
B. ? 12 ? a ? 0
C. ? 12 ? a ? 0
D. a ? 1 3
剖析:由 a
2
(3) 图象法 (如图)
函数的值域是 {2,4,6,8}
函数的概念及表示方法
函数的概念及表示方法一、 知识梳理1、函数:设A 、B 是两个非空的数集,如果按照某种对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一的数)(x f 和它对应,那么就称f :B A →为从集合A 到集合B 的一个函数,记作A x x f y ∈=,)(2、对于函数A x x f y ∈=,)(,其中x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合(){}A x x f ∈叫做函数的值域。
3、函数的三要素:定义域、值域和对应关系。
4、表示函数常用的三种方法是解析法、图像法和列表法5、在函数定义域内,对于自变量x 的不同取值范围,有着不同的对应关系,这样的函数通常叫做分段函数6、分段函数的定义域是各段定义域的并集,其值域是各段值域的并集二、 典例精析例1、 下列式子是否能确定y 是x 的函数?(1)222=+y x (2)111=-+-y x (3)x x y -+-=12例2、 下列各题中的两个函数相等吗?请说明理由。
(1)()2)()(x x g x x f ==, (2)3)(39)(2+=--=x x g x x x f ,例3、已知集合{}{}54321,,,,==B A ,则从A 到B 的函数)(x f 有 个例3、 求下列函数的定义域(1)21)(-=x x f (2)241)(+-∙-=x x x f (3)()x x x y -+=01 (4)213)(+++=x x x f例4、(1)若函数)(x f 的定义域为[]41,,求)2(+x f 的定义域(2)已知)1(+x f 的定义域为[]30,,求)(x f 的定义域例4、 已知函数32341++-=ax ax ax y 的定义域为R ,求实数a 取值范围变式:已知函数862++-=k kx kx y 的定义域是R ,求实数k 的取值范围例5、 求下列函数的值域:(1){}5432112,,,,,∈+=x x y (2)1+=x y (3)1+=x x y (4)2211xx y +-= (5)245x x y -+= (6)12--=x x y (7)152222++++=x x x x y例6、 函数⎪⎩⎪⎨⎧≥<<--≤+=222112)(2x x x x x x x f ,,, 中,若3)(=x f ,则x 的值为例7、 作出下列函数的图像:(1)112-+=x x y (2)122+-=x x y变式:讨论关于x 的方程)(342R a a x x ∈=+=的实数解的个数例8、 求下列函数的解析式(1) 已知)(x f 是二次函数,且1)()1(2)0(-=-+=x x f x f f ,,求)(x f(2) 已知x x x f 2)1(+=+,求)(x f(3) 已知函数x x x x x f 11)1(22++=+,求)(x f (4) 已知3)(2)(3+=-+x x f x f ,求)(x f三、 过关精炼1、下列说法中,不正确的是( )A 、函数的值域中每一个数在定义域中都有数与之对应B 、函数的定义域和值域一定是不含0的集合C 、定义域和对应法则完全相同的函数表示同一个函数D 、若函数的定义域中只有一个元素,则值域也只含有一个元素2、函数x x y 22-=的定义域为{}3210,,,,那么其值域为( ) A 、{}301-,,B 、{}3210,,,C 、{}31≤≤-y yD 、{}30≤≤y y 3、与x y =为同一个函数的是( )A 、()2x y =B 、2x y =C 、()⎩⎨⎧<->=)0(0x x x x y D 、x y = 4、若)()2(32)(x f x g x x f =++=,,则)(x g 等于( )A 、12+xB 、12-xC 、32-xD 、72+x5、一个面积为2100cm 等腰梯形,上底长为xcm ,下底长为上底长的3倍,则把它的高y 表示成x 的函数为( )A 、)0(50>=x x yB 、)0(100>=x x yC 、)0(50>=x x yD 、)0(100>=x x y6、已知a a f x x f ,则,16)(13)(=+==7、函数⎪⎩⎪⎨⎧≥<≤<≤=)2(3)21(2)10(2)(2x x x x x f 的值域8、求下列函数的值域(1)x x y 422+--= (2)3222-+=x x y(3){})3210(16322,,,∈-++-=x x x x x y。
函数的概念及其表示
ab abab a b课题 函数的概念及其表示一、函数的概念1 函数:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么就称:f A B →为从集合A 到集合B 的一个函数。
记作:(),y f x x A =∈。
其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{()}f x x A ∈叫做函数的值域。
(1)对函数符号()f x 的理解知道()y f x =与()f x 的含义是一样的,它们都表示y 是x 的函数,其中x 是自变量,()f x 是函数值,连接的纽带是法则f.f 是单值对应; (2)注意定义中的集合 A ,B 都是非空的数集,而不能是其他集合; 2、构成函数的三要素:定义域、对应关系和值域。
