避雷器阻性电流测试方法研究
避雷器阻性电流测试说明
避雷器阻性电流测试技术说明1 范围本技术说明规定了避雷器阻性电流在线监视仪以下简称监视仪的适用范围、技术要求、试验方法、检验规则;本技术说明适用于交流电力系统中与金属氧化物避雷器标称放电电流20kA及以下、额定电压500kV及以下相串联用的监视仪;监视仪可显示金属氧化物避雷器的动作次数和阻性泄漏电流值;2 规范性引用文件GB11032-2000 交流无间隙金属氧化物避雷器GB3797-89 电控设备第二部分装有电子器件的电控设备GB4208-1993 外壳防护等级GB/ 电磁兼容试验和测量技术浪涌冲击抗扰度试验JB2440-1991 避雷器用放电计数器3 基本测试功能:1测量避雷器的全电流功能有效值2测量避雷器的阻性电流功能峰值3记录避雷器放电次数记录功能4 监视仪的测试使用条件1)环境温度 +50°C — -10°C2)相对湿度≤85% 25°C3)海拔高度≤1000米4)使用场所户内、户外5)耐太阳光辐射6)被检测系统电源频率:50HZ 48-52HZ60HZ 58-62HZ7)可使用在高电场场合5 仪器特性指标:1测量精度:全电流 Ix有效值测量精度±%阻性电流 Ir峰值测量精度±% 2泄漏电流测量有效范围: — mA3放电电流次数记录动作电流:30A — 10KA4 电流传感器标称放电电流下残压: 10KA等级≤1500V20KA等级≤2500V5 工作电源: 24VDC±10%仅对有源仪器适用6 监视仪在规定的放电电流范围内任意值作用下应能准确地计数,二次放电电流的时间间隔应不小于1s;6 试验方法1 测量精度试验在有效测量信号范围内,任意模拟避雷器的泄漏电流输入该系统,并进行7次重复测量,其测量结果的误差率应在规定范围内;图中:信号源:SB-868型多功能校准仪C:333K 250V CJ8R:DNR 7D101A:交流电流表,测量范围0~20mA,准确度等级级2 动作性能试验动作性能试验分上限动作电流下的动作性能试验和下限动作电流下的动作性能试验,上限动作电流下的性能试验按JB2440第条规定进行,下限动作电流下的动作性能试验按JB2440第条规定进行;3 环境温度性能试验环境温度性能试验按GB3797第的规定进行;其中:TA= 50℃; T0= -10℃;tS= 60min;4 抗电磁干扰试验电快速瞬变干扰试验在工作电源上叠加2000V的尖脉冲试验电压,并按GB3797第的规定进行试验;静电放电干扰试验施加2000V的静电放电电压,并按GB3797第的规定进行试验;辐射电磁场干扰试验在5kV/m电场强度的电磁中,并按GB3797第的规定进行试验;浪涌冲击抗扰度试验以GB/试验等级4规定进行试验;氧化锌避雷器测量阻性电流技术的研究1.现状:当前,对避雷器的状态监测的有效手段之一是在线检测,在线检测通常采用以下的措施来监测避雷器性能的变化:1)测量避雷器在运行电压下的全电流变化;2测量流过避雷器阻性电流的变化监测避雷器性能的变化;目前普遍采用的方法是测量避雷器的全电流,具体是在110KV等级及以上的避雷器的下端接地回路上安装泄漏电流监视仪,通过定时人工巡视来监视泄漏电流的大小与变化趋势或将数据远传到检测中心进行统一分析,通过记录全电流读数来判断避雷器的老化和绝缘损坏程度;然而这些测量方法所得到的全电流中包含了避雷器表面的泄漏电流、内部的泄漏电流以及本体电容电流等的总和,它不能有效反映避雷器内部绝缘支架绝缘、内壁绝缘、氧化锌片的质量……等的真实运行情况;因此,如何测量正确,这对运行部门来说是非常关心的问题,也是需要研究解决的技术问题;2.技术问题:1在运行电压下流过避雷器的泄漏全电流包含了阻性泄漏电流分量、容性泄漏电流分量两部分;在避雷器处于正常运行电压状态下阻性电流分量远远小于容性分量,一般阻性泄漏电流分量占全电流的比例不会超过10—15%的数值,所以阻性分量即使增加一倍,全电流的变化不会超过%;所以采用全电流的测量方法,就不能有效监视避雷器的内部性能劣化的趋势;2在运行电压下的测量,由于运行电压的变化幅度将达到大于5%以上,所以产生的全电流的变化由于电容分量的线性变化影响使测量全电流数值的结果也有5%以上幅度的变化,从而淹没了由于阻性电流变化而引起上面提到的全电流变化%的比例;3如果避雷器在运行中由于内部元件发生劣化,引起阻性泄漏电流的增加,即有功损失分量不断加大,如此继续劣化下去,达到一定程度后会导至避雷器的热崩溃,若不能迅速将不正常的避雷器及时退出运行,很可能在一段时间内几月、天或数小时发生爆炸,引发大面积电力事故的判断依据无法知道;分析一般引起避雷器阻性泄漏电流增加的原因有下面主要方面:1)避雷器的内部受潮而产生的内部绝缘下降避雷器在制造中由于在正常的气候条件下进行组装,留存有一定的湿度;避雷器内部的绝缘材料的吸潮性或者内部有潮气而没有将其排除进行组装,投入运行以后缓慢的释放;本体本身与密封口的呼吸作用;外瓷套本身材料老化或者呼吸作用;2)避雷器的氧化锌片本体在通流负载下质量发生变化大雷电流冲击引起积累效应;高内过电压冲击;长期运行电压下的自然老化;氧化锌片的通流容量与实际的通流量不符合加剧老化;据资料反映,在避雷器损坏的统计中是由于内部受潮所引起的比例达到总故障数50%以上,而氧化锌片的劣化所引起的事故大约占30%不到法国电力公司统计为大约是17%;要解决这些问题,除了制造厂在元件及制造工艺上提高固然很重要外,对于运行部门如何加强对避雷器在运行中的检查即在线检测也至关重要,若能及时发现避雷器的劣化趋势,就可尽快采取措施或将避雷器退出运行,达到预防事故的发生;3.通过试验证明阻性电流反映的可靠度:下面将避雷器的泄漏电流进行了一组试验,数据如表3所示:表3:避雷器泄漏电流表:测量仪器是MOA-RCD-4,测量电压区避雷器分压产品交流持续电压试验78KV下的泄漏电流μA序号全电流阻性泄漏电流峰值阻性泄漏电流基波峰值1 760 216 1602 780 206 1563 760 219 1614 770 229 167从表3数据看,在正常状态下阻性电流分量要比电容电流分量小得多,避雷器的全电流当结构已经定的情况下,并且以上海电瓷厂产品为例一般在760—780微安左右,而阻性电流基波峰值只有150—170微安左右,此时容性电流的数值接近于全电流,以上面的例子计算说明以1号试品为例:容性电流分量计算: IC= 744微安阻性电流有效值是: Ir=216/=152有效值当阻性电流增加到300微安的时候,全电流达到802微安,仅比760微安大了40微安,增加的比例是5%,但是阻性电流恰恰增加了150微安,增加的比例达到了一倍;所以阻性电流增大对全电流增大的幅度并不大,全电流不能快速、正确发现避雷器内部的质量变化,而阻性电流才能是有效的、可靠的反映氧化锌避雷器内部的质量变化;所以测量阻性电流的技术对于反映避雷器的内部质量是可靠的;而目前有的厂家说明中提到,全电流增加的数值超过10%,即可以认为是有问题的,那么在这样的情况下阻性电流实际上可能已经达到382微安的数值,即增大了230微安,在这样的情况下,避雷器内部的功率损失已经达到甚至超过了24—25W的水平,与平时的正常运行情况比较增加到倍以上;而与1mA的参考电压的功率损失148W相比较已经占到17%,实际上避雷器已经达到了承受的地步;避雷器泄漏电流的组成:避雷器在运行电压下的泄漏电流的组成主要部分如表4所示:表4:避累器的泄漏电流主要部分组成表:泄漏电流的组成部分其中的阻性电流部分1.