5-2典型激光器介绍-气体激光器讲解
各种典型激光器原理
氦氖激光器
氦氖激光器使用氮气和氖气的混合物作为工作气体。这种激光器产生可见光, 通常在红色、绿色和黄色波长范围内。氦氖激光器具有高效率、长寿命和稳 定的输出特性。
二氧化碳激光器
二氧化碳激光器使用二氧化碳分子作为激发介质。它们产生的激光主要是红外线光,可用于切割、打孔、激光 治疗等应用。二氧化碳激光器是商业和医疗领域最常用的激光器之一。
半导体激光器
半导体激光器基于半导体材料的特性。它们小巧、高效,常用于通信、激光打印和光存储等领域。半导体激光 器还可以通过改变工作电流调节输出频率和功率。
钛宝石激光器
钛宝石激光器使用钛宝石晶体作为激发介质。它们产生的激光具有脉冲宽度 短、波长可调节的特性,广泛应用于化学、生物、材料科学等领域的研究。
各种典型激光器原理
激光器是一种产生单色、高亮度、相干且聚焦成束的光源。本演示将介绍激 光器的基本原理以及各种典型的激光器类型和应用。
激光器的基本原理
激光器工作基于受激辐射和光放ቤተ መጻሕፍቲ ባይዱ效应。激发介质中的原子或分子由于能量 吸收而处于激发态,而后通过受激辐射过程与其他自由原子或分子发生相互 作用,产生出与激发辐射的频率和相位相同的光。
光纤激光器
光纤激光器使用光纤作为激光传输的媒介。它们具有小尺寸、高能量转换效 率和灵活的束传输特性。光纤激光器广泛应用于通信、材料加工和传感器等 领域。
其他激光器及激光应用
除了上述类型的激光器外,还有很多其他类型的激光器,如纤维激光器、固体激光器、气体激光器等。此外, 激光技术在医学、制造、测量、娱乐等各个领域都有广泛的应用,如激光切割、激光雕刻、激光测距、激光秀 等。
第3章二氧化碳激光器
图2-3 横流CO2激光器
2020/6/19
• 此种类型的激光器,单位有效谐振 腔 长 度 的 输 出 激 光 功 率 达 每 米 10kW , 商 用 器 件 的 最 大 功 率 可 达 25kW . 这种激光器的缺点是:光束质量较差 ,在好的情况下可以得到低阶模输出 ,否则为多模输出.横流激光器广泛 应用于材料的表面改性加工领域.2 .2.1.3快速轴流型CO2激光器
2020/6/19
CO2激光器结构图
2020/6/19
• CO2激光器是光、机、电一体化结 构,其中哪一方面出现异常都会影响 其余方面,所以故障现象往往是错综 复杂的综合故障的反应。从以下三个 方面对CO2激光器的故障进行研讨。
2020/6/19
• 无激光输出
•
这是CO2激光器在使用中出现频率最高的故障
2020/6/19
• CO2激光器是气体分子激光器,工作 物质是CO2气体,辅助气体有氮气, 氦气,氙气和氢气等。由于这种激光 器能量转换效率高达25%。故常做成 高功率输出的激光器。CO2激光器的 波长为10.6μm,是不可见的红外光, 与生物组织作用时,几乎全被生物组 织200μm内的表层吸收,稳定性较好 ,医学上应用广泛。
2020/6/19
• 在CO2激光器的放电管内充有CO2、N2、 He等混合气体,其配比和总气压可以在一 定范围内变化(一般是:CO2:N2:He= 1:0.5:2.5总气压为1066.58Pa)。任何分子都 有三种不同的运动形式:一是分子里的电 子运动,决定着电子能态;二是分子里的 原子振动,即原子围绕其平衡位置不停地 作周期性振动,这种运动决定了分子的振 动能态;三是分子的转动,决定着分子的 转动能态。
2020/6/19
气体激光器
1
1.气体激光器
• 工作物质:气体或蒸汽 • 优点: • 1.光束方向性好。由于工作物质的光学均匀性远 比固体好,易于获得衍射极限的高斯光束, • 2.单色性好。气体工作物质的谱线宽度远比固体 小,激光的单色性好。
缺点:体积比较大。 由于气体的激活粒子密度较固体小,需要较大体积的 工作物质才能获得足够的功率输出。
2
