高三数学综合测试题5

合集下载

高 三 数 学 综 合 模 拟 测 试 题(附答案)5

高 三 数 学 综 合 模 拟 测 试 题(附答案)5

高三数学试题(文 )一、选择题1.已知集合{}{}N M x x g y x N x y y M x 则,)2(1,0,22-==>==为 ( )A .(1,2)B .),1(+∞C .),2[+∞D .),1[+∞2.若函数b ax x f +=)(的零点为2,那么函数ax bx x g -=2)(的零点是 ( )A .0,2B .0,21C .0,21-D .21,2 3.设等比数列}{n a 的公比2=q ,前n 项和为n S ,若==84,1S S 则 ( )A .17B .171 C .5 D .51 4.若连续抛掷两次骰子得到的点数分别为n m ,,则点),(n m P 在直线4=+y x 上的概率是( )A .31 B .41 C .61 D .121 5.已知一个几何体是由上下两部分构成的组合体,其三视图如右图,若图中圆的半径为1,等腰三 角形的腰长为5,则该几何体的体积为( )A .32πB .34π C .π2D .π46.已知复数z 满足i izi z 431+=-+⋅(i 是虚数单位), 则=z ( ) A .i +3 B .i -3 C .i 32-D .i 34-7.已知O 是ABC ∆内部一点,0=++OC OB OA 2=⋅AC AB ,且,60︒=∠BAC 则OBC ∆的面积为( )A .21 B .33 C .23 D .32 8.已知等差数列{}n a 的前n 项和为n S ,若01,1211=--+>+-m m m a a a m 且,3912=-m S ,则m 等于( )A .39B .20C .19D .10 9.设函数='=≠+=003),(3)3(),0(31)(x x f f a bx ax x f 则若 ( )A .1±B .2C .3±D .21 2 2 3 4 34 7 7 45 11 14 11 56 16 25 25 16 6 … … … … … … …10.一个算法的程序框图如图所示,若该程序输出的结果为20102009,则判断框内应填入的条件是 ( ) A .?2008=i B .?2009>i C .?2010>iD .?2012=i11.过抛物线x y 22=的焦点作一条直线与抛物线交于A ,B两点,它们的横坐标之和等于2,则这样的直线( ) A .有且只有一条 B .有且只有两条C .有且只有三条D .有且只有四条12.定义在R 上的函数)(x f y = 是增函数,且为奇函数,若实数t s ,满足不等式s t s t t f s s f +≤≤--≥-3,41),2()2(22时则当的取值范围是( )A .]10,2[-B .]16,2[-C .]10,4[D . [4,16] 二、填空题13.已知双曲线)0,0(1:2222>>=-b a by a x C 的一条渐近线的方程为x y 2=,则双曲线C 的离心率为 。

2023届高三综合测试数学答案(正式稿)

2023届高三综合测试数学答案(正式稿)

