2011人教版初一上册数学期中考试试卷(

合集下载

2010—2011学年度七年级数学上册期中试题及答案

2010—2011学年度七年级数学上册期中试题及答案

一、精心选一选(本大题共8题,每小题3分,共24分。

每题给出四个答案,其中只有一个符合题目的要求,请把选出的答案编号填在答卷上。

) 1.-3的相反数是A .3B .-3C .13 D .13- 2.已知矩形周长为20cm ,设长为x cm ,则宽为A. x -20B.220x- C.x 220- D. x -10 3.下列化简,正确的是A .-(-3)= -3B .-[-(-10)]= -10C .-(+5)=5D .-[-(+8)]= -8 4.据统计,截止5月31日上海世博会累计入园人数为803万.这个数字用科学记数法表示为 A .8×106B .8.03×107C .8.03×106D .803×1045.绝对值大于2且小于5的所有整数的和是 A .0 B .7 C .14 D .28 6.若3<a<4时,化简|3||4|a a -+-= A .2a-7B .2a-1C .1D .77.已知代数式x +2y +1的值是3,则代数式2x +4y +1的值是 A .4B .5C .7D .不能确定8.观察下列各式:()1121230123⨯=⨯⨯-⨯⨯ ()1232341233⨯=⨯⨯-⨯⨯()1343452343⨯=⨯⨯-⨯⨯……计算:3×(1×2+2×3+3×4+…+99×100)=A .97×98×99B .98×99×100C .99×100×101D .100×101×102 二、细心填一填(本大题共10题,每小题3分,共30分)9.如果-20%表示减少20%,那么+6%表示10.单项式25xy -的系数是11.表示“x 与4的差的3倍”的代数式为_____________12.若15423-+-n m b a b a与的和仍是一个单项式,则m +=n13.多项式223(2)1mx y m x y ++-是四次三项式,则m 的值为 14.化简: =-++-)7()35(x y y x _______________.15.若关于a ,b 的多项式()()2222222a ab b a mab b ---++不含ab 项,则m=16.M 、N 是数轴上的二个点,线段MN 的长度为2,若点M 表示的数为﹣1,则点N 表示的数为 。

七年级上学期期中数学考试试卷及参考答案(共3套,人教版)

七年级上学期期中数学考试试卷及参考答案(共3套,人教版)

.....⎩x < -b ⎩x < -b ⎩x < b⎧ ⎧ ⎩3x + y = 5 ⎩3x + y = -5 ⎩3x - y = 1⎩3x + y = 5七年级第一学期期中考试数学试题(总分:120 分时间:120 分钟)一、选择题:(本大题共 10 个小题,每小题 3 分,共 30 分)1.若 m >-1,则下列各式中错误的是()A .6m >-6B .-5m <-5C .m+1>0D .1-m <22.下列各式中,正确的是( )A. 16 =±4B.± 16 =4C. 3 -27 =-3D. (-4)2 =-43.已知 a >b >0,那么下列不等式组中无解的是()A . ⎨x < a⎩x > -b⎧x > -a ⎧x > a ⎧x > -a B . ⎨ C . ⎨ D . ⎨4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ()(A) 先右转 50°,后右转 40° (B) 先右转 50°,后左转 40° (C) 先右转 50°,后左转 130° (D) 先右转 50°,后左转 50°5.解为 ⎨ x = 1 ⎩ y = 2 的方程组是( )⎧ x - y = 1 ⎧ x - y = -1 ⎧ x - y = 3 ⎧ x - 2 y = -3A. ⎨B. ⎨C. ⎨D. ⎨△6.如图,在 ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分∠ACB ,则∠BPC 的大小是()A .1000B .1100C .1150D .1200A A A 1 小刚PDBCBB 1 CC 1小华小军(1) (2) (3)7.四条线段的长分别为 3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是()A .4B .3C .2D .118.在各个内角都相等的多边形中,一个外角等于一个内角的 ,则这个多边形的边数是( )2A .5B .6C .7D .8△9.如图, A 1B 1C 1 是由△ABC 沿 BC 方向平移了 BC 长度的一半得到的,若△ABC 的面积为 20 cm 2,则四边形A 1DCC 1 的面积为( ) A .10 cm 2B .12 c m 2C .15 cm 2D .17 cm 210.课间操时,小华、小军、小刚的位置如图 1,小华对小刚说,如果我的位置用(•0,0)表示,小军的位置用(2,1) 表示,那么你的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)⎪⎩5⎧2312D二、填空题:本大题共8个小题,每小题3分,共24分,把答案直接填在答题卷的横线上.11.49的平方根是________,算术平方根是______,-8的立方根是_____.12.不等式5x-9≤3(x+1)的解集是________.李庄13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______.14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选火车站好),说明理由:____________.15.从A沿北偏东60°的方向行驶到B,再从B沿南偏西20°的方向行驶到C,•则∠ABC=_______度.16.如图,AD∥BC,∠D=100°,CA平分∠BCD,则∠DAC=_______.17.给出下列正多边形:①正三角形;②正方形;③正六边形;④正八边形.用上述正多边形中的一种能够辅满地面的是_____________.(将所有答案的序号都填上)A D18.若│x2-25│+y-3=0,则x=_______,y=_______.三、解答题:本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤.⎧x-3(x-2)≥4,⎪19.解不等式组:⎨2x-1x+1,并把解集在数轴上表示出来.<.2⎪x-y=20.解方程组:⎨342⎪⎩4(x-y)-3(2x+y)=17B C21.如图,AD∥BC,AD平分∠EAC,你能确定∠B与∠C的数量关系吗?请说明理由。