氧化锌本体的泄漏电流氧化锌本体的泄漏电流2.套管表面的泄漏电流套管表面的泄漏电流3.流经隔弧筒与支架的泄漏电流流经隔弧筒与支架的泄漏电流4.套管内壁的泄漏电流与套管本身材料的泄漏电流套管内壁的泄漏电流与套管本身材料的泄漏电流5.空气在电场作用下的泄漏电流空气在电场作用下的泄漏电流6.由于各个部件组成一定的形状以后构成的分布电容电流分量在实际运行中,对于正常的避雷器的内部由于结构的固定与工艺的保证,所以内部的泄漏电流基本是维持在一定的范围内;但是套管的表面受到环境的影响,导至泄漏电流有较大的变化,见下面表5的测量结果:表5 不同环境下的泄漏电流值试品序号避雷器表面干净避雷器表面较污染芯体部分环境温度190C 环境温度130C 全电流相对湿度53% 相对湿度81%1 全电流全电流2 全电流全电流表5 中的数据表明:避雷器在外界环境变化因素下,在泄漏仪器上测量的电流的读数会随之而发生变化,不能真正反映内部的真实泄漏电流情况,因此单纯采用这样的测量手段可靠性不高,会对内部质量变化产生误判断;为了进一步掌握避雷器中的各部分电流的分布,现对避雷器组成的各个主要部件如芯体、套管、隔弧筒进行测试,结果见表6所示:表6避雷器组成的各部件的泄漏电流的测量结果:条件在环境温度9—140C 相对湿度60—70%下的泄漏电流μA试品序号 1 2 3 4 5 芯体部分 710 720 710 720 720套管部分 27 29 28 28 26隔弧筒部分 25 32 27 26 27表6中的数据看出,在正常情况下,流经避雷器的电流大部分是流经避雷器的芯体柱部份的电流大约占93%以上,因此泄漏电流表中测量到的读数应当讲是基本上真实反映避雷器的芯体柱的运行状态;但是在外表污染的情况下,由于表面的泄漏电流的增加,严重影响了泄漏表的测量数值,所以全电流不能反映其内部的实际泄漏情况;综上所述,传统的全电流测量的方法仅仅反映了避雷器容性电流的变化、外部环境变化,且变化值不能明显表明避雷器内部的质量发生变化,因此需要采用另外的方法,就是能够较快速、正确、有效的反映内部质量问题的测量方法,即在目前认为是比较有效的方法测量避雷器的电阻性分量也就是与氧化锌避雷器内部的发热损坏所结合的参数量,简称为阻性电流进行判别;测量阻性电流的技术分析:二.关于在运行电压下的测量电流的反映:在运行电压下,氧化锌避雷器的通过的电流特性究竟处在芯片特性的什么位置,这是研究测量方法的关键;为此,我们进行了不同电压下的避雷器的通过电流的试验;试验分两个部分,分别采用交流电压和直流电压进行,下面将两种电压试验的结果列表于下;1.采用交流电压进行试验的数据见表9所示:表9 在不同交流电压下避雷器的各个电流变化情况记录:电流单位μA序号项目施加电压有效值KV1号交流电压全电流496 539 559 576 609 638 652 682 707 720 758阻性电流基波峰84 91 96 103 110 119 124 136 149 154 1782号交流电压全电流570 598 627 657 681 709 732 736 747 769阻性电流基波峰100 107 118 129 138 151 161 167 173 189将上面的全电流与阻性电流在下面的图形上表示见图3所示:800700500400100 1号阻性电流55 60 65 70 75 80 KV图3 不同交流电压下的全电流与阻性电流基波峰值的变化趋势图通过图3与表9的试验数据可以得到下面的几点看法:1)从图形看全电流的增加斜率是线性的,从增长的数据看:全电流的增长:对于1号试品,电压增加倍,全电流增加倍,基本是相称的;对于2号试品电压增加倍,全电流增加倍,基本是相称的;所以全电流的增长基本是线性的;2从图形看阻性电流基波峰值的增加斜率不固定,呈非线性状态阻性电流基波峰值增长:对于1号试品电压增加倍,阻性电流增加倍;对于2号试品电压增加倍,阻性电流增加倍;显然阻性电流基波峰值在交流电压增加一定数量下的增长速度远远高于全电流的增加速度;而且全电流由于电容分量占主要成分,所以增长的幅度与电压增长的幅度基本成线性变化;3阻性电流基波峰值的变化在不同阶段是不同的:以1号试品为例:在电压的—左右阶段中增长量变化为微安/1KV;在电压的左右阶段中的增长量变化达到微安/1KV;在电压的左右阶段中的增长量变化达到微安/1KV;在电压的左右阶段中的增长量变化达到微安/1KV;在电压的的全部阶段中的平均增长量为微安/1KV;以2号试品为例:在电压的左右阶段中的增长量变化为微安/1KV;在电压的左右阶段中的增长变化量达到微安/1KV;在电压的左右阶段中的增长量变化达到微安/1KV;在电压的左右阶段中的增长量变化达到微安/1KV;在电压的左右阶段中的平均增长量变化为微安/1KV;上面的数据充分说明了氧化锌避雷器阻性电流基波峰值的非线性特点,由此也可以看到这样的电流数值变化在交流电压为77—78KV以下时所产生的增加幅度是有限的,因为它在电压增高的情况下即所处在较高的电压下多增加4—5/1KV个微安,对于阻性电流的基数值为100微安讲,仅仅是5%左右,所以认为在这样的电压下的阻性电流以及全电流仍然维持在以正弦波为主;同时也可以认为在阻性电流的变化的增量达到上述平均增量的N倍以上才认为是有问题;2.在不同的直流电压作用下的试验数据见表10所示:表10 直流参考电压的试验数据表:直流试验电压数 100 110 114 131 134 138 143KV泄漏电流 1 3 5 10 13 21 33 62 93 161 229 352 491 680 1000微安该表说明,避雷器的1mA的直流参考电压符合110KV避雷器148KV的标准1)将上面的数据汇总成为图形见图4所示:微安100807060504030201070 80 90 100 110 120 130 140 150 160KV增加趋势加快段加速段突升段图4 1mA直流电压下的电流变化图形从表10中的数据看:1电压在0—77KV的时候电流变化是非常小的;电压在—100KV之间,电流变化为微安/1KV;电压在100—114KV之间,电流变化为微安/1KV.;电压在114—之间,电流变化为微安.