二、区间的概念设a 、b 是两个实数,且a b <,规定定义名称 符号数轴表示{|}x a x b ≤≤ 闭区间 [,]a b {}x a x b << 开区间 (,)a b {}x a x b <≤ 左闭右开区间 [,)a b {}x a x b <≤左开右闭区间(,]a b{|}[,)x x a a =+∞≥;{}(,)x x a a >=+∞;{}(,]x x a a =-∞≤;{}(,)x x a a <=-∞;(,)R =-∞+∞。
三、相等函数:○1 构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)○2 两个函数相等的条件是当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。
四、函数的表示法1解析法:把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式。
函数的概念及表示方法
【考点精讲】1. 函数的概念:一般地,在一个变化过程中,如果有两个变量x 与y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说x 是自变量,y 是x 的函数。
如果当x =a 时y =b ,那么b 叫做自变量的值为a 时的函数值。
2.对函数概念的理解应注意以下几点:①变化过程中; ②两个变量;③一个变量随另一个变量的变化而变化; ④对于自变量x 的每一个确定的值,函数y 都有唯一的值与它对应(但有可能有多个不同的自变量数值对应一个函数值)。
3. 函数的表示方法:函数是从数量角度反映变化规律的数学模型。
解析式法、图象法和列表法是函数的三种常用表示方法。
①解析式法:用来表示函数关系的数学式子叫做函数解析式。
用解析式来表示函数关系的方法叫做解析式法。
②列表法:用表格来表示函数关系的方法叫做列表法。
③图象法:用图象来表示函数关系的方法叫做图象法。
【典例精析】例题1 下列关于x ,y 的关系式:① 5x -2y =1;② y =3|x|;③ x·y 2=2,其中表示y 是x 的函数的是( )A. ②B. ②③C. ①②D. ①②③思路导航:在x·y 2=2中,即22y x,当x =1时,y y x 对应着两个y 值,和函数的概念不相符,所以它不是函数。
答案:C点评:y 是x 的函数用函数关系式表示时,应用含有x 的式子表示y 。
因此,本题应首先对式子进行变形,用含有x 的式子表示y 。
例题2 下列曲线中不能表示y 是x 的函数的是( )思路导航:从图象可以看出每个图象中y 都随着x 的变化而变化,并且都存在两个变量,所以当x 是一个确定的值时,y 有唯一确定的值与之对应,就是函数,当不是唯一确定的值与之对应时,就不是函数。
答案:C点评:解决本类题的技巧是:过x 轴上的一点,作x 轴的垂线,这条直线与图象的交点为一个时,就是函数关系,当出现多个交点时,就不是函数关系。
函数的概念及其表示
1.已知 f(x)=π(x∈R),则 f(π2)等于( ) (A)π2 (B)π (C) π (D)不确定
1.如图,可表示函数 y=f(x)的图象的只可能是( )
2.设集合 M={x|0≤x≤2},N={y|0≤y≤2},那么下面的 4 个图形中, 能表示集合 M 到集合 N 的函数关系的有( )
2.已知 f ( x 1) x 2 x ,求 f (x)
3.若
f
(x)
满足
f
(x)
2
f
(1) x
ax,
求
f
(x)
4.已知函数 f(x2-3)=lgx2x-2 3,求 f(x)的解析式.
1.设 M 是由满足下列性质的函数 f(x)构成的集合:在定义 域内存在 x0,使得 f(x0+1)=f(x0)+f(1)成立.已知下列函 数:①f(x)=1x;②f(x)=2x;③f(x)=lg(x2+2);④f(x)=cos πx.其中属于集合 M 的函数是________.
第1节 函数的基本概念(一)
1.函数的基本概念
(1)函数的定义:设A,B是非空的数集,如果按照某种确定的对 应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一 确定的数f(x)和它对应,那么称f:A→B为从集合A到集合B的一 个函数,记作y=f(x),x∈A.其中,x叫做自变量,x的取值范围A 叫做函数的定义域.
f(x)≤1 的解集为( )
(A)(-∞,-3]∪[-1,+∞) (B)[-3,-1]
(C)[-3,-1]∪(0,+∞) (D)[-3,+∞)
.求函数的解析式
变【式例、5】根1据. 已条知件f求( 下x列 1各) =函x数+的2,解求析f(x式)的:解析式.
函数的概念及其表示
课前案基本知识梳理1.函数与映射的概念2.函数的有关概念(1)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的⑦ ;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的⑧ .(2)函数的三要素:⑨ 、值域和对应关系.(3)相等函数:若两个函数的⑩ 相同,且 完全一致,则这两个函数相等,这是判断两函数相等的依据.(4)函数的表示方法: 、图象法、列表法.3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的 ,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.▶提醒 一个分段函数的解析式要把每一段写在一个大括号内,各段函数的定义域不可以相交.知识拓展1.常见函数的定义域(1)分式函数中分母不等于0.(2)偶次根式函数的被开方式大于等于0.(3)一次函数、二次函数的定义域为R.(4)y=a x(a>0且a≠1),y=sin x,y=cos x的定义域均为R.