泵浦方式:以气体放电形式为主,还可采用 化学泵浦、热泵浦及核泵浦等方式。
注意
气体工作物质吸收谱线宽度小,不宜采用光源泵浦, 通常采用气体放电泵浦方式;在放电过程中,受电 场加速而获得了足够动能的电子与粒子碰撞时,将 粒子激发到高能态,因而在其一对能级间形成了集 居数反转分布。
3
2.He-Ne气体激光器
17
1.氩离子的跃迁方式
• 三种跃迁方式: a. 基态氩离子与电子碰 撞后直接跃到4P能级。 b. 基态氩离子与电子碰 撞后跃到高于4P的能 级,再通过级联辐射 跃到4P能级。 c. 基态氩离子与电子碰 撞后跃到低于4P的亚 稳态能级,再次碰撞 后跃到4P。
3P5
18
2. 高功率水冷氩离子激光器
38
1.准分子的能级图 激光下能级连续 变化,因此激光波长 可以连续调谐。
2.准分子激光器的激励方式: 普遍采用电子束或快速放电泵浦
39
3.准分子激光的应用:准分子激光脉冲输出可达百
焦耳,峰值功率达GW以上,平均功率也高于200W, 可以应用于光化学、医学、生物学等领域。
利用激光进行视网膜手术
40
22
4.提高输出功率的方法
• 1)增大放电管的直径。现在一般不过 10mm。 • 2)增加气压半径积(PR)。 • 3)采用新型阳极:如难熔的钨或钨的合 金,使得发射的电子中含有较多的高能 电子。 5. 氩离子激光器的缺点: 耗水、耗电很严重;体积大。
二氧化碳激光器应用场景_解释说明以及概述
二氧化碳激光器应用场景解释说明以及概述1. 引言1.1 概述二氧化碳(CO2)激光器是一种常见的气体激光器,利用高能量电子与合适浓度的CO2分子相互作用来工作。
它具有许多优异的性能和广泛的应用场景。
在本篇文章中,我们将探索二氧化碳激光器的应用领域,并提供详细的解释和说明。
1.2 文章结构本文将按照以下方式进行阐述:首先,我们将介绍二氧化碳激光器应用场景的解释说明,包括工业、医疗和科学研究等方面。
接着,我们将总结二氧化碳激光器的特点和优势,并对其高功率和高效能、可调谐性和多模式运行以及光学质量和束流特性做出概述。
最后,我们将对二氧化碳激光器未来发展进行展望,并得出结论。
1.3 目的本文旨在分享关于二氧化碳激光器应用范围的知识,并帮助读者了解其重要性以及为何广泛应用于各个领域。
通过阅读本文,读者将对二氧化碳激光器的应用场景有更清晰的了解,并能够认识到它在工业、医疗和科学研究中的重要作用。
2. 二氧化碳激光器应用场景解释说明2.1 工业应用:二氧化碳激光器在工业领域有广泛的应用场景。
首先,它被用于切割和焊接金属材料。
其高功率和高能量密度能够快速准确地切割或焊接各种金属,例如不锈钢、铝合金等。
这种切割和焊接方法比传统机械方法更精确、更高效,并且产生的热影响区较小。
此外,二氧化碳激光器也常被应用于制造业中的雕刻和打标。
通过控制激光束大小和强度,可以在不同材料表面上实现精细图案的雕刻或文字的打标。
这种技术广泛运用于电子产品、汽车零部件等行业。
还有一些其他工业应用包括:材料加工(如塑料切割、木材加工)、纸张与纤维加工(如纸板裁剪、纤维蒸湿和彩色印刷)以及喷码标注等。
2.2 医疗应用:在医疗领域,二氧化碳激光器也具有重要的应用价值。
其中一项主要应用是皮肤病治疗。
二氧化碳激光可以通过聚焦在皮肤表面或深层组织上,刺激胶原再生和损伤的修复。
它被广泛用于去除痣、治疗红血丝以及减少皮肤上其他不完美的问题。
此外,二氧化碳激光器还被用于进行手术切割和消融。
典型激光器简介
非均匀加宽可忽略,在整个温度范围内都以均匀加宽为主
21
钕玻璃的非均匀加宽由配位场的不均匀性引起,均匀加
宽则由玻璃网络体的热振动引起。二者所占比例因材料
而异。在室温下,1.06mm谱线非均匀加宽为120~
3600GHz,均匀加宽为60~225GHz。虽然非均匀加宽
大于均匀加宽,但由于交叉弛豫过程,钕玻璃的增益饱 和特性与均匀加宽工作物质相似。