\/1KV;电压在—134KV之间,电流变化为微安/1KV;电压在134—143KV之间,电流变化为为微安/1KV;电压在143—之间,电流变化为144微安/1KV;2对于在直流电压下的电流变化可分五个阶段:1在77KV前可以认为电流作为是零对待;2在77KV--100KV前基本是线性变化;3在100--114KV之间开始有增加的趋势;4在114—125KV之间电流的增加幅度进一步加快;5在125--134KV内开始电流的增加幅度上升加速;在134KV后电流已经大量突升加剧;2对于直流电压下的通过电流基本是阻性电流分量,而该数值远远小于在交流电压下的电流数据;如在交流电压为78KV下的峰值电压是110—111KV水平,在78KV的交流电压下的阻性电流基波的峰值为154—167微安,而在110—111KV直流电压下的泄漏电流仅为10—13微安水平,相差达到10倍以上的数值;为了找此原因,采用了示波器与测量仪器对比,对比的结果数据见表11所示:表11 对比表对比项目示波器 MOA-RCD-4仪器IX与U的角度 85度度阻性电流的峰值 87微安 161微安电压波形基本正弦基本正弦阻性电流波形零位拉长达到波形的2/5施加电压数值 78KV交流 78KV交流拍摄的实际波形见图5所示:图5 不同仪器的测量结果对比波形图通过测试对比以后发现:氧化锌测试仪与示波器测量的相位相差较大,差别达到5度以上,85度的余弦是,而度的余弦是,所以在同样的全电流下,得到的阻性电流的数值相差一倍以上;如果以720微安为例作为全电流,那么前者阻性电流是微安,峰值电流是微安与测量的87微安接近;而后者阻性电流是130微安,峰值电流是184微安与测量的161微安误差较大;再检查电压的采样技术问题:电压的采样都是采用避雷器的分压进行作为参考量,而在实际情况下由于避雷器是由电阻与分布电容构成的回路而且是容性的负载,所以在实际的测量中降低了电压与全电流的夹角,导至出现阻性电流的虚大;所以提出采用氧化锌避雷器测试仪的方法需要注意,即第一是电压量需要与实际运行所施加的电压量一致,为了达到一致,采用电压互感器的二次电压为好;第二应当在测量电流产生的灵敏度要高,防止零位不正常的被拉长的缺陷即防止严重的失真;所以分析产生较大的误差原因如下:1)是由于测量仪器自身;2)测量仪器的参考量选择;3)氧化锌芯柱在交流电压下与直流电压下的通流特性变化;三.关于阻性电流与全电流在运行电压下的特性:在上面的试验完成以后,检查阻性电流与全电流的关系如下:1.理想的电流波形:对于110KV的避雷器在运行电压没有超过76--78KV的时候,全电流的波形基本在正弦状态,而阻性电流不是正弦状态,由于阻性电流的数值比较小,所以使全电流的波形仍然以正弦为主;见图6所示;图6 全电流与阻性电流的理想波形图2.实际波形与理想波形的比较:按照理想的全电流波形的情况特征与在相当于100KV交流电压下全电流的波形已经出现波形的严重失真,而在103KV的时候波形失真更加严重见实际拍摄的波形如图7、图8所示;而波形的变化形状与分析的理想波形有接近之处,特别是波形的顶部开始出现凹陷;这实际是3次谐波造成的结果;因为在运行电压下氧化锌片的电流随着电压的变化在变化,而在正弦波的顶端的时候电压幅值高的时段中的电流特别大,而形成了尖顶波的缘故;尖顶波越高,全电流的波形的凹陷越大;图8是电压高的拍摄的照片,明显比电压低的图7的波形失真严重得多;图7 在交流100KV下的全电流波形图图8 在交流103KV下的电流波形情况3.关于阻性电流的波形情况说明在测量到的电流波形与实际测量的直流电流的变化特性看,在交流电压下的电流波形如下图9所示:电压与电流出现最大值的时间点水平I图9 阻性电流与电压的波形情况图通过上面的图形分析发现:1阻性电流的波形在电压没有达到77KV的直流电压数值相当于交流电压有效值是45—55KV以前的时候是接近“零”;2阻性电流的幅值出现在电压的最大值处;3阻性电流的波形肯定不是正弦波;4电流波形的特征是零位较长,零位拉长的区间决定于芯柱直流电压的安秒特性;5通过此分析,认为可以采用阻性峰值电流的数值来进行区分避雷器的锌片的质量问题;如果是芯片安秒特性降低,那么峰值电流增大许多;波形是中心高两边的零位不会减少多少;如果是绝缘问题,他是线性的,所以出现的电流波形的零位的区间将大大缩小;所以在现场进行测量的时候可以进行峰值测量与波形的测量就可以反映避雷器的质量问题;3.关于谐波电流对测量电流的影响分析:1几个名词:在非正弦电流中的最大值、有效值和平均值最大值是非正弦波在一个周期内的最大瞬时绝对值;有效值非正弦周期信号的有效值就是它的均方根值;如果非正弦量已分解为傅立叶级数,经过数学推导,则有效值可用下列方法求得:I = √I02 + I12 + I22 + (I)N2平均值一个周期内的平均即为平均值畸变系数畸变系数为基波有效值对整个曲线有效值之比;波形系数为有效值与平均值之比;波峰系数为最大值与有效值之比;2举例:基波有效值三次谐波有效值总的有效值波峰系数畸变系数100 10 %100 15 %100 20 102 %100 25 103 %100 30100 35 106100 40100 50按照上面的情况看,在不同的谐波分量的作用下,波峰系数能说明问题.而总的有效值的大小不能有效的说明谐波的增加量;所以在实际的测量中需要进行谐波的分析来发现技术问题;3关于氧化锌片的质量变化的结果:1氧化锌片的质量在长期运行电压的作用下与通过冲击电流雷击和内过电压以后所发生的热效应使氧化锌本体产生变质,而变质的结果是引起氧化锌片的非线性特性的下降,导至在运行电压下的波形中的波峰提高,也就是引起三次谐波的大量增加,因此反映三次谐波容易发现氧化锌片的质量变化,据资料介绍,在三次谐波增加到30%以上将认为氧化锌片已经有严重的问题;所以在进行阻性电流的测量中,需要测量阻性电流的全电流外增加测量三次谐波的分量作为增加判断的依据;但是相对于目前我们的在线监视仪所使用的基波直接判别法,取阻性电流的基波峰值三次谐波的有效值计算增加了监视仪的系统误差,由于其数值本身较小,可靠性就难以保证;2质量的变化是引起非线性的下降,所以在直流测量中的1mA的直流电压的时候将降低,见下图所示:特性降低后的电流值I2正常特性的电流值I1KV通过上面的图看出,不同的特性将出现不同的电流峰值,这个峰值也决定了阻性电流的峰值水平,所以在测量阻性电流的时候可以测量阻性电流的峰值作为判断的依据;如果这个数值引起3次谐波量达到基波阻性电流的比例超过30—35%可认为是质量发生了变化;。
关于避雷器阻性电流测量方法改进的研究
关于避雷器阻性电流测量方法改进的研究【关键词】避雷器试验实际相角法阻性电流1 避雷器阻性电流测量原理与特性1.1 氧化锌避雷器原理结构与工作特性1.2 测量原理当氧化锌避雷器老化或损坏时,往往会发生其阻性电流增大的现象。