(5)y=tan x的定义域为 .(6)函数f(x)=x0的定义域为{x|x∈R且x≠0}.(7)y=log a x(a>0,且a≠1)的定义域为{x|x>0}.2.基本初等函数的值域(1)y=kx+b(k≠0)的值域是R.(2)y=ax2+bx+c(a≠0)的值域:当a>0时,值域为 ;当a<0时,值域为.(3)y= (k≠0)的值域是{y|y≠0}.(4)y=a x(a>0且a≠1)的值域是(0,+∞).(5)y=log a x(a>0且a≠1)的值域是R.课中案一、目标导引1.了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用.二、牛刀小试判断正误(正确的打“√”,错误的打“×”)1.判断正误(正确的打“√”,错误的打“✕”).(1)函数=x 0是同一个函数. ( )(2)f (x 是一个函数. ( )(3)若两个函数的定义域与值域相同,则这两个函数相等. ( )(4)函数y =f (x )的图象与直线x =1的交点最多有1个.( )2.若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是 ( )3.(新教材人教A 版必修第一册P65例2改编)函数f (x 21x-( )A.(0,+∞)B.[0,+∞)C.(1,+∞)D.[1,+∞)4.(2020山东威海一中期中)已知函数f (x )的定义域为(-1,0),则函数f (2x -2)的定义域为( )A.(-1,1)B. 11,2⎛⎫-- ⎪⎝⎭ C.(-1,0) D. 1,12⎛⎫ ⎪⎝⎭5.已知f (x )是一次函数,且f [f (x )]=x +2,则f (x )= ( )A.x +1B.2x -1C.-x +1D.x +1或-x -1三、例题讲解考点一 函数、映射概念的理解例1 (1)给出下列四个对应:①A =R,B =R,对应关系f :x →y ,y = 11x + ,x ∈A ,y ∈B ;②A = *1|N 2a a ⎧⎫∈⎨⎬⎩⎭ ,B= *1|,N nb b n ⎧⎫=∈⎨⎬⎩⎭,对应关系f :a →b ,b= 1a ;③A ={x |x ≥0},B =R,对应关系f :x →y ,y 2=x ,x ∈A ,y ∈B ;④A ={x |x 是平面α内的矩形},B ={y |y 是平面α内的圆},对应关系f :每一个矩形都对应它的外接圆.其中是从A 到B 的映射的为 ( )A.①③B.②④C.①④D.③④(2)下列函数中,与函数y =x +1是相等函数的是 ( )A.y 2B.y y =xx 2+1 D.y 变式练习1.下列对应关系:①A ={1,4,9},B ={-3,-2,-1,1,2,3}, f :x →x 的平方根;②A =R,B =R, f :x →x 的倒数;③A =R,B =R, f :x →x 2-2;④A ={-1,0,1},B ={-1,0,1}, f :x →x 2.其中是A 到B 的映射的是 ( )A.①③B.②④C.③④D.②③2.( )A.f (x )=|x |,g (x f (x g (x 2C.f (x )=211x x --g (x )=x +1 D.f (x g (x考点二 函数的定义域例2 (1)函数f (x x )的定义域为 ( )A.(-∞,2)B.(2,+∞)C.[-1,2)D.[-1,2](2)函数f (x 2563x x x -+- 的定义域为 ( )A.(2,3)B.(2,4]C.(2,3)∪(3,4]D.(-1,3)∪(3,6]角度二 已知函数定义域,求参数的取值范围例3 (1)(2019河北衡水联考)若函数y = 2143mx mx mx -++ 的定义域为R,则实数m 的取值范围是 ( )A. 30,4⎛⎤ ⎥⎝⎦30,4⎛⎫ ⎪⎝⎭ C. 30,4⎡⎤⎢⎥⎣⎦ D. 30,4⎡⎫⎪⎢⎣⎭(2)若函数f (x 2ax abx b ++的定义域为{x |1≤x ≤2},则a +b 的值为 角度三 抽象函数的定义域例4 已知函数f (x )的定义域是[0,2],则函数g (x )=f 12x ⎛⎫+ ⎪⎝⎭ +f12x ⎛⎫- ⎪⎝⎭的定义域是.考点三 函数的解析式例5 (1)已知二次函数f (2x +1)=4x 2-6x +5,求f (x ).(2)已知函数f (x )满足f (-x )+2f (x )=2x ,求f (x ).变式练习(2020河北衡水中学调研)已知f (x )是二次函数,且f (0)=0, f (x +1)=f (x )+x +1.求f (x )的解析式.考点四 分段函数例6 已知函数f(x)=229,1,4,1,x ax xx a xx⎧-+≤⎪⎨++>⎪⎩ 若f(x)的最小值为f(1),则实数a的取值范围是.角度二 已知函数值,求参数的值(或取值范围)例7 设函数f(x)= 22,0,1,0,x x xx x⎧+<⎨+≥⎩则f(-1)= ; 若f(a)>f(a-1),则实数a的取值范围是 .变式练习(2018课标全国Ⅰ文,12,5分)设函数f(x)=2,0,1,0,x xx-⎧≤⎨>⎩ 则满足f(x+1)<f(2x)的x的取值范围是 ( )A.(-∞,-1]B.(0,+∞)C.(-1,0)D.(-∞,0)课后案1.下面可以表示以M={x|0≤x≤1}为定义域,以N={x|0≤x≤1}为值域的函数图象的是( )2.(2020河北邢台模拟,理2)已知集合A={x|lg(x2-x-1)>0},B={x|0<x<3},则A∩B=( )A.{x|0<x<1}B.{x|x<-1}∪{x|x>0}C.{x|2<x<3}D.{x|0<x<1}∪{x|2<x<3}3.已知函数f(x)的定义域是[-1,1],则函数g(x)=的定义域是( )A.[0,1]B.