人教版数学七年级上册:期中测试试卷及答案6份

人教版数学七年级上册:期中测试试卷及答案6份

七年级上册:期中测试(一)时间:90分钟满分:100分一.选择题(共10小题,满分30分)1.在数﹣(﹣3),0,(﹣3)2,|﹣9|,﹣14中,正数的有()个.A.2 B.3 C.4 D.52.计算﹣﹣(﹣)的结果为()A.﹣B.C.﹣D.3.下面说法正确的是()A.π的相反数是﹣3.14B.符号相反的数互为相反数C.一个数和它的相反数可能相等D.正数与负数互为相反数4.下列去括号正确的是()A.﹣(a+b﹣c)=﹣a+b﹣c B.﹣2(a+b﹣3c)=﹣2a﹣2b+6cC.﹣(﹣a﹣b﹣c)=﹣a+b+c D.﹣(a﹣b﹣c)=﹣a+b﹣c5.用分配律计算()×,去括号后正确的是()A.﹣B.﹣C.﹣D.﹣6.截止到2019年9月3日,电影《哪吒之魔童降世》的累计票房达到了47.24亿,47.24亿用科学记数法表示为()A.47.24×109B.4.724×109C.4.724×105D.472.4×1057.下列说法正确的有()①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时|a|=﹣a成立;④a+5一定比a大;⑤﹣32和﹣23相等.A.2个B.3个C.4个D.5个8.数轴上的点A到原点的距离是4,则点A表示的数为()A.4 B.﹣4 C.4或﹣4 D.2或﹣29.李明过春节时获得相同张数5元和1元压岁钱若干张,那么李明可能有()A.48元B.38元C.28元D.8元10.能使等式|2x﹣3|+2|x﹣2|=1成立的x的取值可以是()A.0 B.1 C.2 D.3二.填空题(满分18分,每小题3分)11.计算:0﹣(﹣6)=.12.一个数的倒数是它本身,这个数是.13.若单项式﹣2x3y n与4x m y5合并后的结果还是单项式,则m﹣n=.14.已知x+2y=3,则1+2x+4y=.15.按下列程序输入一个数x,若输入的数x=0,则输出结果为.16.小何买了4本笔记本,10支圆珠笔,设笔记本的单价为a元,圆珠笔的单价为b元,则小何共花费元.(用含a,b的代数式表示)三.解答题(共6小题,满分52分)17.(10分)计算与化简:(1)12﹣(﹣6)+(﹣9);(2)(﹣48)×(﹣﹣+);(3)﹣32÷(﹣2)2×|﹣1|×6+(﹣2)3.18.(6分)化简:(1)(5a2+2a﹣1)﹣4[3﹣2(4a+a2)].(2)3x2﹣[7x﹣(4x﹣3)﹣2x2].19.(8分)先化简,再求值:5(3a2b﹣ab2)﹣(ab2+3a2b),其中a=,b=.20.(8分)a※b是新规定的这样一种运算法则:a※b=a2+2ab,例如3※(﹣2)=32+2×3×(﹣2)=﹣3(1)试求(﹣2)※3的值(2)若1※x=3,求x的值(3)若(﹣2)※x=﹣2+x,求x的值.21.(10分)某学校准备印刷一批证书,现有两个印刷厂可供选择:甲厂收费方式:收制版费1000元,每本印刷费0.5元;乙厂收费方式:不超过2000本时,每本收印刷费1.5元;超过2000本超过部分每本收印刷费0.25元,若该校印制证书x本.(1)若x不超过2000时,甲厂的收费为元,乙厂的收费为元;(2)若x超过2000时,甲厂的收费为元,乙厂的收费为元(3)当印制证书8000本时应该选择哪个印刷厂更节省费用?节省了多少?(4)请问印刷多少本证书时,甲乙两厂收费相同?22.(10分)某一出租车一天下午以鼓楼为出发点,在东西方向上营运,向东为正,向西为负,行车路程依先后次序记录如下(单位:km):+9,﹣3,﹣5,+4,﹣8,+6,﹣3,﹣6,﹣4,+7.(1)将最后一名乘客送到目的地,出租车离鼓楼出发点多远?在鼓楼什么方向?(2)将最后一名乘客送到目的地,出租车一共行驶多少千米?(3)若每千米的价格为2.4元,司机一下午的营运额是多少元?参考答案一.选择题1.解:﹣(﹣3)=3是正数,0既不是正数也不是负数,(﹣3)2=9是正数,|﹣9|=9是正数,﹣14=﹣1是负数,所以,正数有﹣(﹣3),(﹣3)2,|﹣9|共3个.故选:B.2.解:﹣﹣(﹣)==﹣.故选:A.3.解:A、π的相反数是﹣π,故原题说法错误;B、只有符号相反的数互为相反数,故原题说法错误;C、一个数和它的相反数可能相等,例如0,说法正确;D、正数与负数互为相反数,例如﹣2和3,符合说法,但不是不是相反数,故原题说法错误;故选:C.4.解:A、﹣(a+b﹣c)=﹣a﹣b+c,故不对;B、正确;C、﹣(﹣a﹣b﹣c)=a+b+c,故不对;D、﹣(a﹣b﹣c)=﹣a+b+c,故不对.故选:B.5.解:()×=,故选:D.6.解:47.24亿=4724 000 000=4.724×109.故选:B.7.解:①最大的负整数是﹣1,正确;②数轴上表示数2和﹣2的点到原点的距离相等,正确;③当a≤0时|a|=﹣a成立,正确;④a+5一定比a大,正确;⑤﹣32,=﹣9,﹣23=﹣8,不相等,错误;正确的有4个,故选:C.8.解:在数轴上,4和﹣4到原点的距离为4.∴点A所表示的数是4和﹣4.故选:C.9.解:设获得5元与1元压岁钱的张数为x张,则列式为:5x+x=6x,∴李明获得的钱的总数是6的整数倍,而B,C,D都不是6的整数倍,故选:A.10.解:A、当x=0时,原式=3+4=7,不合题意;B、当x=1时,原式=1+2=3,不合题意;C、当x=2时,原式=1+0=1,符合题意;D、当x=3时,原式=3+2=5,不合题意;故选:C.二.填空题(共6小题,满分18分,每小题3分)11.解:原式=0+6=6.故答案为:6.12.解:1或﹣1的倒数等于它本身.故答案为1或﹣1.13.解:由题意得:m=3,n=5,则m﹣n=3﹣5=﹣2,故答案为:﹣2.14.解:∵x+2y=3,∴2(x+2y)=2x+4y=2×3=6,∴1+2x+4y=1+6=7,故答案为:7.15.解:∵0×(﹣2)﹣4=﹣4,∴第一次运算结果为﹣4;∵(﹣4)×(﹣2)﹣4=4,∴第二次运算结果为4;∵4>0,∴输出结果为4.故答案为:4.16.解:依题意得:4a+10b;故答案是:(4a+10b).三.解答题(共6小题,满分52分)17.解:(1)12﹣(﹣6)+(﹣9)=12+6+(﹣9)=18+(﹣9)=9;(2)(﹣48)×(﹣﹣+)=(﹣48)×(﹣)+(﹣48)×(﹣)+(﹣48)×=24+30﹣28=26;(3)﹣32÷(﹣2)2×|﹣1|×6+(﹣2)3.=﹣9÷4××6+(﹣8)=﹣××6+(﹣8)=(﹣18)+(﹣8)=﹣26.18.解:(1)原式=5a2+2a﹣1﹣[12﹣8(4a+a2)]=5a2+2a﹣1﹣12+8(4a+a2)=5a2+2a ﹣1﹣12+32a+8a2=13a2+34a﹣13;(2)原式=3x2﹣7x+(4x﹣3)+2x2=3x2﹣7x+4x﹣3+2x2=5x2﹣3x﹣3.19.解:5(3a2b﹣ab2)﹣(ab2+3a2b)=15a2b﹣5ab2﹣ab2﹣3a2b=12a2b﹣6ab2当a=,b=时,原式=12××﹣6××=1﹣=.20.解:(1)(﹣2)※3=(﹣2)2+2×(﹣2)×3=4﹣12=﹣8;(2)∵1※x=3,∴12+2x=3,∴2x=3﹣1,∴x=1;(3)﹣2※x=﹣2+x,(﹣2)2+2×(﹣2)x=﹣2+x,4﹣4x=﹣2+x,﹣4x﹣4=﹣2﹣4,﹣5x=﹣6,x=.21.解:(1)若x不超过2000时,甲厂的收费为(1000+0.5x)元,乙厂的收费为(1.5x)元,故答案为:0.5x+1000,1.5x;(2)若x超过2000时,甲厂的收费为(1000+0.5x)元,乙厂的收费为2000×1.5+0.25(x﹣2000)=0.25x+2500元,故答案为:1000+0.5x,0.25x+2500;(3)当x=8000时,甲厂费用为1000+0.5×8000=5000元,乙厂费用为:0.25×8000+2500=4500元,∴当印制证书8000本时应该选择乙印刷厂更节省费用,节省了500元;(4)当x≤2000时,1000+0.5x=1.5x,解得:x=1000;当x>2000时,1000+0.5x=0.25x+2500,解得:x=6000;答:印刷1000或6000本证书时,甲乙两厂收费相同.22.解:(1)9﹣3﹣5+4﹣8+6﹣3﹣6﹣4+7=﹣3,答:将最后一名乘客送到目的地,出租车离鼓楼出发点3千米,在鼓楼西方;(2)9+3+5+4+8+6+3+6+4+7=55(千米),答:将最后一名乘客送到目的地,出租车一共行驶55千米;(3)55×2.4=132(元),答:每千米的价格为2.4元,司机一下午的营业额是132元.七年级上册期中复习训练(二)一.选择题(共10小题)1.﹣|﹣2020|=()A.2020B.﹣2020C.D.2.一个大于1的正整数a,与其倒数,相反数﹣a比较,大小关系正确的是()A.﹣a<≤a B.﹣a<<a C.>a>﹣a D.﹣a≤a≤3.若|x|=2,|y|=3.且xy异号,则|x+y|的值为()A.5B.5或1C.1D.1或﹣14.下列说法中:①0是最小的整数;②有理数不是正数就是负数;③非负数就是正数;④不仅是有理数,而且是分数;⑤是无限不循环小数,所以不是有理数;⑥无限小数不都是有理数;⑦正数中没有最小的数,负数中没有最大的数.其中错误的说法的个数为()A.7个B.6个C.5个D.4个5.已知2a+3b=4,则整式﹣4a﹣6b+1的值是()A.5B.3C.﹣7D.﹣106.下列运算结果是a2的是()A.a+a B.a+2C.a•2D.a•a7.在式子,2πx2y,,y2﹣5,π+6,中,多项式的个数是()A.1B.2C.3D.48.我国古代问题:“以绳测井,若将绳三折测之,绳多四尺;若将绳四折测之,绳多一尺,问绳长井深各几何?”其题意是:用绳子测量水井深度,如果将绳子折成三等份,那么每等份绳长比水井深度多四尺;如果将绳子折成四等份,那么每等份绳长比水井深度多一尺.问绳长和井深各多少尺?若假设井深为x尺,则下列符合题意的方程是()A.B.3(x+4)=4(x+1)C.D.3x+4=4x+19.x=3是下列方程的解的有()①﹣2x﹣6=0;②|x+2|=5;③(x﹣3)(x﹣1)=0;④x=x﹣2.A.1个B.2个C.3个D.4个10.定义一种新运算“a☆b”的含义为:当a≥b时,a☆b=a+b;当a<b时,a☆b=a﹣b.例如:3☆(﹣4)=3+(﹣4)=﹣1,(﹣6)☆=(﹣6)﹣=﹣6,则方程(3x﹣7)☆(3﹣2x)=2的值为()A.1B.C.6或D.6二.填空题(共5小题)11.如果|m|=|﹣5|,那么m=.12.﹣2020的相反数是,﹣2020的绝对值是,﹣2020的倒数是.13.已知a2m b m﹣1和3a4n b n是同类项,则m=,n=.14.按如图所示的程序计算,当输入x=3时,则输出的结果为.15.解方程=2﹣,有下列步骤:①3(3x+1)=12﹣(2x﹣1),②9x+3=12﹣2x+1,③9x﹣2x=12+1+3,④7x=16,⑤x=,其中首先发生错误的一步是.三.解答题(共5小题)16.计算:(1)(﹣6)÷(﹣1)×0.75×|﹣1|÷|﹣3|2;(2)﹣92××[(﹣)2×(﹣)﹣240÷(﹣4)×].17.一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录为:+6,﹣5,+9,﹣10,+13,﹣9,﹣4(单位:米).(1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线最远的距离是多少米?(3)守门员全部练习结束后一共跑了多少米?18.学校体育室有两个球筐,已知甲筐内的球比乙筐内球的个数的2倍还多6只.现进行如下操作:第一次,从甲筐中取出一半放入乙筐;第二次,又从甲筐中取出若干只球放入乙筐.设乙筐内原来有a只球.(1)第一次操作后,乙筐内球的个数为只;(用含a的代数式表示)(2)若第一次操作后乙筐内球的个数比甲筐内球的个数多10只,求a的值;(3)第二次操作后,乙筐内球的个数可能是甲筐内球个数的2倍吗?请说明理由.19.我们规定,若关于x的一元一次方程ax=b的解为a+b,则称该方程为“合并式方程”,例如:3x=﹣的解为﹣,且﹣,则该方程3x=﹣是合并式方程.(1)判断x=1是否是合并式方程并说明理由;(2)若关于x的一元一次方程5x=m+1是合并式方程,求m的值.20.如图,点O为原点,A、B为数轴上两点,AB=15,且OA:OB=2:1(1)A、B对应的数分别为、;(2)点A、B分别以4个单位/秒和3个单位/秒的速度相向而行,则几秒后A、B相距1个单位长度?(3)动点P从点A出发,沿数轴正方向运动,M为线段AP的中点,N为线段PB的中点.在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长.参考答案一.选择题(共10小题)1.解:﹣|﹣2020|=﹣2020,故选:B.2.解:∵a是大于1的正整数,∴a>1,<1,∴<a,∵﹣a<0,∴﹣a<<a.故选:B.3.解:∵|x|=2,|y|=3.且xy异号,∴x=2,y=﹣3;x=﹣2,y=3,∴x+y=﹣1或1,则|x+y|=1.故选:C.4.解:①没有最小的整数;②有理数包括正数、0和负数;③非负数就是正数和0;④是无理数;⑤是无限循环小数,所以是有理数;⑥无限小数不都是有理数;⑦正数中没有最小的数,负数中没有最大的数,故其中错误的说法的个数为5个.故选:C.5.解:∵2a+3b=4,∴﹣2a﹣3b=﹣4,∴﹣4a﹣6b+1=2(﹣2a﹣3b)+1=﹣8+1=﹣7,6.解:a+a=2a,因此选项A不符合题意;a+2=a+2,因此选项B不符合题意;a•2=2a,因此选项C不符合题意;a•a=a2,因此选项D符合题意;故选:D.7.解:在式子,2πx2y,,y2﹣5,π+6,中,多项式有:,y2﹣5,共2个.故选:B.8.解:设井深为x尺,依题意,得:3(x+4)=4(x+1).故选:B.9.解:①∵﹣2x﹣6=0,∴x=﹣3.②∵|x+2|=5,∴x+2=±5,解得x=﹣7或3.③∵(x﹣3)(x﹣1)=0,∴x=3或1.④∵x=x﹣2,∴x=3,∴x=3是所给方程的解的有3个:②、③、④.故选:C.10.解:当3x﹣7≥3﹣2x,即x≥2时,由题意得:(3x﹣7)+(3﹣2x)=2,当3x﹣7<3﹣2x,即x<2时,由题意得:(3x﹣7)﹣(3﹣2x)=2,解得x=(舍去),∴x的值为6.故选:D.二.填空题(共5小题)11.解:∵|m|=|﹣5|,∴m=±5.故答案为:±5.12.解:﹣2020的相反数是2020,﹣2020的绝对值为2020,﹣2020的倒数是:﹣.故答案为:2020,2020,﹣.13.解:∵a2m b m﹣1和3a4n b n是同类项,∴,解得,故答案为:2;1.14.解:当x=3时,y=﹣x+4=﹣3+4=1,故答案为:1.15.解:去分母得:3(3x+1)=12﹣(2x﹣1),去括号得:9x+3=12﹣2x+1,移项得:9x+2x=12+1﹣3,合并得:11x=10,解得:x=,∴首先发生错误的一步是③.故答案为:③.三.解答题(共5小题)16.解:(1)原式=6××××=;(2)原式=﹣81××(﹣×+60×)=﹣27×(﹣+15)=45﹣405=﹣360.17.解:(1)(+6)+(﹣5)+9+(﹣10)+13+(﹣9)+(﹣4)=0,答:守门员回到了球门线的位置;(2)守门员每次离开球门的距离为:6,1,10,0,13,4,0,答:守门员离开球门的位置最远是13米;(3)6+5+9+10+13+9+4=56(米)答:守门员一共走了56米.18.解:(1)设乙筐内原来有a只球,则甲筐内的球的个数为(2a+6)只,∴甲筐球数的一半为(a+3)只,∴从甲筐中取出一半放入乙筐后,乙筐内的球数为:a+(a+3)=(2a+3)只;(2)第一次操作后甲筐内的球的个数为:(2a+6)÷2=a+3,乙筐内的球数为(2a+3)只,根据题意得,(2a+3)﹣(a+3)=10,解得,a=10;(3)可能,理由如下:设第二次操作从甲筐取出n只球放入乙筐,则此时甲筐内的球数为a+3﹣n,乙筐的只数为2a+3+n,且2(a+3﹣n)=2a+3+n,解得,n=1,∴第二次从甲筐中取出1只球放入乙筐后,乙筐内球的个数是甲筐内球个数的2倍.19.解:(1)∵x=1,∴x=2,∵+1≠2,∴x=1不是合并式方程;(2)∵关于x的一元一次方程5x=m+1是合并式方程,∴5+m+1=,解得:m=﹣.故m的值为﹣.20.解:(1)设OA=2x,则OB=x,由题意得,2x+x=15,解得,x=5,则OA=10、OB=5,∴A、B对应的数分别为﹣10、5,故答案为:﹣10;5;(2)设x秒后A、B相距1个单位长度,当点A在点B的左侧时,4x+3x=15﹣1,解得,x=2,当点A在点B的右侧时,4x+3x=15+1,解得,x=,答:2或秒后A、B相距1个单位长度;(3)在点P运动的过程中,线段MN的长度不发生变化,分两种情况:①当P在点B的左侧时,如图1,∵M为线段AP的中点,N为线段PB的中点,∴PM=AP,PN=PB,∴MN=PM+PN =AP +PB =AB =;②当P在点B的右侧时,如图2,同理得:PM =AP,PN =PB,∴MN=PM﹣PN =AP ﹣PB =AB =;综上,在点P运动的过程中,线段MN的长度不发生变化,AB =.七年级上册期中复习训练(三)一.选择题(共10小题)1.下列各组数中,互为相反数的是()A.﹣|﹣2|和﹣(+2)B.|﹣(﹣2)|和﹣[﹣(﹣2)]C.|﹣2|和﹣(﹣2)D.|﹣2|和22.一个大于1的正整数a ,与其倒数,相反数﹣a比较,大小关系正确的是()A.﹣a <≤a B.﹣a <<a C .>a>﹣a D.﹣a≤a ≤3.若|x|=3,|y|=4,则x+y值为()A.±7或±1B.7或﹣7C.7D.﹣74.下表是世界五大洲的最低点及其海拔高度世界五大洲的最低点亚洲死海欧洲里海非洲阿萨尔湖大洋洲北艾尔湖美洲死谷海海拔/m﹣422﹣28﹣153﹣16﹣85根据以上数据,海拔最低的是()A.美洲死谷海B.大洋洲北艾尔湖C.亚洲死海D.非洲阿萨尔湖5.若3x﹣y=5,则6x﹣2y+4的值是()A.14B.12C.10D.﹣106.若单项式a m+1b2与的和是单项式,则m n的值是()A.3B.4C.6D.87.按次数把多项式分类,4x2﹣4和a3b﹣2ab2﹣1属于同一类,下列属于此类的是()A.﹣x5+y4B.2x2﹣3C.3abed﹣1D.a3+3a2b+3ab2+b28.某微信平台将一件商品按进价提高40%后标价,又以八折优惠卖出,结果每件仍获利48元,这件商品的进价是多少元?若设这种商品每件的进价是x元,那么所列方程为()A.40%(1+80%)x=48B.80%(1+40%)x﹣x=48C.x﹣80%(1+40%)x=48D.80%(1﹣40%)x﹣x=489.x=3是下列方程的解的有()①﹣2x﹣6=0;②|x+2|=5;③(x﹣3)(x﹣1)=0;④x=x﹣2.A.1个B.2个C.3个D.4个10.定义一种新运算“a☆b”的含义为:当a≥b时,a☆b=a+b;当a<b时,a☆b=a﹣b.例如:3☆(﹣4)=3+(﹣4)=﹣1,(﹣6)☆=(﹣6)﹣=﹣6,则方程(3x﹣7)☆(3﹣2x)=2的值为()A.1B.C.6或D.6二.填空题(共5小题)11.若|m﹣n|=n﹣m,且|m|=4,|n|=3,则m+n=.12.﹣2020的相反数是,﹣2020的绝对值是,﹣2020的倒数是.13.如果单项式3x m y与﹣5x3y n是同类项,那么m+n=.14.按下面的程序计算,当输入x=﹣1后,最后输出的结果是.15.已知整式(m﹣n﹣1)x3﹣7x2+(m+3)x﹣2是关于x的二次二项式,关于y的方程(3n ﹣3m)y=﹣my﹣5的解为.三.解答题(共5小题)16.计算:(1);(2).17.某工人驾驶检修车前去检修东西方向的电话线路,设定向东为正,向西为负,某天自A 地出发到收工时,所行使的路程为(单位:千米):+4,﹣3,+22,﹣8,﹣2,+17.(1)收工时距A地多少千米?(2)若每千米耗油0.2升,则从A地出发到收工耗油多少升?18.某工厂第一车间有x人,第二车间比第一车间人数的少30人,如果从第二车间调出10人到第一车间,那么:(1)两个车间共有多少人?(用含有x的式子表示);(2)若调动后,第一车间的人数比第二车间多70人,问第一车间有多少人?19.定义:若关于x的一元一次方程ax=b的解为b+a,则称该方程为“和解方程”,例如:2x=﹣4的解为x=﹣2,且﹣2=﹣4+2,则该方程2x=﹣4是和解方程.(1)判断﹣3x=是否是和解方程,说明理由;(2)若关于x的一元一次方程5x=m﹣2是和解方程,求m的值.20.如图,点O为原点,A、B为数轴上两点,AB=15,且OA:OB=2:1(1)A、B对应的数分别为、;(2)点A、B分别以4个单位/秒和3个单位/秒的速度相向而行,则几秒后A、B相距1个单位长度?(3)动点P从点A出发,沿数轴正方向运动,M为线段AP的中点,N为线段PB的中点.在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长.参考答案一.选择题(共10小题)1.解:A、﹣|﹣2|=﹣2,﹣(+2)=﹣2,则﹣|﹣2|=﹣(+2);B、|﹣(﹣2)|=2,﹣[﹣(﹣2)]=﹣2,则|﹣(﹣2)|与﹣[﹣(﹣2)]互为相反数;C、|﹣2|=2,﹣(﹣2)=2,则|﹣2|=﹣(﹣2);D、|﹣2|=2.故选:B.2.解:∵a是大于1的正整数,∴a>1,<1,∴<a,∵﹣a<0,∴﹣a<<a.故选:B.3.解:∵|x|=3,|y|=4,∴x=±3,y=±4,∴x+y=﹣3+4=1,或x+y=﹣3﹣4=﹣7,x+y=3+4=7或x+y=3﹣4=﹣1,综上所述,x+y的值为±7或±1,故选:A.4.解:∵﹣422<﹣153<﹣85<﹣28<﹣16,∴海拔最低的是亚洲死海.故选:C.5.解:6x﹣2y+4=2(3x﹣y)+4=2×5+4=14故选:A.6.解:∵整式a m+1b2与的和为单项式,∴m+1=3,n=2,∴m=2,n=2,∴m2=22=4.故选:B.7.解:4x2﹣4关于x的二次多项式,而a3b﹣2ab2﹣1则是关于b的二次多项式,故选:B.8.解:设这种商品每件的进价是x元,则标价为(1+40%)x元,售价为0.8%×(1+40%)x,由题意得80%(1+40%)x﹣x=48.故选:B.9.解:①∵﹣2x﹣6=0,∴x=﹣3.②∵|x+2|=5,∴x+2=±5,解得x=﹣7或3.③∵(x﹣3)(x﹣1)=0,∴x=3或1.④∵x=x﹣2,∴x=3,∴x=3是所给方程的解的有3个:②、③、④.故选:C.10.解:当3x﹣7≥3﹣2x,即x≥2时,由题意得:(3x﹣7)+(3﹣2x)=2,解得x=6;当3x﹣7<3﹣2x,即x<2时,由题意得:(3x﹣7)﹣(3﹣2x)=2,解得x=(舍去),∴x的值为6.故选:D.二.填空题(共5小题)11.解:∵|m|=4,|n|=3,∴m=±4,n=±3,而|m﹣n|=n﹣m,∴n>m,∴n=3,m=﹣4或n=﹣3,m=﹣4,∴m+n=3+(﹣4)=﹣1;或m+n=﹣3+(﹣4)=﹣7.故答案为﹣1或﹣7.12.解:﹣2020的相反数是2020,﹣2020的绝对值为2020,﹣2020的倒数是:﹣.故答案为:2020,2020,﹣.13.解:∵单项式3x m y与﹣5x3y n是同类项,∴m=3,n=1,∴m+n=3+1=4.故答案为:4.14.解:x=﹣1时,3x+5=3×(﹣1)+5=2<10,x=2时,3x+5=3×2+5=11>10,输出.故答案为:11.15.解:∵整式(m﹣n﹣1)x3﹣7x2+(m+3)x﹣2是关于x的二次二项式,∴,解得:,关于y的方程(3n﹣3m)y=﹣my﹣5可以整理为:(﹣12+9)y=3y﹣5,则﹣6y=﹣5,解得:y=.故答案为:y=.三.解答题(共5小题)16.解:(1)原式=15×1﹣15×﹣15×=15﹣5﹣3=7;(2)原式=﹣1﹣×(﹣7)=﹣1+1=0.17.解(1)4+(﹣3)+22+(﹣8)+(﹣2)+17=30.答:收工时距A地30千米;(2)(4+3+22+8+2+17)×0.2=11.2(升).答:从A地出发到收工共耗油11.2升.18.解:(1)依题意得,x+x﹣30=x﹣30(人),答:两个车间共有(x﹣30)人;(2)原来第二车间人数为x﹣30,调动后,第一车间有(x+10)人,第二车间有(x﹣40)人,根据调动后,第一车间的人数比第二车间多70人,可列出方程,(x+10)﹣(x﹣40)=70,解得,x=100,答:第一车间有100人.19.解:(1)∵﹣3x=,∴x=﹣,∵﹣3=﹣,∴﹣3x=是和解方程;(2)∵关于x的一元一次方程5x=m﹣2是和解方程,∴m﹣2+5=,解得:m=﹣.故m的值为﹣.20.解:(1)设OA=2x,则OB=x,由题意得,2x+x=15,解得,x=5,则OA=10、OB=5,∴A、B对应的数分别为﹣10、5,故答案为:﹣10;5;(2)设x秒后A、B相距1个单位长度,当点A在点B的左侧时,4x+3x=15﹣1,解得,x=2,当点A在点B的右侧时,4x+3x=15+1,解得,x=,答:2或秒后A、B相距1个单位长度;(3)在点P运动的过程中,线段MN的长度不发生变化,分两种情况:①当P在点B的左侧时,如图1,∵M为线段AP的中点,N为线段PB的中点,∴PM=AP,PN=PB,∴MN=PM+PN=AP+PB=AB=;②当P在点B的右侧时,如图2,同理得:PM=AP,PN=PB,∴MN=PM﹣PN=AP﹣PB=AB=;综上,在点P运动的过程中,线段MN的长度不发生变化,AB=.七年级上册期中复习训练一.选择题(共10小题)1.在3.14,2π,﹣,0,0.12中,是有理数的有()个.A.2B.3C.4D.5 2.若非零数a,b满足|a+b|=|a|+|b|,则()A.a,b均为正数B.a,b均为负数C.a,b异号D.a,b同号3.下列语句:①一个数的绝对值一定是正数;②﹣a一定是一个负数;③没有绝对值为﹣3的数;④若﹣a=a,则a=0;⑤倒数等于本身的数是1.正确的有()个.A.1B.2C.3D.4 4.已知2a+3b=4,则整式﹣4a﹣6b+1的值是()A.5B.3C.﹣7D.﹣105.某种鞋子进价为每双a元,销售利润率为20%,则这种鞋子的销售价格为()A.20%a B.80%a C.D.120%a6.若多项式3x|m|+(m﹣2)x+1是关于x的二次三项式,则m的值()A.2或﹣2B.2C.﹣2D.﹣47.方程13﹣x=17的解是()A.x=﹣4B.x=﹣2C.x=2D.x=48.下列变形中正确的是()A.方程3x﹣2=2x+1,移项,得3x﹣2x=﹣1+2B.方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x﹣5C.方程t=,未知数系数化为1,得t=1D.方程=x化为=x9.解方程﹣=的步骤如下,错误的是()①2(3x﹣2)﹣3(x﹣2)=2(8﹣2x);②6x﹣4﹣3x﹣6=16﹣4x;③3x+4x=16+10;④x=.A.①B.②C.③D.④10.学校有n名师生乘坐m辆客车外出参观,若每辆客车坐45人,则还有25人没有上车;若每辆客车坐50人,则刚好空出一辆客车.以下四个方程:①45m+25=50(m﹣1);②45m﹣25=50(m﹣1);③=﹣1;④=+1;其中正确的有()A.1个B.2个C.3个D.4个二.填空题(共5小题)11.数﹣(﹣2.5),﹣|﹣4|,0.5,﹣1,﹣3,0,﹣70%中,是负分数的有个.12.若数轴上点A表示的数为﹣2,将点A沿数轴正方向平移4个单位,则平移后所得到的点表示的数是.13.若x=2y+3,则代数式3x﹣6y+1的值是.14.解方程=2﹣,有下列步骤:①3(3x+1)=12﹣(2x﹣1),②9x+3=12﹣2x+1,③9x﹣2x=12+1+3,④7x=16,⑤x=,其中首先发生错误的一步是.15.已知方程(k﹣2)x|k﹣1|﹣2017=2021是关于x的一元一次方程,则k=.三.解答题(共5小题)16.计算:(1)(﹣3)÷(﹣)×0.75×||÷|﹣3|2;(2)﹣32××[(﹣5)2×(﹣)﹣240÷(﹣4)×].17.王红有2000元钱,打算存入银行两年,有两种储蓄方式:一种是存两年期的,年利率是2.25%;另一种是先存一年期的,年利率是1.75%,第一年到期后连本带息继续存入一年.两年后,哪种储蓄方式得到的利息多一些?18.按如图程序进行运算.如果结果不大于10,就把结果作为输入的数再进行第二次运算,直到符合要求(结果大于10)为止.(1)当输入的数是10时,请求出输出的结果;(2)当输入的数是x时,经过第一次运算,结果即符合要求,请求出x的最小整数值.19.已知x=﹣3是关于x的方程(k+3)x+2=3x﹣2k的解.(1)求k的值;(2)在(1)的条件下,已知线段AB=6cm,点C是线段AB上一点,且BC=kAC,若点D是AC的中点,求线段CD的长.(3)在(2)的条件下,已知点A所表示的数为﹣2,有一动点P从点A开始以2个单位长度每秒的速度沿数轴向左匀速运动,同时另一动点Q从点B开始以4个单位长度每秒的速度沿数轴向左匀速运动,当时间为多少秒时,有PD=2QD?20.观察下列式子,定义一种新运算:5⊗3=2×5﹣3;3⊗(﹣1)=2×3+1;﹣4⊗(﹣3)=2×(﹣4)+3;(1)这种新运算是:x⊗y=;(用含x,y的代数式表示);(2)如果m⊗(﹣2)=3⊗m,求m的值;(3)若a,b为整数,试判断(a⊗b﹣b⊗a)⊗3a是否能被3整除.参考答案一.选择题(共10小题)1.解:在3.14,2π,﹣,0,0.12中,有理数有3.14,﹣,0,0.12,故有理数的个数有4个.故选:C.2.解:根据有理数加法的法则可得,当两个非零数和的绝对值等于各个数绝对值的和,这两个数一定是同号,故选:D.3.解:①一个数的绝对值可能是正数,也可能是0,故此选项错误;②a若小于0,﹣a则是正数,故此选项错误;③任何数的绝对值都是非负数,故没有绝对值为﹣3的数,故此选项正确;④若﹣a=a,则a是0,故此选项正确;⑤倒数等于本身的数是±1,故此选项错误;综上所述,正确的有③④共2个,故选:B.4.解:∵2a+3b=4,∴﹣2a﹣3b=﹣4,∴﹣4a﹣6b+1=2(﹣2a﹣3b)+1=﹣8+1=﹣7,故选:C.5.解:根据题意得:(1+20%)a=120%a,则这种鞋子的销售价格为120%a.故选:D.6.解:因为多项式3x|m|+(m﹣2)x+1是关于x的二次三项式,所以|m|=2,且m﹣2≠0,解得m=±2,且m≠2,则m的值为﹣2.故选:C.7.解:方程13﹣x=17,移项得:﹣x=17﹣13,合并得:﹣x=4,解得:x=﹣4.故选:A.8.解:方程3x﹣2=2x+1,移项,得3x﹣2x=1+2,故选项A变形错误;方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x+5,故选项B变形错误;方程t=,未知数系数化为1,得t=,故选项C变形错误;方程=x化为=x,利用了分数的基本性质,故选项D正确.故选:D.9.解:①去分母,得:2(3x﹣2)﹣3(x﹣2)=2(8﹣2x);②6x﹣4﹣3x+6=16﹣4x,③6x﹣3x+4x=16+4﹣6,④x=2,错误的步骤是第②步,故选:B.10.解:由题意可得:45m+25=50(m﹣1),故①正确;=+1,故④正确.故选:B.二.填空题(共5小题)11.解:在数﹣(﹣2.5),﹣|﹣4|,0.5,﹣1,﹣3,0,﹣70%中,负分数有﹣1,﹣70%一共2个.故答案为:2.12.解:﹣2+4=2,故答案为:2.13.解:把x=2y+3,代入代数式3x﹣6y+1得,3x﹣6y+1=3(2y+3)﹣6y+1=6y+9﹣6y+1=10,故答案为:10.14.解:去分母得:3(3x+1)=12﹣(2x﹣1),去括号得:9x+3=12﹣2x+1,移项得:9x+2x=12+1﹣3,合并得:11x=10,解得:x=,∴首先发生错误的一步是③.故答案为:③.15.解:∵方程(k﹣2)x|k﹣1|﹣2017=2021是关于x的一元一次方程,∴k﹣2≠0且|k﹣1|=1,解得:k=0,故答案为:0.三.解答题(共5小题)16.解:(1)(﹣3)÷(﹣)×0.75×||÷|﹣3|2=×××=.(2)﹣32××[(﹣5)2×(﹣)﹣240÷(﹣4)×]=﹣3×[25×(﹣)+60×]=﹣3×(﹣15+15)=﹣3×0=0.17.解:第一种2000×2.25%×2=90(元),第二种2000×1.75%×1=35(元),(2000+35)×1.75%×1≈35.61(元),35+35.61=70.61(元),则90元>70.61元,答:存两年期的得到的利息多一些.18.解:(1)当输入的数是10时,10×2﹣4=16>10,∴输出的结果为16;(2)由题可得,2x﹣4>10,解得x>7,∴x的最小整数值为8.19.解:(1)把x=﹣3代入方程(k+3)x+2=3x﹣2k得:﹣3(k+3)+2=﹣9﹣2k,解得:k=2;(2)当k=2时,BC=2AC,AB=6cm,∴AC=2cm,BC=4cm,当C在线段AB上时,如图1,∵D为AC的中点,∴CD=AC=1cm.即线段CD的长为1cm;(3)在(2)的条件下,∵点A所表示的数为﹣2,AD=CD=1,AB=6,∴D点表示的数为﹣1,B点表示的数为4.设经过x秒时,有PD=2QD,则此时P与Q在数轴上表示的数分别是﹣2﹣2x,4﹣4x.分两种情况:①当点D在PQ之间时,∵PD=2QD,∴﹣1﹣(﹣2﹣2x)=2[4﹣4x﹣(﹣1)],解得x=;②当点Q在PD之间时,∵PD=2QD,∴﹣1﹣(﹣2﹣2x)=2[﹣1﹣(4﹣4x)],解得x=.答:当时间为或秒时,有PD=2QD.20.解:(1)由题意可得:x⊗y=2x﹣y;故答案为:2x﹣y;(2)m⊗(﹣2)=3⊗m,则2m+2=6﹣m,解得:m=;(3)(a⊗b﹣b⊗a)⊗3a=[2a﹣b﹣(2b﹣a)]⊗3a=(2a﹣b﹣2b+a)⊗3a=(3a﹣3b)⊗3a=2(3a﹣3b)﹣3a=6a﹣6b﹣3a=3a﹣6b=3(a﹣2b),故(a⊗b﹣b⊗a)⊗3a能被3整除.七年级上册期中考试综合训练(一)一.选择题1.下列语句:①一个数的绝对值一定是正数;②﹣a一定是一个负数;③没有绝对值为﹣3的数;④若﹣a=a,则a=0;⑤倒数等于本身的数是1.正确的有()个.A.1B.2C.3D.4 2.如果a与1互为相反数,那么a=()A.2B.﹣2C.1D.﹣13.有理数a,b,c在数轴上对应的点的位置如图所示,则下列式子正确的是()A.a>b B.|a﹣b|=a﹣b C.﹣a<﹣b<c D.b+c>04.x﹣y的相反数是()A.x+y B.﹣x﹣y C.y﹣x D.x﹣y5.某种鞋子进价为每双a元,销售利润率为20%,则这种鞋子的销售价格为()A.20%a B.80%a C.D.120%a6.按如图所示的运算程序,能使输出y值为1的是()A.m=﹣1,n=1B.m=1,n=0C.m=1,n=2D.m=2,n=1 7.若﹣3a2b x与﹣3a y b是同类项,则y x的值是() A.1B.2C.3D.48.《算法统宗》是我国古代数学著作,其中记载了一道数学问题大意如下:若将绳子三折后测井深则多4尺;若将绳子四折去测井深则多1尺.问绳长和井深各多少尺?设井深为x尺,则可列方程为()A.3(x+4)=4(x+1)B.3x+4=4x+1C.3(x﹣4)=4(x﹣1)D.﹣4=﹣19.已知关于x的方程a﹣x=+3a的解是x=4,则代数式3a+1的值为()A.﹣5B.5C.8D.﹣810.定义一种新运算“a☆b”的含义为:当a≥b时,a☆b=a+b;当a<b时,a☆b=a﹣b.例如:3☆(﹣4)=3+(﹣4)=﹣1,(﹣6)☆=(﹣6)﹣=﹣6,则方程(3x﹣7)☆(3﹣2x)=2的值为()A.1B.C.6或D.6二.填空题11.若数轴上点A表示的数为﹣2,将点A沿数轴正方向平移4个单位,则平移后所得到的点表示的数是.12.已知代数式a﹣2b+7=13,那么代数式2a﹣4b的值为.13.“绿水青山就是金山银山”,为了进一步优化环境,某区计划对长2000米的河道进行整治,原计划每天修x米,为减少施工对居民生活的影响,须缩短施工时间,实际施工时,每天的工作效率比原计划提高25%,那么实际整治这段河道的工期比原计划缩短了天.(结果化为最简)14.已知方程(m﹣2)x|m|﹣1+7=0是关于x的一元一次方程,则m=.15.一列方程如下排列:=1的解是x=2;=1的解是x=3;=1的解是x=4;…根据观察得到的规律,写出其中解是x=2020的方程:.三.解答题16.画出数轴,用数轴上的点表示下列各数,并用“<”将它们连接起来:3,﹣2,1.5,0,﹣0.5.17.出租车司机小王某天上午营运是在东西走向的大街上进行的,如果规定向东为正,向西为负,他这天上午行车里程(单位:千米)如下:+15,﹣2,+5,﹣1,+10,+3,﹣2,+12,+4,﹣5,+6.(1)将最后一名乘客送到目的地时小王距上午出发时的出发点多远?(2)若汽车耗油量为0.12升/千米,这天上午小王的汽车共耗油多少升?18.先化简,再求值:(2a2b+4ab2)﹣(3ab2+a2b),其中a=2,b=﹣1.19.“今有善行者行一百步,不善行者行六十步.”(出自《九章算术》)意思是:同样的时间段里,走路快的人能走100步,走路慢的人只能走60步.假定两者步长相等,据此回答以下问题:(1)今善行者与不善行者相距960步,两者相向而行,问,相遇时两者各行几步?(2)今不善行者先行100步,善行者追之,不善行者再行300步,请问谁在前面,两人相隔多少步?20.已知x=﹣3是关于x的方程(k+3)x+2=3x﹣2k的解.(1)求k的值;(2)在(1)的条件下,已知线段AB=6cm,点C是线段AB上一点,且BC=kAC,若点D是AC的中点,求线段CD的长.(3)在(2)的条件下,已知点A所表示的数为﹣2,有一动点P从点A开始以2个单位长度每秒的速度沿数轴向左匀速运动,同时另一动点Q从点B开始以4个单位长度每秒的速度沿数轴向左匀速运动,当时间为多少秒时,有PD=2QD?参考答案一.选择题1.解:①一个数的绝对值可能是正数,也可能是0,故此选项错误;②a若小于0,﹣a则是正数,故此选项错误;③任何数的绝对值都是非负数,故没有绝对值为﹣3的数,故此选项正确;④若﹣a=a,则a是0,故此选项正确;⑤倒数等于本身的数是±1,故此选项错误;综上所述,正确的有③④共2个,故选:B.2.解:因为a与1互为相反数,﹣1与1互为相反数,所以a=﹣1,故选:D.3.解:由题意,可知a<b<0<c,|a|=|c|>|b|.A、∵a<b<0<c,∴a>b错误,本选项不符合题意;B、∵a<b,∴a﹣b<0,∴|a﹣b|=﹣﹣a+b,∴|a﹣b|=a﹣b错误,本选项不符合题意;C、∵a<b<0<c,|a|=|c|>|b|,∴﹣a<﹣b<c错误,本选项不符合题意;D、∵b<0<c,|c|>|b|,∴c+b<0,正确,本选项符合题意.故选:D.4.解:将x﹣y括起来,前面加一个“﹣”号,即可得到x﹣y的相反数﹣(x﹣y)=y﹣x.故选:C.5.解:根据题意得:(1+20%)a=120%a,则这种鞋子的销售价格为120%a.故选:D.6.解:当m=﹣1,n=1时,y=2m﹣n+1=2×(﹣1)﹣1+1=﹣2,不合题意;当m=1,n=0时,y=2m+n=2×1+0=2,不合题意;当m=1,n=2时,y=2m﹣n+1=2×1﹣2+1=1,符合题意;当m=2,n=1时,y=2m+n=2×2+1=5,不合题意;故选:C.7.解:∵﹣3a2b x与﹣3a y b是同类项,∴x=1,y=2,∴y x=21=2.故选:B.8.解:设井深为x尺,由题意得:3x+4=4x+1,故选:B.9.解:把x=4代入a﹣4=2+3a,移项合并得:﹣2a=6,解得:a=﹣3,则原式=﹣9+1=﹣8,故选:D.10.解:当3x﹣7≥3﹣2x,即x≥2时,由题意得:(3x﹣7)+(3﹣2x)=2,解得x=6;当3x﹣7<3﹣2x,即x<2时,由题意得:(3x﹣7)﹣(3﹣2x)=2,解得x=(舍去),∴x的值为6.故选:D.二.填空题11.解:﹣2+4=2,故答案为:2.12.解:由a﹣2b+7=13可得a﹣2b=6,∴2a﹣4b=2(a﹣2b)=2×6=12.故答案为:12.13.解:根据题意,得﹣=(天).故答案是:.14.解:∵方程(m﹣2)x|m|﹣1+7=0是关于x的一元一次方程,∴m﹣2≠0且|m|﹣1=1,解得m=﹣2.故答案为:﹣2.15.解:∵一列方程如下排列:=1的解是x=2;=1的解是x=3;=1的解是x=4;∴一列方程如下排列:+=1的解是x=2;+=1的解是x=3;+=1的解是x=4;…∴+=1,∴方程为+=1,故答案为:+=1.三.解答题16.解:如图所示:∴﹣2<﹣0.5<0<1.5<5.17.解:(1)15﹣2+5﹣1+10+3﹣2+12+4﹣5+6=45(千米)答:将最后一名乘客送到目的地时,小王距上午出车时的出发点45千米;(2)|+15|+|﹣2|+|+5|+|﹣1|+|+10|+|+3|+|﹣2|+|+12|+|+4|+|﹣5|+|+6|=65(千米),65×0.12=7.8(升).答:这天上午小王的汽车共耗油7.8升.18.先化简,再求值:解:(2a2b+4ab2)﹣(3ab2+a2b)=a2b+2ab2﹣3ab2﹣a2b=﹣ab2当a=2,b=﹣1时,原式=﹣2×1=﹣2.19.解:(1)设两者相遇时行走的时间为t,根据题意得,100t+60t=960,解得,t=6,100t=600,60t=360,答:相遇时,善行者走了600步,不善行者走了360步;(2)不善行者一共走了100+300=400(步),善行者行走了(步)>400步,∴善行者在前面,两人相距:500﹣400=100(步),答:善行者在前面,两人相隔100步.20.解:(1)把x=﹣3代入方程(k+3)x+2=3x﹣2k得:﹣3(k+3)+2=﹣9﹣2k,解得:k=2;(2)当k=2时,BC=2AC,AB=6cm,∴AC=2cm,BC=4cm,当C在线段AB上时,如图1,∵D为AC的中点,∴CD=AC=1cm.即线段CD的长为1cm;(3)在(2)的条件下,∵点A所表示的数为﹣2,AD=CD=1,AB=6,∴D点表示的数为﹣1,B点表示的数为4.设经过x秒时,有PD=2QD,则此时P与Q在数轴上表示的数分别是﹣2﹣2x,4﹣4x.分两种情况:①当点D在PQ之间时,∵PD=2QD,∴﹣1﹣(﹣2﹣2x)=2[4﹣4x﹣(﹣1)],解得x=;②当点Q在PD之间时,∵PD=2QD,∴﹣1﹣(﹣2﹣2x)=2[﹣1﹣(4﹣4x)],解得x=.答:当时间为或秒时,有PD=2QD.七年级上册期中同步测练(一)一.选择题1.若x的倒数等于它本身的数,y是绝对值最小的数,z是最大的负整数,则x﹣y+z=()A.﹣1或1B.0或﹣2C.﹣2D.02.下列表述中正确的个数是()①存在绝对值最小的数;②任何数都有相反数;③绝对值等于本身的数是正数;④0是最小的有理数;⑤若a<﹣1,则<aA.1个B.2个C.3个D.4个3.若4个有理数a,b,c,d满足a>b>0,c<d<0,则下列大小关系一定成立的是()A.≥B.<C.≥D.<4.下列选项中的两个代数式,不属于同类项的是()。