所以在实际的运行工作中,测试人员常常根据用电设备在正常电压工作的条件下阻性电流的变化趋势来对氧化锌避雷器的性能进行评估。
由于RCD-4型阻性电流测量仪测量回路中输入的电流阻抗相对而言较小,把电流测量仪用于测量的探头连接在放电计数器两端就可以测量出总电流信号I1,这种测量方法十分简便且具有唯一性。
测量电压信号U1的方法大致分为三种:(1)从标准电压(220V)的电源上测得电压信号U1,这种方法称之为电源法。
(2)在测量现场测得一个感应电压U1,称之为感应法1.3 三次谐波法的分析及实现因为在线测试当中,一般要在PT上引用电压的信号作为参考,导致测试试验的结果容易因为PT角差而产生误差。
三次谐波法无需引入PT上的电压信号作参考,而且试验方法较为简单便捷,但是三次谐波法也有明显的缺点,使三次谐波法没有得到普遍的应用,主要的缺点:a.不同氧化锌避雷器的阀片,它的阻性电流最大值和三次分量相互间的函数关系互有差异,哪怕相同的阀片在不同的使用阶段也会发生变化,所以测试中结果的准确程度难以得到保证。
b.如果母线中也含有三次谐波的分量,这种方法就无法消除这些三次谐波分量对测试的干扰,最终也影响了结果的准确性。
在当前条件下,产生的解决这种问题的方法是三次谐波补偿法,新增了更多的电场探头,使得电网中的三次谐波对于试验结果造成的误差得到了补偿,测试方法也十分的便捷。
2 传统阻性电流测量方法的弊端传统阻性电流测量方法主要存在的问题主要是两个方面:2.1 传统阻性电流测试方法无法直接依据理论进行判断工作状态正常的氧化锌避雷器阻性泄露电流应当占到总电流的百分之十至百分之二十,当阻性泄露电流占总电流的比例增加并且超出这一范围时,可以判断出该避雷器的工作状态出现了故障。
避雷器泄露电流试验方法及影响因素分析
避雷器泄露电流试验方法及影响因素分析摘要:避雷器在电力设备中的应用非常广泛,在其帮助下可以达到有效避免设备遭受雷击的目的,对保障设备的安全性、稳定性有重要作用。
避雷器在实际应用中,主要以泄露电流的方式评定避雷器的整体质量和应用效果,但是也可能会因因多种因素影响而出现泄露电流超标的问题,从避雷器的应用故障分析来看这是一种常见故障,应及时予以解决,以保障设备的运行稳定性。
据调查分析,导致避雷器泄露电流超标的影响因素比较多样,基于此在本文中便围绕避雷器泄露电流试验方法及其相关影响因素进行了简单分析。
关键词:避雷器;泄露电流;影响因素;在线监测1.影响避雷器泄露电流大小的因素分析避雷器在电力设备中的应用非常广泛,随着时代的发展,其避雷器的整体稳定性和质量均得到了明显提升。
其实,可能影响避雷器泄露电流超标的因素非常多样且复杂,对此需从实际出发,确认具体的影响因素,以下便对各种影响因素进行了简单分析。
(一)温度在众多可能导致避雷器泄露电流超标的原因中,温度是最为常见的影响因素之一,因温度大小的不同,泄露电流的大小会随之发生变化。
通过试验研究分析来看,若温度比较大,避雷器的泄露电流会随之增加[1]。
目前避雷器一般是集成在变压器设备上,随着技术的不断发展,体积也会愈加小型化,但在该过程中,因其体积比较小,内部空间不足,若周围温度升高,那么避雷器内部的热量无法快速清除,因此便容易导致泄露电流超标;而且经过当前相关研究来看,每增加10℃,避雷器的电流的超标情况便会增加0.6倍。
(二)污秽变压器设备的应用中,一般无需实施特殊处理,但是随着应用时间的增加,会有一些灰尘、污秽等杂质,随着污秽的增加,变压器设备的避雷器泄露电流便可能会随之受到影响。
避雷器的应用中,电阻片柱是重要组成部分,对泄露电流有较大影响,但是随着污秽的增加,极有可能会影响电阻片柱的正常工作,使其出现电压分布出现异常问题,进而会导致泄漏电流超标;不仅如此,因污秽的影响,也会影响对泄露电流的测试精度。
500kV氧化锌避雷器全电流测试
阻性电流测试仪参数设置(无压方式)
参数设置:点击左下角配置选项标识,进入如图参数设置界面(同步方式:无 压方式;PT变比:5000;电流量程:2mA以下。抗干扰计算:否。)若测量数据 不正常,在确认相位角设置无误情况下,可将抗干扰计算设置为“是”。
三、HV-MOA-II阻性电流测试注意事项
•1雷雨天气不得进行试验; •2戴口罩,防止吸入灰尘; •3试验现场使用警示带隔离标示,现场派专人监护; •4拆、接电流测试线时,佩戴绝缘手套,防止静电伤害 •5试验仪器必须可靠接地,以保证设备和人身安全 •6从PT二次侧取电压信号时,必须确认接线之间没有短路,避免将PT二次短路 •7分相进行有线方式测量时,应取与被测避雷器同相的PT二次侧电压作为参考电 压 •8试验前必须对设备进行充电12h,方可使用
500kV氧化锌避雷器全电流测量试验
目录
一、HV-MOA-II阻性电流测试仪电压取样方式
二、HV-MOA-II阻性电流测试仪试验接线及参数设置 (有线方式、无压方式)
三、HV-MOA-II阻性电流测试注意事项
一、HV-MOA-II阻性电流测试仪电压取样方式
1、有线方式:从PT端计量绕组取信号,V/I变换后,数字信号有限 传输。 2、无线方式:从PT端计量绕组取信号,V/I变换后式:不需要从PT端子取信号,采用软件计算的方式找 到电压基准。
二、HV-MOA-II阻性电流测试仪试验接线
1.有线测量方式
将电压信号连通电缆的连 接线一端接至HV-MOA-II 阻性电流测试仪主机UABCN 接口处,另一端接至带电 测试系统电压变送器的电 压参考输出端。
电流测试线一端接至避雷 器泄漏电流表计上端处作 为电流信号取样点,另一 端接至阻性电流测试仪主 机三相输入电流(IA、IB、 IC)接口处;
避雷器阻性电流测试说明
避雷器阻性电流测试技术说明1 范围本技术说明规定了避雷器阻性电流在线监视仪(以下简称监视仪)的适用范围、技术要求、试验方法、检验规则。
本技术说明适用于交流电力系统中与金属氧化物避雷器(标称放电电流20kA及以下、额定电压500kV及以下)相串联用的监视仪。
监视仪可显示金属氧化物避雷器的动作次数和阻性泄漏电流值。
2 规范性引用文件GB11032-2000 交流无间隙金属氧化物避雷器GB3797-89 电控设备第二部分装有电子器件的电控设备GB4208-1993 外壳防护等级GB/T17626.5--1999 电磁兼容试验和测量技术浪涌(冲击)抗扰度试验JB2440-1991 避雷器用放电计数器3 基本测试功能:1)测量避雷器的全电流功能(有效值)2)测量避雷器的阻性电流功能(峰值)3)记录避雷器放电次数记录功能4 监视仪的测试使用条件1)环境温度+50°C —-10°C2)相对湿度≤85% (25°C)3)海拔高度≤1000米4)使用场所户内、户外5)耐太阳光辐射6)被检测系统电源频率: 50HZ 48-52HZ60HZ 58-62HZ7)可使用在高电场场合5 仪器特性指标:1)测量精度:全电流Ix(有效值)测量精度±3.0%阻性电流Ir(峰值)测量精度±10.0%2)泄漏电流测量有效范围: 0.1 —5.0 mA3)放电电流次数记录动作电流:30A —10KA4) 电流传感器标称放电电流下残压: 10KA等级≤1500V20KA等级≤2500V5) 工作电源: 24VDC±10%(仅对有源仪器适用)6) 监视仪在规定的放电电流范围内任意值作用下应能准确地计数,二次放电电流的时间间隔应不小于1s。