(0,1)C.[0,1)D.(0,1]4.下列各组函数中,表示同一函数的是( )A.f(x)=e ln x,g(x)=xB.f(x)=,g(x)=x-2C.f(x)=,g(x)=sin xD.f(x)=|x|,g(x)=5.若函数y=f(x)的值域是[1,3],则函数F(x)=1-f(x+3)的值域是( )A.[-8,-3]B.[-5,-1]C.[-2,0]D.[1,3]6.已知函数f(x)=的值域为R,则实数a的取值范围是( )A.(-∞,-1]B C D7.(2020重庆模拟,理13)已知函数f(x)=ln(-x-x2),则函数f(2x+1)的定义域为 .8.(2020辽宁大连一中6月模拟,文3)设f(x)=且f(2)=4,则f(-2)= .9.设函数f(x)=若f(t+1)>f(2t-4),则实数t的取值范围是 .10.已知函数f(x)满足2f(x)+f(-x)=3x,则f(x)= .B组11.(2020广东华师大附中月考)已知函数f(x)的定义域是[-1,1],则函数g(x)=的定义域是( )A.[0,1]B.(0,1)C.[0,1)D.(0,1]12.(2020河北衡水中学检测)已知函数f(x)=若实数a满足f(a)=f(a-1),则f=( )A.2B.4C.6D.813.(2020山东济南三模,5)“平均增长量”是指一段时间内某一数据指标增长量的平均值,其计算方法是将每一期增长量相加后,除以期数,即国内生产总值(GDP)被公认为是衡量国家经济状况的最佳指标,下表是我国2015—2019年GDP数据:年份20202020201516171819国内生产总值/万亿68.8974.6483.291.9399.09根据表中数据,2015—2019年我国GDP的平均增长量为( ) A.5.03万亿 B.6.04万亿C.7.55万亿D.10.07万亿14.已知函数f(x)=则f= .课后案答题纸A组1234567. 8.9. 10.B组1234.。
第二讲 函数的概念及其表示
第二讲 函数的概念及其表示一、知识讲解考点1函数的概念:设集合A 是一个非空的数集,对A 中的任意数x ,按照确定的法则f ,都有唯一确定的数y 与它对应,则这种对应关系叫做集合A 上的一个函数.记作 )(x f y =,A x ∈.注意:)(x f y =是函数的简写,并不表示“y =f 与x 的乘积”; 考点2函数的定义域与值域:函数的定义中,自变量x 取值的范围叫做这个函数的定义域;所有函数值构成的集合{}A x x f y y ∈=),(叫做这个函数的值域.确定一个函数的两个要素:定义域,对应法则.求函数的解析式的一般方法:配凑法、换元法、待定系数法求函数的定义域的一般原则:分母不为零;偶次根下不为负;零的零次幂没意义等等 求函数的值域的常见方法:直接法、配方法、换元法、判别式法、数形结合法. 注意:①构成函数的三要素:定义域、值域和对应法则;②判断两个函数是否相对,只需看函数的三要素是否相同.考点3映射的概念:设A ,B 是两个非空的集合,如果按照某种对应法则f ,对A 中的任意一个元素x ,在B 中有一个且仅有一个元素y 与x 对应,则称f 是集合A 到集合B 的映射.这时,称y 是x 在映射f 作用下的象,记作)(x f ,于是y =)(x f ,x 称作 y 的原象. 映射f 也可记为 B A f →: )(x f x →其中A 叫做映射f 的定义域,由所有象)(x f 构成的集合叫做映射f 的值域.①判断某“对应法则”是否为A→B 的映射,主要看是否为“一对一”及“多对一”的两种特殊对应;应特别注意;② A 中任一元素在B 中应有象,且象唯一;② B 中可以有空闲元素,即B 中可以有元素没有原象. 考点4函数的表示法: 列表法;图象法.如果F是函数)(x f y =的图象,则图象上任一点的坐标),(y x 都满足函数关系)(x f y =;反之,满足函数关系)(x f y =的点),(y x 都在图象F上;解析法.如果在函数)(x f y =)∈(A x 中,)(x f 是用代数式(或解析式)来表示的,则这种表示函数的方法叫做解析法.(也称为公式法).二、例题精析【例题1】判断下列各组中的函数是否为同一函数,并说明理由.(1)表示炮弹飞行高度h 与时间t 关系的函数2__5130=t t h 和函数2__5130=x x y )0≥(x ;(2)1=)(x f 和0=)(x x g .【又例】下列函数中那个与函数x y =相等?⑴ y =(x )2;⑵y =33x ;⑶y =2x ;⑷y =23x x .【例题2】已知函数)(x f =3+x +21+x . (1) 求函数)(x f 的定义域;(2) 求)3(__f 和)32(f 的值;(3) 当0>a 时,求)(a f ,)1(__a f 的值; (4) 求)-12x (f 及其定义域.【又例】设函数f x ()的定义域为[]01,,(1)求函数f x ()2的定义域;(2)求函数f x ()-2的定义域.【例题3】(1)已知x x x f 2)1(+=+,求)(x f ;(2)已知函数()f x 满足43)()(2+=-+x x f x f ,求)(x f 的解析式.【例题4】求下列函数的定义域:(1)14)(2--=x x f , (2) =)(x f x11111++,(3)xx x x f -+=0)1()(, (4)373132+++-=x x y .【例题5】求下列函数的值域. (1)216x y -=; (2)[]3,1x ;]2,2[,2∈-∈+-=x x x y ;(3)x x y 41332-+-=(4)66522-++-=x x x x y (5)11-++=x x y【例题6】以下给出的对应是不是从集合A 到B 的映射?