人教版数学七年级(上)期中考试试卷(含解析)

人教版数学七年级(上)期中考试试卷(含解析)

人教版数学七年级〖上〗期中考试试卷〖含解析〗七年级数学试卷(测试范围:第1章——第2章) (总分:120分 测试时间:90分钟)一﹨选择题(每小题3分,共30分)1.在211-,2.1,2-,0 ,()2--中,负数的个数是( ) A .2B .3C .4D .52.下列说法中正确的是( )A .最小的整数是0B .0的倒数是0C .绝对值最小的数是0D .a -一定是负数 3.下列说法中正确的是( )A .a 和0都是单项式B .多项式173222++-b a b a 的次数是3C .单项式b a 232-的系数为2- D .yx 22+是整式4.下列去括号正确的是( )A .x x x x 253)25(3++=-+B .6)6(--=--x xC .17)1(7--=+-x x x xD .83)8(3+=+x x5.如果多项式3x 3-2x 2+x +│k │x 2-5中不含x 2项,则k 的值为( )A .±2B .-2C .2D .06.中海油集团成立以来,发展异常迅猛,预计到2020年在深水地区实现新的突破,建设一个5000万吨的大油田.“5000万” 用科学记数法可表示为( )A .5×103B .5×106C .5×107D .5×1087.定义一种运算☆,其规则为a ☆b =1a +1b,根据这个规则﹨计算2☆3的值是( )A .56B .15C .5D .68.下列说法中 ①-a 一定是负数;②|-a |一定是正数;③倒数等它本身的数是±1;④绝对值等于它本身的数是0﹨1.其中正确的个数是( )A .1个B .2个C .3个D .4个9.某商店举办促销活动,促销的方法是将原价x 元的衣服以(4105x -) 元出售,则下列说法中,能正确表达该商店促销方法的是( )A .原价减去10元后再打8折B .原价打8折后再减去10元C .原价减去10元后再打2折D .原价打2折后再减去10元 10.观察下列算式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,…通过观察,用你所发现的规律确定20163的个位数字是( )A .3B .9C .7D .1二﹨填空题(每小题3分,共30分)11.-2016的绝对值是 .12. 2016年9月15日晚22点04分09秒,天宫二号成功发射升空,若火箭发射点火前5秒记为-5秒,那么火箭发射点火后10秒应记为 .13.=+=++-b a b a 那么)若(,0212___________.14.如图,A ﹨B 是数轴上不同的两点,它们所对应的数分别是-4,2x ,且点A ﹨B 到原点的距离相等,则x 的值是_____.第14题图15.某种苹果的售价是每千克x 元,用面值为100元的人民币购买了5千克,应找回______________元.16.若434m xy 与31n x y 的和仍是单项式,则n m 的值为____________.17.已知甲﹨乙两种糖果的单价分别是x 元/千克和12元/千克.为了使甲乙两种糖果分别销售与把它们混合成什锦糖后再销售收入保持不变,则由20千克甲种糖果和y 千克乙种糖果混合而成的什锦糖的单价应是 元/千克.18.已知计算规则a bad bcc d=-,则1231-=-___ ____.19.如果4a-3b=7,并且3a+2b=19,求14a-2b的值为.20.下列各图是用“”按一定规律排列而成的图案,第1个图案由4个“”组成,第2个图案由7个“”组成,第3个图案由10个“”组成,则第2016个图案中由个“”组成.第20题图三﹨解答题(共60分)21.( 8分)计算:(1)-16-|-5|+2×(-12)2;(2)2-54×(56-49+13).22.( 6分)化简求值:(-3x2-4y2+2x)-(2x2-5y2)+(5x2-8)+6x,其中x,y满足|y-5|+(x+4)2=0.23.(6分)已知:A=x3+2x+3,B=2x3-mx+2,计算2A-B的值时发现恰好与x无关,请求出此时m的值及2A-B的值.24.(6分)已知,a与b互为相反数,c与d互为倒数,求:(a+b)2015-(a+b -cd)2016.25.(6分)某同学把一个整式减去多项式xy-5yz+3xz误认为是加上这个多项式,结果答案是5yz-3xz-2xy,求原题的正确答案是多少.26.(8分)如图,试用字母a﹨b表示阴影部分的面积,并求出当a=12cm,b =4cm时阴影部分的面积.27.(10分)某种铂金饰品在甲﹨乙两种商店销售,甲店标价每克477元,按标价出售,不优惠.乙店标价每克530元,但若买的铂金饰品重量超过3克,则超出部分可打八折出售.若购买的铂金饰品重量为x克,其中x>3.(1)分别列出到甲﹨乙商店购买该种铂金饰品所需费用(用含x的代数式表示);(2)李阿姨要买一条重量10克的此中铂金饰品,到哪个商店购买最合算.28.(10分)某股民上星期五买进某公司股票1000股,每股25元,下表为本周内每日该股票的涨跌情况:(单价:元)星期 一 二 三 四 五 每股涨跌 (与前一天比较)+2-0.5+1.5-1.8+0.8(1)星期三收盘时,每股是多少元?(2)本周内最高价是每股多少元?最低价是每股多少元?(3)已知该股民买进股票时付了0.15%的手续费,卖出时需付成交额0.15%的手续费和0.1%的交易税,如果他一直观望到星期五才将股票全部卖出,请算算他本周的收益如何?参考答案1.A2.C3.A【解析】因为单独的数字和字母是单项式,所以A 正确;因为多项式173222++-b a b a 的次数是2+2=4,所以B 错误;因为单项式b a 232-的系数为23-,所以C 错误;因为y x 22+不是整式,所以 D 错误,故选:A .4.C【解析】去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.A ﹨-2x 不变号,故错误;B ﹨-x -6应为-x +6,故错误;C ﹨正确;D ﹨漏乘8.故选C . 5.A【解析】本题考查多项式系数的认识,由│k │=2得k =±2 6.C【解析】把一个比较大的数表达成10na ⨯的形式,叫科学计数法.其中110a ≤≤,n 为正整数,且为这个数的整数位减1. 750000000510∴=⨯.7.A【解析】2☆3=12+ 13= 56.故答案为56. 8.A【解析】∵如果α为负数时,则-α为正数,∴①-是错的.∵当a =0时,|-a |=0,∴②是错的.∵倒数等于它本身的数只有±1,∴③是对的.∵绝对值都等于它本身的数是非负数,不只是0﹨1,∴④是错误的.所以正确的说法共有1个.故选A . 9.B .【解析】将原价x 元的衣服以(4105x -)元出售,是把原价打8折后再减去10元.故选B . 10.D【解析】解:由题意得,个位数字是3,9,7,1,3,9,7,1,…4个一循环,20164504÷=,20163∴的个位数字是1,故选D .二﹨填空题(每小题3分,共30分) 11.2016.【解析】根据负数的绝对值是它的相反数,-2016的绝对值是|-2016|=2016,故答案为:2016. 12.+10秒【解析】正数和负数表示相反意义的量,发射点火前5秒记为-5秒,那么火箭发射点火后10秒应记为+10秒 13.-1【解析】由于10,20a b -=+=2120a b -++=() ∴a=1,b=-2 1a b ∴+==-14.2【解析】由点A ﹨B 到原点的距离相等且A ,B 是数轴上不同的两点,可得-4+2x =0转化为解方程问题.解:∵A ﹨B 是数轴上不同的两点,且点A ﹨B 到原点的距离相等, ∴表示A ﹨B 两点的数互为相反数, ∴-4+2x =0 解得:x =2. 故答案为:2. 15.(100-5x )【解析】由题意得:单价为x 元的苹果5千克用去5x 元, ∴应该找回零钱:(100-5x )元 16.1【解析】和为单项式则说明两个加数为同类项,根据同类项的定义求出m 和n 的值,然后进行计算.根据题意得:m +4=3,n -1=3,解得:m =-1,n =4,则4(1)n m =1.17.yyx ++201220【解析】此题要根据题意列出代数式.先求出20千克甲种糖果和千克乙种糖果的总价钱,即〖2012x y +〗元,混合糖果的质量是〖20y +〗千克,由此我们可以求出20千克甲种糖果和千克乙种糖果混合而成的什锦糖的单价应为yyx ++201220(元/千克).18.5【解析】根据计算规则可直接求解,1231-=-1×(-1)-3×(-2)=-1+6=5.19.52【解析】解:197)23()34(+=++-b a b a ,267=-b a ,.52)7(2214=-=-∴b a b a 20.6049【解析】把图案分成两部分,左边的一个不变,每向后一个图案相应增加3个小四边形,根据此规律找出第n 个图形中四边形个数的关系式即可. 解:第1个图案中四边形有:4=1+3个; 第2个图案中四边形有:7=1+2×3个; 第3个图案中四边形有:10=1+3×3个; …故第2016个图形中四边形有:1+2016×3=6049. 故答案为:6049.三﹨解答题(共60分) 21.(1)-5;(2)-37【解析】 (1)根据有理数的混合运算顺序,首先计算乘方,然后计算乘法,最后从左向右依次计算,求出算式-16-|-5|+2×(-)2的值是多少即可.(2)首先根据乘法分配律,求出54×(-+)的值是多少;然后计算减法即可. 解:(1)-16-|-5|+2×(-)2 =-1-5+2× =-6=-522.-15 23.M=-4 2A-B=4【解析】将A 与B 代入2A -B 中,去括号合并得到最简结果,由题意得到含x 项系数为0,即可求出m 的值,进而求出2A -B 的值.解:2A -B =2(x 3+2x +3)-(2x 3-mx +2)=2x 3+4x +6-2x 3+mx -2=(m +4)x11 / 11 +4,∵结果由与x 无关,∴m +4=0,∴m =-4,则2A -B =4.24.-1【解析】直接利用互为相反数﹨互为倒数的定义分析得出答案.解:∵a 与b 互为相反数,c 与d 互为倒数,∴a +b =0,cd =1,∴(a +b )2015-(a +b -cd )2016=0-(-1)2016=-1.25.15yz -9xz —4xy .【解析】运用两次整式的加减运算,原来的多项式为多项式5yz -3xz -2xy 减去多项式xy -5yz +3xz 的结果,把所得的结果再按减去多项式xy -5yz +3xz 即可得正确结果.析:5yz -3xz -2xy -(xy -5yz +3xz )-(xy -5yz +3xz )=5yz -3xz -2xy -xy +5yz -3xz -xy +5yz -3xz=15yz -9xz —4xy .26.22)8(cm b ab π-,.)248(2cm π-【解析】由图可知,阴影部分的面积=矩形面积-半圆的面积,即可列出代数式,再把a =12cm ,b =4cm 代入计算即可.解:由题意得,222)8()2(21cm b ab b ab S ππ-=⨯⨯-=阴影, 当a =12cm ,b =4cm 时,.)248(484128222cm b ab πππ-=⨯-⨯=-27.(1)甲:x 477 乙:318424+x (2)乙 【解析】 (1)根据甲﹨乙两家商店的销售方式,可以列出购买铂金饰品所需要费用的代数表达式.(2)根据(1)列出的代数式,代入求值,然后比较即可得出答案. 解:(1)根据题意,甲商店购买所需的费用=x 477,乙商店购买所需要的费用=53035300.8(3)x ⨯+⨯⨯-=318424+x .(2)根据题意得,买10克的铂金在甲商店所需的费用=477010477=⨯(元),在乙商店所需的费用=455831810424=+⨯(元),由此可知,在乙商店购买最合算.(3)本周赚1895元。

人教版七年级上学期期中考试数学试卷及答案(共7套)

人教版七年级上学期期中考试数学试卷及答案(共7套)

人教版七年级上学期期中考试数学试卷(一)时间:120分钟 满分:120分一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1.a 的相反数是( )A .|a | B.1a C .-a D .以上都不对2.计算-3+(-1)的结果是( ) A .2 B .-2 C .4 D .-43.在1,-2,0,53这四个数中,最大的数是( )A .-2B .0 C.53D .14.若2x 2m y 3与-5xy 2n 是同类项,则|m -n |的值是( ) A .0 B .1 C .7 D .-15.长方形窗户上的装饰物如图所示,它是由半径均为b 的两个四分之一圆组成,则能射进阳光部分的面积是( )A .2a 2-πb 2B .2a 2-π2b 2C .2ab -πb 2D .2ab -π2b 2第5题图 第6题图6.如图,将一张等边三角形纸片沿各边中点剪成4个小三角形,称为第一次操作;然后将其中的一个三角形按同样方式再剪成4个小三角形,共得到7个小三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成4个小三角形,共得到10个小三角形,称为第三次操作;……,根据以上操作,若要得到100个小三角形,则需要操作的次数是( )A .25B .33C .34D .50二、填空题(本大题共6小题,每小题3分,共18分)7.-0.5的绝对值是________,相反数是________,倒数是________.8.请你写出一个只含有字母m 、n ,且它的系数为-2、次数为3的单项式________. 9.秋收起义广场是为纪念秋收起义而建设的纪念性广场,位于萍乡城北新区,占地面积约为109000平方米,将数据109000用科学记数法表示为________.10.若关于a ,b 的多项式3(a 2-2ab -b 2)-(a 2+mab +2b 2)中不含有ab 项,则m =________.11.已知|x |=2,|y |=5,且x >y ,则x +y =________.12.已知两个完全相同的大长方形,长为a ,各放入四个完全一样的白色小长方形后,得到图①、图②,那么,图①中阴影部分的周长与图②中阴影部分的周长的差是________(用含a 的代数式表示).三、(本大题共5小题,每小题6分,共30分) 13.计算:(1)-20-(-14)-|-18|-13;(2)-23-(1+0.5)÷13×(-3).14.化简:(1)3a 2+2a -4a 2-7a; (2)13(9x -3)+2(x +1).15.已知a 、b 互为相反数,c 、d 互为倒数,|m |=2,求代数式2m -(a +b -1)+3cd 的值.16.先化简,再求值:-a2b+(3ab2-a2b)-2(2ab2-a2b),其中a=-1,b=-2.17.有理数a,b,c在数轴上的位置如图所示,化简:|b-a|-|c-b|+|a+b|.四、(本大题共3小题,每小题8分,共24分)18.如果两个关于x、y的单项式2mx a y3与-4nx3a-6y3是同类项(其中xy≠0).(1)求a的值;(2)如果它们的和为零,求(m-2n-1)2017的值.19.如图所示,将面积为a2的小正方形和面积为b2的大正方形放在同一水平面上(b>a >0).(1)用a、b表示阴影部分的面积;(2)计算当a=3,b=5时,阴影部分的面积.20.邮递员骑车从邮局O出发,先向西骑行2km到达A村,继续向西骑行3km到达B 村,然后向东骑行8km,到达C村,最后回到邮局.(1)以邮局为原点,以向东方向为正方向,用1cm表示2km,画出数轴,并在该数轴上表示出A、B、C三个村庄的位置;(2)C村距离A村有多远?(3)邮递员共骑行了多少km?五、(本大题共2小题,每小题9分,共18分)21.操作探究:已知在纸面上有一数轴(如图所示).操作一:(1)折叠纸面,使1表示的点与-1表示的点重合,则-3表示的点与________表示的点重合;操作二:(2)折叠纸面,使-1表示的点与3表示的点重合,回答以下问题:①5表示的点与数________表示的点重合;②若数轴上A、B两点之间距离为11(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少.22.“十一”黄金周期间,淮安动物园在7天假期中每天接待的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数),把9月30日的游客人数记为a万人.(1)请用含a的代数式表示10月2日的游客人数;(2)请判断七天内游客人数最多的是哪天,有多少人?(3)若9月30日的游客人数为2万人,门票每人10元,问黄金周期间淮安动物园门票收入是多少元?六、(本大题共12分)23.探索规律,观察下面算式,解答问题. 1+3=4=22; 1+3+5=9=32; 1+3+5+7=16=42; 1+3+5+7+9=25=52; …(1)请猜想:1+3+5+7+9+…+19=________;(2)请猜想:1+3+5+7+9+…+(2n -1)+(2n +1)+(2n +3)=________; (3)试计算:101+103+…+197+199.参考答案与解析1.C 2.D 3.C 4.B 5.D6.B 解析:∵第一次操作后,三角形共有4个;第二次操作后,三角形共有4+3=7(个);第三次操作后,三角形共有4+3+3=10(个)……∴第n 次操作后,三角形共有4+3(n -1)=(3n +1)(个).当3n +1=100时,解得n =33.故选B.7.0.5 0.5 -2 8.-2m 2n (答案不唯一) 9.1.09×105 10.-6 11.-3或-712.a 解析:由图②知小长方形的长为宽的2倍,设大长方形的宽为b ,小长方形的宽为x ,长为2x ,由图②得2x +x +x =a ,则4x =a .图①中阴影部分的周长为2b +2(a -2x )+2x ×2=2a +2b ,图②中阴影部分的周长为2(a +b -2x )=2a +2b -4x ,∴图①中阴影部分的周长与图②中阴影部分的周长之差为(2a +2b )-(2a +2b -4x )=4x =a .13.解:(1)原式=-6-18-13=-37.(3分)(2)原式=-8-1.5÷13×(-3)=-8-4.5×(-3)=-8+13.5=5.5.(6分)14.解:(1)原式=-a 2-5a .(3分)(2)原式=5x +1.(6分)15.解:根据题意得a +b =0,cd =1,m =2或-2.(2分)当m =2时,原式=4-(-1)+3=4+1+3=8;(4分)当m =-2时,原式=-4-(-1)+3=-4+1+3=0.(6分)16.解:原式=-a 2b +3ab 2-a 2b -4ab 2+2a 2b =-ab 2,(3分)当a =-1,b =-2时,原式=4.(6分)17.解:由数轴可知:c <b <0<a ,|a |>|b |,∴b -a <0,c -b <0,a +b >0,(2分)∴原式=-(b -a )+(c -b )+(a +b )=-b +a +c -b +a +b =2a -b +c .(6分)18.解:(1)依题意,得a =3a -6,解得a =3.(4分)(2)∵2mx 3y 3+(-4nx 3y 3)=0,故m -2n =0,∴(m -2n -1)2017=(-1)2017=-1.(8分) 19.解:(1)阴影部分的面积为12b 2+12a (a +b ).(4分)(2)当a =3,b =5时,12b 2+12a (a +b )=12×25+12×3×(3+5)=492,即阴影部分的面积为492.(8分) 20.解:(1)如图所示:(3分)(2)C 、A 两村的距离为3-(-2)=5(km). 答:C 村距离A 村5km.(5分) (3)|-2|+|-3|+|+8|+|-3|=16(km). 答:邮递员共骑行了16km.(8分) 21.解:(1)3(3分) (2)①-3(6分)②由题意可得,A 、B 两点距离对称点的距离为11÷2=5.5.∵对称点是表示1的点,∴A 、B 两点表示的数分别是-4.5,6.5.(9分)22.解:(1)10月2日的游客人数为(a +2.4)万人.(2分) (2)10月3日游客人数最多,人数为(a +2.8)万人.(4分)(3)(a +1.6)+(a +2.4)+(a +2.8)+(a +2.4)+(a +1.6)+(a +1.8)+(a +0.6)=7a +13.2.(6分)当a =2时,(7×2+13.2)×10=272(万元).(8分)答:黄金周期间淮安动物园门票收入是272万元.(9分) 23.解:(1)102(3分) (2)(n +2)2(6分)(3)原式=(1+3+5+…+197+199)-(1+3+…+97+99)=1002-502=7500.(12分)人教版七年级上学期期中考试数学试卷(二)时量:120分钟 满分:120分一.选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本题共12个小题,每小题3分,共36分) 1.-2的相反数是( ) A .21-B .2-C .21D .2 2. 在数轴上距离原点2个单位长度的点所表示的数是 ( ) A .2 B .2- C .2或2- D .1或1- 3.下列计算正确的是 ( ) A .xy y x 532=+ B .532222a a a =+ C .13422=-a a D .b a b a ba 2222-=+- 4.下列式子中,成立的是( )A .33)2(2-=-B .222)2(-=-C .223232=⎪⎭⎫ ⎝⎛- D .2332⨯= 5.用四舍五入按要求对06019.0分别取近似值,其中错误的是 ( ) A .0.1 (精确到0.1) B. 0.06 (精确到千分位) C .0.06 (精确到百分位) D .0.0602 (精确到0.0001)6.下列各组中,不是同类项的是 ( ) A .与 B .ab 2与ba 21C .与D .32 和23 7.小华作业本中有四道计算题:①5)5(0-=--; ②12)9()3(-=-+-; ③234932-=⎪⎭⎫ ⎝⎛-⨯; ④4)9()36(-=-÷-. y x 2-22yx n m 2-221mn其中他做对的题的个数是 ( ) A .1个 B .2个 C .3个 D .4个 8.一件衣服的进价为a 元,在进价的基础上增加20%定为标价,则标价可表示为 ( ) A .()a %201- B.20%a C.()a %201+ D.a +20%9.下面四个整式中,不能..表示图中阴影部分面积的是A .x x x 2)2)(3(-++B .6)3(++x xC .2)2(3x x ++ D .x x 52+10.若12++x x 的值是8,则9442++x x 的值是 ( ) A .37 B .25 C .32 D .011.下列说法正确的是 ( ) A .单项式22R π-的次数是3,系数是2-B .单项式5322y x -的系数是3,次数是4C .3ba +不是多项式 D .多项式26534222---y y x x 是四次四项式 12. 已知b a ,在数轴上的位置如图所示, 则化简a b a ++-是( )A .a 2B .a 2-C . 0D .b 2二.填空题(本题共6个小题,每小题3分,共18分) 13.用式子表示“a 的平方与1的差”: .14. 比较大小:30- 40-(用“>”“=”或“<”表示).15.长沙地铁一号线于2016年6月28号正式开通试运营,这是长沙轨道交通南北向的核心线路,该线一期工程全长23550米,请用科学记数法表示全长为 米.第9题16.若一个数的倒数等于311-,则这个数是 .17.若单项式y mx 2与单项式y x n5的和是y x 23-,则=+n m ___________. 18. 按下列程序输入一个数x ,若输入的数0=x ,则输出结果为 .三.解答题(共8个小题,第19、20题每小题6分,第21、22题每小题8分,第23、24题每小题9分,第25、26每小题10分,共66分,解答应写出必要的文字说明或演算步骤.) 19.计算:3.7)7.13()3.7(7.25+-+-+20.计算:2201611(2)5(1)122-⨯--+÷21.先化简,再求值:23(2)(61)a a a ---,其中1a =-22.小明参加“趣味数学”选修课,课上老师给了一个问题,小明看了很为难,你能帮他一下吗?已知b a ,互为相反数,d c ,互为倒数,2=m ,则cd m mba -+++1的值为多少?23.如果一个多项式与222n m -的和是13522+-n m ,求这个多项式。