6 试验方法1)测量精度试验在有效测量信号范围内,任意模拟避雷器的泄漏电流输入该系统,并进行7次重复测量,其测量结果的误差率应在规定范围内。
AC图中:信号源:SB-868型多功能校准仪C:333K 250V CJ8R:DNR 7D101A:交流电流表,测量范围0~20mA,准确度等级0.5级2)动作性能试验动作性能试验分上限动作电流下的动作性能试验和下限动作电流下的动作性能试验,上限动作电流下的性能试验按JB2440第6.3.2条规定进行,下限动作电流下的动作性能试验按JB2440第6.3.1条规定进行。
避雷器阻性电流测量
氧化锌避雷器(MOA)具有体积小、造价低、保护性能优越、非线性特性好,无续流,流通量大、耐污性能好等优点,广泛应用于电力系统的过电压保护。
由于MOA有良好的非线性电阻特性,所以氧化锌避雷器内部是没有间隙的。正是由于没有间隙,在正常运行中阀片长期承受电力系统运行电压的作用,以及内部受潮或过热等因素的影响,因而会造成阀片非线性电阻特性的劣化。这种劣化的主要表现是正常电压下的阻性电流的增加,阻性电流的加大造成发热量的增加,避雷器内部温度的上升,温度的上升又加速阀片的老化,形成恶性循坏,最后导致MOA由于过热而损坏,严重时可能引起避雷器的爆炸,引起大面积停电事故。
谢谢
排除不良因素对测量的影响 影响测量的不良因素除上面提到的接线方式、气候条件外,还有电压的波动、全电流的变化、电磁干扰及对地的杂散电容等。另外,仪器的抗干扰性也会直接影响测量结果。
6.试验结果的处理
一台性能良好的MOA,其阻性电流分量只占全电流的10%~20%,通过示波器测得的U和Ix 之间的相位差基本上为90度,所以,通过示波器测得的图像必须经过软件进行处理。例如常用的origin等。经过分析处理后就可以得到我们所期望的相位差。
4.选择合适的气候条件
3.选择正确合理的接线方式
试验前.必须仔细检查试验回路的工况以及接线的正确性.应保证测量仪器可靠接地。如果接地点有油漆或锈蚀必须清除干净.示波器应通过隔离变压器与电源相连。原则上,电压输出部分与试品的距离该注意的一些问题
6.试验中应该注意的一些问题
温度、湿度对泄漏电流的测量影响较大。MOA在小电流区域具有负湿度系数.加之MOA内部空间较小.影响有功功耗所产生热量的散发.使MOA正常运行下的内部温度高于环境温度.两者的温差直接影响着阻性电流的变化。由于MOA自身电容、对地电容和污秽杂散电容会随湿度的变化而改变,通常温度越高,泄漏电流就越大。因而要在合适的温度和湿度下,对同一台(组)避雷器进行跟踪检测,应尽可能选择在相近的季节测试,及时对数据进行综合比较,通过分析准确判断MOA的安全状况。
避雷器结构特点及试验分析
1.避雷器保护原理 2.避雷器结构
提
3.避雷器重要参数说明
纲
4.避雷器试验项目 5.试验数据分析
2
1 避雷器保护原理
当雷电压侵入波超过保护间隙的击穿强度时,间 隙被击穿,限制了侵入电气设备的过电压幅值。 侵入波过后,间隙的绝缘强度能自行恢复,以使 电气设备能够继续运行。
3
38
3、MOV老化会使电阻片的非线性特性变差,从而使避雷器中的泄漏电流 增加。此时阻性电流中的高次谐波分量增长较基波分量大。 4、表面积污会使阻性电流增加,但只是暂时的。与老化受潮有较大区 别。
注:正常情况下避雷器的容性电流分量大,阻性电流分量小;但劣化情 况下避雷器的阻性电流分量变大而容性电流分量却变小,此时避雷器 阻性电流分量和容性电流分量矢量相加的结果,使得全电流值处于正 常范围内,易造成误判。
32
由基波和各奇次谐波电流组成的阻性电流为非正弦波,故阻性电流总是 用峰值来表示。实际分析中由于3次以上奇次谐波电流的值很小,一 般认为阻性电流峰值由基波和3次谐波电流组成,它能综合反映MOA 的受潮、元件损坏、表面污秽和阀片老化。阻性电流峰值和全电流 波虽同为非正弦波,但由于全电流中的容性电流在相位上超前阻性 电流90。故两者波形有较大差别。阻性电流基波是个正弦分量,主 要反映MOA有功分量的变化。与阻性电流峰值一样,阻性电流基波也 能反映MOA的受潮、元件损坏、表面污秽和阀片老化情况,不同的是 它是从功率损耗的角度来反映的。阻性电流3次谐波分量也是个正弦 分量,它和其它奇次谐波电流是由MOA阀片的非线性特性而产生的。 3次谐波分量与阻性电流基波之间存在一定函数关系,3次谐波电流 分量的大小可间接反映M0A有功损耗的变化和阀片的老化情况。
避雷器全电流及阻性电流带电检测报告
避雷器泄漏电流检测报告参评公司检测日期检测人员测评人员一、检测时间及测试对象范围1.1测试时间及人员信息检测日期: 测试人员:1.2测试对象基本信息(拍避雷器铭牌照片)1.3测试环境天气:温度:℃湿度:%二、检测依据《国家电网公司电力安全工作规程(变电部分)》(国家电网安监〔2009〕664号)《电力设备带电检测技术规范(试行)》(国家电网公司生变电〔2010〕11号)《国家电网公司变电检测管理规定(试行)》第16 分册泄漏电流检测细则《输变电设备状态检修试验规程》(Q/GDW 1168-2013)三、检测项目避雷器全电流及阻性电流带电检测。
四、检测仪器及装置五、检测数据情况检测数据见附录1横向比较,对避雷器阻性电流和全电流测试结果表明,A相泄漏电流检测结果比B、C相显著偏大。
纵向比较,查阅避雷器A相阻性电流历次检测数据,发现该相避雷器全电流及阻性泄漏电流基波分量发生突发性增长,阻性电流初值差为,>50%,全电流初值差为,>20%。
阻性电流的基波成分增长较大,谐波的含量增长不明显时,一般为污秽严重或受潮缺陷;阻性电流谐波的含量增长较大,基波成分增长不明显时,一般为老化缺陷。
容性电流增加,避雷器一般发生不均匀劣化,避雷器有一半发生劣化时,底部容性电流增加最多。
六、结论及建议所测的避雷器可能存在老化缺陷,根据《输变电设备状态检修试验规程》(Q/GDW 1168-2013),建议“缩短试验周期并加强监测”。
具体分析详见异常分析报告。
当阻性电流增加0.5倍时,应缩短试验周期并加强监测,增加1倍时应停电检查。
附录1 避雷器全电流及阻性电流带电检测记录(此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内容,供参考,感谢您的配合和支持)。
氧化锌避雷器阻性电流测试_2