2023届高三综合测试数学参考答案一、 选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

二、 选择题:本题共4小题,每小题5分,共20分。

在每小题给出的选项中,有多项符0分。

三、 填空题:本题共4小题,每小题5分,共20分。

13.10x y −−= (写成1y x =−亦可) 14.421516.3(1)2n n −−四、 解答题:本题共6小题,共70分。

解答应写出文字说明、证明过程或演算步骤。

17.解:(1)()1cos o 62c s 2sin 2πf x x x x x x ωωωωω⎫⎛⎫=−=−=−⎪ ⎪⎪⎝⎭⎝⎭, …1分 因为函数()f x 图象的两条相邻对称轴之间的距离为π,所以12T π=,则2πT =,所以22ππT ω==,解得1ω=, 所以()n 62si πf x x ⎛⎫=− ⎪⎝⎭.……3分 由22262k x k πππππ−+≤−≤+,k Z ∈,解得22233k x k ππππ−+≤≤+,k Z ∈ 因此()f x 的单调增区间是22,233k k ππππ⎡⎤−++⎢⎥⎣⎦,k Z ∈. ……5分 (2)由()2sin 6πf x x ω⎛⎫=− ⎪⎝⎭,函数()f x 的图象关于,02π⎛⎫⎪⎝⎭对称,所以26πππk ω−=,Z k ∈,所以123k ω=+,Z k ∈, ……7分 由,30πx ⎡⎤∈⎢⎥⎣⎦,0ω>,则,6636ππππx ωω⎡⎤−∈−−⎢⎥⎣⎦, 又函数()f x 在0,3π⎡⎤⎢⎥⎣⎦上单调,所以2036πππωω⎧−≤⎪⎨⎪>⎩,解得02ω<≤, ……9分 由10223k <+≤解得0k =,此时13ω=.……10分18.解:(1)当1n =时,1124S <<.……1分 又因为n a Z ∈,所以11a =.依题意,2(1)(1)n n n n d n <+−<+,……3分 得2(1)20(1)10d n d d n dn −+−<⎧⎨−−−<⎩恒成立 ……4分 解得1d =, ……5分 所以,n a n =.……6分(2)2n n nb =12323411232222112322222n n n n n T n T +=++++=++++①②①-②,得1231111111212222222n n n n n n T +++=++++−=−……9分 即2222n n n T +=−<……10分1,22n n n =<+时,[]0n T =;12(1)2,21122n n n n n n C C n n +≥≥++=++≥+时,[]1n T =,所以2019M =.……12分19.解:(1)70%地满足顾客需求相当于估计某类水果日销售量的70%分位数. ……1分 由表可知,把50个日需求量的数据从小到大排列,由70%5035⨯=,日需求量在24箱以下的天数为10101535++=,可知,日需求量的样本数据的第35项数据为24,第36项数据为25, 因此,可以估计日需求量的第70%分位数为242524.52+=, ……3分 所以能70%地满足顾客的需求,估计每天应该进货量为24.5箱.……4分 (2)由(1)知2424.5<25t ≤=,即024n = 设每天的进货量为24箱的利润为X ,由题设,每天的进货量为24箱,当天卖完的概率为35,当天卖不完剩余1箱的概率15,当天卖不完剩余2箱的概率15,若当天卖完24(10050)1200X =⨯−=元,若当天卖不完剩余1箱23(10050)1301120X =⨯−−⨯=元,若当天卖不完剩余2箱22(10050)2301040X =⨯−−⨯=元, ……6分所以31()1200(11201040)115255E X =⨯+⨯+=元.……7分 设每天的进货量为25箱的利润为Y ,由题设,每天的进货量为25箱,当天卖完的概率为310,当天卖不完剩余1箱的概率310,当天卖不完剩余2箱的概率15,当天卖不完剩余3箱的概率15,若当天卖完25(10050)1250Y =⨯−=元,当天卖不完剩余1箱24(10050)1301170Y =⨯−−⨯=元, 当天卖不完剩余2箱23(10050)2301090Y =⨯−−⨯=元,当天卖不完剩余3箱22(10050)3301010Y =⨯−−⨯=元, ……9分所以31()(12501170)(10901010)1146105E Y =⨯++⨯+=元, ……10分由于()()E Y E X <,显然每天的进货量25箱的期望利润小于每天的进货量为24箱的期望利润, 所以店老板应当购进24箱. ……12分20.(1)证明:连接,BD 在正方形ABCD 中BD AC ⊥, 又PA ⊥平面ABCD ,故PA BD ⊥ 而,PA AC 是平面PAC 上的两条相交直线,所以BD ⊥平面PAC ……2分 在PBD △中,EF 为中位线,故//EF BD ……3分 所以EF ⊥平面PAC . 又EF ⊂平面EFG ,所以平面EFG ⊥平面PAC ……5分 (2)以,,AB AD AP 所在直线为,,x y z 轴建立如图空间直角坐标系A xyz −, 则()()()()()()()0,0,0,2,0,0,2,2,0,0,0,2,0,2,0,1,0,1,0,1,1A B C P D E F ,()()1,0,1,0,1,1AE AF ==, ……7分设平面AEF 的一个法向量为()111,,m x y z =, 则00AE m AF m ⎧⋅=⎪⎨⋅=⎪⎩,即111100x z y z +=⎧⎨+=⎩,取()1,1,1m =−, ……8分设1(01)2PG PC λλλ=<<≠,, 则()()()0,0,22,2,22,2,22AG AP PG AP PC λλλλλ=+=+=+−=−则3sin cos ,1m AG θ===, 整理得212810λλ−+=,解得16λ=或12λ=(舍去), ……10分 故16PG PC =,故G 到平面PAB 的距离1163h BC ==,故126EBG S BE h =⋅=△因为(1,0,1)(0,1,00AE BC ⋅=⋅=),所以AE BC ⊥ 又(1,0,1)(2,0,20AE BP ⋅=⋅−=),所以AE BP ⊥, 又BPBC P =,所以EA ⊥平面PBC ,故A 到平面BEG的距离为EA =三棱锥E ABG −体积为1113369E ABG A EBG EBG V V S EA −−==⋅=⨯=△. ……12分 21.解:(1)因为12PF F ∆的周长等于22a c +为定值,所以内切圆半径最大时,即12PF F ∆的面积最大,此时点P 为椭圆的上(下)顶点……1分可得1(22)2a c bc ⋅+=; ……2分 又因为23c e a ==,222c a b =+,解得3,2,a c b ===……3分 所以椭圆E 的方程为22195x y +=;……4分(2)(法一)设点由条件可知直线l 的斜率0k ≠, 设点1122(,),(,)P x y Q x y ,由22(1)195y k x x y =−⎧⎪⎨+=⎪⎩得:2222(59)189450k x k x k +−+−=所以2212122218945,5959k k x x x x k k−+==++(*) ……5分由(*)可得21212122925(2)(2)2()459k x x x x x x k −−−=−++=+① ……6分12211221270(2)(2)(1)(2)+(1)(2)59ky x y x k x x k x x k−−+−=−−−−=+② ……7分 22121212240[()1]59k y y k x x x x k−=−++=+ ③ ……8分由对称性,不妨令点M 位于第四象限,设直线2PF 的倾斜角为α,直线2QF 的倾斜角为β,直线2F M 的倾斜角为γ, 则1212tan ,tan ,tan 22y ym x x αβγ===−−又2F M 在2PF Q ∠的角平分线所在的直线上,则tan()tan()tan()γαπγββγ−=−+=−可得出12121212221122y y m mx x y y m mx x −−−−=++−− ……9分化简得2121212121212()2(1)()=0222222y y y y y ym m x x x x x x ++−−+−−−−−−即[]2122112121221[(2)(2)]2(2)(2)[(2)(2)]0y x y x m x x y y m y x y x −+−+−−−−−+−= 将①②③式代入上式得:2235(4925)350km k m k −+−+=……10分 则(75)(57)0km m k +−+=,解得57,()75km m k =−=舍去 ……11分故直线2F M 方程为5(2)7y x k =−−,令9x =得点5(9,)M k−则5'9k k =−,故5'9kk =−为定值.……12分【法二】设线由条件可知直线l 的斜率0k ≠,设直线2PF 的斜率为1k ,直线2QF 的斜率为2k ,直线2F M 的斜率为m , 直线:(2)1l x ny −−+=,其中1k n=由22195x y +=得225[(2)2]945x y −++= 即()[][]22295220(2)(2)25(2)0y x x x ny x ny +−+−−−+−−−+=整理得222(925)70(2)40(2)0n y n x y x −+−−−=……6分即22(925)7040022y y n n x x ⎛⎫−+−= ⎪−−⎝⎭令2yk x =−,则22(925)70400n k nk −+−=,其中12k k ,为方程的根所以12270259nk k n +=−,12240259k k n =− ……8分 由对称性,不妨令点M 位于第四象限,设直线2PF 的倾斜角为α,直线2QF 的倾斜角为β,直线2F M 的倾斜角为γ,则1212tan ,tan ,tan 22y y m x x αβγ===−− 又2F M 在2PF Q ∠的角平分线所在的直线上,则tan()tan()tan()γαπγββγ−=−+=− 由121211m k k m mk mk −−=++得2121212()(22)()0k k m k k m k k ++−−+= ……9分 代入整理得2235(2549)350nm n m n +−−=, ……10分则(57)(75)0nm m n −+=故75m n =(舍去)或者57n m =− ……11分所以直线2F M 的方程为5(2)7ny x =−−,令9x =得点(9,5)M n −故5'9n k =−,则5'9k k =−为定值.……12分 22.解:(1)()f x 的定义域为(0,)+∞.……1分21(1)1(1)(1)'()(1)ax a x ax x f x ax a x x x−++−−=+−+==. ……2分 ① 0a =时,1'()xf x x−=,当01x <<时,'()0,()f x f x >单调递增;当1x >时,'()0,()f x f x <单调递减,故()(1)10f x f ≤=−<,无零点. ……3分 ② 0a <时,10ax −<,当01x <<时,'()0,()f x f x >单调递增;当1x >时,'()0,()f x f x <单调递减,故max ()(1)12af x f ==−−,且0,x x +→→+∞时,均有()f x →−∞.若102a−−>即2a <−时,()f x 有两个零点;若102a−−=即2a =−时,()f x 有一个零点;若102a−−<即20a −<<时,()f x 无零点. ……4分③ 0a >时,若01a <<,则01x <<或1x a>时,'()0,()f x f x >均单调递增;11x a <<时,'()0,()f x f x <单调递减.而(1)10,2af x =−−<→+∞时,()f x →+∞,故()f x 有一个零点. 若1a =,则'()0f x ≥,()f x 在(0,)+∞上单调递增,且0x +→时,()f x →−∞,x →+∞时,()f x →+∞,故()f x 有一个零点.若1a >,同理可得,()f x 在1(0,),(1,)a +∞上单调递增,在1(,1)a上单调递减,111()ln 102f a a a =−−<,此时()f x 有一个零点. ……6分 综上得:当20a −<≤时,()f x 无零点;当2a =−或0a >时,()f x 有一个零点;当2a <−时,()f x 有两个零点.……7分 (2)当1a >时,由(1),任取,i j x x ()i j x x <,设1jix t x =>, 先证ln ln 2j ij ij ix x x x x x −>−+. 上述不等式即为2(1)ln 01t t t −−>+,设2(1)()ln 1t g t t t −=−+, 则22214(1)'()0(1)(1)t g t t t t t −=−=>++,所以()g t 在(1,)+∞上单调递增, ()(1)0g t g >=,即ln ln 2j i j i j ix x x x x x −>−+成立.……9分由()()i j f x f x =得:22311ln (1)ln (1)22i i i j j x ax a x x ax a x +−+=+−+, 所以ln ln ()(1)02i ji j i jx x ax x a x x −++−+=−, 所以2()(1)02i j i j ax x a x x ++−+<+, 即2()(1)()202i j i j ax x a x x +−+++<, 即[()1][()2]02i j i j ax x x x +−+−<,所以22i j x x a <+<,……11分即1213232222,2,2x x x x x x a a a<+<<+<<+<, 三式相加即得12333x x x a<++<.……12分。

浙江省春晖中学2025届高三数学第一学期期末综合测试试题含解析

浙江省春晖中学2025届高三数学第一学期期末综合测试试题含解析

浙江省春晖中学2025届高三数学第一学期期末综合测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码粘贴在答题卡右上角"条形码粘贴处"。

2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.下列命题中,真命题的个数为( ) ①命题“若1122a b <++,则a b >”的否命题; ②命题“若21x y +>,则0x >或0y >”;③命题“若2m =,则直线0x my -=与直线2410x y -+=平行”的逆命题. A .0B .1C .2D .32.设全集U =R ,集合{}221|{|}xM x x x N x =≤=,<,则UM N =( )A .[]0,1B .(]0,1C .[)0,1D .(],1-∞3.复数5i12i+的虚部是 ( ) A .iB .i -C .1D .1-4.阅读下侧程序框图,为使输出的数据为,则①处应填的数字为A .B .C .D .5.若集合M ={1,3},N ={1,3,5},则满足M ∪X =N 的集合X 的个数为( ) A .1 B .2 C .3D .46.已知(2)f x +是偶函数,()f x 在(]2-∞,上单调递减,(0)0f =,则(23)0f x ->的解集是 A .2()(2)3-∞+∞,,B .2(2)3, C .22()33-,D .22()()33-∞-+∞,, 7.已知定义在R 上的函数()f x 在区间[)0,+∞上单调递增,且()1y f x =-的图象关于1x =对称,若实数a 满足()12log 2f a f ⎛⎫<- ⎪⎝⎭,则a 的取值范围是( ) A .10,4⎛⎫ ⎪⎝⎭B .1,4⎛⎫+∞⎪⎝⎭C .1,44⎛⎫⎪⎝⎭D .()4,+∞8.已知函数()()4,2x f x x g x a x =+=+,若[]121,3,2,32x x ⎡⎤∀∈∃∈⎢⎥⎣⎦,使得()()12f x g x ≥,则实数a 的取值范围是( ) A .1a ≤ B .1a ≥ C .0a ≤D .0a ≥9.已知(cos ,sin )a αα=,()cos(),sin()b αα=--,那么0a b =是()4k k Z παπ=+∈的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件10.已知直线l :310kx y k --+=与椭圆22122:1(0)x y C a b a b+=>>交于A 、B 两点,与圆2C :()()22311x y -+-=交于C 、D 两点.若存在[]2,1k ∈--,使得AC DB =,则椭圆1C 的离心率的取值范围为( )A .⎣⎦B .,1)3C .(0,]3D .[311.如图,四面体ABCD 中,面ABD 和面BCD 都是等腰直角三角形,AB =,2BAD CBD π∠=∠=,且二面角A BD C --的大小为23π,若四面体ABCD 的顶点都在球O 上,则球O 的表面积为( )A .223πB .283πC .2π D .23π 12.已知等差数列{}n a 的前n 项和为n S ,且2550S =,则1115a a +=( ) A .4B .8C .16D .2二、填空题:本题共4小题,每小题5分,共20分。