⑴集合A ={P |P 是数轴上的点},集合B =R ,对应关系f :数轴上的点与它所代表的的实数对应;⑵集合A ={P |P 是平面直角坐标系中的点},集合B ={(x ,y )|x ∈R ,y ∈R },对应关系f :平面直角坐标系中的点与它的坐标对应;⑶集合A ={x |x 是三角形},集合B ={x |x 是圆},对应关系f :每一个三角形都对应它的内切圆;⑷集合A ={x |x 是实验中学的班级},集合B ={x |x 是实验中学的学生},对应关系f :每一个班级都对应班里的学生.【又例】已知(x ,y )的映射f 作用下的象是(x +y ,xy ).(1)求(-2,3)在f 作用下的象;(2)若在f 作用下的象是(2,-3),求它的原象.【例题7】某种笔记本的单价是5元,买x (x ∈{1,2,3,4,5})个笔记本需要y 元.试用函数的三种方法表示函数y =)(x f .三、课堂运用【基础】 1. 函数1x y x+=的定义域为__________. 2.设)(x f =2211xx -+,则)21(f +)31(f +)2(-f +)3(-f = ( ) A.3512 B .-3512C .1D .03.已知函数)(x f =2211x x -+,求证:)1(x f +)(x f =0.【巩固】1.函数f x ()的定义域是 )1,1[-,则函数)1()1()(2x f x f x F -+-=的定义域是 .2. 已知函数()f x 的定义域为(1,0)-,则函数(21)f x +的定义域( ) A .(1,1)- B .1(1,)2-- C .(1,0)- D .1(,1)2【拔高】 1. 求函数x x y 27-=, ⎥⎦⎤⎢⎣⎡∈2,31x 的值域 . 2.设集合A 和B 都是自然数集合N ,映射f :A →B ,把集合A 中的元素n 映射到集合B 中元素n 3+n ,则在映射f 下象68的原象是 ( )A .2B .3C .4D .5课后作业【基础】1.下列函数中,定义域不是R 的是( ) A .y =kx +b B .y =1+x k C .y =x 2+bx -c D .y =112++x x 2.下列各组函数中,表示同一函数的是( ) A .xxy y ==,1 B .1,112-=+⨯-=x y x x yC .33,x y x y ==D .2)(|,|x y x y ==3.已知函数①1y x =-;②21y x =-;③21y x =-;④xy 5=,其中定义域和值域相同的函数有( )A .①④B .③④C .①②D . ②③4.设⎪⎩⎪⎨⎧<=>+=)0(,0)0(,)0(,1)(x x x x x f π,则=-)]}1([{f f f ( )A . 1+πB . 0C .π D . 1-6. 函数y =|x -1|,x ∈[-1,2]的值域是( ).A.[-1,1]B.[0,1]C.[0,2]D.[1,2]7.对于集合A ={a ,b ,c }和集合B =R ,以下对应关系中,一定是集合A 到集合B 的映射的是( )A.对集合A 中的数开平方B. 对集合A 中的数取倒数 C .对集合A 中的数取算术平方根 D.对集合A 中的数取立方8.设集合A 和B 都是自然数集合N ,映射f :A→B ,把集合A 中的元素n 映射到集合B 中元素n 3+n ,则在映射f 下象68的原象是 ( )A .2B .3C .4D .5【巩固】1.已知f 满足)(ab f =)(a f +)(b f ,且)2(f =p ,q f =)3(那么)72(f 等于( )A .q p +B .q p 23+C .q p 32+D .23q p +2.设函数x x xf =+-)11(,则)(x f 的表达式为( ) A .x x -+11 B . 11-+x x C .x x +-11 D .12+x x3.设)(x f 的定义域是[-3,2],求函数)2(-x f 的定义域.4. 求函数x x y 27-=, ⎥⎦⎤⎢⎣⎡∈2,31x 的值域.5.已知31=)1+1(__2xx f ,求函数()1-x f 的解析式.6.如图,把截面半径为25cm 的圆形木头锯成长方形木料,如果截面矩形的一边长为x ,面积为y ,把y 表示为x 的函数.【拔高】1.已知函数()21,01,0x x f x x ⎧+≥=⎨<⎩,则满足不等式()()22f x f x ->的x 的取值范围是 .2.函数()|2011||2012||2013|()f x x x x x R =-+-+-∈的最小值为 .3.已知函数)(x f ,)(x g 分别由下表给出则[(1)]f g 的值为 ;满足[()][()]f g x g f x >的x 的值是 .4. 已知)(x f +2)1(xf =3x ,求)(x f 的解析式为 . 5.已知函数3+=)1+2(x x f ,求)1+2(x f 和)(x f 的定义域.6. 已知函数)(x f =()()⎩⎨⎧><-≤≤103101x x x x 或,则使等式)]([x f f =1成立的x 值的范围是 .x1 2 3x1 2 3 ()f x131()g x321x 25cm。
函数的概念与表示
函数的概念与表示
(一)函数的概念:在一个变化的过程中有两个变量x和y,如果给定了一个x值,
相应的就确定唯一的一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。
说明:1.符号y=f(x)的意义:x是自变量,f表示对应法则,y是x的函数;遂于定义域
内的每一个x的值,在对应法则f的作用下,都有唯一确定的y的值和它对应,和x值对应的y的值用f(x)表示
2.f(x)与f(a)的区别:f(x)表示自变量x的函数,f(a)表示当x=a是对应的函数值。