当测量值与初始值比较,阻性电流增加1倍时,应停电检查。实际中,阻性电流增加30%~ 50%时,就应注意加强监测,这就需要加强变电站值班人员的日常巡视制度。当阻性电流增加 1倍时就应报警,安排停运检查。在线监测或带电测量原则上可以代替部分停电试验,但是, 当在线监测发现绝缘有问题时,还应停电试验。
对新投运的110kV以上避雷器,在投运初期,应每月带电测量一次避雷器在运行电压下的泄 漏电流,三个月后改为半年一次。有条件的尽可能安装在线监测仪,以便在巡视时观察运行状 况,防止泄漏电流的增大。
得到可靠的保护。这时电气设备所承受的电压仅是避雷器的压降(称避雷器的残压)。
避雷器的用途 它的接线方式是接于导线和地之间、与被保护电气设备并联,且装在被保护设备的电源侧。当线路和设备运行中发生危及被保护设备的大气过电压时,避雷器被瞬间击
穿(火花间隙被击穿或由高阻变为低阻),使过电压对大地放电,使积累的电量流人大地,从而将过电压限制在一定范围内,使被保护电气设备的绝缘避免击穿或受损伤。
2、停电测试(预防性试验)
序号 检测项目
判断依据
· 35kV以上电压:用5000V兆欧表,
1
本体及底座绝
绝缘电阻不小于2500MΩ;
缘电阻
· 35kV及以下电压:用2500V兆欧表,
绝缘电阻不小于1000MΩ;
直流1mA参考
2
电压及0.75 倍 U1mA下泄漏
电流
U1mA实测值与出厂或初始值变化 不大于±5% 0.75倍 U1mA下泄漏电流初值差≤ 30%或不大于50µA
当前对避雷器的状态监测的有效手段之一是测量避雷器的全电流,具体是在 110KV等级及以上的避雷器安装泄漏电流监视仪,通过定时人工巡视来监视泄漏 电 流的大小与变化趋势进行统一分析,通过记录全电流来判断避雷器的老化和绝缘损 坏程度。然而这种测量方法所得到的全电流中仅包含了避雷器表面的泄漏电流、内 部的泄漏电流以及本体电容电流等的总和,它不能有效反映避雷器内部绝缘(支架 绝缘、内壁绝缘、氧化锌片的质量优劣等)的真实运行情况。
避雷器阻性电流测量方法和存在的问题综述
避雷器阻性电流的监测问题0、概述:在目前避雷器带电检测和智能变电站避雷器在线监测中,除监测避雷器的全电流和放电次数外,大部分都要求测量避雷器的阻性电流。
由于避雷器的劣化主要是阻性电流的增加,而全电流的增加较小。
试验测量阻性电流很重要。
但是精确阻性电流测量是很难的,目前没有国标推荐的方法,主要是参考IEC推荐的方法。
避雷器的全电流由阻性电流和容性电流两部分组成,在持续运行电压下(避雷器正常工作电压),容性电流占有较大的成分(80%左右),相位超前避雷器运行电压90度,容性电流是线性的,基本不含谐波分量,一般用有效值表示,对于一般110—550kV的避雷器容性电流约为600—2000微安。
阻性电流占有较小的成分,相位与避雷器运行电压一致,含有较大的谐波分量,一般用最大值表示,不讲有效值。
对于一般110—500kV的避雷器阻性电流约为60—400微安。
当避雷器运行电压升高时,容性电流和电压等比例升高,阻性电流增大速度很大,非线性分量也大幅度增加。
由于容性电流流过避雷器时不产生功耗,一般不大关注,它和全电流的值基本一致。
所以,一般测量避雷器的全电流和阻性电流。
1、阻性电流测量方法目前我国还没有金属氧化物避雷器阻性电流的测试方法的有关标准。
根据IEC60099-5推荐的避雷器阻性电流的测试方法有:(1)利用避雷器运行电压的方法有:利用电压相位直接读取阻性电流的相位法,利用电压信号补偿容性电流的补偿法,功耗测试法;(2)不需要运行电压的方法有:三次谐波法,谐波分析法,通过对泄漏电流综合分析得到基波信号的补偿法等。
2、金属氧化物避雷器等值回路金属氧化物避雷器等值回路如下图图1:避雷器等值回路补偿法就是根据最简等值回路,从全电流中补偿掉容性支路电流,得到阻性电流。
而链式等值回路(链之间的电感已省略)更接近避雷器的实际情况。
3、各种方法的特点不同的测量方法的测量精度不同,各有利弊。
3.1、利用电压信号测量功耗时,直接反应避雷器的发热性能。
氧化锌避雷器阻性电流带电检测方法及误差分析
氧化锌避雷器阻性电流带电检测方法及误差分析杨继红、付晶晶新疆电力公司超高压公司2011年11月18日氧化锌避雷器阻性电流带电检测方法及误差分析新疆电力公司超高压公司杨继红、付晶晶[内容摘要]:介绍了氧化锌雷器带电检测的原理和方法,现场试验时干扰、及误差分析,提出了对氧化锌雷器带电检测数据的分析与判断方法。
[关键词]:氧化锌避雷器带电检测误差分析1 概述避雷器作为电力系统过电压保护装里,是极其重要的电力设备,其性能的优劣对电气设备的安全运行起着重大作用,在避雷器家族中,氧化锌避雷器因具有保护比小、通流量大、非线性性能好等优点,我国从90年代开始引进氧化锌避雷器已逐步取代碳化硅避雷器而处于垄断地位。
氧化锌避雷器在长期运行电压作用下,阀片长期有泄露电流通过,泄漏电流I0为一合成电流,它由阻性泄漏电流I R和容性电流I c组成。
氧化锌避雷器在长期运行过程中,绝缘性能可能会逐渐下降。
原因主要有两个,一是避雷器结构上密封不严造成内部受潮;二是氧化锌阀片长期承受工频电压而容易老化。
运行中氧化锌避雷器的外部瓷套受污秽及潮气作用时,外部瓷套的电位分布发生了变化,内部阀片与外部瓷套之间存在较大的径向电位差。
当径向电位差达到一定数值,可能引起径向局部放电并产生脉冲电流,甚至烧熔阀片。
氧化锌避雷器承受雷电过电压或其他暂态过电压,如瞬时发热大于散热能力,吸收的冲击能量不能及时散出去,容易引起氧化锌阀片的劣化和热破坏引起爆炸。
避雷器阀片老化是常见故障,而且该故障是一个缓慢发展的过程,仅靠每年一次的预防性试验,难以准确反映现场运行条件,不能完全保证避雷器的安全运行。
因此,为了使氧化锌避留器能保持正常的工作状态.必须对它进行运行监视.掌握其老化发展的情况.以便在事故初期阶段就能发现异常.防患事故于未然是很重要的.最有效的方法是对110kV及以上电压等级的氧化锌避雷器定期带电测试,监测避雷器各参数(全电流、阻性电流、有功损耗)的变化情况,从而及时诊断出避雷器异常现象,有效防止避雷器的突发事故,确保避雷器和电力系统安全可靠运行。
金属氧化物避雷器阻性电流的相关分析
金属氧化物避雷器阻性电流的相关分析摘要:在电力系统中,金属氧化物避雷器是不可缺少的防护装置,是确保系统稳定运行的重要设备。
本文结合实际,对金属氧化物避雷器老化劣化机理以及阻性电流在线监测与测量方法进行分析论述,希望能为相关工作带来些许帮助。
关键词:金属氧化物避雷器;阻性电流;在线监测金属氧化物避雷器的非线性特性非常突出,该类保护装置具有非常稳定的性能,极快的响应速度以及非常大的通流容量,因而该类保护装置在当前的电力系统中有着非常广泛的应用。
在电力系统运行过程中,若金属氧化物避雷器的运行良好,那么设备会呈现出高阻状态,而当线路中的过电压超过避雷针参考电压时,设备等效阻抗迅速转变为低阻并泄放电路中的过电流,将过电压有效的抑制住,确保整个电力系统不受损害与影响【1】。