2011年人教版七年级上册数学期中考试试卷(含答案)

2011年人教版七年级上册数学期中考试试卷(含答案)

2011人教版七年级上册数学期中考试试卷(含答案)一、填得圆圆满满(每小题3分,共30分)1.-1-(-3)= 。

2.-0.5的绝对值是 ,相反数是 ,倒数是 。

3.单项式22xy π的系数是 ,次数是 。

4.若逆时针旋转90o 记作+1,则-2表示 。

5.如果a 、b 互为相反数,x 、y 互为倒数,那么(a+b )x y-xy+a 2-b 2= 。

6.在数轴上,点A 表示数-1,距A 点2.5个单位长度的点表示的数是 。

7.灾难无情人有情!某次在抗震救灾文艺汇演中,各界艺人和人士为地震灾区人民捐款捐物达349.8万元。

将这个数字用科学计数法表示并保留三个有效数字为 元。

8.长方形的长是a 米,宽比长的2倍少b 米,则宽为 米。

9.若m 、n 满足2)3(2++-n m =0,则.__________=m n 10.某厂10月份的产值是125万元,比3月份的产值的3倍少13万元,若设3月份的产值为x 万元,则可列出的方程为二、做出你的选择(每小题3分,共30分)11.如果向东走2km 记作+2km ,那么-3km 表示( ).A.向东走3kmB.向南走3kmC.向西走3kmD.向北走3km12.下列说法正确的是( C )A.x 的系数为0B. a 1是一项式 C.1是单项式 D.-4x 系数是413.下列各组数中是同类项的是( )A.4x 和4yB.4xy 2和4xyC.4xy 2和-8x 2yD.-4xy 2和4y 2x14.下列各组数中,互为相反数的有( ) ①2)2(----和 ②221)1(--和 ③2332和 ④332)2(--和 A.④ B.①② C.①②③ D.①②④15.若a+b<0,ab<0,则下列说法正确的是( )A.a 、b 同号B.a 、b 异号且负数的绝对值较大C.a 、b 异号且正数的绝对值较大D.以上均有可能16.下列计算正确的是( )A.4x-9x+6x=-xB.xy-2xy=3xyC.x 3-x 2=xD.21a-21a=017.数轴上的点M 对应的数是-2,那么将点M 向右移动4个单位长度,此时点M 表示的数是( )A. -6B. 2C. -6或2D.都不正确18.若x 的相反数是3,5y =,则x+y 的值为( ).A.-8B. 2C. 8或-2D.-8或219.若 3x=6,2y=4则5x+4y 的值为( )A.18B.15C.9D. 620.若-3xy 2m 与5x 2n-3y 8的和是单项式,则m 、n 的值分别是( )A.m =2,n =2B.m =4,n =1C.m =4,n =2D.m =2,n =3三、用心解答(共60分)21.(16分)计算(1) -26-(-15) (2)(+7)+(-4)-(-3)-14(3)(-3)×31÷(-2)×(-21) (4)-(3-5)+32×(-3)22.解方程(本题8分)(1)x+3x= -12 (2)3x+7=32-2x23.(6分)将下列各数在数轴上表示出来,并用“<”连接:-22, -(-1), 0,3- , -2.524.(6分)若a 是绝对值最小的数,b 是最大的负整数。

2011年11月七上数学期中考试试题和答案

2011年11月七上数学期中考试试题和答案

2011--2012学年度第一学期初一年级数学期中练习(考试时间:90分钟 满分:100分)班级_______ 姓名________________ 分数一、选择题(本大题共10小题,每小题3分,共30分,在每小题列出的四个选项中,只有一项正确,请把正确答案填在表格中相应位置) 题号 1 2 3 4 5 6 7 8 9 10 答案1、计算33--的值为( ) A .0 B .6 C .6- D .32、下列为同类项的一组是( ) A .a ab 7与 B .2xy -与241yx C .3x 与32 D .7与3π- 3、在10,31,2,6.0|,5|,0,107-----中负数的个数有( ) A .3 B .4 C .5 D .64、在代数式221,,0,5,,,33ab abc x y x π---中,单项式有( ) A. 3个 B. 4个 C. 5个 D. 6个 5、若A 和B 都是六次多项式,则A+B 一定是( ) A. 12次多项式 B. 6次多项式6、若0)12(|21|2=++-y x ,则22y x +的值是( ) A .0 B .21 C .41D .17、我国最长的河流长江全长约6300千米,用科学计数法表示为( )A .2103.6⨯千米B .21063⨯千米C .3103.6⨯千米D .4103.6⨯千米8、如图,数轴上的两个点A 、B 所表示的数分别是b a ,,在b a ab b a b a --+,,,中,是正数的有( ) A .1个 B .2个 C .3个 D .4个9、数a 的近似数为1.50,那么a 的真实值的范围是( ). A .1.495<a <1.505 B ≤a <1.505 C .1.45<a <1.55 D ≤a10、若232⨯-=a ,2)32(⨯-=b ,2)32(⨯-=c ,则下列关系中正确的是( ) A.c b a >> B.a c b >>; C. c a b >> D. b a c >>二、填空题:本大题共10小题,每小题2分,共20分。

2011学年七年级(上)数学期中试卷

2011学年七年级(上)数学期中试卷

2011学年七年级(上)数学期中试卷温馨提示:(答卷时间为90分钟,满分为100分)一、选择题(每小题3分,共30分)1、有理数—3的倒数是 ( )A 、B 、3C 、-D 、-313132、神州七号飞船总重量7760000克,保留两个有效数字,用科学计数法表示为A 、克B 、克C 、克D 、 710776.0⨯51077.6⨯6108.7⨯克6107.7⨯3、把式为写成省略加号的和的形)3()7()4(6-+--+-( )A.6-4+7+3B.6+4-7-3C.6-4+7-3D.6-4-7+34、下列说法中正确的是( )A .两个数的和必大于每一个加数B .零减去一个数仍是这个数C .零除以任何数都为零D .互为相反数的两个数和为05、实数在数轴上对应点的位置如图所示,则下列结论正确的是 a b ,( )AB 0a b +>0a b -<CD 0ab >0a b <6、在,π,0,,0.3,,0.1010010001中,无理数的个数有 722-2-49-( )A 、1个B 、 2个C 、3个D 、 4个7、现定义两种运算“” “”。

对于任意两个整数,,,则6⊕*1a b a b ⊕=+-1a b a b *=⨯-【8(35)】的结果是 ⊕*⊕( )A 、60B 、70C 、112D 、698、的平方根是 16( )A 、4B 、±4C 、±2D 、 29、下列各组数中,相等的一组是 ( )A .(-2)4和 |-2|4B .(-2)4和-24C .(-2)3和 |-2|3D .(-2)4和-(-2)4 0a 1-0(第5题图)A C P D B10、根据如图所示的(1),(2),(3)三个图所表示的规律,依次下去第n 个图中平行四边形的个数是 ( )A .3nB .3(1)n n +C .6nD .6(1)n n +二、填空题(每小题3分,共30分)11、如果℃表示零上℃,则零下℃表示为 .7+7512、-3的相反数是 ,绝对值是 ;-32= .13、单项式-的系数是_____,次数是_____。

【2011官方推荐】初一数学上册期中考试试卷及答案

【2011官方推荐】初一数学上册期中考试试卷及答案

【2011官方推荐】初一数学上册期中考试试卷及答案七年级数学期中调考试卷一、选一选 (本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)11(的绝对值是( )( ,211 (A) (B) (C)2 (D) -2 ,222(武汉长江二桥是世界上第一座弧线形钢塔斜拉桥,该桥全长16800m,用科学记数法表示这个数为( ). 4343(A)1.68×10m (B)16.8×10 m (C)0.168×10m (D)1.68×10m3(如果收入15元记作+15元,那么支出20元记作( )元.(A)+5 (B)+20 (C)-5 (D)-2012234(有理数,,, ,-(-1),中,其中等于1的个数是( ). ,1(1),(1),,1,,1(A)3个 (B)4个 (C)5个 (D)6个5(已知p与q互为相反数,且p?0,那么下列关系式正确的是( )(q(A) (B) ,1 (C) (D) pq.1,pq,,0pq,,0p6(方程5-3x=8的解是( )(1313(A)x=1 (B)x=-1 (C)x= (D)x=- 337(下列变形中, 不正确的是( ).(A) a,(b,c,d),a,b,c,d (B) a,(b,c,d),a,b,c,d(C) a,b,(c,d),a,b,c,d (D) a,b,(,c,d),a,b,c,d(如图,若数轴上的两点A、B表示的数分别为a、b,则下列结论正确的是( )( 8(A) b,a>0(B) a,b>0(C) ab,0(D) a,b>09(按括号内的要求,用四舍五入法,对1022.0099取近似值, 其中错误的是( ). B A 3(A)1022.01(精确到0.01) (B)1.0×10(保留2个有效数字) 1 a 0b ,1(C)1020(精确到十位) (D)1022.010(精确到千分位)10(“一个数比它的相反数大-4”,若设这数是x,则可列出关于x的方程为( ).(A)x=-x+4 (B)x=-x+(-4) (C)x=-x-(-4) (D)x-(-x)=4ababa7a711. 下列等式变形:?若,则;?若,则;?若,则;?若,,,,,ab,ab,47ab,b4b4xxxx则.其中一定正确的个数是( ). 47ab,(A)1个 (B)2个 (C)3个 (D)4个112.已知、互为相反数,、互为倒数,等于-4的2次方,则式子的值为( )( acxdb()cdabxx,,,2(A)2 (B)4 (C)-8 (D)8二、填一填, 看看谁仔细(本大题共4小题, 每小题3分, 共12分, 请将你的答案写在“_______”处)1小的整数: . 13(写出一个比,214(已知甲地的海拔高度是300m,乙地的海拔高度是,50m,那么甲地比乙地高____________m(15(十一国庆节期间,吴家山某眼镜店开展优原价: 元惠学生配镜的活动,某款式眼镜的广告如图,请你为广告牌补上原价( 国庆节8折优惠,现价:160元16(小方利用计算机设计了一个计算程序,输入和输出的数据如下表:输入… 1 2 3 4 5 …12345 输出... (25101726)那么,当输入数据为8时,输出的数据为 (三、解一解, 试试谁更棒(本大题共9小题,共72分)1310317((本题10分)计算(1) (2) (,1),2,(,2),4(1)(48),,,,64解: 解:1118((本题10分)解方程(1) (2) 37322xx,,,13,,,xx26解: 解:19((本题6分)某工厂一周计划每日生产自行车100辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加的车辆数记为正数,减少的车辆数记为负数):星期一二三四五六日增减/辆 -1 +3 -2 +4 +7 -5 -10(1) 生产量最多的一天比生产量最少的一天多生产多少辆?(3分)(2) 本周总的生产量是多少辆?(3分)解:20((本题7分)统计数据显示,在我国的座城市中,按水资源情况可分为三类:暂不缺水城市、一般缺水664城市和严重缺水城市(其中,暂不缺水城市数比严重缺水城市数的3倍多52座,一般缺水城市数是严重2缺水城市数的倍(求严重缺水城市有多少座,解:21. (本题9分)观察一列数:1、2、4、8、16、…我们发现,这一列数从第二项起,每一项与它前一项的比都等于2.一般地,如果一列数从第二项起,每一项与它前一项的比都等于同一个常数,这一列数就叫做等比数列,这个常数就叫做等比数列的公比.(1)等比数列5、-15、45、…的第4项是_________.(2分)2(2)如果一列数aaaa,,,是等比数列,且公比为.那么有:aaq,,aaqaqqaq,,,(),q123421321123aaqaqqaq,,,() 4311则:= ((用与的式子表示)(2分) aaq51(3)一个等比数列的第2项是10,第4项是40,求它的公比. (5分)解:22((本题8分)两种移动电话记费方式表全球通神州行 (1)一个月内本地通话多少分钟时,两种通讯方式的费用相同,(5分) 月租费 50元/分 0 (2)若某人预计一个月内使用本地通话费180元,则应该选择哪0(40元/本地通话费 0(60元/分种通讯方式较合算,(3分) 分解: 23((本题10分)关于x的方程与的解互为相反数( xmx,,,,2342,,mx(1)求m的值;(6分)(2)求这两个方程的解((4分)解:24((本题12分)如图,点A从原点出发沿数轴向左运动,同时,点B也从原点出发沿数轴向右运动,3秒后,两点相距15个单位长度.已知点B的速度是点A的速度的4倍(速度单位:单位长度/秒).(1)求出点A、点B运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;(4分)(2)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动,几秒时,原点恰好处在点A、点B的正中间,(4分)解:(3)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动时,另一点C同时从B点位置出发向A点运动,当遇到A点后,立即返回向B点运动,遇到B点后又立即返回向A点运动,如此往返,直到B点追上A点时,C点立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始运动到停止运动,行驶的路程是多少个单位长度,(4分)解:一、选择题(每题3分,共30分)1、若规定向东走为正,那么-8米表示( )A、向东走8米B、向南走8米C、向西走8米D、向北走8米2、代数式(a-b)2/c的意义是( )A、a与b的差的平方除cB、a与b的平方的差除cC、a与b的差的平方除以cD、a与b 的平方的差除以c3、零是( )A、正数B、奇数C、负数D、偶数4、在一个数的前面加上一个―—‖号,就可以得到一个( )A、负数B、一个任何数C、原数的相反数D、非正数5、如果ab=0,那么一定有( )A、a=b=0 B a=0 C a,b至少有一个为0 D a,b至少有一个为06、在下列各数中是负数的是( )A、,(,1,2) B ,|-1/3|C –[+(-1/5)]D |-1/6|7、下面说法中正确是的有( )(1)一个数与它的绝对值的和一定不是负数。

人教版七年级上册期中考试数学试卷及详细答案解析(共5套)

人教版七年级上册期中考试数学试卷及详细答案解析(共5套)