高三理科数学综合测试卷5

高三理科数学综合测试卷5

高三理科数学综合测试卷(五)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.定义},|{B x A x x B A ∉∈=-且若)}6lg(|{2x x y N x M -=∈=,MN N -=是},6,3,2{等于( )A .{1,2,3,4,5}B .{2,3}C .{1,4,5}D .{6}2.复数11)2(2--+=ii z (i 是虚数单位)在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 3.给出如下三个命题:①若“p 且q ”为假命题,则p 、q 均为假命题;②命题“若x ≥2且y ≥3,则x +y ≥5”的否命题为“若x <2且y <3,则x +y <5”;③四个实数a 、b 、c 、d 依次成等比数列的必要而不充分条件是ad=bc ;④在△ABC 中,“︒>45A ”是“22sin >A ”的充分不必要条件.其中不正确的命题的个数是( ) A .4 B .3 C .2 D .14.在棱长为2的正方体1AC 中,G 是1AA 的中点,则BD 到平面11D GB 的距离是( )A .36 B .362 C .332 D .32 5.在对两个变量x,y 进行线性回归分析时,有下列步骤: ①对所求出的回归直线方程作出解释;②收集数据;,,2,1),,(n i y x i i =③求线性回归方程;④求相关系数;⑤根据所搜集的数据绘制散点图.如果根据可形性要求能够作出变量x,y 具有线性相关结论,则在下列操作顺序中正确的是 ( )A .①②⑤③④B .③②④⑤①C .②④③①⑤D .②⑤④③①6.若双曲线)0(12222>>=-b a by a x 的左右焦点分别为1F 、2F ,线段21F F 被抛物线22y bx =的焦点分成5:7的两段,则此双曲线的离心率为( )A .B .C .D . 7.已知等差数列{}n a 中,有011011<+a a,且它们的前n 项和n S 有最大值,则使得0n S >的 n 的最大值为( )A .11B .19C . 20D .218.某服装加工厂某月生产A 、B 、C 三种产品共4000件,为了保证产品质量,A 产品的样本容量比C 产品的样本容量多10,根据以上信息,可得C 的产品数量是 ( )A .80B . 800C .90D .900 9.已知直线422=+=+y x a y x 与圆交于A 、B 两点,O 是坐标原点,向量、满足||||-=+,则实数a 的值 ( )A .2B .-2C .6或-6D .2或-210.某企业打算在四个候选城市投资四个不同的项目,规定在同一个城市投资的项目不超过两个,则该外商不同的投资方案有 ( )A .24B .96C .240D .38411.如图所示,墙上挂有边长为a 的正方形木板,它的四个 角的空白部分都是以正方形的顶点为圆心,半径为2a的圆孤, 某人向此板投镖,假设每次都能击中木板,且击中木板上每个 点的可能性都一样,它击中阴影部分的概率是( ) A .1-4π B .4π C .1-8πD .与a 的取值有关 12.已知定义域为R 的函数)(x f y =满足)4()(+-=-x f x f ,当2>x 时,)(x f 单调递增,若421<+x x 且0)2)(2(21<--x x ,则)()(21x f x f +的值( ) A .恒大于0B .恒小于0C .可能等于0D .可正可负37376894231010313题图第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.把答案填在横线上.13.如右图所示,这是计算111124620++++ 的值的一个程序框图,其中判断框内应填入的条件是 .14.如果2(2nx 整数n 的最小值为__________.15.设不等式组⎪⎩⎪⎨⎧≤-≤-≤-2230302||y x y x 所表示的平面区域为S ,若A 、B 为S 内的两个点,则|AB|的最大值为 . 16.给出下列命题:①存在实数α,使1cos sin =⋅αα;②存在实数α,使23cos sin =+αα;③函数)23sin(x y +=π是偶函数;④8π=x 是函数)452sin(π+=x y 的一条对称轴方程;⑤若βα、是第一象限的角,且βα>,则βαsin sin >;⑥若),2(ππβα∈、,且βαcot tan<,则23πβα<+.其中正确命题的序号是_______________.三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知函数2()sin sin((3)()2f x x x x x R ππ=⋅++∈. (1)求)(x f 的最小正周期; (2)求)(x f 的单调递增区间;(3)求)(x f 图象的对称轴方程和对称中心的坐标.18.(本小题满分12分)一个均匀的正四面体的四个面上分别涂有1,2,3,4四个数字,现随机投掷两次,正四面体面朝下的数字分别为12,x x ,记2212(3)(3)x x ξ=-+-.(1)分别求出ξ取得最大值和最小值时的概率; (2)求ξ的分布列及数学期望.19.(本小题满分12分)如图,多面体AEDBFC 的直观图及三视图如图所示,N M ,分别为BC AF ,的中点.(1)求证://MN 平面CDEF ;(2)求多面体CDEF A -的体积; (3)求证:AF CE ⊥.NMFE DCBA 直观图俯视图正视图侧视图22222220.(本小题满分12分)已知数列}{n a 的各项均为正数,n S 是数列}{n a 的前n 项和,且3242-+=n n n a a S . (1)求数列}{n a 的通项公式;(2)n n n n n b a b a b a T b +++== 2211,2求已知的值.21.(本小题满分12分)已知椭圆 的两焦点与短轴的一个端点的连线构成等腰直角三角形,直线0=+-b y x 是抛物线x y 42=的一条切线.(1)求椭圆的方程;(2)过点)31,0(-S 的动直线L 交椭圆C 于A 、B 两点,试问:在坐标平面上是否存在一个定点T ,使得以AB 为直径的圆恒过点T ?若存在,求出点T 的坐标;若不存在, 请说明理由.)0(1:2222>>=+b a by a x C22.已知函数R x f f 在且0)(',0)1('≥=上恒成立.(1)求d c a ,,的值;(2)若;0)()(',41243)(2<+-+-=x h x f b bx x x h 解不等式(3)是否存在实数m ,使函数]2,[)(')(+-=m m mx x f x g 在区间上有最小值-5?若存在,请求出实数m 的值;若不存在,请说明理由.,0)0(),,(4131)(23=∈++-=f R d c a d cx x ax x f 满足。

2014届高三理科数学综合测试题(5)

2014届高三理科数学综合测试题(5)