光器比较容易获得大能量输出,适合于调Q
固体工作物质通常加工成圆棒状(或盘片状),棒侧面磨毛。 对棒两端面的加工要求很高:两端面为垂直于棒轴向的平
行平面,平行误差在5″~10″之间;端面与棒轴向的垂直度
<1″;端面的平整度小于半个光圈。为避免端面反射和内部
寄生振荡,端面镀有增透膜
19
光圈:镜片和样板放在一起的时候会形成干涉条纹,成
10
应用:光纤通信、光存储、光信息处理、科研、医疗等 激光光盘、激光高速印刷、全息照相、办公自动化、激光 准直等等
1962年,第一台半导体激光器——GaAs激光器问世
11
(5) 化学激光器
通过化学反应实现粒子数反转产生激光辐射 工作物质:目前主要是气体,HF、DF、氧碘
激励:化学能,一般采用一些引发措施促成化学反应,光
②
分子激光器:跃迁发生在气体分子不同的振-转能级之间。 主要采用CO2、N2、O2、N2O、H2、H2O等气体分子。代 表CO2激光器
6
③
准分子激光器:分子激光器的一种。 准分子:在基态离解为原子而在激发态暂时结合成分子的 不稳定缔合物。 激光跃迁发生在束缚态和自由态之间。 采用的气体主要有XeF、KrF、ArF、XeCl、XeBr等 典型代表:XeF准分子激光器
常用气体激光器讲解
• 3.染料激光器的输出功率大,达数百毫瓦,可与固体激光 器比拟,并且价格便宜。
• 4.染料分子是一种四能级级系统,由于S0的较高振动能级 在室温时粒子数几乎为0,所以很容易实现粒子数反转,使 得染料分子激光器的阈值很低。
它的优点是结构 简单、紧凑。但它的 单位放电长度可输出 的功率比其他结构的 (如流动型和气动型) CO2激光器要低。
纵向电激励水冷内腔式封离型 CO2激光器的典型结构
折叠式CO2激光器(水冷套未画出) 横向循环流动CO2激光器
纵向流动CO2激光器
三 、输出特性
1、能量转换效率高 : 20~25% (氦氖激光器的能量转换 效率仅为千分之几) ;
输出特性
一、光栅调谐
图示为一种光栅—反射镜调谐腔。光束与谐振腔轴成一个 小角度θ(θ≈3°)。谐振腔由反射光栅G与一个镀有介质膜 的反射镜M组成。光栅G具有扩束和色散作用,转动光栅就 可以改变输出激光的频率。
腔内插入一个法布里—珀罗标准具,摆动标准具可以进一 步选择输出激光的频率。不插入标准具时,输出激光的线宽 为0.05nm,插入标准具后,可获得线宽约为0.001nm的单 模激光。
准分子激光治疗近视眼的原理
近视眼由于眼球的前后径太 长,眼角膜前表面太凸,外 界光线不能准确会聚在眼底所 致。
准分子激光矫正近视是用电 脑精确控制的准分子激光,根 据近视度数和有无散光在瞳孔 区的角膜基质层进行刻蚀,使 眼角膜前表面稍稍变平。从而 使外界光线能够准确地在眼底 视网膜上会聚成像,达到矫正 近视的目的。
各功率激光的特点
常见激光技术总结目前常见的激光器按工作介质分气体激光器、固体激光器、半导体激光器、光纤激光器和染料激光器5大类,近来还发展了自由电子激光器。
大功率激光器通常都脉冲方式输出已获得较大的峰值功率。
单脉冲激光指的是几分钟才输出一个脉冲的激光,重频激光指的是每分钟输出几次到每秒输出数百次甚至更高的激光。
一、气体激光器1.He-Ne激光器:典型的惰性气体原子激光器,输出连续光,谱线有632.8nm(最常用),1015nm,3390nm,近来又向短波延伸。
这种激光器输出地功率最大能达到1W,但光束质量很好,主要用于精密测量,检测,准直,导向,水中照明,信息处理,医疗及光学研究等方面。
2.Ar离子激光器:典型的惰性气体离子激光器,是利用气体放电试管内氩原子电离并激发,在离子激发态能级间实现粒子数反转而产生激光。
它发射的激光谱线在可见光和紫外区域,在可见光区它是输出连续功率最高的器件,商品化的最高也达30-50W。