人教版七年级上册期中考试数学试卷(一)一、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分)1.水位上升30cm记作+30cm,那么﹣16cm表示.2.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃.则月球表面昼夜的温差为℃.3.用“<”“=”或“>”填空:﹣(﹣1)﹣|﹣1|.4.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05毫升,小明同学在洗手后,没有把水龙头拧紧,当小明离开4小时后水龙头滴下的水用科学记数法表示为毫升.5.近似数2.30万精确到位.6.如果一个负数的平方等于它的相反数,那么这个数是.7.如图所示的日历中,任意圈出一竖列相邻的三个数,设中间一个数为a,则这三个数之和为(用含a的式子表示)日一二三四五六1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30 318.若x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,则﹣p= .9.m、n互为相反数,x、y互为负倒数(乘积为﹣1的两个数),则(m+n)﹣2010﹣2010xy= .10.计算(a+3a+5a+…+2009a)﹣(2a+4a+6a+…+2010a)= .二、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的)11.下列各组数中,互为相反数的有()①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23.A.④B.①②C.①②③D.①②④12.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.913.下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有()A.4个B.3个C.2个D.1个14.下列说法正确的是()①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大.A.1个B.2个C.3个D.4个15.下列各式中,是二次三项式的是()A.B.32+3+1 C.32+a+ab D.x2+y2+x﹣y16.若﹣3xy2m与5x2n﹣3y8的和是单项式,则m、n的值分别是()A.m=2,n=2 B.m=4,n=1 C.m=4,n=2 D.m=2,n=317.计算(﹣1)2n+(﹣1)2n+1的值是()A.2 B.﹣2 C.±2 D.018.近似数4.50所表示的准确值a的取值范围是()A.4.495≤a<4.505 B.4040≤a<4.60C.4.495≤a≤4.505 D.4.500≤a<4.505619.下面用数学语言叙述﹣b,其中表达不正确的是()A.比a的倒数小b的数B.1除以a的商与b的绝对值的差C.1除以a的商与b的相反数的和D.b与a的倒数的差的相反数20.若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.计算(1)(+3.5)﹣(1.4)﹣(2.5)+(﹣4.6)(2)﹣22÷(﹣4)3+|0.8﹣1|×(2)2;(3)[2﹣(+﹣)×24]÷5×(﹣1)2009(4)x﹣2( x+1 )+3x;(5)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2);(6)4(x2﹣5x)﹣5(2x2+3x)22.在数轴上表示下列各数,并按从小到大的顺序用“<”将这些数连接起来:2.5,﹣2.5,,0,.23.根据如图所示的数轴,解答下面问题(1)分别写出A、B两点所表示的有理数;(2)请问A、B两点之间的距离是多少?(3)在数轴上画出与A点距离为2的点(用不同于A、B的其它字母表).24.化简求值:已知|a﹣4|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]+4a2b 的值.25.如图,梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40.(π取3)(1)用式子表示图中阴影部分的面积;(2)当a=10时,求阴影部分面积的值.26.振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时间0.02秒,则共用时间多少秒?参考答案与试题解析一、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分)1.水位上升30cm记作+30cm,那么﹣16cm表示水位下降了16cm .【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“正”和“负”相对,所以若水位上升30cm记作+30cm,那么﹣16cm表示水位下降了16cm.故答案为:水位下降了16cm.2.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃.则月球表面昼夜的温差为310 ℃.【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:白天,阳光垂直照射的地方温度高达+127℃,夜晚,温度可降至﹣183℃,所以月球表面昼夜的温差为:127℃﹣(﹣183℃)=310℃.故答案为:310℃.3.用“<”“=”或“>”填空:﹣(﹣1)>﹣|﹣1|.【考点】有理数大小比较.【分析】先依据相反数和绝对值的性质化简各数,然后进行比较即可.【解答】解:﹣(﹣1)=1,﹣|﹣1|=﹣1.∵1>﹣1,∴﹣(﹣1)>﹣|﹣1|.故答案为:>.4.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05毫升,小明同学在洗手后,没有把水龙头拧紧,当小明离开4小时后水龙头滴下的水用科学记数法表示为 1.44×103毫升.【考点】科学记数法—表示较大的数.【分析】首先把4小时化为秒,再用时间×0.05×2计算可得答案.【解答】解:0.05×2×4×3600=1440=1.44×103,故答案为:1.44×103.5.近似数2.30万精确到百位.【考点】近似数和有效数字.【分析】近似数2.30万精确到0.01万位,即百位.【解答】解:近似数2.30万精确到百位.故答案为百.6.如果一个负数的平方等于它的相反数,那么这个数是﹣1 .【考点】有理数的乘方;相反数.【分析】设这个数为x(x<0),由于一个负数的平方等于它的相反数得到x2=﹣x,解得x=0或x=﹣1,因此这个数只能为﹣1.【解答】解:设这个数为x(x<0),根据题意得x2=﹣x,x(x+1)=0,∴x=0或x=﹣1,∴这个数为﹣1.故答案为﹣1.7.如图所示的日历中,任意圈出一竖列相邻的三个数,设中间一个数为a,则这三个数之和为3a (用含a的式子表示)日一二三四五六1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30 31【考点】列代数式.【分析】认真观察日历中,竖列相邻的三个数之间的规律,问题即可解决.【解答】解:任意圈出一竖列相邻的三个数,设中间一个数为a,则另外两个数为:a﹣7,a+7,∴这三个数之和=a+a﹣7+a+7=3a.故答案为3a.8.若x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,则﹣p= ﹣5 .【考点】多项式.【分析】根据单项式的系数和次数的定义,多项式的定义求解.【解答】解:∵x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,∴﹣p=﹣5.9.m、n互为相反数,x、y互为负倒数(乘积为﹣1的两个数),则(m+n)﹣2010﹣2010xy= 0 .【考点】有理数的混合运算;相反数;倒数.【分析】利用相反数,负倒数的定义求出m+n,xy与的值,代入原式计算即可求出值.【解答】解:根据题意得:m+n=0,xy=﹣1,即=﹣1,则原式=0﹣2010+2010=0.故答案为:010.计算(a+3a+5a+…+2009a)﹣(2a+4a+6a+…+2010a)= ﹣1005a .【考点】整式的加减.【分析】首先去括号,然后再把化成(a﹣2a)+(3a﹣4a)+(5a﹣6a)+…+,再合并即可.【解答】解:原式=a+3a+5a+…+2009a﹣2a﹣4a﹣6a﹣…﹣2010a,=(a﹣2a)+(3a﹣4a)+(5a﹣6a)+…+,=﹣a+(﹣a)+(﹣a)+(﹣a)+…+(﹣a),=﹣1005a,故答案为:﹣1005a.二、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的)11.下列各组数中,互为相反数的有()①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23.A.④B.①②C.①②③D.①②④【考点】有理数的乘方;相反数;绝对值.【分析】根据a n表示n个a相乘,而﹣an表示an的相反数,而(﹣a)2n=a2n,(﹣a)2n+1=﹣a2n+1(n是整数)即可对各个选项中的式子进行化简,然后根据相反数的定义即可作出判断.【解答】解:①﹣(﹣2)=2,﹣|﹣2|=﹣2,故互为相反数;②(﹣1)2=1,﹣12=﹣1,故互为相反数;③23=8,32=9不互为相反数;④(﹣2)3=﹣8,﹣23=﹣8,相等,不是互为相反数.故选B.12.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.9【考点】有理数的乘方.【分析】先求出(﹣3)2的值,∵32=9,(﹣3)2=9,可求出a的值.【解答】解:∵a2=(﹣3)2=9,且(±3)2=9,∴a=±3.故选C.13.下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有()A.4个B.3个C.2个D.1个【考点】单项式.【分析】根据单项式的定义进行解答即可.【解答】解: a2b2,是数与字母的积,故是单项式;,,a2﹣2ab+b2中是单项式的和,故是多项式;﹣25是单独的一个数,故是单项式.故共有2个.故选C.14.下列说法正确的是()①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大.A.1个B.2个C.3个D.4个【考点】有理数大小比较;数轴.【分析】根据实数的分类以及绝对值的性质即可作出判断.【解答】解:①最大的负整数是﹣1,正确;②数轴上表示数2和﹣2的点到原点的距离相等,正确;③当a≤0时,|a|=﹣a成立,正确;④a+5一定比a大,正确.故选D15.下列各式中,是二次三项式的是()A.B.32+3+1 C.32+a+ab D.x2+y2+x﹣y【考点】多项式.【分析】由于多项式次数是多项式中次数最高的项的次数,项数是多项式中所有单项式的个数,由此可确定所有答案的项数和次数,然后即可作出选择.【解答】解:A、a2+﹣3是分式,故选项错误;B、32+3+1是常数项,可以合并,故选项错误;C、32+a+ab是二次三项式,故选项正确;D、x2+y2+x﹣y是二次四项式,故选项错误.故选C.16.若﹣3xy2m与5x2n﹣3y8的和是单项式,则m、n的值分别是()A.m=2,n=2 B.m=4,n=1 C.m=4,n=2 D.m=2,n=3【考点】解二元一次方程组;同类项.【分析】两个单项式的和为单项式,则这两个单项式是同类项再根据同类项的定义列出方程组,即可求出m、n的值.【解答】解:由题意,得,解得.故选C.17.计算(﹣1)2n+(﹣1)2n+1的值是()A.2 B.﹣2 C.±2 D.0【考点】有理数的乘方.【分析】根据有理数乘方的含义,得(﹣1)2n+1=﹣1,(﹣1)2n=1,再计算求和即可.【解答】解:(﹣1)2n+(﹣1)2n+1=1+(﹣1)=0.故选D.18.近似数4.50所表示的准确值a的取值范围是()A.4.495≤a<4.505 B.4040≤a<4.60C.4.495≤a≤4.505 D.4.500≤a<4.5056【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数4.50所表示的准确值a的取值范围是4.495≤a<4.505.故选A.19.下面用数学语言叙述﹣b,其中表达不正确的是()A.比a的倒数小b的数B.1除以a的商与b的绝对值的差C.1除以a的商与b的相反数的和D.b与a的倒数的差的相反数【考点】代数式.【分析】根据代数式,可得代数式的表达意义.【解答】解:用数学语言叙述﹣bA、比a的倒数小b的数,故A正确;B、1除以a的商与b的绝对值的差,故B错误;C、1除以a的商与b的相反数的和,故C正确;D、b与a的倒数的差的相反数,故D正确;故选:B.20.若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能【考点】有理数的乘法;有理数的加法.【分析】根据有理数的加法和有理数的乘法运算法则进行判断即可.【解答】解:∵ab<0,∴a、b异号,∵a+b<0,∴负数的绝对值较大,综上所述,a、b异号且负数的绝对值较大.故选B.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.计算(1)(+3.5)﹣(1.4)﹣(2.5)+(﹣4.6)(2)﹣22÷(﹣4)3+|0.8﹣1|×(2)2;(3)[2﹣(+﹣)×24]÷5×(﹣1)2009(4)x﹣2( x+1 )+3x;(5)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2);(6)4(x2﹣5x)﹣5(2x2+3x)【考点】整式的加减;有理数的混合运算.【分析】利用实数的运算法则和整式的运算法则即可求出答案.【解答】解:(1)原式=3.5﹣2.5﹣1.4﹣4.6=1﹣6=﹣5;(2)原式=﹣4÷(﹣64)+0.2×=+=;(3)原式=[﹣(9+4﹣18)]÷5×(﹣1)=÷5×(﹣1)=﹣;(4)原式=x﹣2x﹣2+3x=2x﹣2;(5)原式=3x2+2xy﹣4y2﹣3xy+4y2﹣3x2=﹣xy;(6)原式=4x2﹣20x﹣10x2﹣15x=﹣6x2﹣35x;22.在数轴上表示下列各数,并按从小到大的顺序用“<”将这些数连接起来:2.5,﹣2.5,,0,.【考点】有理数大小比较;数轴.【分析】先在数轴上表示出各数,再按照从左到右的顺序用“<”连接起来即可.【解答】解:各点在数轴上的位置如图所示:故﹣2.5<﹣<0<1<2.5.23.根据如图所示的数轴,解答下面问题(1)分别写出A、B两点所表示的有理数;(2)请问A、B两点之间的距离是多少?(3)在数轴上画出与A点距离为2的点(用不同于A、B的其它字母表).【考点】数轴.【分析】(1)读出数轴上的点表示的数值即可;(2)根据两点的距离公式,即可求出A、B两点之间的距离;(3)与点A的距离为2的点有两个,一个向左,一个向右.【解答】解:(1)根据所给图形可知A:1,B:﹣2;(2)依题意得:AB之间的距离为:1+2=3;(3)设这两点为C、D,则这两点为C:1+2=3,D:1﹣2=﹣1.如图所示:24.化简求值:已知|a﹣4|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]+4a2b 的值.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】根据非负数的性质,可求出a、b的值,然后再去括号、合并同类项,对原代数式进行化简,最后把a,b的值代入计算即可.【解答】解:∵|a﹣4|+(b+1)2=0,∴a=4,b=﹣1;原式=5ab2﹣(2a2b﹣4ab2+2a2b)+4a2b=5ab2﹣4a2b+4ab2+4a2b=9ab2=36.25.如图,梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40.(π取3)(1)用式子表示图中阴影部分的面积;(2)当a=10时,求阴影部分面积的值.【考点】列代数式;代数式求值.【分析】(1)根据梯形的面积=(上底+下底)×高,阴影部分的面积等于梯形的面积减去半圆的面积,列式进行计算即可得解;(2)把a=10代入(1)中的代数式进行计算即可得解.【解答】解:(1)∵梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40,半圆的直径为4a,∴阴影部分的面积=(a2+2a﹣10+3a2﹣5a﹣80)×40﹣π()2,=80a2﹣60a﹣1800﹣2a2π,=80a2﹣60a﹣1800﹣2a2×3,=74a2﹣60a﹣1800;(2)当a=10时,74a2﹣60a﹣1800=74×102﹣60×10﹣1800=5000.26.振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时间0.02秒,则共用时间多少秒?【考点】正数和负数.【分析】(1)根据有理数的加法,可得答案;(2)根据一次用的时间乘以次数,可得答案.【解答】解:(1)+10+(﹣9)+8+(﹣6)+7.5+(﹣6)+8+(﹣7)=5.5毫米,答:振子停止时所在位置距A点5.5毫米;(2)0.02×(10+|﹣9|+8+|﹣6|+7.5+|﹣6|+8+|﹣7|)=0.02×61.5=1.23秒.答:共用时间1.23秒.人教版七年级上册期中考试数学试卷(二)一.精心选一选(本大题共l0小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷Il的答题栏内.相信你一定能选对!)1.的绝对值是()A.B.﹣C.D.﹣2.一只蜗牛从深度为10米的井底向上爬3米,然后向下爬1米,接着又向上爬3米,然后又向下爬I米,则此时蜗牛离井口的距离为()A.4米B.5米C.6米D.7米3.下列说法中正确的是()A.整数都是非负数B.带有负号的数一定是负数C.分数都是有理数D.相反数是它本身的数是0和14.2016年10月10日,山东移动4G用户突破3000万,3000万用科学记数法可表示为()A.0.3×108B.3×107C.3×106D.3×1035.若有理数a,b满足a+b<0,ab<0,则()A.a,b都是正数B.a,b都是负数C.a,b中一个正数,一个负数,且正数的绝对值大于负数的绝对值D.a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值6.下列说法中正确的个数是()①1是单项式;②单项式﹣的系数是﹣1,次数是2;③多项式x2+x﹣1的常数项是1;④多项式x2+2xy+y2的次数是2.A.1个B.2个C.3个D.4个7.与﹣a2b是同类项的是()A.2ab2B.﹣3a2C.ab D.8.多项式x+2y与2x﹣y的差是()A.﹣x+3y B.3x+y C.﹣x+y D.﹣x﹣y9.已知a﹣2b+1的值是﹣l,则(a﹣2b)2+2a﹣4b的值是()A.﹣4 B.﹣l C.0 D.210.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A.393 B.397 C.401 D.405二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.一个数的倒数是它本身,这个数是.12.由四舍五入法得到的近似数10.560精确到位.13.若|x﹣1|+(y+2)2=0,则(x+y)2017= .14.请写出一个只含有想x,y两个字母的三次四项式.15.如图,半圆的半径为r,直角三角形的两条直角边分别为a,b,则图中阴影部分的面积是.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程)16.计算题(1)(﹣2)×(﹣5)+|﹣3|÷(2)﹣23×÷(﹣)2(3)(2﹣1﹣)÷(﹣)17.如图是一个梯形硬纸板,上底为a,下底为2a,一腰为a,另一腰为b(其中b>a),如图所示,用两张同样的梯形纸板可以拼成一个大的梯形,也可以拼成一个长方形.(1)请在方框中画出你拼出的大梯形和长方形.(2)计算拼成的大梯形和长方形的周长.18.化简:5x+(2x+y)﹣(x﹣4y).(2)先化简,再求值:(2x2﹣1+x)﹣2(x﹣x2﹣3),其中x=﹣.19.已知:M=x3﹣3xy+2x+1,N=﹣3x+xy,求多项式3M+2N,并计算当x=﹣1,y=时,3M+2N的值.20.一辆货车从仓库0出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A,B,C,D,E,最后回到仓库0.货车行驶的记录(单位:千米)如下:+1,+3,﹣6,﹣l,﹣2,+5.请问:(1)请以仓库0为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)试求出该货车共行驶了多少千米?(3)如果货车运送的水果以l00千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:+50,﹣l5,+25,﹣l0,﹣15,则该货车运送的水果总重量是多少千克?21.小明和小红在一起玩数学小游戏,他们规定:a*b=a2﹣2ab+b2;=a+b﹣c; =ad﹣bc.请你和他们一起按规定计算:(1)2*(﹣5)的值;(2)(3).22.我国出租车的收费标准因地而异,济宁市规定:起步价为6元,3千米之后每千米1.4元;济南市规定:起步价8元,3千米之后每千米1.2元.(1)求济宁的李先生乘出租车2千米,5千米应付的车费;(2)写出在济宁乘出租车行x千米时应付的车费;(3)当行驶路程超过3千米,不超过l3千米时,求在济南、济宁两地坐出租车的车费相差多少?(4)如果李先生在济南和济宁乘出租车所付的车费相等,试估算出李先生乘出租车多少千米(直接写出答案,不必写过程).参考答案与试题解析一.精心选一选(本大题共l0小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷Il的答题栏内.相信你一定能选对!)1.的绝对值是()A.B.﹣C.D.﹣【考点】绝对值.【分析】根据正数的绝对值等于它本身即可求解.【解答】解:的绝对值是.故选A.【点评】本题主要考查绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.一只蜗牛从深度为10米的井底向上爬3米,然后向下爬1米,接着又向上爬3米,然后又向下爬I米,则此时蜗牛离井口的距离为()A.4米B.5米C.6米D.7米【考点】有理数的减法;有理数的加法.【专题】常规题型.【分析】先定义向上爬为正,向下爬为负,用井深减去各个数就得到此时蜗牛离井口的距离.【解答】解:向上爬记作“+”,往下爬记作“﹣”蜗牛离井口的距离为10﹣3﹣(﹣1)﹣3﹣(﹣1)=10﹣3+1﹣3+1=6(米)故选C.【点评】本题考查了有理数的加减运算.计算有理数的加减,先把减法转化为加法,可以运用加法的交换律和结合律.3.下列说法中正确的是()A.整数都是非负数B.带有负号的数一定是负数C.分数都是有理数D.相反数是它本身的数是0和1【考点】相反数;有理数.【分析】根据相反数的概念解答即可.【解答】解:A、整数有负整数、0、正整数,故A错误;B、小于零的数是负数,故B错误;C、分数都是有理数,故C正确;D、相反数是它本身的数是非负数,故D错误;故选:C.【点评】本题考查了相反数的意义:只有符号不同的两个数互为相反数,0的相反数是0.4.2016年10月10日,山东移动4G用户突破3000万,3000万用科学记数法可表示为()A.0.3×108B.3×107C.3×106D.3×103【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3000万用科学记数法可表示为3×107,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.若有理数a,b满足a+b<0,ab<0,则()A.a,b都是正数B.a,b都是负数C.a,b中一个正数,一个负数,且正数的绝对值大于负数的绝对值D.a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值【考点】有理数的乘法;正数和负数;绝对值;有理数的加法.【分析】两有理数相乘,同号得正,异号得负,因为ab<0,所以a、b异号,再根据a+b<0进一步判定负数的绝对值大于正数的绝对值.【解答】解:∵ab<0,∴a、b异号,∵a+b<0,∴负数的绝对值大于正数的绝对值.故选:D.【点评】考查了有理数的乘法,有理数的加法,本题主要利用两有理数相乘,同号得正,异号得负.6.下列说法中正确的个数是()①1是单项式;②单项式﹣的系数是﹣1,次数是2;③多项式x2+x﹣1的常数项是1;④多项式x2+2xy+y2的次数是2.A.1个B.2个C.3个D.4个【考点】多项式;单项式.【分析】根据单项式和多项式的系数、次数、项数的定义可得.【解答】解:①单独的数字或字母是单项式,正确;②单项式﹣的系数是﹣,次数是2,错误;③多项式x2+x﹣1的常数项是﹣1,错误;④多项式x2+2xy+y2的次数是2,正确;故选:B.【点评】本题主要考查单项式和多项式,熟练掌握单项式的系数、次数和多项式的项数、次数、常数项等概念是关键.7.与﹣a2b是同类项的是()A.2ab2B.﹣3a2C.ab D.【考点】同类项.【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,结合选项进行判断.【解答】解:A、相同字母的指数不同不是同类项,故A错误;B、字母不同不是同类项,故B错误;C、相同字母的指数不同不是同类项,故C错误;D、字母相同,相同字母的指数相同,故D正确;故选:D.【点评】本题考查了同类项的定义,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.8.多项式x+2y与2x﹣y的差是()A.﹣x+3y B.3x+y C.﹣x+y D.﹣x﹣y【考点】整式的加减.【分析】根据题意对两个多项式作差即可.【解答】解:(x+2y)﹣(2x﹣y)=x+2y﹣2x+y=﹣x+3y故选(A)【点评】本题考查多项式运算,要注意多项式参与运算时,需要对该多项式添加括号.9.已知a﹣2b+1的值是﹣l,则(a﹣2b)2+2a﹣4b的值是()A.﹣4 B.﹣l C.0 D.2【考点】代数式求值.【分析】先化简条件得a﹣2b=﹣2,再将(a﹣2b)2+2a﹣4b整理,代值即可得出结论.【解答】解:∵a﹣2b+1的值是﹣l,∴a﹣2b+1=﹣1,∴a﹣2b=﹣2,∴(a﹣2b)2+2a﹣4b=(a﹣2b)2+2(a﹣2b)=4+2×(﹣2)=0,故选C.【点评】此题是代数式求值,主要考查了整式的加减、整体思想,整体代入是解本题的关键.10.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A.393 B.397 C.401 D.405【考点】规律型:图形的变化类.【分析】观察图形可知后面一个图形比前面一个图形多4个小正方形,所以可得规律为:第n个图形中共有4(n﹣1)+1个小正方形.【解答】解:由图片可知:规律为小正方形的个数=4(n﹣1)+1=4n﹣3.n=100时,小正方形的个数=4n﹣3=397.故选B.【点评】此题考查了规律型:图形的变化,是找规律题,目的是培养同学们观察、分析问题的能力.注意由特殊到一般的分析方法,此题的规律为:第n个图形中共有4(n﹣1)+1个小正方形.二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.一个数的倒数是它本身,这个数是1或﹣1 .【考点】倒数.【专题】计算题.【分析】根据倒数的定义得倒数等于它本身只有1和﹣1.【解答】解:1或﹣1的倒数等于它本身.故答案为1或﹣1.【点评】本题考查了倒数:a的倒数为.12.由四舍五入法得到的近似数10.560精确到千分位.【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数10.560精确到千分位.故答案为千分位.【点评】本题考查了近似数和有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.13.若|x﹣1|+(y+2)2=0,则(x+y)2017= ﹣1 .【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】首先根据非负数的性质:几个非负数的和等于0,则每个数等于0,从而列方程求得x和y的值,进而求解.【解答】解:根据题意得:x﹣1=0,y+2=0,解得:x=1,y=﹣2,则原式=(1﹣2)2017=﹣1.故答案是:﹣1.【点评】本题考查了非负数的性质:几个非负数的和等于0,则每个数等于0,理解性质是关键.14.请写出一个只含有想x,y两个字母的三次四项式x3+xy+y+1(答案不唯一).【考点】多项式.【分析】由多项式的定义即可求出答案.【解答】解:故答案为:x3+xy+y+1(答案不唯一)【点评】本题考查多项式的概念,属于基础题型.15.如图,半圆的半径为r,直角三角形的两条直角边分别为a,b,则图中阴影部分的面积是πr2﹣ab .【考点】列代数式.【分析】利用大图形面积减去小图形面积即可求出答案.【解答】解:阴影部分面积=πr2﹣ab故答案为:πr2﹣ab【点评】本题考查列代数式,涉及圆面积公式,三角形面积公式.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程)16.计算题(1)(﹣2)×(﹣5)+|﹣3|÷(2)﹣23×÷(﹣)2(3)(2﹣1﹣)÷(﹣)【考点】有理数的混合运算.【专题】常规题型;实数.【分析】(1)原式先计算乘除运算,再计算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算即可得到结果;(3)原式利用除法法则变形,再利用乘法分配律计算即可得到结果.【解答】解:(1)原式=10+5=15;(2)原式=﹣8××=﹣8;(3)原式=(﹣+)×(﹣)=﹣3+2﹣=﹣1.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.如图是一个梯形硬纸板,上底为a,下底为2a,一腰为a,另一腰为b(其中b>a),如图所示,用两张同样的梯形纸板可以拼成一个大的梯形,也可以拼成一个长方形.(1)请在方框中画出你拼出的大梯形和长方形.(2)计算拼成的大梯形和长方形的周长.【考点】图形的剪拼;矩形的判定与性质;梯形.【分析】(1)直接利用已知图形进而拼凑出梯形与长方形;(2)直接利用已知图形得出其周长.【解答】解:(1)如图所示:;(2)大梯形的周长为:2a+4a+2b=6a+2b(cm),长方形的周长为:2(3a+a)=8a(cm).【点评】此题主要考查了图形的剪拼,正确得出符合题意的图形是解题关键.18.(1)化简:5x+(2x+y)﹣(x﹣4y).(2)先化简,再求值:(2x2﹣1+x)﹣2(x﹣x2﹣3),其中x=﹣.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】(1)原式去括号合并即可得到结果;(2)原式去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:(1)原式=5x+2x+y﹣x+4y=6x+5y;(2)原式=2x2﹣1+x﹣2x+2x2+6=4x2﹣x+5,当x=﹣时,原式=1++5=6.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.已知:M=x3﹣3xy+2x+1,N=﹣3x+xy,求多项式3M+2N,并计算当x=﹣1,y=时,3M+2N的值.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】把M与N代入3M+2N中,去括号合并得到最简结果,将x与y的值代入计算即可求出值.【解答】解:∵M=x3﹣3xy+2x+1,N=﹣3x+xy,∴3M+2N=3(x3﹣3xy+2x+1)+2(﹣3x+xy)=3x3﹣9xy+6x+3﹣6x+2xy=3x3﹣7xy+3,当x=﹣1,y=时,原式=﹣3++3=.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.20.一辆货车从仓库0出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A,B,C,D,E,最后回到仓库0.货车行驶的记录(单位:千米)如下:+1,+3,﹣6,﹣l,﹣2,+5.请问:(1)请以仓库0为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)试求出该货车共行驶了多少千米?(3)如果货车运送的水果以l00千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:+50,﹣l5,+25,﹣l0,﹣15,则该货车运送的水果总重量是多少千克?【考点】数轴;正数和负数.【分析】(1)根据数轴的三要素画出数轴,并根据题意在数轴上表示出A、B、C、D、E的位置;(2)求出行驶记录的数据的绝对值的和即可;(3)根据有理数的加法进行计算即可.【解答】解:(1如图所示:取1个单位长度表示1千米,;。