(二)函数的三要素:1)定义域 2)值域 3)对应法则
其中值域被定义域与对应法则唯一确定,因此我们常说函数有两要素,即定义域和对应法则,对应法则是函数的核心,定义域是函数的灵魂。
(三)两个函数相等的条件:1)定义域想同 2)对应法则相同;即对应定义域内的每一个x,他们都有相同的函数值。
(四)区间的概念
设a,b属于R,且a<b
(五)函数的表示方法。
专题09 函数的概念及其表示(解析版)
专题09函数的概念及其表示1.函数的概念定义设A、B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数三要素对应关系y=f(x),x∈A定义域x的取值集合值域与x的值相对应的y的值的集合{f(x)|x∈A}.[知识点拨](1)对数集的要求:集合A、B为非空数集.(2)任意性和唯一性:集合A中的数具有任意性,集合B中的数具有唯一性.(3)对符号“f”的认识:它表示对应关系,在不同的函数中f的具体含义不一样.(4)一个区别:f(x)是一个符号,不表示f与x的乘积,而f(a)表示函数f(x)当自变量x取a时的一个函数值.(5)函数三要素:定义域、对应关系和值域是函数的三要素,三者缺一不可.2.区间及有关概念(1)一般区间的表示.设a,b∈R,且a<b,规定如下:定义名称符号数轴表示{x|a≤x≤b}闭区间[a,b]{x|a<x<b}开区间(a,b){x|a≤x<b}半开半闭区间[a,b){x|a<x≤b}半开半闭区间(a,b](2)定义R{x|x≥a}{x|x>a}{x|x≤a}{x|x<a}符号(-∞,+∞)[a,+∞)(a,+∞)(-∞,a](-∞,a)[知识点拨](1)关注实心点、空心圈:用数轴表示区间时,用实心点表示包括在区间内的端点,用空心圈表示不包括在区间内的端点.(2)区分开和闭:在用区间表示集合时,开和闭不能混淆.(3)正确理解“∞”:“∞”是一个趋向符号,不是一个数,它表示数的变化趋势.以“-∞”和“+∞”为区间的一端时,这一端点必须用小括号.3.函数的表示法[4. 所谓分段函数,是指在定义域的不同部分,有不同的对应关系的函数.[知识点拨] 分段函数是一个函数,不要把它误认为是几个函数.分段函数的定义域是各段定义域的并集,值域是各段值域的并集.重要考点一:函数概念的理解【典型例题】函数()y f x =的图象与直线1x =的公共点有( )A .0个B .1个C .至多1个D .至少1个【答案】C 【解析】 若函数()y f x =在1x =处有定义,则函数()y f x =的图象与直线1x =的公共点个数是1; 若函数()y f x =在1x =处没有定义,则函数()y f x =的图象与直线1x =没有公共点,因此,函数()y f x =的图象与直线1x =的公共点至多1个.故选:C.【题型强化】1.可作为函数()y f x =的图象的是( )A .B .C .D .【答案】D 【解析】A,B,C 不可作为函数图像;因为在图像对应的自变量x 的取值范围内存在自变量0x ,有两个y 值与之对应,不符合函数的概念;D 符合函数概念;故选D 2.下列四组函数中,表示同一函数的是( ) A .f (x )=1与g (x )=x 0B .()f x x =与()2g x x =C .f (x )=x 与g (x )=2x xD .()21f x x =-与()11g x x x =+-【答案】B【解析】A 选项:两个函数定义与不同:f(x)定义域为R ,g(x)定义域00-∞⋃+∞(,)(,),排除A C 选项:f(x)定义域为R ,g(x)定义域00-∞⋃+∞(,)(,),定义域不同,故排除C D 选项::f(x)定义域为11-∞-⋃+∞(,)(,),g(x)定义域1(,)+∞,故排除D , 故选:B 【名师点睛】1.判断一个对应关系是否是函数,要从以下三个方面去判断,即A ,B 必须是非空数集;A 中任何一个元素在B 中必须有元素与其对应;A 中任一元素在B 中必有唯一元素与其对应.2.函数的定义中“任一x ”与“有唯一确定的y ”说明函数中两变量x ,y 的对应关系是“一对一”或者是“多对一”而不能是“一对多”.重要考点二:求函数的定义域【典型例题】函数0()(2)f x x =-+ ) A .(2,)+∞ B .(1,)-+∞C .(1,2)(2,)-+∞ D .R【答案】C【解析】由已知,20101x x -≠⎧⎪⎨≥⎪+⎩,解得1x >-且2x ≠,所以()f x 的定义域为(1,2)(2,)-+∞.故选:C.【题型强化】1.函数y =的定义域为( ) A .()1,2- B .()0,2 C .[)1,2- D .(]1,2-【答案】D 【解析】 由题意可得1020x x +>⎧⎨-≥⎩,解得12x -<≤,所以,函数y =的定义域为(]1,2-. 故选:D. 2.已知函数()21f x +的定义域为()2,0-,则()f x 的定义域为( )A .()2,0-B .()4,0-C .()3,1-D .1,12⎛⎫-⎪⎝⎭【答案】C 【解析】()21f x +的定义域为()2,0-,即20x -<<,3211x ∴-<+<,所以,函数()f x 的定义域为()3,1-,故选C. 【名师点睛】 求函数的定义域:(1)要明确使各函数表达式有意义的条件是什么,函数有意义的准则一般有:①分式的分母不为0;②偶次根式的被开方数非负;③y =x 0要求x ≠0.(2)当一个函数由两个或两个以上代数式的和、差、积、商的形式构成时,定义域是使得各式子都有意义的公共部分的集合.(3)定义域是一个集合,要用集合或区间表示,若用区间表示数集,不能用“或”连接,而应该用并集符号“∪”连接.