它的能量转换率最高可达0.6%,频率稳定度在3E-11,寿命超过1000h,光谱在蓝绿波段(488/514.5),功率大,主要用于拉曼光谱、泵浦染料激光、全息、非线性光学等研究领域以及医疗诊断、打印分色、计量测定材料加工及信息处理等方面。
3.CO2激光器:波长为9~12um(典型波长10.6um)的CO2激光器因其效率高,光束质量好,功率范围大(几瓦之几万瓦),既能连续又能脉冲等多优点成为气体激光器中最重要的,用途最广泛的一种激光器。
主要用于材料加工,科学研究,检测国防等方面。
常用形式有:封离型纵向电激励二氧化碳激光器、TEA二氧化碳激光器、轴快流高功率二氧化碳激光器、横流高功率二氧化碳激光器。
4.N2分子激光器:气体激光器,输出紫外光,峰值功率可达数十兆瓦,脉宽小于10ns,重复频率为数十至数千赫,作可调谐燃料激光器的泵浦源,也可用于荧光分析,检测污染等方面。
5.准分子激光器:以准分子为工作物质的一类气体激光器件。
各种典型激光器原理
各种典型激光器原理激光器是一种产生、放大和输出激光光束的器件,是现代科学和工程领域中重要的设备之一、激光器的工作原理有多种类型,下面将介绍几种典型的激光器原理。
1.固体激光器固体激光器是利用固体材料中的电子跃迁产生激光。
其中,最常见的原理是通过注入能量来激发固体材料中的激活离子,而这些激活离子会通过受激辐射而释放出激光。
固体激光器中常用的激活离子有Nd3+、Er3+和Cr3+等。
这种类型的激光器通常使用将激发能量输送给激活离子的光泵浦器,例如激光二极管。
从而激活离子跃迁到高能级,最终产生激光。
2.气体激光器气体激光器是利用气体放电产生激光的器件。
其中最典型的是氦氖激光器(He-Ne激光器),其工作原理是通过在氦气与氖气混合的管道中通过直流或射频电波产生气体放电,激活氖离子,使其跃迁产生激光。
氦氖激光器的激光波长通常在632.8纳米,属于可见光范围。
气体激光器还包括二氧化碳激光器和氩离子激光器等。
3.半导体激光器半导体激光器是利用半导体材料中电子和空穴的复合过程产生激光。
通常使用p-n结构的半导体材料(如GaAs、InGaAs等),通过向p区注入电流,通过与n区的电子复合生成激光。
这种类型的激光器结构简单、小型化、功耗低,广泛应用于通信、激光打印机等领域。
4.光纤激光器光纤激光器是利用光纤的增益介质产生和放大光信号的激光器。
典型的光纤激光器是光纤光放大器(EDFA)和光纤光源(EFL)。
工作原理是通过将其中一种激活离子(如铒)掺杂到光纤核心中,通过泵浦光在光纤中引起激活离子的受激辐射,从而产生激光。
光纤激光器具有高增益、窄谱线特性和高可靠性等优点,广泛应用于通信、医疗和科研领域。
5.CO2激光器CO2激光器是一种以CO2气体为工作物质产生激光的器件。
其工作原理是利用CO2气体分子的振动和旋转能级跃迁来放大激光信号。
通过电子放电激发CO2气体分子至激发态,然后利用电子和激发态分子的碰撞来将能量转移给其他CO2分子,产生连续激光。
激光原理 十四、气体激光器
②腔内放置甲烷吸收盒,因为甲烷对3.39um的光具有强吸收而 对0.6328um的光透明,因此可用甲烷抑制3.39um振荡;
He-Ne激光器的放电电流对输出功率影响很大。
① 图中所示为He-Ne激光器的的输 出功率与放电电流的关系曲线。 表明:在气压比为定值时,每个总气 压都存在一个输出最大的放电电流 ,其大小随着总气压的升高而降低, 这是因为气压升高,只需要较小的 放电电流就能得到相同的电子密度 。 在最佳充气条件下,使输出功率最 大的放电电流叫最佳放电电流。
5.2.2 二氧化碳激光器
5.2.2 二氧化碳激光器
C02激光器的主要特点是输出功率大,能量转换效率高,输 出波长(10.6um) ,广泛用于激光加工、医疗、大气通信及其 它军事应用。
② He-Ne激光器存在着最佳混合比和最佳充气总压强,即存在 最佳充气条件。 实验发现,氦气与氖气的分压比为7/1时是最佳分压比。而总 压强在100Pa~400Pa。 选用He气作辅助气体的原因:
Ne原子不能直接被电子碰撞 激发到激光上能级 ;
He*与Ne*能级极相近, 易发生 能量共振转移 。 ③ 若放电毛细管的直径为d,充气压强为p,则存在一个使输出 功率最大的最佳p和d 值。 ④ 最佳放电条件下,工作物质增益系数和毛细管直径成反比。
五、He-Ne激光器的寿命 He-Ne激光器使用一段时间或存放一段时间后,它的输出
功率会逐渐降低,以致最后没有激光输出。现在一般规定输出 功率下降到最高功率的1/e的工作时间为器件的寿命。影响器 件寿命的因素大致有以下几方面:
激光器的种类讲解
激光器的种类讲解激光器是一种能够产生高纯度、高亮度和一致的光束的装置。
他们在科研、医学、工业和通信等领域中具有广泛的应用。
根据激光器的工作原理和参数,可以将激光器分为多种类型,如气体激光器、固体激光器、半导体激光器和光纤激光器等。
本文将对各种类型的激光器进行深入的讲解。
1.气体激光器:气体激光器是最早被发明出来的激光器类型之一、它们通过用电流激励气体分子来产生所需波长的激光。
常见的气体激光器有氦氖激光器(He-Ne)、二氧化碳激光器(CO2)、氩离子激光器(Ar)等。
气体激光器具有较大的输出功率和较高的波长稳定性,适用于医学、切割和焊接等领域。
2.固体激光器:固体激光器是使用固体材料作为激光介质的激光器。
常见的固体材料有Nd:YAG、Nd:YVO4和Ti:sapphire等。
固体激光器可以通过激光二极管或弧光灯等能量源进行激发。
它们具有高效、高稳定性和长寿命的特点,适用于雷达系统、激光加工和科学研究等领域。
3.半导体激光器:半导体激光器是通过电流注入拥有p-n结构的半导体材料,使其产生激光。
半导体材料可以是单一的半导体材料,如GaAs、InP,也可以是多层薄膜结构,如VCSEL(垂直腔面发射激光器)。
半导体激光器具有小型化、低功率和高效率的特点,广泛应用于通信、光存储和光电显示等领域。
4.光纤激光器:光纤激光器是利用光纤作为激光介质的激光器。
光纤激光器通常包括光纤光源和光纤放大器两个部分。
光纤光源是利用受激辐射从光纤核心产生激光,通常使用稀土离子注入的光纤作为激发材料。
光纤放大器则通过将输入的激光信号放大,从而得到高亮度的激光输出。
光纤激光器具有小型化、高品质和集成化的特点,广泛应用于通信、激光打标和光纤光源等领域。
除了以上所述的主要激光器类型,还有许多其他的激光器类型,例如自由电子激光器、化学激光器和超短脉冲激光器等。
不同类型的激光器在应用领域和性能参数上有着差异。
因此,在选择激光器时,需要根据具体需求来确定最合适的类型和参数。
激光器的分类介绍
激光器的分类介绍激光器是一种能够产生具有高度一致性和同步性的激光光束的器件。
根据激光器的工作原理、激光器的波长、激光器的应用领域等不同方面的分类,下面将对激光器进行详细的介绍。
一、根据激光器的工作原理进行分类1.固体激光器:固体激光器是利用外部能量源(例如闪光灯、激光二极管)激励激光介质(例如Nd:YAG、Nd:YVO4)产生激光的一种激光器。
固体激光器具有高效率、高能量、高品质光束等特点,在军事、医学、科研等领域有广泛的应用。
2.气体激光器:气体激光器是利用放电激励稀薄气体分子产生粒子数密度高、能级分布宽的激光介质,然后通过光学共振腔将产生的激光进行放大和聚束。
常见的气体激光器有氦氖激光器、CO2激光器等,广泛应用于科研、测量、医学和工业等领域。
3.半导体激光器:半导体激光器是利用半导体材料在电流或者注入光子的作用下产生受激辐射所形成的激光。
其特点是体积小、效率高、功率低、寿命短等,被广泛应用于光通信、激光打印、激光显示等领域。
4.液体激光器:液体激光器采用液体介质作为激光介质进行激光产生。
液体激光器相比固体激光器和气体激光器具有较高的能量、频率较宽、调谐范围较大等特点,在科研和工业领域有着广泛的应用。