2014届数学(理科)综合测试题(5)一、选择题:本大题共8小题,每小题5分,满分40分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i 为虚数单位,则复数)1(2i i +的模是( ) (A )4; (B ); (C ); (D )8.2.若集合}3{<=x x M ,})1lg({-==x y x N ,则=⋂N M ( )(A ))3,1(; (B ))3,1[; (C ))3,1(-; (D ))1,3(-.3.如图,在ABC ∆中,2===BC AC AB ,则=⋅BC AB ( )(A )1; (B )1-; (C )2; (D )2-. 第3题图4.双曲线1422=-y x 的焦点到渐近线的距离为( ) (A )2; (B )2; (C )1; (D )3.5.在下列命题:①R x ∈∀,0)21(>x ; ②2πα=是1sin =α的充要条件;③二项式43)12(xx + 展开式中的常数项为2;④设随机变量ξ~)1,0(N ,若p P =≥)1(ξ,则p P -=<<-21)01(ξ,其中所有正确命题的序号是( )(A )①②③; (B )①③④; (C )①②④; (D )②③④.6.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友每位朋友1本,则不同的赠送方法共有( )(A )4种; (B )10种; (C )18种; (D )20种. 7.某个长方体被一个平面所截,截得的几何 体的三视图如图所示,则这个几何体的体 积为( )(A )4; (B )24;(C )26; (D )8. 第7题图8.设),(A A y x A ,),(B B y x B 为平面直角坐标系上的两点,其中Z y x y x B B A A ∈,,,.令,,若,且,则称点B 为点A 的“相关点”,记作:)(A B τ=,已知),(000y x P (Z y x ∈00,)为平面上一个定点,平面上点列}{i P 满足:)(1-=i i P P τ且点i P 的坐标为),(i i y x ,其中n i ,,3,2,1⋅⋅⋅=,则点的“相关点”个数为( )(A )4; (B )6; (C )8; (D )10.二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~13题) 9.已知),2(ππα∈,21sin =α,则=α2tan . 10.在等比数列}{n a 中,02423=-a a a ,若}{n b为等差数列,且33a b =, 则数列}{n b 的前5 项和等于 .11.若执行如图所示的框图,输入11=x ,22=x , 33=x ,2=x ,则输出的数等于 . 12.设是周期为2的奇函数,当10≤≤x 时,)1(2)(x x x f -=,则=-)25(f .13.某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A 原料1千克,B 原料2千克; 生产乙产品1桶需耗A 原料2千克,B 原料1千克.每桶甲产品的利润是300元,每桶乙产 第11题图 品的利润是400元.公司在生产这两种产品的计划中,要求以每天消耗A 、B 原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司可共获得的最大利润是 .(二)选做题(14~15题,考生只能从中选做一题,两题全答的,只记前一题的得分)14.在直角坐标系xOy 中,曲线1C 的参数方程为⎩⎨⎧+==ααsin 1cos y x (其中α为参数);在极坐标系(与直角坐标系xOy 取相同的长度单位,且原点O 为极点,以x 轴正半轴为极轴)中,曲线2C 的方程为01)sin (cos =+-θθρ,则1C 与2C 交点个数为 .15.如图,BC AE AD ,,分别与圆O 切于点F E D ,,,延长AF 与圆O 交于另一点G ,给出下列三个结论:①CA BC AB AE AD ++=+, ②AE AD AG AF ⨯=⨯, ③AFB ∆∽ADG ∆,其中正确结论的序号是 . 第15题图三、解答题:本大题共6小题,满分80分. 须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)设)3,cos 2(x ω=,22(sin ,cos sin )b x x x ωωω=-(0>ω),函数x f ⋅=)(,且函数)(x f 图像的一个对称中心与它相邻的一条对称轴之间的距离为4π. (1)为求函数)(x f 的解析式.(2)在锐角三角形ABC 中,角C B A ,,的对边分别为c b a ,,,且满足0)(=A f ,4π=B ,2=a ,求边c 的长.17.(本小题满分12分)靖国神社是日本军国主义的象征.中国人民珍爱和平,所以要坚决反对日本军国主义.2013年12月26日日本首相安倍晋三悍然参拜靖国神社,此举在世界各国激起舆论的批评.某报的环球舆情调查中心对中国大陆七个代表性城市的1000个普通民众展开民意调查.某城市调查体统计结果如下表:(1上持续对日强硬”的民众所占比例;(2)能否有以上的把握认为这七个代表性城市的普通民众的民意与性别有关?(3)从被调查认为“中国政府需要在钓鱼岛和其他争议问题上持续对日强硬”的民 众中,采用分层抽样的方式抽取6人做进一步的问卷调查,然后在这6人中用简单随机抽样方法抽取2人进行电视专访,记被抽到的2人中女性的人数为X ,求X 的分布列.附:22()()()()()n ad bc K a b c d a c b d -=++++,18.(本小题满分14分)如图,已知1111D C B A ABCD - 是棱长为3的正方 体,点E 在1AA 上,点F 在1CC 上,且11==FC AE .(1)求证:E 、B 、F 、1D 四点共面;(2)若点G 在BC 上,23=BG ,点M 在1BB 上,BF GM ⊥,垂足为H ,求证: ⊥EM 面11B BCC ;(3)用θ表示截面1EBFD 和面11B BCC 所成锐二面角大小,求θcos .P(19.(本小题满分14分)已知椭圆C 的方程为142222=+my m x ,如图,在平面直角坐标系xOy 中,ABC ∆的三个顶点的坐标分别为)0,2(A ,)1,0(B ,)1,2(C .(1)求椭圆C 的离心率;(2)若椭圆C 与ABC ∆无公共点,求m 的取值范围;(3)若椭圆C 与ABC ∆相交于不同的两点,分别为M 、N ,求OMN ∆面积S 的最大值.20.(本小题满分14分)设数列}{n a 的前n 项和为n S ,已知6)2(321--+=++n n n a S ,+∈N n ,21=a . (1)求2a 的值;(2)求数列}{n a 的通项公式; (3)证明:对一切正整数n ,有12711121<+⋅⋅⋅++n a a a .21.(本小题满分14分)已知函数ax e x f x --=1)(,R a ∈. (1)求函数)(x f y =的单调区间;(2)试探究函数x x x f x F ln )()(-=在定义域内是否存在零点,若存在,请指出有几个零点;若不存在,请说明理由.(3)若x e x g x ln )1ln()(--=,且)())((x f x g f <在),0(+∞上恒成立,求实数a 的取值范围.参考答案一、选择题:1.B ;2.A ;3.D ;4.C ;5.B ;6.B ;7.D ;8.C . 二、填空题:9.3-;10.10;11.32;12.21-;13.2800;14.2;15.①②. 三、解答题:本大题共6小题,共80分.16.(本小题满分12分)(1)x x x x x x b a x f ωωωωωω2cos 32sin )sin (cos 3cos sin 2)(22+=-+=⋅= ……2分 )32s i n (2)2c o s 232s i n 21(2πωωω+=+=x x x 。

2024-2025学年四川省成都市高三上学期数学综合测试试题(含解析)

2024-2025学年四川省成都市高三上学期数学综合测试试题(含解析)