人教版七年级数学上册期中试卷及答案

人教版七年级数学上册期中试卷及答案

人教版七年级数学上册期中试卷及答案马上就要七年级数学期中考试了,有道是:天道筹勤!相信自己吧!希望你干自愿事,吃顺口饭,听轻松话,睡安心觉。

使自己保持良好平静的心态,不要太紧张,相信你的梦想会实现的!下面是店铺为大家精心推荐的人教版七年级数学上册期中试卷,希望能够对您有所帮助。

人教版七年级数学上册期中试题一、选择题(每小题3分,共30分.在每小题所给出的四个选项中,只有一项符合题意,把所选项前的字母代号填在答案栏中)1.我市某天的最高气温是7℃,最低气温是﹣1℃,那么这一天的最高气温比最低气温高( )A.6℃B.﹣6℃C.﹣8℃D.8℃2.在﹣2,﹣1,0,2这四个数中,最大的数是( )A.﹣2B.﹣1C.0D.23.a为有理数,则﹣|a|表示( )A.正数B.负数C.正数或0D.负数或04.一个几何体被一个平面所截后,得到一个七边形截面,则原几何体可能是( )A.六棱柱B.正方体C.长方体D.球5.一个数的立方根等于它本身,这个数是( )A.0B.1C.0或1D.0或±16.实数a,b在数轴上的位置如图所示,以下说法正确的是( )A.a+b=0B.b0 D.|b|<|a|7.如果2x3nym+4与﹣3x9y2n是同类项,那么m、n的值分别为( )A.m=﹣2,n=3B.m=2,n=3C.m=﹣3,n=2D.m=3,n=28.下列运算中正确的是( )A.4+5ab=9abB.6xy﹣xy=6C. =0D.3x2+4x3=7x59.a,b是有理数,它们在数轴上的对应点的位置如图所示,把a,﹣a,b,﹣b按照从小到大的顺序排列( )A.﹣b<﹣a10.如果|x﹣4|与(y+3)2互为相反数,则2x﹣(﹣2y+x)的值是( )A.﹣2B.10C.7D.6二、填空题(每小题3分,共15分)11.如图,若要使图中平面展开图折叠成正方体后,相对面上两个数之和为6,则x=__________,y=__________.12.﹣1.8的倒数是__________.13.若|a+1|+|b﹣2|=0,则a﹣b=__________.14.在数轴上距﹣1有2个单位长度的点所表示的数是__________.15.已知|x﹣1|+(y+2)2=0,则(x+y)2015=__________.三、解答题(共1小题,满分20分)16.计算.(1) ;(2) ;(3) ;(4)化简: .四.(每小题8分,共16分)17.一个几何体由几个大小相同的小立方块搭成,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,请分别画出从正面、左面看到的这个几何体的形状图.18.在数轴上表示下列各数的点,并用“<”连接各数:5、0、﹣2、、﹣5.自己画数轴.五、(19题9分,20题10分,共计19分)19.已知:A=3a2﹣,B=2a2+b+2b2﹣c2,且a与b互为相反数,|c|=2,若2A﹣3B+C=0,求C的值.20.某摩托车厂本周内计划每日生产300辆摩托车,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(增加的车辆数为正数,减少的车辆数为负数)星期一二三四五六日增减﹣5 +7 ﹣3 +4 +10 ﹣9 ﹣25(1)本周三生产了多少辆摩托车?(2)本周总生产量与计划生产量相比,是增加还是减少?(3)产量最多的一天比产量最少的一天多生产了多少辆?一、填空题(每小题4分,共20分)21.已知代数式的值为2,则代数式3x2﹣4x﹣7的值为__________.22.一个多项式A减去多项式2x2+5x﹣3,马虎同学将减号抄成了加号,计算结果是﹣x2+3x﹣7,那么这个多项式A减去多项式2x2+5x﹣3,正确的计算结果应该是__________.23.用“*”定义一种新运算:对于任意有理数a,b,都有a*b=ab﹣a2,例如,2*3=2×3﹣22=2,那么2*( )=__________.24.整数m为__________时,式子为整数.25.如图,下列图案均是长度相同的火柴按一定的规律拼搭而成:第1个图案需7根火柴,第2个图案需13根火柴,…,依此规律,第11个图案需__________根火柴.二、(本题10分)26.观察下列等式:第1个等式:a1= = ×(1﹣ );第2个等式:a2= = ×( ﹣ );第3个等式:a3= = ×( ﹣ );第4个等式:a4= = ×( ﹣ );…请解答下列问题:(1)按以上规律列出第5个等式:a5=__________;(2)用含有n的代数式表示第n个等式:an=__________=__________(n为正整数);(3)求a1+a2+a3+a4+…+a100的值.三、(本题10分)27.同学们,我们在本期教材的第一章《有理数》中曾经学习过绝对值的概念:一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|.实际上,数轴上表示数﹣3的点与原点的距离可记做|﹣3﹣0|:数轴上表示数﹣3的点与表示数2的点的距离可记作|﹣3﹣2|,那么,(Ⅰ) ①数轴上表示数3的点与表示数1的点的距离可记作__________②数轴上表示数a的点与表示数2的点的距离可记作__________③数轴上表示数a的点与表示数﹣3的点的距离可记作__________(Ⅱ)数轴上表示到数﹣2的点的距离为5的点有几个?并求出它们表示的数.(Ⅲ)根据(I)中②、③两小题你所填写的结论,请同学们利用数轴探究这两段距离之和的最小值,并简述你的思考过程.四、(本题10分)28.定义:如果10b=n,那么称b为n的劳格数,记为b=d(n).(1)根据劳格数的定义,可知:d(10)=1,d(102)=2,那么:d(103)=__________.(2)劳格数有如下运算性质:若m、n为正数,则d(mn)=d(m)+d(n);d( )=d(m)﹣d(n).根据运算性质,填空:=__________,若d(3)=0.477,则d(9)=__________,d(0.3)=__________.(3)下表中与x数对应的劳格数d(x)有且只有两个是错误的,请找出错误的劳格数并改正.x 1.5 3 5 6 8 9 12 27d(x) 3a﹣b+c 2a﹣b a+c 1+a﹣b﹣c 3﹣3a﹣3c 4a﹣2b 3﹣b﹣2c 6a﹣3b人教版七年级数学上册期中试卷参考答案一、选择题(每小题3分,共30分.在每小题所给出的四个选项中,只有一项符合题意,把所选项前的字母代号填在答案栏中)1.我市某天的最高气温是7℃,最低气温是﹣1℃,那么这一天的最高气温比最低气温高( )A.6℃B.﹣6℃C.﹣8℃D.8℃【考点】有理数的减法.【专题】应用题.【分析】用最高气温减去最低气温即可.【解答】解:7﹣(﹣1)=7+1=8℃.故选;D.【点评】本题主要考查的是有理数的减法,根据题意列出算式是解题的关键.2.在﹣2,﹣1,0,2这四个数中,最大的数是( )A.﹣2B.﹣1C.0D.2【考点】有理数大小比较.【分析】根据正数大于0,0大于负数,可得答案.【解答】解:﹣2<﹣1<0<2,故选:D.【点评】本题考查了有理数比较大小,正数大于0,0大于负数是解题关键.3.a为有理数,则﹣|a|表示( )A.正数B.负数C.正数或0D.负数或0【考点】非负数的性质:绝对值.【专题】分类讨论.【分析】由于a的符号不能确定,故应分a>0,a=0,a<0三种情况进行讨论.【解答】解:当a>0时,|a|=a,﹣|a|为负数;当a=0时,|a|=0,﹣|a|=0;当a<0时,|a|=﹣a,﹣|a|=a为负数.故选D.【点评】本题考查的是非负数的性质,在解答此题时要注意分类讨论.4.一个几何体被一个平面所截后,得到一个七边形截面,则原几何体可能是( )A.六棱柱B.正方体C.长方体D.球【考点】截一个几何体.【分析】分别得到几何体有几个面,再根据截面是七边形作出选择.【解答】解:∵球有一个曲面,长方体和正方体有6个面,六棱柱有8个面,∴只有六棱柱可能得到一个七边形截面.故选A.【点评】考查了截一个几何体,截面的形状随截法的不同而改变,一般为多边形或圆,也可能是不规则图形,一般的截面与几何体的几个面相交就得到几条交线,截面就是几边形,因此,若一个几何体有几个面,则截面最多为几边形.5.一个数的立方根等于它本身,这个数是( )A.0B.1C.0或1D.0或±1【考点】立方根.【专题】常规题型.【分析】根据特殊数的立方根直接找出,然后进行选择.【解答】解:立方根等于它本身是0或±1.故选D.【点评】本题考查了立方根的定义,熟练掌握立方根等于它本身的数是解题的关键.6.实数a,b在数轴上的位置如图所示,以下说法正确的是( )A.a+b=0B.b0 D.|b|<|a|【考点】实数与数轴.【专题】常规题型.【分析】根据图形可知,a是一个负数,并且它的绝对是大于1小于2,b是一个正数,并且它的绝对值是大于0小于1,即可得出|b|<|a|.【解答】解:根据图形可知:﹣2则|b|<|a|;故选:D.【点评】此题主要考查了实数与数轴,解答此题的关键是根据数轴上的任意两个数,右边的数总比左边的数大,负数的绝对值等于它的相反数,正数的绝对值等于本身.7.如果2x3nym+4与﹣3x9y2n是同类项,那么m、n的值分别为( )A.m=﹣2,n=3B.m=2,n=3C.m=﹣3,n=2D.m=3,n=2【考点】同类项.【分析】要使两个单项式同类项必须使其所含的字母相同且字母的指数也相同,观察可看出其所含的字母相同,则只要使其相同字母的指数相同.可得3n=9,m+4=2n,解方程即可求得.【解答】解:∵2x3nym+4与﹣3x9y2n是同类项,∴3n=9,m+4=2n,∴n=3,m=2,故选B.【点评】要使两个单项式成为同类项,只要使其满足同类项定义中的两个“相同”即可.8.下列运算中正确的是( )A.4+5ab=9abB.6xy﹣xy=6C. =0D.3x2+4x3=7x5【考点】合并同类项.【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,结合选项进行判断即可.【解答】解:A、4与5ab不是同类项,不能直接合并,故本选项错误;B、6xy﹣xy=5xy,原式计算错误,故本选项错误;C、计算正确,故本选项正确;D、3x2与4x3不是同类项,不能直接合并,故本选项错误;故选C.【点评】本题考查了合并同类项的法则,属于基础题,解答本题的关键是掌握合并同类项的法则.9.a,b是有理数,它们在数轴上的对应点的位置如图所示,把a,﹣a,b,﹣b按照从小到大的顺序排列( )A.﹣b<﹣a【考点】有理数大小比较.【分析】利用有理数大小的比较方法可得﹣a0>a进而求解.【解答】解:观察数轴可知:b>0>a,且b的绝对值大于a的绝对值.在b和﹣a两个正数中,﹣a因此,﹣b故选:C.【点评】有理数大小的比较方法:正数大于0;负数小于0;正数大于一切负数;两个负数,绝对值大的反而小.10.如果|x﹣4|与(y+3)2互为相反数,则2x﹣(﹣2y+x)的值是( )A.﹣2B.10C.7D.6【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【专题】计算题;整式.【分析】利用互为相反数两数之和为0列出关系式,根据非负数的性质求出x与y的值,原式去括号合并后代入计算即可求出值.【解答】解:∵|x﹣4| 与(y+3)2互为相反数,即|x﹣4|+(y+3)2=0,∴x=4,y=﹣3,则原式=2x+2y﹣x=x+2y=4﹣6=﹣2,故选A【点评】此题考查了整式的加减﹣化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.二、填空题(每小题3分,共15分)。

2011-2012学年度第一学期期中考试七年级数学

2011-2012学年度第一学期期中考试七年级数学

2011~2012学年度第一学期七年级期中考试(1)数 学 试 题(考试时间:100分钟,试卷总分:100分)一、选择题:本大题共10小题;每小题2分,共20分.在每小题给出的四个选项中,恰有一项....是符合题目要求的) 1.-3的相反数是( ) A.-3 B .3 C .-13 D .132.下列计算结果等于1 的是( )A .(2)(2)-+-B .(2)(2)---C .(2)(2)-÷-D .2(2)-⨯-3.把()()532--+--写成省略加号的和的形式,正确的是( )A .532++-B .532+--C .532---D .532-+-4.与3a 2b 是同类项的是( )A .a 2B .2abC .3ab 2D .4a 2b5.化简:)2(y x x --的结果是( )A .y x --B .y x +-C .y x -D .y x -36.单项式38ab π-的系数是( ) A .18 B .18- C .8π D .8π- 7.下列去括号正确的是( )A .x x x x 253)25(3++=-+;B .6)6(--=--x x .C .17)1(7--=+-x x x x ;D .83)8(3+=+x x .8.某市2009年元旦的最高气温为12℃,最低气温为-2℃,那么这天的最高气温比最低气温高 ( ) A . -14℃ B . -10℃ C .14℃ D .10℃9.现有一个两位数,个位数字为a ,十位数字为b ,则这个两位数可用代数式表示为( ) A . ab B .ba C .10a +b D .10b +a10.若0a b +=,则a 与b 的关系一定是( )A .0a b ==B .a 与b 不相等C .a 、b 异号D .a 、b 互为相反数二、填空题:本大题共8小题;每小题2分,共16分)11.计算:7(4)--= .12.用代数式表示:比x 的2倍小3的数是_____ ____.13.将258 000这个数用科学记数法表示为 .14.用正负数填空:小商店每天亏损20元,一周(按7天算)的利润是 元.15.用四舍五入法得到的近似数5.2×104,它精确到 位.16.飞机的无风航速为x 千米/时,风速为20千米/时,飞机逆风航行4小时的行程为 千米.17.当2-=a 时,则代数式)541(257a a --的值为___ ___. 18.礼堂第一排有a 个座位,后面每一排比前一排多b 个座位,那么第19排和第20排共有 个座位.三、解答题:本大题共8小题;共64分.解答时应写出文字说明、证明过程或演算步骤.19.(本题8分)计算:(1)15)7()18(12--+-- (2) 12)213141(⨯--20.(本题8分)计算:(1)15)3(4)3(23+-⨯--⨯ (2) 123)74()2(2--÷-+-21.(本题10分)化简: (1)2252435a ab ab a ---+ (2))53(3)22(2+--+-x x x22(本题6分)某书店举行图书促销会,每位促销人员以销售50本为基准,超过记为正,不足的记为负,其中10名促销人员的销售结果如下(单位:本):4,2,3,-7,-3,-8,3,4,8,-1.(1)这组促销人员的总销售量超过还是不足总销售基准?相差多少?(2)如销售图书每本的利润为2.7元,此次促销会所得总利润为多少元?(结果保留整数)23.(本题6分)求)3123()31(22122y x y x x +-+--的值,其中2,32-==y x .24(本题6分)一个四边形的周长是48 cm,已知第一条边的长是a cm ,第二条边长比第一条边长的3 倍还少2 cm ,第三条边长等于第一、第二条边长的和。

人教版七年级数学上册期中考试试卷及答案

人教版七年级数学上册期中考试试卷及答案

人教版七年级数学上册期中考试试卷及答案一、选择题(每小题3分;共33分)1、在-2错误!、+错误!、-3、2、0、4、5、-1中;负数有( )A、1个B、2个C、3个D、4个2、下列说法不正确の是( )A、到原点距离相等且在原点两旁の两个点所表示の数一定互为相反数B、所有の有理数都有相反数C、正数和负数互为相反数D、在一个有理数前添加“-”号就得到它の相反数3、| -2 | の相反数是()A、-错误!B、-2C、错误!D、24、如果ab<0且a>b;那么一定有()A、a>0;b>0B、a>0;b<0C、a<0;b>0D、a<0;b<05、如果a2=(-3)2;那么a等于()A、3B、-3C、9D、±36、23表示()A、2×2×2B、2×3C、3×3D、2+2+27、近似数4.50所表示の真值aの取值范围是()A、4.495≤a<4.505B、4040≤a<4.60C、4.495≤a≤4.505D、4.500≤a<4.50568、如果| a + 2 | + ( b-1)2 = 0;那么(a + b)2009の值是()A、- 2009B、2009C、- 1D、19、下列说法正确の是()A、- 2不是单项式B、- a表示负数C、错误!の系数是3D、x + 错误!+ 1 不是多项式10、已知一个数の平方等于它の绝对值;这样の数共有()A、1个B、2个C、3个D、4个11、下面用数学语言叙述代数式错误!- b ;其中表达不正确の是()A、比aの倒数小bの数B、1除以aの商与bの相反数の差C、1除以aの商与bの相反数の和D、b与aの倒数の差の相反数二、填空题(每小题3分;共30分)12、若x<0;则错误!= 。