重要考点三:求函数值【典型例题】若()22f x x x =-,则()()()1ff f =( )A .1B .2C .3D .4【答案】C 【解析】由()22f x x x =-,可得()1121f =-=-;所以()()()11123f f f =-=+=;()()()()13963f f f f ==-=.故选C.【题型强化】1.已知函数f(x -1)=x 2-3,则f(2)的值为( ) A .-2 B .6 C .1 D .0【答案】B【解析】令1x t -=,则1x t =+,()()213f t t ∴=+-,()()213f x x ∴=+-()()222136f ∴=+-=,故选B.2.若()f x 满足关系式()12()3f x f x x+=,则()2f 的值为 A .1 B .1-C .32-D .32【答案】B【解析】∵f (x )满足关系式f (x )+2f (1x)=3x , ∴()()12262132222f f f f ⎧⎛⎫+= ⎪⎪⎪⎝⎭⎨⎛⎫⎪+= ⎪⎪⎝⎭⎩,①,②, ①﹣②×2得﹣3f (2)=3,∴f (2)=﹣1,故选B . 【名师点睛】解题时,(一)要注意审题,观察分析、发现规律.(二)要注意一题多问时,有时前面问题的结论可作为后面问题的条件使用.重要考点四:求函数定义域时非等价化简解析式而致误【典型例题】已知函数()f x 的定义域为()0,∞+,且()1f x 2f 1x ⎛= ⎝,则()f x =______.13【解析】在()1f x 2f 1x ⎛=⎝,用1x 代替x ,得(1f 2f x 1x ⎛⎫=- ⎪⎝⎭,联立得 ()(1f x =2f x 1f =2f x x ⎧⎛ ⎪⎪⎝⎨⎛⎫⎪ ⎪⎪⎝⎭⎩ , 将2f x 1f 1x ⎛⎫=- ⎪⎝⎭代入()1f x 2f 1x ⎛= ⎝中,可求得()1f x 3=. 13+【题型强化】1.若()f x 对于任意实数x 都有12()21f x f x x ⎛⎫-=+ ⎪⎝⎭,则12f ⎛⎫= ⎪⎝⎭__________. 【答案】3 【解析】()f x 对于任意实数x 都有12()21f x f x x ⎛⎫-=+ ⎪⎝⎭,∴12()21122()1f x f x x f f x x x ⎧⎛⎫-=+ ⎪⎪⎪⎝⎭⎨⎛⎫⎪-=+ ⎪⎪⎝⎭⎩,解得42()133f x x x =++,∴141213123232f ⎛⎫=⨯++= ⎪⎝⎭⨯. 故答案为:3.2.已知()2212f x x x +=-,则()9f =______________.【答案】8【解析】21x t +=,则12t x -=,代入()2212f x x x +=-得: 22111()()2(65)224t t f t t t --=-⨯=-+,∴2135()424f x x x =-+, ∴2135(9)998424f =⨯-⨯+=.故答案为:8.重要考点五:求函数值域的方法(分离常数法)【典型例题】函数11x y x -=+()0x ≥的值域为( ) A .[)1,1- B .[]1,1-C .[)1,-+∞D .[)0,+∞【答案】A 【解析】()112210111x x y x x x x -+-===-≥+++ 0x ≥ 11x ∴+≥ 2021x ∴<≤+ 2201x ∴-≤-<+ 21111x ∴-≤-<+,即()101x y x x -=≥+的值域为[)1,1-故选:A 【题型强化】1.函数()3452xf x x-+=-的值域是( )A .()(),22,-∞+∞B .()(),22,-∞--+∞C .55,,22⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭D .R【答案】B 【解析】()344341077252252525x x x f x x x x x -+--+==-=-=-+----,()2f x ∴≠-,值域为()(),22,-∞-⋃-+∞.2.函数222231x x y x x ++=+-的值域为________.【答案】(,2](2,)-∞-⋃+∞【解析】2222235211x x y x x x x ++==++-+-, 因为221551244x x x ⎛⎫+-=+-- ⎪⎝⎭,所以21415x x ≤-+-或2101x x >+-, 则25221x x +≤-+-或25221x x +>+-,即(,2](2,)y ∈-∞-⋃+∞. 故答案为:(,2](2,)-∞-⋃+∞【名师点睛】求y =ax +c x +b 这种类型的函数的值域,应采用分离常数法,将函数化简为y =d +n x +m的形式.重要考点六:求函数值域的方法(配方法)【典型例题】求下列函数的值域221y x x =--+,[)2,1x ∈-;【答案】(]2,2-;【解析】(3)因为2(1)2y x =-++,[)2,1x ∈-,画出其图象如图:观察图象可知值域为(]2,2-.【题型强化】1.作出下列函数图象,并指出其值域. (1)y =x 2+x (-1≤x ≤1); (2)y =2x(-2≤x <1且x ≠0). 【答案】(1)图象见解析,值域为1,24⎡⎤-⎢⎥⎣⎦;(2)图象见解析,值域为(](),12,-∞-+∞.【解析】(1)由题意()2211,1124y x x x x ⎛⎫=+=+--≤≤ ⎪⎝⎭,当1x =-时,211024y x ⎛⎫=+-= ⎪⎝⎭;当12x =-时,2111244y x ⎛⎫=+-=- ⎪⎝⎭; 当1x =时,211224y x ⎛⎫=+-= ⎪⎝⎭;函数2y x x =+的图象为抛物线的一部分,如图:由图象可知,函数()2,11y x x x =+-≤≤的值域为1,24⎡⎤-⎢⎥⎣⎦; (2)由题意函数2y x = (-2≤x <1且x ≠0)的图象为反比例函数图象的一部分, 当2x =-时,21y x ==-;当1x =时,22y x==;所以该函数图象如图:由图象可知,函数2y x= (-2≤x <1且x ≠0)的值域为(](),12,-∞-+∞.2.