下面结合实际,就金属氧化物避雷器阻性电流相关问题做具体分析。
1金属氧化物避雷器老化劣化机理分析在金属氧化物避雷器中,氧化锰、氧化钴以及氧化铋等是避雷器阀片的主要原料。
金属氧化物内部阀片的电阻是Zn0压敏电阻,主要组成内容为一个起到包围作用的晶界体以及氧化物晶粒。
当金属氧化物避雷器运行时,电场强度会对装置晶界层的电阻率产生一定影响。
若金属氧化物避雷器处在一个强度较低的电场中,晶界层的电阻率处于一个较高的状态,但是如果电场强度骤然增加并超过某一阈值,那么晶界层的电阻率也会明显下降。
金属氧化物避雷器的氧化锌压敏电阻片属于一种半导体,具有多组分的特点。
在避雷器运行过程中,决定金属氧化物避雷器氧化锌压敏电阻非线性电流电压特性的是晶粒以及晶界层共同形成的势垒。
相关研究表明,有大量的杂质、异相存在于晶界层中,这些物质具有吸收氧原子的作用。
氧化锌电阻片在烧结、冷却过程中,存在于装置中的以上物质会及时吸收空气中的氧原子,并在吸收后通过晶界层将其扩散到氧化锌压敏电阻片内部的晶界中,这样就会有新的界面能级产生于晶界层中。
在氧化锌晶粒与晶界按照实际晶界结构结合时,两侧晶粒的实际费米能级要高于晶界的费米能级。
避雷器的试验方法及标准
避雷器的试验方法及标准避雷器是在电力系统中广泛使用的保护装置,避雷器连接在线缆和大地之间,通常与被保护设备并联。
避雷器可以有效地保护电气系统和各种设备,一旦出现不正常电压,避雷器将发生动作,起到保护作用。
当电气设备在正常工作电压下运行时,避雷器不会产生作用,对地面来说视为断路。
一旦出现高电压,且危及被保护设备绝缘时,避雷器立即动作,将高电压冲击电流导向大地,从而限制电压幅值,保护电气系统和设备绝缘。
当过电压消失后,避雷器迅速恢复原状,使电气设备正常工作。
因此,避雷器的主要作用是通过并联放电间隙或非线性电阻的作用,对入侵流动波进行削幅,降低被保护设备所受过电压值,从而起到保护电力系统和设备的作用。
另外,避雷器不仅可用来防护雷电产生的高电压,也可用来防护操作过电压。
所以说,避雷器是电力系统中不可或缺的保护装置,其重要性是不言而喻的,其能否正常的投入使用就需要对其进行必要的检查和试验来确定,现就避雷器的试验方法,项目和标准进行进一步的讲解。
一避雷器绝缘电阻的测定对阀式避雷器测量绝缘电阻,应使用2500V兆欧表,对无并联电阻的阀式避雷器测量绝缘电阻,主要是检查内部元件有无受潮情况,对于无并联电阻的阀式避雷器测量绝缘电阻,主要是检查其内部元件的通断情况,因此测出的绝缘电阻与避雷器的型号有关。
没有并联电阻的避雷器,如FS型避雷器的绝缘电阻,要求在交接时应大于2500兆欧,运行中应大于2000兆欧,有并联电阻的避雷器,如FZ.FCZ 和FCD避雷器的绝缘电阻,没有规定明确的标准,但测的值与前一次或同型号的测量数据相比,应没有显著的变化。
阀式避雷器的绝缘电阻的显著降低,说明避雷器密封不良,内部元件已经受潮。
;有并联电阻的避雷器绝缘电阻明显增高,说明避雷器内部的并联电阻可能发生断裂,开焊以及老化变质。
测量阀式避雷器的绝缘电阻时还应注意以下几点。
1、要在测量前将避雷器的表面擦拭干净,以防止表面的潮气、尘垢和污秽等影响测量的准确性。
提升避雷器阻性电流测试试验效率的研究
提升避雷器阻性电流测试试验效率的研究发表时间:2018-01-26T16:57:18.203Z 来源:《电力设备》2017年第28期作者:王君阳侯惠文李锐锋[导读] 摘要:避雷器是用于保护电气设备免受雷击时高瞬态过电压危害,并限制续流时间,也常限制续流赋值的一种电器。
(国网山西省电力公司检修分公司山西太原 030031)摘要:避雷器是用于保护电气设备免受雷击时高瞬态过电压危害,并限制续流时间,也常限制续流赋值的一种电器。
该电器以其优异的保护性能,广泛应用于众多变电站中。
根据《Q/GDW1168-2013输变电设备状态检修规程》中相关条款的规定,所有电压等级的避雷器都应进行周期为半年的持续运行电压下的泄漏电流的带电测试这一试验,该试验在现场有着工作时间长,工作效率低下的问题。
本文通过分析统计,得出了问题症结在于35kV避雷器泄露电流带电测试耗时时长远高于其他电压等级。
本文所选课题就是解决现场35kV电压等级避雷器泄漏电流带电检测试验过程用时过长这一问题。
关键词:电气试验;避雷器;泄露电流0 引言通过氧化锌电阻片的电流叫做氧化锌避雷器的泄漏电流,也被认为成避雷器的总泄漏电流。
正常的额定工频电压下,避雷器可看成是一个绝缘体,因此考虑到电压波动范围,指标定为在0.75Ue下泄漏不大于50,原则上越小越好。
泄漏电流可以反应避雷器的绝缘情况,是运行电压下判断避雷器好坏的重要手段。
氧化性避雷器在运行中,由于阀片的老化以及受热和冲击破坏引起的故障,必须对其进行及时的预试,而相邻的电器主设备往往不能及时停运,因而必须采用带电测量的方法对氧化锌避雷器进行测量。
测量时,为了取泄露电流,通常利用仪器的配线将泄露电流表短接,如图所示,将仪器输入线接至泄露电流表上端与避雷器相连的引线,再配合地线,即可将泄露电流表短接。
近年来,随着国民经济的飞速发展与智能电网的建设,对于缩短停电时间的要求也水涨船高,设备检修停电时间与电气试验的完成效率有直接的关系,提高试验效率,是目前高压电气试验业界内亟待解决的课题。
一种氧化锌避雷器阻性泄漏电流测量新方法探讨
研 究 通 过 电 场 探 头 采 集 电 压 信 号 . 用 软 件 补 偿 的 方 法 补 偿 氧 三 次 谐 波 电 流 的 初 相 位 。 采
三 次谐 波 电 流为 :
lT= r+ 血3 ^ c s ̄ + ) a3 3 =, o( 3+, sl3)+ h(ot 1 o) A3sl3 t n)81 8  ̄=,Tm n(c + o r
次谐 波 电 流 分 别 为 :
i= LoLo(f a) c 2o a—2。 lo3o(t o+ 2。 9 x U Ccs + I l c + o s H 1 10 + C so t 10)( ) C c( ) ( c c+ I
= L・ (2 G)o( q 一 2 。 U c c 一 cs o 10 )
r 、
( MOA) 阻 性 电 流 已 经 成 为 一 项 重 要 内 容 。 目 前 , 线 测 量 MOA 的 的 在 阻 性 泄 漏 电 流 的 方 法 有 基 波 法 、 次 谐 波 法 以 及 补 偿 法 ,目 前 影 响 三 补 偿 精 度 的 相 问 干 扰 问 题 已 经 基 本 解 决 , 测 误 差 较 小 , 是 需 要 检 但 从 P 上 引 入 电 压 参 考 信 号 。 量 结 果 易 受 到 P 角 差 的 影 响 。 三 次 T 测 T
性 电 流 的 影 响 1 检 测 原 理 .