一、单选题:本题共8小题,每小题5分,共40分.在每个小题给出的四个选项中,只有一项是符合题目要求的2024-2025学年四川省成都市高三上学期数学综合测试试题.1. 已知复数112i z =+,则z 的虚部是( )A. 2B. 2iC. 2i 5-D. 25-【答案】D 【解析】【分析】应用复数的除法计算化简,再结合复数的虚部的定义判断即可.【详解】因为()()2112i 12i 12i 12i 12i 12i 14i 55z --====-++--,所以z 的虚部为25-.故选:D.2. 一个盒子中装有5个大小相同的小球,其中3个红球,2个白球.若从中任取两个球,则恰有一个红球的概率为( )A.35B.23C.25D.13【答案】A 【解析】【分析】根据古典概型概率公式求解.【详解】根据题意,任取两球恰有一个红球的概率为112325C C 63C 105P ===.故选:A.3. 对任意的()20,,210x x mx ∞∈+-+>恒成立,则m 的取值范围为( )A. ()1,1-B. (),1-∞C. ()1,+∞D. ()(),11,-∞-⋃+∞【答案】B 【解析】【分析】分离参数,可得()110,,2x m x x ∞⎛⎫∈+<+ ⎪⎝⎭恒成立,结合基本不等式即可求得答案.【详解】对任意的()20,,210x x mx ∞∈+-+>恒成立,即对任意的()110,,2x m x x ∞⎛⎫∈+<+ ⎪⎝⎭恒成立,因为12x x +≥=,当且仅当1x x =,即1x =时取等号,故1m <,故m 的取值范围为(),1∞-.故选:B4. 已知tan 2α=,则1cos2sin2αα+=( )A. 3B.13C. 2D.12【答案】D 【解析】【分析】应用二倍角余弦公式及二倍角正弦公式计算再结合同角三角函数关系求解.【详解】21cos22cos 11sin22sin cos tan 2αααααα+===.故选:D.5. 设,a b ∈R ,则使a b >成立的一个充分不必要条件是( )A. 33a b > B. ()lg 0a b ->C. 22a b > D. a b>【答案】B 【解析】【分析】根据充分条件及必要条件定义结合不等式的性质判定各个选项即可.【详解】对于A ,33a b a b >⇔>,故33a b >是a b >的充要条件;对于B ,由()lg 0a b ->得1a b >+,能推出a b >,反之不成立,所以()lg 0a b ->是a b >的充分不必要条件;对于C ,由22a b >无法得到,a b 之间的大小关系,反之也是,所以22a b >是a b >的既不充分也不必要条件;对于D ,由a b >不能推出a b >,反之则成立,所以a b >是a b >的必要不充分条件.故选:B .6. 定义在(0,)+∞上函数()f x 的导函数为()f x ',若()()0xf x f x '-<,且(3)0f =,则不等式(2)()0x f x -<的解集为( )A. (0,2)(2,3)⋃B. (0,2)(3,)+∞C. (0,2)(2,)⋃+∞D. (0,3)(3,)+∞ 【答案】B 【解析】【分析】根据给定条件构造函数()()f x g x x=,利用导数确定单调性,结合(3)0f =求解不等式即得.【详解】依题意,令()()f x g x x =,求导得2()()()0'-'=<xf x f x g x x,则()g x 在(0,)+∞上单调递减,由(3)0f =,得(3)0g =,不等式(2)0(2)0(2)0()()()f x f x x g x x xx -<⇔-⋅<⇔-<,则20()0x g x -<⎧⎨>⎩或20()0x g x ->⎧⎨<⎩,即203x x <⎧⎨<<⎩或23x x >⎧⎨>⎩,解得02x <<或3x >,所以不等式(2)()0x f x -<解集为(0,2)(3,)+∞ .故选:B7. 已知双曲线2222:1(0,0)x y C a b a b-=>>的左焦点为1F ,O 为坐标原点,若在C 的右支上存在关于x轴对称的两点,P Q ,使得1PF Q △为正三角形,且1OQ F P ⊥,则C 的离心率为( )A.B. 1C.D. 1+【答案】D 【解析】【分析】根据条件,利用几何关系得到12π2F PF ∠=,又21π6F F P ∠=,得到21,PF c PF ==,再结2c a -=,即可求解.【详解】设双曲线的焦距为2(0)c c >,右焦点为2F ,直线OQ 交1F P 于点M ,连接2PF ,因为1PF Q △为正三角形,1OQ F P ⊥,所以M 为1F P 的中点,所以2//OM F P ,的的故12π2F PF ∠=,易知21π6F F P ∠=,所以21,PF c PF ==,由双曲线的定义知122PF PF a -=,2c a -=,得1c e a ===+故选:D .8. 如图,在直三棱柱111ABC A B C -中,ABC V 是等边三角形,1AA =,2AB =,则点C 到直线1AB 的距离为( )A.B.C.D.【答案】C 【解析】【分析】取AC 的中点O ,以OB 所在直线为x 轴,OC 所在直线为y 轴,O 与11A C 中点连线所在直线为z 轴,建立空间坐标系,利用空间向量求解即可.【详解】解:取AC 的中点O ,则,BO AC BO ⊥=,以OB 所在直线为x 轴,OC 所在直线为y 轴,O 与11A C 中点连线所在直线为z 轴,建立如图所示的空间直角坐标系O xyz -,所以()()10,1,0,,0,1,0A B C -,所以()1,0,2,0AB CA ==-,所以CA 在1AB上的投影的长度为11||||CA AB AB ⋅==,故点C 到直线1AB的距离为d ===故选:C.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对得部分分,有选错的得0分.9. 对于函数()ln 1f x x =-,则下列判断正确的是( )A. 直线22exy =是()f x 过原点一条切线B. ()f x 关于y x =对称的函数是1e x y +=C. 过一点(),a b 可以有3条直线与()f x 相切D. ()2f x x ≤-【答案】ABD 【解析】【分析】由导数的几何意义可判定A ,由反函数的概念可判定B ,利用对数函数的图像可判定C ,利用常用的切线放缩可判定D.【详解】对于A ,设切点(),ln 1m m -,则()1ln 100m k f m m m --=='=-,∴1ln 1m m m-=⋅,∴ln 2m =,∴2e m =,切点()2e ,1所以过原点的切线方程为222e 1e ex xy y --=⇒=,∴A正确;的对于B ,由反函数的概念可得111ln ee y x y x x y +++=⇒=⇒=,故与()f x 关于y x =对称的函数为1e x y +=,∴B 正确;对于C ,当点(),a b 在()f x 上方,如下图所示,结合图象可知,最多有两条切线,如果在()f x 下方,没有切线,在曲线上,只有一条切线C 正错误;对于D ,由于x +∀∈R ,设()()1ln 1x g x x x g x x'-=--⇒=,令()01g x x >'⇒>,令()001g x x <⇒<<',∴()g x 在(1,+∞)上单调递增,在()01,上单调递减;∴()()()10ln 12g x g x x f x x ≥=⇒≤-⇒≤-,∴D 正确.故选:ABD10. 等差数列{}n a 中,10a >,则下列命题正确的是( )A. 若374a a +=,则918S =B. 若125a a +=,349a a +=,则7817a a +=C. 若150S >,250S <,则2219a a <D. 若910S S =,则110S >【答案】ABD 【解析】【分析】利用等差数列的性质,对于A ,()()193799922a a a a S ++==,计算即可;对于B ,由已知计算数列公差,再求值即可;对于C ,结合数列单调性比大小;对于D ,由10a >,100a =,得()111116111102a a S a +==>.【详解】等差数列{}n a 中,10a >,设公差为d ,若374a a +=,则()()19379991822a a a a S ++===,A 正确;若125a a +=,349a a +=,则()()3412954a a a a d +-+=-=,得1d =,27811251217a a a d a ++===++,B 正确;若()115158151502a a S a +==>,()1252513252502a a S a +==<,所以公差0d <,当90a >时,有190a a >>,则有2219a a >,当90a <时,有79820a a a +=>,得790a a >->,所以1790a a a >->>,则有2219a a >,C 错误;若910S S =,则100a =,因为10a >,所以()111116111102a a S a +==>,D 正确.故选:ABD .11. 设定义在R 上的函数()f x 与()g x 的导函数分别为()f x '和()g x '.若()()42f x g x --=,()()2g x f x ''=-,且()2f x +为奇函数,则下列说法中一定正确的是( )A. 函数()f x 的图象关于点()2,0对称B. ()()352g g +=-C.20241()2024k g k ==-∑D.20241()0k f k ==∑【答案】AD 【解析】【分析】根据给定条件,结合奇函数性质,借助赋值法探讨对称性、周期性,再逐项分析判断即得.【详解】对于A ,由(2)f x +为奇函数,得(2)(2)f x f x -+=-+,即(2)(2)0f x f x -++=,因此函数()f x 的图象关于点(2,0)对称,A 正确;由()(2)g x f x ''=-,得()(2)g x f x a =-+,则(4)(2)g x f x a -=-+,又()(4)2f x g x --=,于是()(2)2f x f x a =-++,令1x =,得2a =-,即()(2)f x f x =-,则(2)()f x f x +=-,(4)(2)()f x f x f x +=-+=,因此函数()f x 是周期函数,周期为4,对于B ,由()(2)2g x f x =--,得(3)(5)(1)2(3)24g g f f +=-+-=-,B 错误;对于C ,显然函数()g x 是周期为4的周期函数,(1)(3)(3)(5)4g g g g +=+=-,(2)(4)(0)2(2)24g g f f +=-+-=-,则2024411()506()506(8)4048k k g k g k ====⨯-=-∑∑,C 错误;对于D ,(1)(3)0f f +=,(2)(4)0f f +=,则2024411()506()0k k f k f k ====∑∑,D 正确.故选:AD【点睛】结论点睛:函数()y f x =的定义域为D ,x D ∀∈,①存在常数a ,b 使得()(2)2()()2f x f a x b f a x f a x b +-=⇔++-=,则函数()y f x =图象关于点(,)a b 对称.②存在常数a 使得()(2)()()f x f a x f a x f a x =-⇔+=-,则函数()y f x =图象关于直线x a =对称.三、填空题:本题共3个小题,每小题5分,共15分.12. 在5ax ⎛ ⎝展开式中2x 的系数为270-,则a 的值为__________.【答案】3-【解析】【分析】根据二项式定理可得展开式的通项为()35255C 1r rrrxa--⋅-,令3522r -=,求得r 代入运算即可.【详解】因为展开式的通项为()()3552555C C ,0,1,2,3,,145rr r r rrrax x r a ---⎛⋅= ⎝=-,令3522r -=,解得2r =,因为2x 的系数为()5323211C 2700a a -=-=,解得3a =-.故答案为:3-.13. 函数2()ln 2f x x ax =+-在[1,2]内存在单调递增区间,则a 的取值范围是______.【答案】1(,)2-+∞【解析】【分析】根据给定条件,求出函数()f x 的导数()f x ',再利用()0f x '>在(1,2)内有解即可.