求下列函数值域:(1)y =2x 2-2x +3; (2)y =372x x ++; (3)y =2x 1x - (4)y =224x x -+.【答案】(1)5,2⎡⎫+∞⎪⎢⎣⎭;(2)()(),33,-∞+∞;(3)15,8⎡⎫+∞⎪⎢⎣⎭;(4)[]0,2. 【解析】(1)由题意2215223222y x x x ⎛⎫=-+=-+ ⎪⎝⎭,所以函数2223y x x =-+的值域为5,2⎡⎫+∞⎪⎢⎣⎭;(2)由题意()3213713222x x y x x x +++===++++, 由102x ≠+可得函数372x y x +=+的值域为()(),33,-∞+∞;(3)令10t x =-≥,则21x t =+,所以()()2211521212,048y x x t t t t ⎛⎫=-=+-=-+≥ ⎪⎝⎭,所以当14t =时,函数取最小值158, 所以函数21y x x =-15,8⎡⎫+∞⎪⎢⎣⎭;(4)由题意()22424x x x -+=--+,所以2044x x ≤-+≤, 所以2042x x -+≤,20242x x ≤-+≤, 所以函数224y x x =-+[]0,2.【名师点睛】遇到求解一般二次函数y =ax 2+bx +c (a ≠0)的值域时,应采用配方法,将函数化简为y =m (x +n )2+d 的形式,从而求得函数的值域.重要考点七:求函数值域的方法(换元法)【典型例题】已知1x >-,则函数27101x x y x ++=+的值域为________. 【答案】[9,)+∞【解析】设1t x =+由1x >-知,0t >,1x t =-,故22710(1)7(1)10451x x t t y t x t t++-+-+===+++, ∵44t t +≥ (当且仅当2t =时,等号成立).∴函数2710(1)1x x y x x ++=>-+的值域为[9,)+∞.【题型强化】1.函数23y x =-的值域是__________ 【答案】7,2⎛⎤-∞ ⎥⎝⎦t =,则()21304t x t -=≥, ∴原函数化为213234t y t -=⨯--21722t t =--+()21142t =-++ ∵0t ≥,∴72y ≤,故答案为:7,2⎛⎤-∞ ⎥⎝⎦.2.函数y x =_______. 【答案】74⎡⎫+∞⎪⎢⎣⎭,【解析】令a =0a ≥,22x a =+,2217224y a a a ⎛⎫∴=+-=-+ ⎪⎝⎭0a ≥,12a ∴=,74min y =,∴函数y x =74⎡⎫+∞⎪⎢⎣⎭, 【名师点睛】 求解带根号且被开方式为一次式的函数的值域,直接求解很困难,既费时又费力,所以遇到这样的问题,我们要想到用一个字母代换掉带根号的式子.值得注意的是,在代换过程中,要注意根号下变量的取值范围.重要考点八:求函数解析式的常用方法(待定系数法)【典型例题】已知()y f x =是一次函数,且有[()]1615f f x x =-,则()f x 的解析式为______.【答案】()43f x x =-或()45f x x =-+【解析】由题意设()(0)f x ax b a =+≠,2(())()1615f f x a ax b b a x ab b x ∴=++=++=-,则21615a ab b ⎧=⎨+=-⎩,解得45a b =-⎧⎨=⎩或43a b =⎧⎨=-⎩,()43f x x ∴=-或()45f x x =-+, 故答案为:()43f x x =-或()45f x x =-+.【题型强化】1.已知函数()(0)f x ax b a =->,(())43f f x x =-,则(2)f =_______.【答案】3【解析】由题意,得2(())()()()43f f x f ax b a ax b b a x ab b x =-=⋅--=-+=-,即2430a ab b a ⎧=⎪+=⎨⎪>⎩,解得21a b =⎧⎨=⎩,()21f x x ∴=-,因此(2)3f =, 故答案为3.2.已知二次函数()()20f x ax bx c a =++≠,其图象过点()1,1-,且满足()()244f x f x x +=++,则()f x 的解析式为______.【答案】22f x x【解析】根据题意可知1a b c ++=-,又()()222244a x b x c ax bx c x ++++=++++恒相等,化简得到()()44244a b x a b c b x c ++++=+++恒相等, 所以444241a b b a b c c a b c +=+⎧⎪++=+⎨⎪++=-⎩,故1a =,0b =,2c =-,所以()f x 的解析式为22f x x .故答案为:22f x x .【名师点睛】 (1)一次函数可设为y =kx +b (k ≠0),正比例函数可设为y =kx (k ≠0);反比例函数可设为y =k x(k ≠0);已知二次函数f (x )的顶点或对称轴、最值时,可设顶点式f (x )=a (x +m )2+n ;已知二次函数与x 轴两交点坐标时,常设分解(标根)式f (x )=a (x -x 1)(x -x 2).已知f (x )的图象过某三点时,常设一般式f (x )=ax 2+bx +c ;(2)凡是已知函数(或方程、不等式等)的形式时,常用待定系数法求解.重要考点九:恒成立的应用【典型例题】不等式210x kx -+>对任意实数x 都成立,则实数k 的取值范围是__________.【答案】(2,2)-【解析】∵不等式210x kx -+>对任意实数x 都成立,∴240k =-<。