1, 1信 号 检 测
从 上 面 的 公 式 ( 和 ( 可 知 避 雷 器 阻 性 电 流 基 波 分 量 与 交 流 5) 6)
三次 谐 波 的影 响 , 前 出 现 了 三次 谐 波 补 偿 法 , 加 了 电场 探 头 , 目 增 以 电 压 同 相 , 次 谐 波 分 量 的 初 相 角 与 基 波 的 初 相 角 相 差 10。 所 以 三 8 。
金属氧化物避雷器的特点和试验方法范文(二篇)
金属氧化物避雷器的特点和试验方法范文金属氧化物避雷器是一种常见的电力设备,在电力系统中起着重要的保护作用。
本文将介绍金属氧化物避雷器的特点以及常用的试验方法。
金属氧化物避雷器是一种用于保护电力系统设备不受大气过电压和过电流侵害的装置。
它主要由电阻片、压敏电阻片和导电环三部分组成。
金属氧化物避雷器具有以下几个特点。
首先,金属氧化物避雷器具有高能耗特性。
当电力系统中出现过电压时,金属氧化物避雷器能够快速响应并吸收大量的过电流能量,通过电阻片和压敏电阻片将能量消耗掉,从而保护系统设备不受损坏。
其次,金属氧化物避雷器具有快速响应和高灵敏度特点。
在过电压作用下,金属氧化物避雷器能够在数微秒内完成动作,迅速释放过电流,起到保护设备的作用。
同时,金属氧化物避雷器对电压的反应极为灵敏,能够及时、准确地探测到过电压信号并作出响应。
另外,金属氧化物避雷器还具有高耐久性和可靠性。
金属氧化物避雷器经过特殊的工艺处理,具有较高的耐久性,能够在长期使用中保持其性能稳定。
同时,金属氧化物避雷器还具有较高的抗雷击能力和承受电流能力,能够在恶劣的气象条件下正常工作,保护设备安全运行。
总之,金属氧化物避雷器具有高能耗特性、快速响应和高灵敏度、高耐久性和可靠性等特点,为电力系统提供了有效的过电压保护。
接下来,我们将介绍金属氧化物避雷器的常用试验方法。
一、电气性能试验1. 雷电冲击试验:该试验主要测试金属氧化物避雷器对雷电冲击的抵抗能力。
通过向金属氧化物避雷器施加标准的雷电脉冲波形,观察其泄放特性和电压响应。
2. 失压电流试验:该试验主要测试金属氧化物避雷器在额定电压下的动作电流和失压电流。
通过施加额定电压,观察金属氧化物避雷器的电阻特性和工作状态。
3. 电参量试验:该试验主要测试金属氧化物避雷器的电阻特性、容性特性、电感特性等电气参数。
通过相关仪器对金属氧化物避雷器的电气性能进行全面分析。
二、环境适应性试验1. 温度循环试验:该试验主要测试金属氧化物避雷器在不同温度下的性能变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、氧化锌避雷器原理
氧化锌避雷器中的氧化物电阻片相当于一个电阻和电容组成的混联电路。
氧化物避雷器通常由多个氧化物电阻片串联而成(根据通流容量的要求也可选择多柱并联),并通过一定的连接方式使它固定在避雷器的瓷套中。
在正常运行电压下,通过避雷器的电流很小,只有几十至数百微安,这个电流称做运行电压下的交流泄漏电流。
它大致可分为三部分:1通过固定电阻片的绝缘材料的电流;2通过氧化物电阻片的电流;3通过避雷器瓷套的电流。
当避雷器正常状态时,通过电阻片的电流是泄漏电流的主要成分,也可以认为通过电阻片的电流就是避雷器的总泄漏电流(全电流)。
氧化物避雷器的总泄漏电流(全电流)中包含着阻性电流(有功分量)和容性电流(无功分量)。
在正常运行情况下,通过避雷器的电流主要是容性电流,而阻性电流占很小一部分,约为10%~20%左右。
2、测量运行中的MOA
被测量的MOA的总电流信号是取自该相MOA的放电计数器。
2.1从电压互感器(PT、CVT)取信号
测量接线见图1
图1
2.2测量运行中避雷器(MOA)的阻性电流的基本原理,是取被测相MOA的总泄露电流(全电流)信号,再取一个与被测相MOA两端电压同相的电压信号;总电流Ix基波矢量I1在电压基波矢量U1上的投影,即为MOA阻性电流IR1(如图2)。
总电流Ix测量由电缆的两个探
头分别与放电计数器两端连接即可;电压信号取自PT端子箱电压互感器(PT或CVT)二次绕组。
举例说明,测量B相MOA的阻性电流,取B相MOA的总电流Ix、B相PT二次的相电压U,送入测量仪器。
仪器会显示电压基波值U1,总电流Ix,并按公式:
图2
IR1p=I1×√2×cos(φu-I+φ0)
计算出阻性电流基波峰值IR1p,此时校正角φ0=0,仪器显示IR1p、φu-I及I1。
依据长治站MOA各设备厂家给出判断在持续电流PT取电压下测量其阻性电流标准要求(标准如下),视为运行正常,不必加强监视采集密度,不做MOA劣化判断。
即可以理解为:
泄漏电流:避雷器在线监测器(放电计数并监视泄露电流)显示的电流值。
全电流:避雷器阻性电流测试仪短路在线监测器两端测得的泄露电流,所以数值上全电流基本于泄漏电流。
阻性电流:全电流在X轴上的投影值。
避雷器阻性电流确认值
由避雷器A、B、C相阻性电流与全电流、相角、泄漏电流的关系曲线可知,全电流与阻性电流均在允许范围内,泄漏电流由于是人工读数,存在一定误差,阻性电流与其它大致保持正比关系,阻性电流的大小与全电流成正比关系,与相角成反比关系,从公式IR1p=I1×√2×cos(φu-I+φ0)也可得到验证。
阻性电流的最大值出现在6月、7月,三相避雷器阻性电流的关系为Ir1pc<Ir1pb<Ir1pa。