【详解】函数2()ln 2f x x ax =+-,求导得1()2f x ax x'=+,由函数()f x 在[1,2]内存在单调递增区间,得不等式()0f x '>在(1,2)内有解,不等式21()02f x a x'>->⇔,而函数212y x =-在(1,2)上单调递增,当(1,2)x ∈时,21122x ->-,因此12a >-,所以a 的取值范围是1(,)2-+∞.故答案为:1(,)2-+∞14. 双曲线的离心率可以与其渐近线有关,比如函数1y x=的图象是双曲线,它的实轴在直线y x =上,虚轴在直线y x =-上,实轴顶点是()()1,1,1,1--,焦点坐标是,(,已知函数y x =+e .则其在一象限内的焦点横坐标是__________,其离心率2e =__________.【答案】 ①.②.43【解析】【分析】根据材料得到双曲线的轴和顶点的定义,根据双曲线的离心率和其渐近线的斜率之间的关系求双曲线的离心率,利用双曲线的离心率的定义求双曲线的焦点坐标.【详解】直线y x =和y 轴是双曲线的两条渐近线,由阅读材料可知,双曲线的焦点所在的对称轴是直线y =,由顶点的定义知,对称轴与双曲线的交点即顶点,联立得2y x x y ⎧⎫=+⎪⎪⎭⎨⎪=⎩,解得:1x y =⎧⎪⎨=⎪⎩1x y =-⎧⎪⎨=⎪⎩(,若将双曲线绕其中心适当旋转可使其渐近线变为直线y x =,则双曲线的离心率e ==243e =,设双曲线的位于第一象限的焦点的坐标为()00,x y ,则01x =,所以0x =,所以002y ==,所以双曲线的位于第一象限的焦点的坐标为2⎫⎪⎪⎭,.43.【点睛】思路点睛:关于新定义题的思路有:(1)找出新定义有几个要素,找出要素分别代表什么意思;(2)由已知条件,看所求的是什么问题,进行分析,转换成数学语言;(3)将已知条件代入新定义的要素中;(4)结合数学知识进行解答.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤15. 根据统计, 某蔬菜基地西红柿亩产量的增加量 y (百千克)与某种液体肥料每亩的使用量x (千克)之间 的对应数据的散点图如图所示.(1)从散点图可以看出, 可用线性回归方程拟合 y 与x 的关系, 请计算样本相关系数r 并判断它们的相关程度;(2)求 y 关于x 的线性回归方程ˆˆˆybx a =+, 并预测液体肥料每亩的使用量为 12 千克时西红柿亩产量的增加量.附:()()()121ˆˆˆnn i i i n i i x x y y x x y y r b ay bx x x ==----===--∑∑,.【答案】(1)r = ; y 与x 程正线性相关, 且相关程度很强. (2) 1.50.7y x =+; 9.9 百千克.【解析】【分析】(1)由图形中的数据结合相关系数公式求得相关系数r ,再由0.75r >即可求解;(2)求出线性回归方程,再取12x =代入,即可求解.【小问1详解】由题知: 24568345675555x y ++++++++====,所以()()()()55522111142010i i i i i i i x x y y x x y y ===--=-=-=∑∑∑,,所以50.75x x y y r --===>所以 y 与x 程正线性相关, 且相关程度很强.小问2详解】因为 ()()()51521140.70ˆ2i ii i i x x y y b x x ==--===-∑∑,ˆˆ50.75 1.5a y bx =-=-⨯=,所以 y 关于x 的线性回归方程为 1.507ˆ.yx =+,当 12x =时, 1.50.712ˆ9.9y=+⨯=.所以预测液体肥料每亩的使用量为 12 千克时西红柿亩产量的增加量为 9.9 百千克.16. 已知数列{a n }的前n 项和为n S ,且223n S n n =+,数列{b n }满足24log 1n n a b =+.(1)求,n n a b ;(2)设n n n c a b =⋅,数列{}n c 的前n 项和为n T ,求n T .【【答案】(1)41,2n n n a n b =+=(2)()16432n n T n +=+-⋅【解析】【分析】(1)由n a 与n S 的关系,再结合24log 1n n a b =+即可求解;(2)由错位相减法即可求解.【小问1详解】由223n S n n =+,当2n ≥时,()221232(1)3141n n n a S S n n n n n -⎡⎤=-=+--+-=+⎣⎦.当1n =时,115a S ==,也适合41n a n =+.综上可得,41n a n =+.由24log 141n n a b n =+=+,所以2n n b =.【小问2详解】由(1)知()412nn n a b n =+⋅()125292412nn T n =⨯+⨯+++ ()()23125292432412n n n T n n +=⨯+⨯++-⋅++⋅ ①①-②得()21104242412n n n T n +-=+⨯++⨯-+⋅ ②()()()111412104412643212n n n n T n n -++--=+⨯-+⋅=---⋅-,所以()16432n n T n +=+-⋅.17. 在三棱柱111ABC A B C -中,平面11AA C C ⊥平面ABC ,11AA A C =,2AC =,AC BC ⊥,11AA AC ⊥.(1)证明:1BB ⊥平面1A BC ;(2)若异面直线11,AB CA 所成角的余弦值为13,求BC .【答案】(1)证明过程见解析(2)【解析】【分析】(1)由面面垂直得到线面垂直,进而得到BC ⊥1AA ,结合11AA A C ⊥得到1AA ⊥平面1A BC ,再由平行关系得到证明;(2)作出辅助线,证明出1A P ⊥平面ABC ,建立空间直角坐标系,设BC m =,写出各点坐标,利用异面直角夹角的余弦值列出方程,求出m =,得到答案.【小问1详解】因为平面11AA C C ⊥平面ABC ,交线为AC ,AC BC ⊥,⊂BC 平面ABC ,所以BC ⊥平面11AAC C ,因为1AA ⊂平面11AAC C ,所以BC ⊥1AA ,因为11AA A C ⊥,1A C BC C = ,1,AC BC ⊂平面1ABC ,所以1AA ⊥平面1A BC ,又1//BB 1AA ,所以1BB ⊥平面1A BC ;【小问2详解】取AC 的中点P ,连接1PA ,因为11AA A C =,所以1A P ⊥AC ,因为平面11AA C C ⊥平面ABC ,交线为AC ,1A P ⊂平面11AAC C ,所以1A P ⊥平面ABC ,取AB 的中点H ,连接PH ,则//PH BC ,因为AC BC ⊥,所以PH ⊥AC ,故以P 为坐标原点,1,,PH PC PA 所在直线分别为,,x y z 轴,建立空间直角坐标系,因为2AC =,所以1112A P AC ==,故()()()101,0,0,1,0,0,0,1A C A -,设BC m =,则(),1,0B m ,设()1,,B s t h ,由11AA BB = 得()()0,1,1,1,s m t h =--,解得,2,1s m t h ===,故()1,2,1B m ,()()11,3,1,0,1,1AB m CA ==- ,因为异面直线11,AB CA 所成角的余弦值为13,所以11cos ,3AB =,解得m =,故BC =18. 已知抛物线Γ:24y x =,在Γ上有一点A 位于第一象限,设A 的纵坐标为(0)a a >.(1)若A 到抛物线Γ准线的距离为3,求a 的值;(2)当4a =时,若x 轴上存在一点B ,使AB 的中点在抛物线Γ上,求O 到直线AB 的距离;(3)直线l :3x =-,抛物线上有一异于点A 的动点P ,P 在直线l 上的投影为点H ,直线AP 与直线l 的交点为.Q 若在P的位置变化过程中,4HQ >恒成立,求a 的取值范围.【答案】(1)a =(2(3)(]0,2【解析】【分析】(1)先求出点A 的横坐标,代入抛物线方程即可求解;(2)先通过中点在抛物线上求出点B 的坐标,进一步求出直线AB 方程,利用点到直线距离公式求解即可;(3)设22(,),(,),(3,)(0)44t a P t Aa H t t a -≠>,联立方程求出点Q 的坐标,根据4HQ >恒成立,结合基本不等式即可求解.【小问1详解】抛物线Γ:24y x =的准线为1x =-,由于A 到抛物线Γ准线的距离为3,则点A 的横坐标为2,则2428(0)a a =⨯=>,解得a =【小问2详解】当4a =时,点A 的横坐标为2444=,则()4,4A ,设(),0B b ,则AB 的中点为4,22b +⎛⎫⎪⎝⎭,由题意可得24242b +=⨯,解得2b =-,所以B (−2,0),则402423AB k -==+,由点斜式可得,直线AB 的方程为()223y x =+,即2340x y -+=,所以原点O 到直线AB =;【小问3详解】如图,设()22,,,,3,(0)44t a P t A a H t t a ⎛⎫⎛⎫-≠> ⎪ ⎪⎝⎭⎝⎭,则22444AP t a k t a t a -==+-,故直线AP 的方程为244a y a x t a ⎛⎫-=- ⎪+⎝⎭,令3x =-,可得2434a y a t a ⎛⎫=-+⋅ ⎪+⎝⎭,即243,34a Q a t a ⎛⎫⎛⎫--+⋅ ⎪ ⎪ ⎪+⎝⎭⎝⎭,则2434a HQ t a t a ⎛⎫=-++⋅ ⎪+⎝⎭,依题意,24344a t a t a⎛⎫-++⋅> ⎪+⎝⎭恒成立,又2432204a t a a a t a⎛⎫+++⋅-≥-> ⎪+⎝⎭,则最小值为24a ->,即2a >+2a >+,则221244a a a +>++,解得02a <<,又当2a =时,1624442t t ++-≥-=+,当且仅当2t =时等号成立,而a t ≠,即当2a =时,也符合题意.故实数a 的取值范围为(]0,2.19. 已知函数22()ln(1),(1,)2x f x x x x ax=+-∈-+∞++.(1)当1a =时,求曲线()y f x =在1x =处切线的方程;(2)当0a =时,试判断()f x 零点的个数,并说明理由;(3)是否存在实数a ,使(0)f 是()f x 的极大值,若存在,求出a 的取值集合;若不存在,请说明理由.【答案】(1)388ln270x y -+-=;(2)1个,理由见解析;(3)存在,1{}6a ∈-.【解析】【分析】(1)把1a =代入,求出函数的导数,利用导数的几何意义求出切线方程.(2)把0a =代入,利用导数探讨函数的单调性即可得解.(3)利用连续函数极大值意义求出a 值,再验证即可得解.【小问1详解】当1a =时,22()ln(1)2x f x x x x =+-++,求导得222142()1(2)x f x x x x -=-+++',则3(1)8f '=,而1(1)ln22f =-,于是切线方程是13ln2)(1)(28x y -=--,所以曲线()y f x =在1x =处切线的方程388ln270x y -+-=.【小问2详解】当0a =时,24()ln(1)ln(1)222x f x x x x x=+-=++-++,的求导得22214()01(2)(1)(2)x f x x x x x '=-=≥++++,函数()f x 在(1,)-+∞上单调递增,又(0)0f =,所以函数()f x 有且仅有一个零点,是0.【小问3详解】由(0)f 是()f x 的极大值,得0,0m n ∃<>,使得当(,)x m n ∈时,220x ax ++>且()(0)f x f ≤恒成立,求导得22222(461)()(1)(2)x a x ax a f x x ax x '+++=+++,因此0x =是22()461h x a x ax a =+++的变号零点,即(0)0h =,解得16a =-,经检验,当16a =-时,322(24)()(1)(612)x x f x x x x -=+--',则当(1,0)x ∈-时()0f x '>,当(0,24)x ∈时()0f x '<,于是(0)f 是()f x 的极大值,符合条件,所以a 的取值集合为1{}6-.【点睛】结论点睛:函数()y f x =是区间D 上的可导函数,则曲线y =f (x )在点00(,())x f x 0()x D ∈处的切线方程为:000()()()y f x f x x x '-=-.。