13、水位上升30cm 记作+30cm;那么-16cm表示。

14、在月球表面;白天;阳光垂直照射の地方温度高达+127℃;夜间;温度可降至-183℃;则月球表面昼夜の温度差是℃。

人教版七年级数学上册期中试卷及答案

人教版七年级数学上册期中试卷及答案

人教版七年级数学上册期中试卷及答案马上就要七年级数学期中考试了,有道是:天道筹勤!相信自己吧!希望你干自愿事,吃顺口饭,听轻松话,睡安心觉。

使自己保持良好平静的心态,不要太紧张,相信你的梦想会实现的!下面是小编为大家精心推荐的人教版七年级数学上册期中试卷,希望能够对您有所帮助。

人教版七年级数学上册期中试题一、选择题(每小题3分,共30分.在每小题所给出的四个选项中,只有一项符合题意,把所选项前的字母代号填在答案栏中)1.我市某天的最高气温是7℃,最低气温是﹣1℃,那么这一天的最高气温比最低气温高( )A.6℃B.﹣6℃C.﹣8℃D.8℃A.﹣2B.﹣1C.0D.23.a为有理数,则﹣|a|表示( )A.正数B.负数C.正数或0D.负数或04.一个几何体被一个平面所截后,得到一个七边形截面,则原几何体可能是( )A.六棱柱B.正方体C.长方体D.球5.一个数的立方根等于它本身,这个数是( )A.0B.1C.0或1D.0或±1A.a+b=0B.b0 D.|b|7.如果2x3nym+4与﹣3x9y2n是同类项,那么m、n的值分别为( )A.m=﹣2,n=3B.m=2,n=3C.m=﹣3,n=2D.m=3,n=28.下列运算中正确的是( )A.4+5ab=9abB.6xy﹣xy=6C. =0D.3x2+4x3=7x59.a,b是有理数,它们在数轴上的对应点的位置如图所示,把a,﹣a,b,﹣b按照从小到大的顺序排列( )A.﹣bA.﹣2B.10C.7D.6二、填空题(每小题3分,共15分)11.如图,若要使图中平面展开图折叠成正方体后,相对面上两个数之和为6,则x=__________,y=__________.12.﹣1.8的倒数是__________.13.若|a+1|+|b﹣2|=0,则a﹣b=__________.14.在数轴上距﹣1有2个单位长度的点所表示的数是__________.15.已知|x﹣1|+(y+2)2=0,则(x+y)2015=__________.三、解答题(共1小题,满分20分)16.计算.(1) ;(2) ;(3) ;(4)化简: .四.(每小题8分,共16分)17.一个几何体由几个大小相同的小立方块搭成,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,请分别18.在数轴上表示下列各数的点,并用“五、(19题9分,20题10分,共计19分)19.已知:A=3a2﹣,B=2a2+b+2b2﹣c2,且a与b互为相反数,|c|=2,若2A﹣3B+C=0,求C的值.20.某摩托车厂本周内计划每日生产300辆摩托车,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(增加的车辆数为正数,减少的车辆数为负数)星期一二三四五六日增减﹣5 +7 ﹣3 +4 +10 ﹣9 ﹣25(1)本周三生产了多少辆摩托车?(2)本周总生产量与计划生产量相比,是增加还是减少?(3)产量最多的一天比产量最少的一天多生产了多少辆?一、填空题(每小题4分,共20分)21.已知代数式的值为2,则代数式3x2﹣4x﹣7的值为__________.22.一个多项式A减去多项式2x2+5x﹣3,马虎同学将减号抄成了加号,计算结果是﹣x2+3x﹣7,那么这个多项式A减去多项式2x2+5x﹣3,正确的计算结果应该是__________.23.用“*”定义一种新运算:对于任意有理数a,b,都有a*b=ab﹣a2,例如,2*3=2×3﹣22=2,那么2*( )=__________.24.整数m为__________时,式子为整数.25.如图,下列图案均是长度相同的火柴按一定的规律拼搭而成:第1个图案需7根火柴,第2个图案需13根火柴,…,依此规律,第11个图案需__________根火柴.二、(本题10分)26.观察下列等式:第1个等式:a1= = ×(1﹣);第2个等式:a2= = ×( ﹣);第3个等式:a3= = ×( ﹣);第4个等式:a4= = ×( ﹣);请解答下列问题:(1)按以上规律列出第5个等式:a5=__________;(2)用含有n的代数式表示第n个等式:an=__________=__________(n为正整数);(3)求a1+a2+a3+a4+…+a100的值.三、(本题10分)27.同学们,我们在本期教材的第一章《有理数》中曾经学习过绝对值的概念:一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|.实际上,数轴上表示数﹣3的点与原点的距离可记做|﹣3﹣0|:数轴上表示数(Ⅰ) ①数轴上表示数3的点与表示数1的点的距离可记作__________②数轴上表示数a的点与表示数2的点的距离可记作__________③数轴上表示数a的点与表示数﹣3的点的距离可记作__________(Ⅱ)数轴上表示到数﹣2的点的距离为5的点有几个?并求出它们表示的数.(Ⅲ)根据(I)中②、③两小题你所填写的结论,请同学们利用数轴探究这两段距离之和的最小值,并简述你的思考过程.四、(本题10分)28.定义:如果10b=n,那么称b为n的劳格数,记为b=d(n).(1)根据劳格数的定义,可知:d(10)=1,d(102)=2,那么:d(103)=__________.(2)劳格数有如下运算性质:若m、n为正数,则d(mn)=d(m)+d(n);d( )=d(m)﹣d(n).根据运算性质,填空:=__________,若d(3)=0.477,则d(9)=__________,d(0.3)=__________.(3)下表中与x数对应的劳格数d(x)有且只有两个是错误的,请找出错误的劳格数并改正.x 1.5 3 5 6 8 9 12 27d(x) 3a﹣b+c 2a﹣b a+c 1+a﹣b﹣c 3﹣3a﹣3c 4a﹣2b 3﹣b﹣2c 6a﹣3b人教版七年级数学上册期中试卷参考答案符合题意,把所选项前的字母代号填在答案栏中)1.我市某天的最高气温是7℃,最低气温是﹣1℃,那么这一天的最高气温比最低气温高( )A.6℃B.﹣6℃C.﹣8℃D.8℃【考点】有理数的减法.【专题】应用题.【分析】用最高气温减去最低气温即可.【解答】解:7﹣(﹣1)=7+1=8℃.故选;D.【点评】本题主要考查的是有理数的减法,根据题意列出算式是解题的关键.2.在﹣2,﹣1,0,2这四个数中,最大的数是( )A.﹣2B.﹣1C.0D.2【考点】有理数大小比较.【分析】根据正数大于0,0大于负数,可得答案.【解答】解:﹣2故选:D.【点评】本题考查了有理数比较大小,正数大于0,0大于负数是解题关键.A.正数B.负数C.正数或0D.负数或0【考点】非负数的性质:绝对值.【专题】分类讨论.【分析】由于a的符号不能确定,故应分a>0,a=0,a【解答】解:当a>0时,|a|=a,﹣|a|为负数;当a=0时,|a|=0,﹣|a|=0;当a故选D.【点评】本题考查的是非负数的性质,在解答此题时要注意分类讨论.4.一个几何体被一个平面所截后,得到一个七边形截面,则原几何体可能是( )A.六棱柱B.正方体C.长方体D.球【考点】截一个几何体.【分析】分别得到几何体有几个面,再根据截面是七边形作出选择.【解答】解:∵球有一个曲面,长方体和正方体有6个面,六棱柱有8个面,∴只有六棱柱可能得到一个七边形截面.故选A.【点评】考查了截一个几何体,截面的形状随截法的不同而改变,一般为多截面就是几边形,因此,若一个几何体有几个面,则截面最多为几边形.5.一个数的立方根等于它本身,这个数是( )A.0B.1C.0或1D.0或±1【考点】立方根.【专题】常规题型.【分析】根据特殊数的立方根直接找出,然后进行选择.【解答】解:立方根等于它本身是0或±1.故选D.【点评】本题考查了立方根的定义,熟练掌握立方根等于它本身的数是解题的关键.6.实数a,b在数轴上的位置如图所示,以下说法正确的是( )A.a+b=0B.b0 D.|b|【考点】实数与数轴.【专题】常规题型.【分析】根据图形可知,a是一个负数,并且它的绝对是大于1小于2,b是一个正数,并且它的绝对值是大于0小于1,即可得出|b|【解答】解:根据图形可知:﹣2则|b|故选:D.【点评】此题主要考查了实数与数轴,解答此题的关键是根据数轴上的任意两个数,右边的数总比左边的数大,负数的绝对值等于它的相反数,正数的绝对值等于本身.7.如果2x3nym+4与﹣3x9y2n是同类项,那么m、n的值分别为( )A.m=﹣2,n=3B.m=2,n=3C.m=﹣3,n=2D.m=3,n=2【考点】同类项.【分析】要使两个单项式同类项必须使其所含的字母相同且字母的指数也相同,观察可看出其所含的字母相同,则只要使其相同字母的指数相同.可得3n=9,m+4=2n,解方程即可求得.【解答】解:∵2x3nym+4与﹣3x9y2n是同类项,∴3n=9,m+4=2n,∴n=3,m=2,故选B.【点评】要使两个单项式成为同类项,只要使其满足同类项定义中的两个“相同”即可.8.下列运算中正确的是( )A.4+5ab=9abB.6xy﹣xy=6C. =0D.3x2+4x3=7x5【考点】合并同类项.【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,结合选项进行判断即可.【解答】解:A、4与5ab不是同类项,不能直接合并,故本选项错误;B、6xy﹣xy=5xy,原式计算错误,故本选项错误;C、计算正确,故本选项正确;D、3x2与4x3不是同类项,不能直接合并,故本选项错误;故选C.握合并同类项的法则.9.a,b是有理数,它们在数轴上的对应点的位置如图所示,把a,﹣a,b,﹣b按照从小到大的顺序排列( )A.﹣b【考点】有理数大小比较.【分析】利用有理数大小的比较方法可得﹣a0>a进而求解.【解答】解:观察数轴可知:b>0>a,且b的绝对值大于a的绝对值.在b和﹣a两个正数中,﹣a因此,﹣b【点评】有理数大小的比较方法:正数大于0;负数小于0;正数大于一切负数;两个负数,绝对值大的反而小.10.如果|x﹣4|与(y+3)2互为相反数,则2x﹣(﹣2y+x)的值是( )A.﹣2B.10C.7D.6【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【专题】计算题;整式.【分析】利用互为相反数两数之和为0列出关系式,根据非负数的性质求出x 与y的值,原式去括号合并后代入计算即可求出值.∴x=4,y=﹣3,则原式=2x+2y﹣x=x+2y=4﹣6=﹣2,故选A【点评】此题考查了整式的加减﹣化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.二、填空题(每小题3分,共15分)11.如图,若要使图中平面展开图折叠成正方体后,相对面上两个数之和为6,则x=5,y=3.【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“2”与“4”是相对面,“1”与“x”是相对面,“3”与“y”是相对面,∵相对面上两个数之和为6,∴x=5,y=3.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.12.﹣1.8的倒数是 .【考点】倒数.【分析】首先将﹣1.8化为分数形式,再利用倒数的性质可求出.【解答】解:∵﹣1.8=﹣,∴﹣的倒数为:﹣,故答案为:﹣ .【点评】此题主要考查了倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.13.若|a+1|+|b﹣2|=0,则a﹣b=﹣3.【考点】非负数的性质:绝对值.【分析】本题可根据非负数的性质“两个非负数相加和为0,这两个非负数的值都为0”解出a、b的值,再把a、b的值代入a﹣b中即可.【解答】解:∵|a+1|+|b﹣2|=0,∴a+1=0,b﹣2=0,解得a=﹣1,b=2,故答案为:﹣3.【点评】本题考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.14.在数轴上距﹣1有2个单位长度的点所表示的数是1或﹣3.【考点】数轴.【分析】根据数轴的特点进行解答即可.【解答】解:设在数轴上距离﹣1两个单位长度的点表示的数是x,则|x﹣(﹣1)|=2,解得x=1或x=﹣3.故答案为:1或﹣3.【点评】本题考查的是数轴的特点,即在数轴上到原点的距离相等的数有两个,这两个数互为相反数.15.已知|x﹣1|+(y+2)2=0,则(x+y)2015=﹣1.【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据几个非负数的和为0时,这几个非负数都为0列出算式,根据有理数的乘方法则计算即可.【解答】解:由题意得,x﹣1=0,y+2=0,解得,x=1,y=﹣2,则(x+y)2015=﹣1,故答案为:﹣1.【点评】本题考查的是绝对值的性质、偶次方和非负数的性质,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键.三、解答题(共1小题,满分20分)16.计算.(1) ;(2) ;(3) ;(4)化简: .【考点】有理数的混合运算;整式的加减.【分析】(1)先去括号,再根据加法结合律进行计算即可;(2)根据乘法分配律进行计算即可;(3)先算括号里面的,再算乘方,乘法,最后算加减即可;(4)先去括号,再合并同类项即可.【解答】解:(1)原式=﹣+ ﹣﹣=(﹣﹣)+( ﹣)=﹣+=﹣8+=﹣6 ;(2)原式= ×(﹣12)+ ×12﹣×12 =﹣6+20﹣14=0;(3)原式=﹣1﹣0.5× ×(2﹣9)=﹣1﹣×(﹣7)=﹣1+= ;(4)原式=x﹣6x+2y+6x+y=x+3y.【点评】本题考查的是有理数的混合运算,熟知有理数混合运算的法则是解答此题的关键.四.(每小题8分,共16分)到的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,请分别画出从正面、左面看到的这个几何体的形状图.【考点】作图-三视图;专题:正方体相对两个面上的文字.【分析】由已知条件可知,主视图有3列,每列小正方数形数目分别为3,2,1,左视图有3列,每列小正方形数目分别为2,3,2.据此可画出图形.【解答】解:如图所示:.【点评】本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.【考点】有理数大小比较;数轴.【专题】作图题;实数.【分析】首先根据在数轴上表示数的方法,在数轴上表示出所给的各数;然后根据当数轴方向朝右时,右边的数总比左边的数大,把这些数由小到大用“【解答】解:,﹣5【点评】(1)此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.(2)此题还考查了在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.五、(19题9分,20题10分,共计19分)19.已知:A=3a2﹣,B=2a2+b+2b2﹣c2,且a与b互为相反数,|c|=2,若2A﹣3B+C=0,求C的值.【考点】整式的加减—化简求值;相反数;绝对值.【专题】计算题;整式.【分析】把A与B代入已知等式表示出C,去括号合并得到最简结果,求出a+b与c的值,代入计算即可求出值.【解答】解:∵A=3a2﹣a+3b2﹣3c2,B=2a2+b+2b2﹣c2,∴2A﹣3B+C=0,即C=3B﹣2A=3(2a2+b+2b2﹣c2)﹣2(3a2﹣a+3b2﹣3c2)=6a2+3b+6b2﹣3c2﹣6a2+3a﹣6b2+6c2=3(a+b)+3c2,∵a与b互为相反数,|c|=2,∴a+b=0,c2=4,则原式=12.【点评】此题考查了整式的加减﹣化简求值,相反数,以及绝对值,熟练掌握运算法则是解本题的关键.20.某摩托车厂本周内计划每日生产300辆摩托车,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(增加的车辆数为正数,减少的车辆数为负数)星期一二三四五六日增减﹣5 +7 ﹣3 +4 +10 ﹣9 ﹣25(1)本周三生产了多少辆摩托车?(2)本周总生产量与计划生产量相比,是增加还是减少?(3)产量最多的一天比产量最少的一天多生产了多少辆?【考点】有理数的加减混合运算.【专题】应用题.【分析】(1)明确增加的车辆数为正数,减少的车辆数为负数,依题意列式再根据有理数的加减法则计算;(2)首先求出总生产量,然后和计划生产量比较即可得到结论;(3)根据表格可以知道产量最多的一天和产量最少的一天各自的产量,然后相减即可得到结论.(2)本周总生产量为(300﹣5)+(300+7)+(300﹣3)+(300+4)+(300+10) +(300﹣9)+(300﹣25)=300×7﹣21=2079辆,计划生产量为:300×7=2100辆,2100﹣2079=21辆,∴本周总生产量与计划生产量相比减少21辆;(3)产量最多的一天比产量最少的一天多生产了(300+10)﹣(300﹣25)=35,即产量最多的一天比产量最少的一天多生产了35辆.【点评】此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.一、填空题(每小题4分,共20分)21.已知代数式的值为2,则代数式3x2﹣4x﹣7的值为1.【考点】代数式求值.【专题】计算题.【分析】首先由代数式的值为2,得出3x2﹣4x=8,然后整体代入代数式3x2﹣4x﹣7求值.则3x2﹣4x=8,所以3x2﹣4x﹣7=8﹣7=1.故答案为;1.【点评】本题考查代数式求值,解决本题的关键是将3x2﹣4x的值作为一个整体代入求解.22.一个多项式A减去多项式2x2+5x﹣3,马虎同学将减号抄成了加号,计算结果是﹣x2+3x﹣7,那么这个多项式A减去多项式2x2+5x﹣3,正确的计算结果应该是﹣5x2﹣7x﹣1.【考点】整式的加减.【分析】由题意和减去一个加数等于另一个加数求出多项式A,用A减去2x2+5x﹣3,去括号合并即可得到结果.【解答】解:由题意列得:(﹣x2+3x﹣7)﹣(2x2+5x﹣3)=﹣x2+3x﹣7﹣2x2﹣5x+3=﹣3x2﹣2x﹣4,则这个多项式减去2x2+5x﹣3列得:(﹣3x2﹣2x﹣4)﹣(2x2+5x﹣3)=﹣3x2﹣2x﹣4﹣2x2﹣5x+3=﹣5x2﹣7x﹣1.故答案为:﹣5x2﹣7x﹣1【点评】此题考查了整式的加减运算,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.23.用“*”定义一种新运算:对于任意有理数a,b,都有a*b=ab﹣a2,例如,2*3=2×3﹣22=2,那么2*( )=﹣5.【考点】有理数的混合运算.【专题】新定义.【分析】由题目中给出的公式,即可推出原式=2×(﹣)﹣22,通过计算即可推出结果.【解答】解:∵a*b=ab﹣a2,∴原式=2×(﹣)﹣22=﹣1﹣4=﹣5.【点评】本题主要考查有理数的混合运算,关键在于根据题意正确的套用公式,认真计算.24.整数m为2,0,4,﹣2时,式子为整数.【考点】代数式求值.【分析】由式子为整数可知m﹣1=3或m﹣1=1或m﹣1=﹣1或m﹣1=﹣3,从而可解得m的值.【解答】解:∵3×1×(﹣1)×(﹣3)=3,∴m﹣1=3或m﹣1=1或m﹣1=﹣1或m﹣1=﹣3.解得:m=4或m=2或m=0或m=﹣2.故答案为:2,0,4,﹣2.【点评】本题主要考查的是求代数式的值,根据式子为整数确定出m﹣1的值是解题的关键.25.如图,下列图案均是长度相同的火柴按一定的规律拼搭而成:第1个图案需7根火柴,第2个图案需13根火柴,…,依此规律,第11个图案需157根火柴.【考点】规律型:图形的变化类.【分析】根据第1个图案需7根火柴,7=1×(1+3)+3,第2个图案需13根火柴,13=2×(2+3)+3,第3个图案需21根火柴,21=3×(3+3)+3,得出规律第n 个图案需n(n+3)+3根火柴,再把11代入即可求出答案.【解答】解:根据题意可知:第2个图案需13根火柴,13=2×(2+3)+3,第3个图案需21根火柴,21=3×(3+3)+3,…,第n个图案需n(n+3)+3根火柴,则第11个图案需:11×(11+3)+3=157(根);故答案为:157.【点评】此题主要考查了图形的变化类,关键是根据题目中给出的图形,通过观察思考,归纳总结出规律,再利用规律解决问题,难度一般偏大,属于难题.二、(本题10分)26.观察下列等式:第1个等式:a1= = ×(1﹣); 第2个等式:a2= = ×( ﹣); 第3个等式:a3= = ×( ﹣); 第4个等式:a4= = ×( ﹣); …请解答下列问题:(1)按以上规律列出第5个等式:a5= = ;(2)用含有n的代数式表示第n个等式:an= = (n为正整数);(3)求a1+a2+a3+a4+…+a100的值.【考点】规律型:数字的变化类.【分析】(1)(2)观察知,找第一个等号后面的式子规律是关键:分子不变,为1;分母是两个连续奇数的乘积,它们与式子序号之间的关系为序号的2倍减1和序号的2倍加1.(3)运用变化规律计算.【解答】解:根据观察知答案分别为:(2) ; ;(3)a1+a2+a3+a4+…+a100= ×(1﹣)+ ×( ﹣)+ ×( ﹣)+ ×( ﹣)+…+ ×= (1﹣+ ﹣+ ﹣+ ﹣+…+ ﹣)= (1﹣)= ×= .步骤:不变的和变化的;变化的部分与序号的关系.三、(本题10分)27.同学们,我们在本期教材的第一章《有理数》中曾经学习过绝对值的概念:一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|.实际上,数轴上表示数﹣3的点与原点的距离可记做|﹣3﹣0|:数轴上表示数﹣3的点与表示数2的点的距离可记作|﹣3﹣2|,那么,(Ⅰ) ①数轴上表示数3的点与表示数1的点的距离可记作|3﹣1|②数轴上表示数a的点与表示数2的点的距离可记作|a﹣2|③数轴上表示数a的点与表示数﹣3的点的距离可记作|a+3|(Ⅲ)根据(I)中②、③两小题你所填写的结论,请同学们利用数轴探究这两段距离之和的最小值,并简述你的思考过程.【考点】绝对值函数的最值;相反数;两点间的距离.【专题】常规题型.【分析】(I)根据题意所述,运用类比的方法即可得出答案.(II)画出数轴,则﹣2的左右各有一个点,继而可求出答案.(III)根据绝对值的几何意义,可求出|a+3|+|a﹣2|的最小值.【解答】解:(I)由题意表述可类比得:①数轴上表示数3的点与表示数1的点的距离可记作|3﹣1|;。

第一学期人教版七年级数学期中测试题.doc

第一学期人教版七年级数学期中测试题.doc

七年级数学期中考试试卷班级: 姓名:一、选择题(每题2分,共计40分)1、零上13℃记作+13℃,零下2℃可记作( )A 、2B 、-2C 、2℃D 、-2℃2、某市2014年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高气温比最低气温高( )A 、-10℃B 、-6℃C 、6℃D 、10℃3、下列说法正确的是( )A 、正数、0、负数统称为有理数B 、分数和整数统称为有理数C 、正有理数、负有理数统称为有理数D 、以上都不对4、下列不是有理数的是( )A 、﹣3.14B 、0C 、37 D 、π 5、在数轴上表示-2的点离原点的距离等于( )A 、2B 、-2C 、±2D 、46、有理数a 、b 在数轴上的位置如图所示,则a 、b 的大小关系是( )A 、a <bB 、a >bC 、a=bD 、无法确定7、下列说法中正确的是( )A 、若a >0,b <0,则a -b >0B 、若a <0,b >0,则a -b <0C 、若a <0,b <0,则a -(-b)>0D 、若a <0,b <0,且a b ,则a -b >0.14、一个有理数与其相反数的积( )A 、符号必定为正B 、符号必定为负C 、一定不大于零D 、一定不小于零15、下列说法错误的是( )A 、任何有理数都有倒数B 、互为倒数的两个数的积为1C 、互为倒数的两个数同号D 、1和-1互为负倒数A 、a >0,b >0B 、a <0,b >0C 、a,b 异号D 、a,b 异号,且负数的绝对值较大17、如果b a ÷()0≠b 的商是负数,那么( )A 、b a ,异号B 、b a ,同为正数C 、b a ,同为负数D 、b a ,同号18、对任意实数a ,下列各式一定不成立的是( )A 、22)(a a -=B 、33)(a a -= C 、a a -= D 、02≥a19、下列结论错误的是( )A 、若b a ,异号,则b a ⋅<0,b a <0 B 、若b a ,同号,则b a ⋅>0,ba >0 C 、b a b a b a -=-=- D 、b a b a -=-- 20、已知a <0,且1 a ,那么11--a a 的值是( )A 、等于1B 、小于零C 、等于1-D 、大于零二、填空题(每题2分,共计20分)1、甲、乙两人同时从A 地出发,如果向南走48m,记作+48m ,则乙向北走32m ,记为 , 这时甲乙两人相距 m.2、在数轴上表示-4的点位于原点的 边,与原点的距离是 个单位长度.3、 数轴上与原点距离是5的点有 个,表示的数是 .4、 从数轴上表示-1的点出发,向左移动两个单位长度到点B ,则点B 表示的数是 ,再向右移动三个单位长度到达点C,则点C 表示的数是 .5、﹣2的相反数是 ;75的相反数是___;0的相反数是 。