二、根据激光器的波长进行分类1.可见光激光器:可见光激光器产生的激光波长在400~700纳米之间,能够被人眼所感知。
可见光激光器广泛应用于激光显示、激光打印、激光医学等领域。
2.红外激光器:红外激光器产生的激光波长在700纳米到1毫米之间,是不可见光。
红外激光器在通信、材料加工、医学、军事等领域有广泛的应用。
3.紫外激光器:紫外激光器产生的激光波长在10纳米到400纳米之间,也是不可见光。
紫外激光器在微加工、光致发光、光解离等领域有重要的应用。
三、根据激光器的应用领域进行分类1.医学激光器:医学激光器广泛应用于激光治疗、激光手术等医学领域,例如激光照射可以刺激细胞增殖、促进伤口愈合,还可以用于激光石化术、激光治疗静脉曲张等。
二氧化碳激光器的原理
二氧化碳激光器的原理二氧化碳激光器是一种常见的激光器,它利用二氧化碳气体作为工作介质,通过电子激发来产生激光。
二氧化碳激光器具有高功率、高效率和较好的束流品质等优点,因此在医疗、工业加工、通信等领域得到广泛应用。
本文将从二氧化碳激光器的工作原理、结构特点和应用领域等方面进行介绍。
首先,二氧化碳激光器的工作原理是基于气体激光器的原理。
在二氧化碳激光器中,二氧化碳气体充当激光介质,通过外加能量激发气体分子的能级,使其处于激发态。
当气体分子回到基态时,会释放出光子,形成激光。
这种激光的波长通常在10.6微米左右,属于红外光谱范围。
二氧化碳激光器通常采用气体放电的方式来提供能量,通过电极产生电场,激发二氧化碳气体分子。
在激光共振腔中,激发的二氧化碳气体分子与共振光腔中的光子发生能级跃迁,从而产生激光输出。
其次,二氧化碳激光器的结构特点主要包括激发系统、共振腔和输出耦合系统。
激发系统通常采用电极和放电介质,通过电子束或放电激发二氧化碳气体。
共振腔由两个反射镜构成,其中一个镜子部分透明,用于输出激光。
共振腔中还包括光学增益介质,用于增强激光的能量。
输出耦合系统用于调节激光输出的功率和模式,通常采用反射镜或光栅等光学元件。
这些结构特点保证了二氧化碳激光器的稳定输出和高效工作。
最后,二氧化碳激光器在医疗、工业加工和通信等领域有着广泛的应用。
在医疗领域,二氧化碳激光器常用于皮肤手术、整形美容和眼科手术等,具有创伤小、愈合快的优点。
在工业加工领域,二氧化碳激光器可用于切割、焊接、打标等工艺,具有高效、精密的特点。
在通信领域,二氧化碳激光器可用于光纤通信、激光雷达等应用,具有大功率、远传输距离的优势。
综上所述,二氧化碳激光器是一种重要的激光器,其原理基于气体激光器,具有高功率、高效率和较好的束流品质等优点。
二氧化碳激光器在医疗、工业加工和通信等领域有着广泛的应用前景,对于推动相关领域的发展具有重要意义。
气体激光器原理
气体激光器原理
气体激光器是一种利用气体分子的能级跃迁来产生激光的装置。
其原理基于气体分子在外界激发能量作用下发生能级跃迁,并借助光学谐振腔来放大光线,最终产生激光。
气体激光器的典型构造包括一个光学谐振腔和一个放电管。
放电管内填充了适当的激光工作气体,如氦氖气体。
当高电压通过放电管时,气体分子会被激发到高能级,形成一个高度激发状态的气体介质。
当具有足够高能量的电子与气体分子碰撞时,能量被传递给气体分子,使其原子核和电子能级发生变化,并跃迁到较低能级。
这个跃迁过程会释放出一个光子,激光就是由大量这样的光子构成的。
这些光子被反射,沿着光学谐振腔内的反射镜来回传播,同时受到光学谐振腔中的其他反射镜的增强。
在光学谐振腔内,激光光子经过多次来回反射,与激发态的气体分子不断发生相互作用,从而引发更多的能级跃迁,使得光子数量不断增加,同时光线也不断被放大。
最终,在达到一定程度的光强后,光子通过其中一个反射镜逃离光学谐振腔,形成一束高度纯净且具有相同波长和相位的激光。