甪直中学高三数学综合测试五

甪直中学高三数学综合测试五

甪直中学高三数学综合测试五一.填空题:(本大题共14小题,每小题5分,计70分) 1.复数2ii-的虚部是 . 2.已知集合{},0M a =,{}2230,N x x x x =-<∈Z ,如果M N ≠∅ ,则a = .3.已知)0,2(πα-∈,53cos =α,则=+)4tan(πα . 4.设等比数列{}n a 的各项均为正数,其前n 项和为n S .若11a =,34a =,63k S =,则k =___ ___. 5.ABC ∆中,“6A π=”是“1sin 2A =”的 条件 6.已知正方形ABCD 的边长为1,若点E 是AB 边上的动点,则DC DE ⋅的最大值为 . 7如图,在△ABC 中,B=45°,D 是BC 边上的一点,AD=5,AC=7,DC=3,则AB 的长为 .(第8题图) 8.函数)2||,0,0)(sin()(πφωφω<>>+=A x A x f 的部分图像如图所示,则将()y f x =的图象向右平移6π个单位后,得到的图像解析式为____ ____. 9.已知0y x π<<<,且tan tan 2x y =,1sin sin 3x y =,则x y -=___ ___. 10.设等比数列{a n }的前n 项和为S n (n ∈N*).若S 3,S 9,S 6成等差数列,则a 8a 2+a 5的值是 . 11. 在平面直角坐标系xOy 中,已知点A 是椭圆221259x y +=上的一个动点,点P 在线段OA 的延长线上,且72OA OP ⋅=,则点P 横坐标的最大值为 .12.在平面直角坐标系xOy 中,已知圆C :x 2+y 2﹣(6﹣2m )x ﹣4my+5m 2﹣6m=0,直线l 经过 点(1,0).若对任意的实数m ,定直线l 被圆C 截得的弦长为定值,则直线l 的方程为 . 13.记定义在R 上的函数y=f (x )的导函数为f ′(x ).如果存在x 0∈[a ,b ],使得 f (b )﹣f (a )=f ′(x 0)(b ﹣a )成立,则称x 0为函数f (x )在区间[a ,b ]上的“中值点”.那么函数f (x )=x 3﹣3x 在区间[﹣2,2]上“中值点”的个数为 .14.设点P 是曲线y=x 2上的一个动点,曲线y=x 2在点P 处的切线为l ,过点P 且与直线l 垂直的直线与曲线y=x 2的另一交点为Q ,则PQ 的最小值为 .二.解答题:(本大题共6小题,计90分)15如图,在正三棱柱ABC ﹣A 1B 1C 1中,A 1A=AC ,D ,E ,F 分别为线段AC ,A 1A ,C 1B 的中点.(1)证明:EF ∥平面ABC ; (2)证明:C 1E ⊥平面BDE .16在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且ccosB+bcosC=3acosB . (1)求cosB 的值; (2)若=2,求b 的最小值.17已知函数f (x )=m (x ﹣1)2﹣2x+3+lnx ,m ∈R .(1)当m=0时,求函数f (x )的单调增区间;(2)当m >0时,若曲线y=f (x )在点P (1,1)处的切线l 与曲线y=f (x )有且只有一个公共点,求实数m 的值.18.设椭圆的中心为原点O ,长轴在x 轴上,上顶点为A ,左、右焦点分别为F 1、F 2,线段OF 1、OF 2的中点分别为B 1、B 2,且△AB 1B 2是面积为4的直角三角形.过B1作直线l 交椭圆于P 、Q 两点. (1) 求该椭圆的标准方程;(2) 若22QB PB ,求直线l 的方程;19.已知数列{a n }满足,a n +1+ a n =4n -3(n ∈N *) . (1)若数列{a n }是等差数列,求a 1的值; (2)当a 1=2时,求数列{a n }的前n 项和S n ;20. 如图所示,直立在地面上的两根钢管AB 和CD,AB =,CD =,现用钢丝绳对这两根钢管进行加固,有两种方法:(1)如图(1)设两根钢管相距1m ,在AB 上取一点E ,以C 为支点将钢丝绳拉直并固定在地面的F 处,形成一个直线型的加固(图中虚线所示).则BE 多长时钢丝绳最短? (2)如图(2)设两根钢管相距,在AB 上取一点E ,以C 为支点将钢丝绳拉直并固定在地面的F 处,再将钢丝绳依次固定在D 处、B 处和E 处,形成一个三角形型的加固(图中虚线所示).则BE 多长时钢丝绳最短?A ED CBFAED CB F 图1图2。

2023年华南师范大学附属中学高考三模数学试题及答案

2023年华南师范大学附属中学高考三模数学试题及答案

2023届高三综合测试数 学2023年5月注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、 选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 已知集合{}1,0,1M =−,2{|1,}N y y x x M ==−∈,则M N 等于A .{}1,0−B .{}0,1C .{}1,1−D .{}1,0,1−2. 已知复数z 满足(1)|2|z i i +=−,则复数z 对应的点在第( )象限 A .一B .二C .三D . 四3. 已知向量()()3,4,4,m ==a b ,且a b a b +=−,则b = A .3B .4C .5D .64. 在流行病学中,基本传染数是指每名感染者平均可传染的人数. 当基本传染数高于1时,每个感染者平均会感染1个以上的人,从而导致感染这种疾病的人数呈指数级增长. 当基本传染数持续低于1时,疫情才可能逐渐消散. 接种疫苗是预防病毒感染的有效手段.已知某病毒的基本传染数05R =,若1个感染者在每个传染期会接触到N 个新人,这N 人中有V 个人接种过疫苗(VN称为接种率),那么1个感染者新的传染人数为()0R N V N−,为了有效控制病毒传染(使1个感染者传染人数不超过1),我国疫苗的接种率至少为 A .75%B .80%C .85%D .90% 5. 设n S 为正项等差数列{}n a 的前n 项和.若20232023S =,则4202014a a +的最小值为 A .52B .5C .9D .926. 已知π31cos1,2),a b c −+===,则 A .a <b <cB .c <a <bC .c <b <aD .a <c <b7. 已知克列尔公式:对任意四面体,其体积V 和外接球半径R 满足6RV =1111(),2p aa bb cc =++ 111,,,,,a a b b c c分别为四面体的三组对棱的长.在四面体ABCD 中,若AB CD AC BD ====21AD BC ==,则该四面体的外接球的表面积为A .52π B .3π C .73π D .5π8. 在平面直角坐标系xOy 中,若抛物线2:2C y px =的准线与圆22:(1)1M x y ++=相切于点A ,直线AB 与抛物线C 切于点B ,点N 在圆M 上,则AB AN ⋅的取值范围为A . [0,8]B . [2−+C . [4−+D . 4]二、 选择题:本题共4小题,每小题5分,共20分。