人教版七年级上学期数学《期中考试试卷》及答案

人教版七年级上学期数学《期中考试试卷》及答案

期 中 测 试 卷一、选择题1.-2的相反数的倒数是( ). A. 2B.12C. 12-D. -22.在有理数(﹣1)2、3()2-- 、﹣|﹣2|、(﹣2)3中负数有( )个. A. 4B. 3C. 2D. 13.下列式子:22131,4,,,5,07ab bcx x a a++-中,整式的个数是( )A. 6B. 5C. 4D. 34.绝对值大于1且小于5的所有的整数的和是( ) A. 9B. -9C. 6D. 05.下列运算正确的是( ) A. 4a ﹣(﹣2a )=6 B. 2a ﹣3b =﹣ab C. 2ab+3ba =5abD. ﹣(a ﹣b )=a+b 6.如图,数轴上A 、B 两点分别对应数a 、b ,则下列各式正确的是( )A. 0ab >B. 0a b +>C. 0a b ->D. 0a b ->7.化简12x 2(3)23x ⎛⎫+-- ⎪⎝⎭的结果是( ) A. ﹣7x+13B. ﹣5x+13C. ﹣5x+116D. ﹣5x ﹣1168.下列各组数中是同类项的是( ) A. 4x 和4y B. 4xy 2和4xy C. 4xy 2和﹣8x 2yD. ﹣4xy 2和4y 2x 9.已知4a b -=,1c d +=,则()()a c b d +--值为( ) A. 3B. -3C. -5D. 510.下列说法正确的是A. 单项式2342x y 的次数9B. 1ax x++不是多项式 C. 322223x x y y -+是三次三项式D. 单项式232r π的系数是32二、填空题11.若向东走5米记作+5米,则向西走8米应记作__________米.12.瑞士数学家欧拉是史上最伟大的四个数学家之一,目前在百度上搜索关键词“欧拉”,显示的搜索结果约为12 600 000条.将12 600 000用科学记数法表示应为__________.13.A 、B 、C 三地的海拔高度分别是﹣103米、﹣80米、﹣25米,则最高点比最低点高______米. 14.312132nmx y xy m n --+=若与是同类项,则_________ 15.单项式−22x y3的系数与次数之积为___________. 16.若多项式223368x kxy y xy --+-不含xy 项,则k =______.17.李明同学到文具商店为学校美术组的30名同学购买铅笔和橡皮,已知铅笔每支m元,橡皮每块n元,若给每名同学买2支铅笔和3块橡皮,则一共需付款__________________元. 18.已知3x =,2y =,且0xy <则x y -的值等于__________.19.一种商品每件成本价是a 元,按成本增加20%定价出售,后由于库存积压,又按定价的90%出售,则该商品现在的售价是__________元.20.当x =3时,代数式px 3+qx +1的值为2019,则当x =-3时,代数式px 3+qx +1的值是_____.三、解答题21.(1)4(1)59⎛⎫-÷⨯-⎪⎝⎭(2)214(54)369⎛⎫-⨯--⎪⎝⎭ (3)232019112(1)22⎛⎫-÷⨯-+- ⎪⎝⎭.22.先化简,再求值221523243x xy xy x ⎡⎤⎛⎫--++ ⎪⎢⎥⎝⎭⎣⎦,其中2x =-,12y =23.(1)将下列各数在数轴上表示出来,并用“<”连接起来22-,(1)--,0,|3|-,-2.5(2)去括号,并合并同类项: ①2(1)3x x x -++; ②()(52)y x x y -+--;24.把下列各数分别填入它所属于的集合的括号内. 9,23-,+4.3,|﹣0.5|,﹣(+7),18%,(﹣13)4,﹣6,0. 正分数集合{_________} 负分数集合{_________} 负整数集合{__________} 非负整数集合{________}.25.(1)有理数a 、b 、c 在数轴上的对应点如图所示,化简代数式:||||||a b a b c a -++--(2)哈市某垃圾处理场一周处理生活垃圾任务为210吨,计划每天处理30吨,由于各种原因,实际每天处理量与计划相比有出入,某周七天的实际处理情况记录如下: +6;-3;+4;-1;+2;-5;0①垃圾场这一周实际处理生活垃圾是多少吨?②若该垃圾场实行计量工资,每处理一吨生活垃圾给300元,同时又规定超额处理一吨垃圾另外奖100元,完不成任务的少处理一吨另外扣100元,那么该场工人这一周的工资总额是多少元?26.某电脑城出售一种台式电脑和液晶显示器,电脑每台定价2000元,液晶显示器每个定价400元.国庆期间开展促销活动,向客户提供两种优惠方案: 方案①:买一台电脑送一个液晶显示器; 方案②:电脑和液晶显示器都按定价90%付款.现学校要更新微机教室设备,到该电脑城购买电脑30台,液晶显示器x 个(30x >), (1)若学校分别按方案①或方案②购买,各需付款多少元?(用含x 的代数式表示); (2)若40x =,通过计算说明此时学校按哪种方案购买较为合算?(3)当40x =时,你能为学校想出一种更为省钱的购买方案吗?试写出你的购买方法.27.已知:2++-++=且a、b、c分别是点A、B、C在数轴上对应的数.a b c|1|(5)|2|0(1)求点A与点C的距离;(2)若甲、乙两个动点分别从A、B两点同时出发,沿数轴正方向运动,它们的速度分别是2和1(单位长度/秒),求甲追上乙时所用的时间;(3)在(2)的条件下,甲动点向数轴正方向运动,乙动点向数轴负方向运动.当甲动点开始运动时,丙动点以4个单位长度/秒的速度和甲动点同时从点A向数轴正方向运动,当丙动点遇到乙动点时立即返回向数轴负方向运动,当遇到甲动点时也马上返回,如此往复直到甲乙两动点相遇则停止运动,设甲乙两动点在点D处相遇,求从开始到停止运动,丙动点走的总路程以及点D对应的数字.答案与解析一、选择题1.-2的相反数的倒数是( ). A. 2 B.12C. 12-D. -2【答案】B 【解析】 【分析】根据相反数和倒数的定义即可解题. 【详解】解:-2的相反数是2,2的倒数是12, 故选B.【点睛】本题考查了相反数和倒数的概念,属于简单题,熟悉相反数和倒数的概念是解题关键. 2.在有理数(﹣1)2、3()2-- 、﹣|﹣2|、(﹣2)3中负数有( )个. A. 4 B. 3C. 2D. 1【答案】C 【解析】 【分析】分别计算后进行判断即可. 【详解】解:2(1)1-=,3322⎛⎫--= ⎪⎝⎭,|2|2--=-,3(2)8-=-,负数有2个,故选C. 3.下列式子:22131,4,,,5,07ab bcx x a a++-中,整式的个数是( )A. 6B. 5C. 4D. 3【答案】C 【解析】 【分析】根据整式的定义:单项式、多项式的统称,紧扣概念作出判断.【详解】解:整式有:2231,,5,07ab x x +-共有4个.故选:C.【点睛】主要考查了整式的有关概念.单项式和多项式统称为整式.单项式是字母和数的乘积,只有乘法,没有加减法.多项式是若干个单项式的和,有加减法.注意在整式中除式不能含有字母.4.绝对值大于1且小于5的所有的整数的和是()A. 9B. -9C. 6D. 0【答案】D【解析】【分析】根据绝对值的意义,要求绝对值大于1且小于5的所有整数,即-4,-3,-2,2,3,4,再将它们相加即可.【详解】绝对值大于1且小于5的所有整数有:-4,-3,-2,2,3,4.则-4-3-2+2+3+4=0.故选D.【点睛】本题主要考查了绝对值的意义及性质,比较简单.5.下列运算正确的是()A. 4a﹣(﹣2a)=6B. 2a﹣3b=﹣abC. 2ab+3ba=5abD. ﹣(a﹣b)=a+b【答案】C【解析】【分析】根据合并同类项的法则作答.【详解】A.4a-(-2a)=6a.错误;B.2a与3b不是同类项,不能合并.错误;C.2ab+3ba=5ab.正确;D.﹣(a﹣b)=b﹣a.错误.故选C.【点睛】本题考查了合并同类项.合并同类项的法则:系数相加作为系数,字母和字母的指数不变.不是同类项不能合并成一项.6.如图,数轴上A、B两点分别对应数a、b,则下列各式正确的是()A. 0ab >B. 0a b +>C. 0a b ->D. 0a b ->【答案】C 【解析】 【分析】先观察a ,b 在数轴上的位置,得a<−1<0<b<1,a b >,然后再根据绝对值、有理数的加法以及有理数的乘法等知识对四个选项逐一分析即可.【详解】解:由数轴上A,B 两点分别对应数a 、b 知,a<−1<0<b<1,a b > 所以,A .ab<0,故本选项错误; B.a+b<0,故本选项错误; C.0a b ->,故本选项正确; D.a-b <0,故本选项错误. 故选C .【点睛】本题考查了数轴、绝对值、有理数的加法以及有理数的乘法等知识 ,熟知数轴上各点与实数是一一对应关系是解答此题的关键. 7.化简12x 2(3)23x ⎛⎫+-- ⎪⎝⎭的结果是( )A. ﹣7x+13B. ﹣5x+13 C. ﹣5x+116D. ﹣5x ﹣116【答案】C 【解析】 【分析】本题涉及整式的加减乘法运算、去括号法则.解答时根据每个考点作出回答,然后根据整式的加减运算得出结果. 【详解】原式=x+12-6x+43=-5x+116. 故选C .【点睛】解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则.括号前添负号,括号里的各项要变号.8.下列各组数中是同类项的是( ) A. 4x 和4y B. 4xy 2和4xy C. 4xy 2和﹣8x 2y D. ﹣4xy 2和4y 2x【答案】D 【解析】A 、4x 与4y 字母不同,不是同类项;B 、4xy 2与4xy 字母相同但字母的指数不同,不是同类项;C 、4xy 2与-8x 2y 字母相同但字母的指数不同,不是同类项;D 、-4xy 2与4y 2x 字母相同,字母的指数相同,是同类项.故选D . 9.已知4a b -=,1c d +=,则()()a c b d +--的值为( ) A. 3 B. -3C. -5D. 5【答案】D 【解析】 【分析】首先把代数式去括号,然后通过添括号重新进行组合,再根据已知中给出的值,代入求值即可. 【详解】解:∵4a b -=,1c d +=, ∴原式=a+c−b+d =(a-b)+(c+d) =4+1 =5.故选D .【点睛】本题主要考查代数式的求值,去括号、添括号法则的运用,关键在于正确的根据相关的法则进行去括号、添括号,认真的计算. 10.下列说法正确的是 A. 单项式2342x y 的次数9B. 1ax x++不是多项式C. 322223x x y y -+是三次三项式D. 单项式232r π的系数是32【答案】B 【解析】 【分析】根据定义,表示数或字母的积的式子叫做单项式.单项式中的数字因数叫做这个单项式的系数,一个单项式中,所有字母的指数的和叫做这个单项式的次数.若干个单项式的和组成的式子叫做多项式(减法中有:减一个数等于加上它的相反数).多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.【详解】解:A 项,22x 3y 4的次数为3+4=7.故A 项错误. B 项, x+ax+1不是多项式.故B 项正确. C 项,x 3﹣2x 2y 2+3y 2为四次三项式.故C 项错误. D 项,232r π的系数应为32π.故D 项错误, 故选:B.【点睛】本题主要考查了本题主要考查单项式与多项式的基本概念,灵活运用是关键.二、填空题11.若向东走5米记作+5米,则向西走8米应记作__________米. 【答案】-8 【解析】 【分析】根据正数和负数表示相反意义的量,向东记为正,可得向西的表示方法,即可得到答案. 【详解】解:∵向东走5米记作+5米, ∴向西走8米记作−8米. 故答案为-8.【点睛】本题主要考查了正数与负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.12.瑞士数学家欧拉是史上最伟大的四个数学家之一,目前在百度上搜索关键词“欧拉”,显示的搜索结果约为12 600 000条.将12 600 000用科学记数法表示应为__________.【答案】1.26×107 【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1⩽|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:将12 600 000用科学记数法表示为:1.26×107. 故答案为1.26×107. 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1⩽|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.13.A 、B 、C 三地的海拔高度分别是﹣103米、﹣80米、﹣25米,则最高点比最低点高______米. 【答案】78 【解析】 【分析】找出最高点与最低点,求出之差即可.【详解】解:根据题意得:﹣25﹣(﹣103)=﹣25+103=78(米). 故答案为78.【点睛】本题考查了有理数的减法,熟练掌握运算法则是解答本题的关键. 14.312132nmx y xy m n --+=若与是同类项,则_________ 【答案】0 【解析】 【分析】根据相同字母的指数相等列方程求解即可. 【详解】由题意得, n =1,1-2m =3, ∴m =-1, ∴m +n =-1+1=0. 故答案为0.【点睛】本题考查了利用同类项的定义求字母的值,熟练掌握同类项的定义是解答本题的关键,所含字母相同,并且相同字母的指数也相同的项,叫做同类项,根据相同字母的指数相同列方程(或方程组)求解即可.15.单项式−22x y 3的系数与次数之积为___________. 【答案】-2【解析】【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.求出次数和系数,再将其相乘即可. 【详解】解:根据单项式定义得:单项式的系数是﹣23,次数是3; 其系数与次数之积为﹣23×3=﹣2. 【点评】确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.16.若多项式223368x kxy y xy --+-不含xy 项,则k =______. 【答案】2【解析】【分析】先将原多项式合并同类项,利用多项式中不含xy 项,进而得出360k -+=,然后解关于k 的方程即可求出k .【详解】解:原式=()223638x k xy y -+--+ 因为不含xy 项,故360k -+=,解得:k =2.故答案为2.【点睛】本题考查了多项式,正确得出xy 项的系数和为0是解题的关键.17.李明同学到文具商店为学校美术组的30名同学购买铅笔和橡皮,已知铅笔每支m元,橡皮每块n元,若给每名同学买2支铅笔和3块橡皮,则一共需付款__________________元.【答案】(60m+90n )【解析】【分析】根据题意列出代数式.【详解】解:由题意得:付款=30×2m+30×3n=60m+90n故答案为:(60m+90n )【点睛】本题考查代数式的知识,关键要读清题意.18.已知3x =,2y =,且0xy <则x y -的值等于__________.【答案】5或-5【解析】【分析】先根据绝对值的性质,求出x 、y 的值,然后根据0xy <,进一步确定x 、y 的值,再代值求解即可. 【详解】解:∵3x =,2y =,且0xy <,∴x=3时,y=-2,则x-y=3-(-2)=3+2=5,x=−3时,y=2,则x-y=−3−2=−5.故答案为5或-5.【点睛】此题主要考查了绝对值的性质,能够根据已知条件正确的判断出x 、y 的值是解答此题的关键. 19.一种商品每件成本价是a 元,按成本增加20%定价出售,后由于库存积压,又按定价的90%出售,则该商品现在的售价是__________元.【答案】1.08a【解析】【分析】先列出开始的售价,再列出后来的售价即可.【详解】解:由题意可知,开始的售价为(1+20%)a 元,所以后来的售价为90%×(1+20%)a=1.08a 元.. 故答案为1.08a .【点睛】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.20.当x =3时,代数式px 3+qx +1的值为2019,则当x =-3时,代数式px 3+qx +1的值是_____.【答案】-2017【解析】【分析】先把3x =代入,得2732018p q +=,然后把3x =-代入代数式,得2731p q --+,化简整理,即可得【详解】解:∵当3x =时,有27312019p q ++=,∴2732018p q +=, 把3x =-代入代数式,有2731(273)1201812017p q p q --+=-++=-+=-;故答案为:2017-. 【点睛】本题考查代数式求值.根据已知条件,求不出p 与q 的具体值,必须把px 3+qx 当作一个整体,得出3x =与3x =-时px 3+qx 的值是解决本题的关键.三、解答题21.(1)4(1)59⎛⎫-÷⨯- ⎪⎝⎭(2)214(54)369⎛⎫-⨯-- ⎪⎝⎭ (3)232019112(1)22⎛⎫-÷⨯-+- ⎪⎝⎭. 【答案】(1)445;(2)﹣3;(3)-5 【解析】【分析】 (1) 利用有理数的乘除法则进行计算即可;(2) 利用有理数的乘法分配律,进行计算即可;(3) 先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【详解】解:(1)原式=1×15×49=445; (2)原式=﹣36+9+24=﹣3;(3)原式=﹣8×2×14﹣1=﹣4﹣1=﹣5. 【点睛】本题主要考查了有理数的混合运算的知识,熟练掌握运算法则是解决本题的关键.22.先化简,再求值221523243x xy xy x ⎡⎤⎛⎫--++ ⎪⎢⎥⎝⎭⎣⎦,其中2x =-,12y = 【答案】x 2-xy+6,11【解析】原式去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.【详解】解:原式=5x 2-(2xy-xy-6+4x 2)=5x 2-xy+6-4x 2=x 2-xy+6 当12,2x y =-=时,原式=()212(2)62---⨯+=4+1+6=11 【点睛】此题考查了整式的加减−化简求值,熟练掌握运算法则是解本题的关键.23.(1)将下列各数在数轴上表示出来,并用“<”连接起来22-,(1)--,0,|3|-,-2.5(2)去括号,并合并同类项:①2(1)3x x x -++;②()(52)y x x y -+--;【答案】(1)见详解,22-<-2.5<0<-(-1)<3-;(2)①2x-2;②-6x+y【解析】【分析】(1)各数化简得到结果,表示在数轴上,按从小到大的顺序用“<”连接起来即可;(2) ①先去括号,再合并同类项即可;②先去括号,再合并同类项即可.【详解】(1)解:各数在数轴上表示,22-<-2.5<0<-(-1)<3-(2)①解:原式= x-2x-2+3x=2x-2②解:原式=-y-x-5x+2y=-6x+y【点睛】此题考查了有理数的大小比较,整式的运算,用到的知识点是去括号、合并同类项,在去括号时要注意符号的变化和去括号的顺序.24.把下列各数分别填入它所属于的集合的括号内.9,23-,+4.3,|﹣0.5|,﹣(+7),18%,(﹣13)4,﹣6,0. 正分数集合{_________}负分数集合{_________}负整数集合{__________}非负整数集合{________}.【答案】+4.3,|﹣0.5|,18%;﹣23;﹣(+7),﹣6;9,(﹣13)4,0. 【解析】【分析】根据正数、负数的定义逐一进行分析即可得.【详解】正分数集合{+4.3,|﹣0.5|,18%}负分数集合{23-} 负整数集合{﹣(+7),﹣6}非负整数集合{9,(﹣13)4,0}.故答案为+4.3,|﹣0.5|,18%;23-;﹣(+7),﹣6;9,(﹣13)4,0. 【点睛】本题考查了有理数的分类,注意有理数包括整数和分数,整数包括正整数、0、负整数,分数包括正分数和负分数.25.(1)有理数a 、b 、c 在数轴上的对应点如图所示,化简代数式:||||||a b a b c a -++--(2)哈市某垃圾处理场一周处理生活垃圾任务为210吨,计划每天处理30吨,由于各种原因,实际每天处理量与计划相比有出入,某周七天的实际处理情况记录如下:+6;-3;+4;-1;+2;-5;0①垃圾场这一周实际处理生活垃圾是多少吨?②若该垃圾场实行计量工资,每处理一吨生活垃圾给300元,同时又规定超额处理一吨垃圾另外奖100元,完不成任务的少处理一吨另外扣100元,那么该场工人这一周的工资总额是多少元?【答案】(1)-a -c ;(2)①垃圾场这一周实际处理生活垃圾是213吨;②该场工人这一周的工资总额是64200元.【解析】(1)根据数轴上点的位置判断出绝对值里边式子的正负,原式利用绝对值的代数意义化简,计算即可得到结果.(2)①将实际每天处理量与计划相比的增减总量求出,再加上7×30即可得到答案;②先求出实际每天处理量,再根据工资标准计算工资即可.【详解】(1)解:由有理数a、b、c在数轴上的对应点可知a<b<0<c所以a-b<0,a+b<0,c-a>0原式= -(a-b)+[-(a+b)] -(c-a)=-a+b-a-b-c+a=-a-c(2)解:①6﹣3+4﹣1+2﹣5=3,7×30+3=213(吨).答:垃圾场这一周实际处理生活垃圾是213吨.②(36×300+600)+(27×300﹣300)+(34×300+4×100)+(29×300﹣100)+(32×300+2×100)+(25×300﹣5×100)+30×300=64200(元).或者213×300+3×100=64200(元).答:该场工人这一周的工资总额是64200元.【点睛】此题考查了整式的加减,数轴,绝对值,有理数的减法与加法,以及有理数的乘法,熟练绝对值的代数意义是解本题的关键.26.某电脑城出售一种台式电脑和液晶显示器,电脑每台定价2000元,液晶显示器每个定价400元.国庆期间开展促销活动,向客户提供两种优惠方案:方案①:买一台电脑送一个液晶显示器;方案②:电脑和液晶显示器都按定价的90%付款.x>),现学校要更新微机教室设备,到该电脑城购买电脑30台,液晶显示器x个(30(1)若学校分别按方案①或方案②购买,各需付款多少元?(用含x的代数式表示);x=,通过计算说明此时学校按哪种方案购买较为合算?(2)若40x=时,你能为学校想出一种更为省钱的购买方案吗?试写出你的购买方法.(3)当40【答案】(1)学校按方案①购买需付款(400x+48000)元,按方案②购买需付款(360x+54000)元;(2)当x=40时,学校按方案①购买较为合算;(3)先按方案①购买30台电脑,再按方案②购买剩余的10个液【解析】【分析】(1)根据向客户提供两种优惠方案列出代数式即可;(2)将x=40代入求得的代数式中即可得到费用,然后比较即可得到选择哪种方案更合算;(3)根据题意可以得到先按方案①购买30台电脑送30个液晶显示器,再按方案②购买10个液晶显示器更合算.【详解】(1)解:按方案①购买所需费用为2000×30+400(x-30)=400x+48000按方案②购买所需费用为90%(2000×30+400x)=360x+54000答:学校按方案①购买需付款(400x+48000)元,按方案②购买需付款(360x+54000)元.(2)解:当x=40时,方案①应付费用为400×40+48000=64000元方案②应付费用为360×40+54000=68400元因为64000<68400所以当x=40时,学校按方案①购买较为合算.(3)解:能为学校想出一种更为省钱的购买方案.先按方案①购买30台电脑,需要费用2000×30=60000元,同时获赠30个液晶显示器.再按方案②购买剩余的10个液晶显示器,需要费用0.9×400×10=3600元此时共需60000+3600=63600元,费用更省.答:先按方案①购买30台电脑,同时获赠30个液晶显示器. 再按方案②购买剩余的10个液晶显示器,费用更省.【点睛】本题考查了列代数式和求代数式的值的相关的题目,解题的关键是认真分析题目并正确的列出代数式.27.已知:2++-++=且a、b、c分别是点A、B、C在数轴上对应的数.a b c|1|(5)|2|0(1)求点A与点C的距离;(2)若甲、乙两个动点分别从A、B两点同时出发,沿数轴正方向运动,它们速度分别是2和1(单位长度/秒),求甲追上乙时所用的时间;(3)在(2)的条件下,甲动点向数轴正方向运动,乙动点向数轴负方向运动.当甲动点开始运动时,丙动点以4个单位长度/秒的速度和甲动点同时从点A向数轴正方向运动,当丙动点遇到乙动点时立即返回向数轴负方向运动,当遇到甲动点时也马上返回,如此往复直到甲乙两动点相遇则停止运动,设甲乙两动点在点D处相遇,求从开始到停止运动,丙动点走的总路程以及点D对应的数字.【答案】(1)1;(2)甲追上乙时所用的时间为6秒;(3)丙动点运动的总路程为8个单位长度,点D对应的数是3.【解析】【分析】(1))利用绝对值的非负性,求出a,b,c的值,再求两点间距离即可;(2)先求出甲、乙两个动点的速度差,再根据时间=路程÷速度计算即可求出答案;(3)先求出甲与乙相遇时所需要的时间,求丙动点运动的总路程,求出点A走的路程,再求点D对应的数即可.【详解】解:(1)∵|a+1|≥0,(5﹣b)2≥0,|c+2|≥0,|a+1|+(5﹣b)2+|c+2|=0,∴a+1=0,5﹣b=0,c+2=0,∴a=﹣1,b=5,c=﹣2.∴AC=(-1)-(-2)=1(2)由题意,AB=5-(-1)=6∴6÷(2-1)=6答:甲追上乙时所用的时间为6秒.(3)根据题意,甲与乙相遇时所需要的时间为6÷(2+1)=2∴丙动点运动的总路程为2×4=8个单位长度,∵点A的速度为2∴点A走的路程为2×2=4∴点D对应的数是(-1)+4=3答:丙动点运动的总路程为8个单位长度,点D对应的数是3.【点睛】本题考查数轴以及绝对值的非负性,有理数的混合运算,点的运动,根据点的运动特点,灵活运用时间=路程÷速度进行求解是解决问题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011人教版七年级上册数学期中考试试卷
一、填得圆圆满满(每小题3分,共30分)
1.-1-(-3)= 。

2.-0.5的绝对值是 ,相反数是 ,倒数是 。

3.单项式
22
xy π的系数是 ,次数是 。

4.若逆时针旋转90o 记作+1,则-2表示 。

a+b )
各界艺人和人士为
米,则宽为 米。

9.若m 、n 满足2)3(2++-n m =0,则.__________=m n
10.某厂10月份的产值是125万元,比3月份的产值的3倍少13万元,若设3月份的产值为x 万元,则可列出的方程为
二、做出你的选择(每小题3分,共30分)
11.如果向东走2km 记作+2km ,那么-3km 表示( ).
A.向东走3km
B.向南走3km
C.向西走3km
D.向北走3km
12.下列说法正确的是( C )
A.x 的系数为0
B. a
1是一项式 C.1是单项式 D.-4x 系数是4
13.下列各组数中是同类项的是( )
A.4x 和4y
B.4xy 2和4xy
C.4xy 2和-8x 2y
D.-4xy 2和4y 2x
14.下列各组数中,互为相反数的有( )
2
332和 ④332)2(--和 D.①②④

以上均有可能
21a=0 2,那么将点M 向右移动4个单位长度,此时点M 表示的数是( )
A. -6
B. 2
C. -6或2
D.都不正确
18.若x 的相反数是3,5y =,则x+y 的值为( ).
A.-8
B. 2
C. 8或-2
D.-8或2 19.若 3x=6,2y=4则5x+4y 的值为()
A.18
B.15
C.9
D. 6
20.若-3xy2m与5x2n-3y8的和是单项式,则m、n的值分别是()
A.m=2,n=2
B.m=4,n=1
C.m=4,n=2
D.m=2,n=3
三、用心解答(共60分)
21.(16分)计算
(1) -26-(-15) (2)(+7)+(-4)-(-3)-14
(4)-(3-5)+32×(-3)
-2x
23.(6分)将下列各数在数轴上表示出来,并用“<”连接:
, -2.5
-22, -(-1), 0,3
24.(6分)若a是绝对值最小的数,b是最大的负整数。

先化简,再求
值:
)
3
3
(
)
2
(22
2
2
2b
ab
a
b
ab
a+
+
-
+
-
-
25.(6分)列方程解应用题。

把一批图书分给某班学生阅读,如果每人分3本,则剩余20本,如果每人分4本,则还缺25本。

这个班有多少名学生?
26.(9分)出租车司机小李某天上午营运时是在东西走向的大街上进行的,如果规定向东为正,向西为负,他这天上午所接六位乘客的行车里程(单位:km)如下:-2,+5,-1,+1,-6,-2,问:
(1)将最后一位乘客送到目的地时,小李在什么位置?
(2)若汽车耗油量为0.2L/km(升/千米),这天上午小李接送乘客,出租车共耗油多少升?
(3)若出租车起步价为8元,起步里程为3km(包括3km),超过部分每千米1.2元,问小李这天上午共得车费多少元?
27.(9分)从2开始,连续的偶数相加,它们和的情况如下表:
(1
(2)根据表中的规律猜想:用n 的式子表示S 的公式为:
S=2+4+6+8+…+2n=____________.
(3)根据上题的规律计算2+4+6+8+10+…+98+100的值.
七年级数学试题答案
一填得圆圆满满(每小题3分,共30分) 1、2 2、0.5 ,0.5,-2 3、2
,3 4、顺时针旋转180o 5、-1 6、-3.5或1.5 7、3.50
×106
8、2a-b 9、9 10、3x-13=125
二.做出你的选择(每小题3分,共30分)
11、C 12、C 13、D 14、B 15、D 16、D
17、B 18、D 19、A 20、C
三、用心解答(共60分)
21、(16分)(1)-11 (2)8
(3)-4
1 (4)-25 22、(8分)(1)x=-3 (2)x=25
23、(6分)-22<-2.5<0<-(-1)<3-
24、(6分)解:由题意,得 a =0,b =-1
26-+
答:出租车共耗油3.4升
(3)6×8+(2+3)×1.2=54
答:小李这天上午共得车费54元。

27、(9分)(1)72;(2)(1)
(3)2+4+6+8+10+…+98+100=50×51=2550。

相关文档
最新文档