气体激光器的原理基于气体分子的能级跃迁和光学谐振腔的放大效应,通过控制激发气体和光学谐振腔的参数,可以实现不同波长和功率的激光输出。
气体激光器在科学研究、医疗、通信、材料加工等领域都有广泛的应用。
各种激光器的介绍
各种激光器的介绍激光器是一种将能量源转化为高强度、高单色性、高定向性的激光光束的装置。
激光器被广泛应用于医疗、通信、材料加工、测量检测等各个领域。
下面将介绍几种常见的激光器。
1.氦氖激光器(He-Ne激光器)氦氖激光器是一种气体激光器,它利用氦和氖的混合气体在波长为632.8纳米的红光范围内产生激光。
氦氖激光器具有单一稳定频率、高空间定向性和较小的光腔长度,适用于光学实验、干涉测量等领域。
2.二极管激光器(LD激光器)二极管激光器是一种半导体激光器,它是由多层不同材料的半导体材料组成的结构。
二极管激光器广泛应用于通信领域,如光纤通信、光存储等。
它具有体积小、效率高的特点。
3.CO2激光器CO2激光器是一种分子激光器,其工作介质是CO2分子。
CO2激光器具有中红外波段的辐射,波长在9.6-10.6微米之间。
CO2激光器在材料加工、医疗等领域有广泛应用,如切割、焊接、组织切割等。
4.Nd:YAG激光器Nd:YAG激光器是一种固体激光器,其工作介质是掺有镓和铽离子的YAG晶体。
它具有较长的荧光寿命和较高的能量转换效率,常用于材料加工、医疗、科学研究等领域。
5.氮化镓激光器(GaN激光器)氮化镓激光器是一种宽禁带半导体激光器,它利用氮化镓材料发射紫外激光。
GaN激光器具有较高的工作温度、较长的寿命和较高的光电子转换效率,可用于蓝光显示、白光LED照明等领域。
6.染料激光器染料激光器是一种利用染料溶液作为工作介质的激光器。
它具有波长调谐范围广、转换效率高的特点。
染料激光器在科学研究、生物医学等领域有广泛应用。
7.纳秒脉冲激光器纳秒脉冲激光器是一种能够在纳秒时间尺度内产生激光脉冲的激光器。
它广泛应用于材料加工、精密测量、医疗等领域,如激光打标、激光切割、激光测距等。
总之,激光器具有波长可调、能量可控、光束质量高等优点,能满足不同应用领域的需求。
随着材料科学、光学技术的不断发展,激光器的种类也在不断增多,并得到了广泛的研究和应用。
典型激光器介绍染料激光器讲解ppt课件
2. 棱镜调谐
介 绍
➢图(5-21)是一种折叠式纵向 泵浦染料激光器原理图,腔内
放置的棱镜是一种色散元件。
图(5-20) 光栅-反射镜调谐腔
§5.3
染 料 激 光 器
图(5-21) 棱镜调谐腔
烧伤病人的治疗通常是取烧伤病人的 健康皮 肤进行 自体移 植,但 对于大 面积烧 伤病人 来讲, 健康皮 肤很有 限,请 同学们 想一想 如何来 治疗该 病人
激
红宝石激光器(0.6943m),钕玻璃激光器(1.06m),铜蒸气激光器(0.5106m、
光
0.5782m),准分子激光器(主要在紫外区) 以及这些激光的二次、三次谐波等。
器 介
➢图(5-19)是目前经常采用的三镜腔式染料激光器结构示意图。
绍
§5.3
染 料 激 光 器
图(5-19) 三镜腔式染料激光器
烧伤病人的治疗通常是取烧伤病人的 健康皮 肤进行 自体移 植,但 对于大 面积烧 伤病人 来讲, 健康皮 肤很有 限,请 同学们 想一想 如何来 治疗该 病人
5.3.3 染料激光器的调谐
第
1. 光栅调谐
五 章
➢图(5-20)是一种光栅-反射镜调谐腔,放在腔中的光栅G具有扩束和色散作用。
典
型
激
光 器
5.3.3 染料激光器的调谐
第
3. 双折射滤光片调谐
五 章
➢利用双折射滤光片调谐,是目前染料激光器广泛采用的调谐方法,国内外的 Ar+激光、YAG倍频激光泵浦的染料激光器,都使用这种方法调谐。图(5-22)
典
给出的典型染料激光器就是利用双折射滤光片进行调谐的。
型
激
光
器
介
绍
各种激光的原理
各种激光的原理激光,全名为"光学放大器(DLPs light amplification by stimulated emission or radiation)",是指通过聚焦和局部放大的方法产生一束高度准直、强度和相位都高度一致的光束。
激光器可以被广泛用于医学、工业、科学研究等领域。
激光的产生原理是基于一种叫做受激辐射的过程。
这个过程是量子力学中的一个概念,它指的是当一个原子或分子处于激发态时,如果有一束与它能级差能量相等的光束经过,那么它就会被激发向基态跃迁,并在过程中释放出一个与原引起它激发的光子具有相同波长、相位和方向的光子。
激光的原理有几种不同的实现方式,下面我将介绍几种常见的激光器的工作原理:1. 气体激光器:气体激光器是一种使用气体作为放大介质的激光器。
它的工作原理是通过电激发气体分子使其产生受激辐射。
具体过程如下:首先,通过电离或者电子碰撞使得气体分子中的原子或分子处于激发态;然后,受激辐射过程发生,激发态的分子通过相互碰撞向下返回基态,并发射出一束具有相同相位和方向的光子,从而形成激光束。
2. 固体激光器:固体激光器是一种使用固体晶体或玻璃作为放大介质的激光器。
它的工作原理是通过注入电流或者光子能量激发固体放大介质中的活性离子,使其处于激发态。
然后,这些激发态的离子通过受激辐射的过程向基态跃迁,放出的光子从基态的离子中被放大,形成激光束。
3. 半导体激光器:半导体激光器是一种使用半导体材料作为放大介质的激光器。
它的工作原理是通过施加电压使得PN结附近的载流子得到反转分布,形成电子空穴复合的所谓("奇异辐射")过程。
这个过程会导致受激辐射,激发态的载流子向基态跃迁并放出光子。
半导体激光器由于其工艺简单、体积小及功耗低等特点,广泛应用于通信、光储存、医疗等领域。
4. 光纤激光器:光纤激光器是一种将激光束通过光纤传输的激光器。
它的工作原理与固体激光器类似,但是放大介质不同。
典型激光器介绍大全(精华版)
2
M 2 1, 越小光束质量越好
激光的偏振特性 偏振性主要取决于工作物质
各向同性介质在应力及热效应作用下导致应力
双折射,激光输出具有部分偏振特性。
在谐振腔中有偏振元件,激光输出也会具有偏
振性
B、固体工作物质
1、端面泵浦
2、侧面泵浦
3、基于内反射的泵浦构型
3、泵浦耦合技术
B、耦合光学系统 聚光腔
聚光腔材料选择
3、泵浦耦合技术 B、耦合光学系统
• 金属:铝——轻型系统 铜——热膨胀系数小,导热率高 不锈钢——不生锈,光洁度高,热导率低 • 玻璃:易碎,导热性差,不生锈,耐腐蚀 • 陶瓷:易碎,导热性差,不生锈,耐腐蚀
(4)连续波可调谐钛蓝宝石激光器
3900S CW Tunable Ti:sapphire Laser
The high-performance, tunable, solid state IR laser
输出波长从675到1100nm 由Ar laser或LD泵浦532nm激光器泵浦 TEM00输出功率可达3.5W cw
42
CO2激光器
> 1 atm 一定压力的CO2, N2, He混合的气体分子激光器 波长 9-11um,最常见10.6um 效率高,功率范围大(几瓦~几万瓦) 光束质量好 运行方式多样,结构多样
CO2激光器中,加入其中的氦有利于激光下能级
抽空。氮气加入主要在CO2激光器中起能量传递作
工作原理dyelaseroutputcurvesofsomecommonlaserdyes自由电子穿过磁场产生自发辐射自由电子跟光场的能量转移自由电子的群聚光波长尺度小团产生相干辐射4自由电子激光器杰斐逊实验室自由电子激光器第一个自由电子激光器irdemo于1999年8月调试完毕北京自由电子激光装置bfel是一台基于30mev电子直线射频加速器驱动用热阴极微波电子枪和a铁作为注入器用平面型永磁扭摆铁和光学谐振腔作为光电互作用装置的低增益中远红外719mm自由电子激光器