2024届云南省昭通市昭阳区第一中学高三下阶段测试(五)数学试题

2024届云南省昭通市昭阳区第一中学高三下阶段测试(五)数学试题

2024届云南省昭通市昭阳区第一中学高三下阶段测试(五)数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.函数()y f x =在区间,22ππ⎛⎫- ⎪⎝⎭上的大致图象如图所示,则()f x 可能是( )A .()ln sin f x x =B .()()ln cos f x x =C .()sin tan f x x =-D .()tan cos f x x =- 2.已知复数(2)1ai iz i+=-是纯虚数,其中a 是实数,则z 等于( )A .2iB .2i -C .iD .i -3.某个小区住户共200户,为调查小区居民的7月份用水量,用分层抽样的方法抽取了50户进行调查,得到本月的用水量(单位:m 3)的频率分布直方图如图所示,则小区内用水量超过15 m 3的住户的户数为( )A .10B .50C .60D .1404.已知33a b ==,且(2)(4)a b a b -⊥+,则2a b -在a 方向上的投影为( ) A .73B .14C .203D .75.已知抛物线C :22y px =(0p >)的焦点为F ,01,2M y ⎛⎫⎪⎝⎭为该抛物线上一点,以M 为圆心的圆与C 的准线相切于点A ,120AMF ∠=︒,则抛物线方程为( ) A .22y x =B .24y x =C .26y x =D .28y x =6.已知复数z 在复平面内对应的点的坐标为(1,2)-,则下列结论正确的是( ) A .2z i i ⋅=- B .复数z 的共轭复数是12i - C .||5z =D .13122z i i =++ 7.若复数221a ii++(a R ∈)是纯虚数,则复数22a i +在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限8.设,则"是""的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 9.一袋中装有5个红球和3个黑球(除颜色外无区别),任取3球,记其中黑球数为X ,则()E X 为( )A .98B .78C .12D .625610.已知函数321()(0)3f x ax x a =+>.若存在实数0(1,0)x ∈-,且012x ≠-,使得01()()2f x f =-,则实数a 的取值范围为( ) A .2(,5)3B .2(,3)(3,5)3⋃ C .18(,6)7D .18(,4)(4,6)7⋃ 11.已知ABC ∆的内角,,A B C 的对边分别是,,,a b c 且444222222a b c a b c a b+++=+,若c 为最大边,则a b c +的取值范围是( )A .313⎛ ⎝⎭,B .(3C .2313⎛ ⎝⎦,D .3]12.已知在平面直角坐标系xOy 中,圆1C :()()2262x m y m -+--=与圆2C :()()22121x y ++-=交于A ,B 两点,若OA OB =,则实数m 的值为( ) A .1B .2C .-1D .-2二、填空题:本题共4小题,每小题5分,共20分。

陕西省汉中市2022届高三数学上学期第五次质量检测试题 理(含解析)

陕西省汉中市2022届高三数学上学期第五次质量检测试题 理(含解析)
因为 .
所以 的外接圆半径 .
所以 .
因为点S到平面ABC的距离为 , 平面 ,
所以 .即
在 中: .
所以 .
故填: .
【点睛】本题考查球上的点到三角形中心的距离的求法,属于中档题,解题时要认真审题,注意球的性质和空间思维能力的培养.
三、解答题
17.已知函数 .
(I)当 时,求 的值域;
(II)已知 的内角 的对边分别为 , , ,求 的面积.
过A和B做AD⊥l,BE⊥l,
由抛物线的定义可知:丨AF丨=丨AD丨,丨BF丨=丨BE丨,
|AC|=2|AF|,即|AC|=2|AD|,
则∠ACD ,由丨HF丨=p=2,
∴ ,
则丨AF丨=丨AD丨 ,
设直线AB的方程y (x﹣1),
,整理得:3x2﹣10x+3=0,
则x1+x2 ,
由抛物线的性质可知:丨AB丨=x1+x2+p ,
7.已知函数 ( , )的最小正周期是 ,将函数 的图象向左平移 个单位长度后所得的函数图象过点 ,则函数 ( )
A. 有一个对称中心 B. 有一条对称轴
C. 在区间 上单调递减 D. 在区间 上单调递增
【答案】B
【解析】
由题 ,平移后得到的函数是 ,其图象过点 , ,因为 , , ,故选B.
点睛:本题考查的是 的图象及性质.解决本题的关键有两点:一是图象向左平移变换时要弄清是加还是减,是x加减,还是2x加减,另一方面是根据图象过点 确定 的值时,要结合五点及 确定其取值,得到函数的解析式,再判断其对称性和单调性.
【详解】依题意,圆心为 ,设 点的坐标为 ,由两点间距离公式得 ,设 , ,令 解得 ,由于 ,可知当 时, 递增, 时, , 递减,故当 时取得极大值也是最大值为 ,故 ,故 时, 且 ,所以 ,函数单调递减.当 时, , ,当 时, ,即 单调递增,且 ,即 , 单调递增,而 ,故当 时, 函数单调递增,故函数在 处取得极小值也是最小值为 ,故 的最小值为 ,此时 .故选A.

(完整版)高三数学综合测试题试题以及答案

(完整版)高三数学综合测试题试题以及答案

高三数学综合测试题一、选择题1、设集合{}U =1,2,3,4,{}25M =x U x x+p =0∈-,若{}2,3U C M =,则实数p 的值 为( B )A .4-B . 4C .6-D .6 2. 条件,1,1:>>y x p 条件1,2:>>+xy y x q ,则条件p 是条件q 的.A 充分不必要条件 .B 必要不充分条件.C 充要条件 .D 既不充分也不必要条件}2,1,0,1.{-B }3,2,0,1.{-C }3,2,1,0.{D3. 设函数()1xf x e =-的图象与x 轴相交于点P, 则曲线在点P 的切线方程为( C ) (A )1+-=x y (B )1+=x y (C )x y -= (D )x y = 4.设a =120.6,b =120.7,c =lg0.7,则 ( C )A .c <b <aB .b <a <cC .c <a <bD .a <b <c 5.函数f (x )=e x -x -2的零点所在的区间为 ( C )A .(-1,0)B .(0,1)C .(1,2)D .(2,3)6、设函数1()7,02(),0x x f x x x ⎧-<⎪=⎨⎪≥⎩,若()1f a <,则实数a 的取值范围是( C )A 、(,3)-∞-B 、(1,)+∞C 、(3,1)-D 、(,3)(1,)-∞-+∞U 7.已知对数函数()log a f x x =是增函数,则函数(||1)f x +的图象大致是( D )8.函数y =log a (x +1)+x 2-2(0<a <1)的零点的个数为( )A .0B .1C .2D .无法确定解析:选C.令log a (x +1)+x 2-2=0,方程解的个数即为所求函数零点的个数.即考查图象y 1=log a (x +1)与y 2=-x 2+2的交点个数9.若函数f (x )=-x 3+bx 在区间(0,1)上单调递增,且方程f (x )=0的根都在区间[-2,2]上,则实数b 的取值范围为 ( D )A .[0,4]B .[)3+∞,C .[2,4]D .[3,4]10.已知定义在R 上的奇函数f (x )是(]0,∞-上的增函数,且f (1)= 2,f (-2)=-4,设P ={x |f (x +t )-4<0},Q ={x |f (x )<-2}.若“x ∈P ”是“x ∈Q ”的充分不必要条件,则实数t 的取值范围是( B )A .t ≤-1B .t >3C .t ≥3D . t >-1二、填空题11.命题“若12<x ,则11<<-x ”的逆否命题为________________ 12.已知偶函数f (x )=242n n x -(n ∈Z )在(0,+∞)上是增函数,则n = 2 .13、已知函数32()(6)1f x x mx m x =++++既存在极大值又存在极小值,则实数m 的取值范围是__、6m >或3m <-_____________14.若不等式1一log )10(x a a -<0有解,则实数a 的范围是 ; 15.已知函数)(x f 定义域为[-1, 5], 部分对应值如表)(x f 的导函数)(x f '的图象如图所示, 下列关于函数)(x f 的命题① 函数)(x f 的值域为[1,2]; ② 函数)(x f 在[0,2]上是减函数; ③ 如果当],1[t x -∈时, )(x f 的最大值是2, 那么t 的最大值为4; ④ 当21<<a 时, 函数a x f y -=)(有4个零点. 其中真命题是 ② (只须填上序号).三、解答题16.已知命题:“{}|11x x x ∃∈-<<,使等式20x x m --=成立”是真命题,(1)求实数m 的取值集合M ;(2)设不等式()(2)0x a x a -+-<的解集为N ,若x ∈N 是x ∈M 的必要条件,求a 的取值范围. 答案:(1) 124M m m ⎧⎫=-≤<⎨⎬⎩⎭(2) 94a >或 14a <-17.(本题满分12分)已知二次函数y = f (x )的图象过点(1,-4),且不等式f (x )<0的解集是(0,5).(Ⅰ)求函数f (x )的解析式;(Ⅱ)设g (x )=x 3-(4k -10)x +5,若函数h (x )=2f (x )+g (x )在[-4,-2]上单调递增,在[-2,0]上单调递减,求y =h (x )在[-3,1]上的最大值和最小值.17.解:(Ⅰ)由已知y = f (x )是二次函数,且f (x )<0的解集是(0,5), 可得f (x )=0的两根为0,5, 于是设二次函数f (x )=ax (x -5),代入点(1,-4),得-4=a×1×(1-5),解得a =1,∴ f (x )=x (x -5). ………………………………………………………………4分 (Ⅱ)h (x )=2f (x )+g (x )=2x (x -5)+x 3-(4k -10)x +5=x 3+2x 2-4kx +5, 于是2()344h x x x k '=+-,∵ h (x )在[-4,-2]上单调递增,在[-2,0]上单调递减, ∴ x =-2是h (x )的极大值点,∴ 2(2)3(2)4(2)40h k '-=⨯-+⨯--=,解得k=1. …………………………6分 ∴ h (x )=x 3+2x 2-4x +5,进而得2()344h x x x '=+-. 令22()3443(2)()03h x x x x x '=+-=+-=,得12223x x =-=,. 由下表:可知:h (-2)=(-2)3+2×(-2)2-4×(-2)+5=13,h (1)=13+2×12 -4×1+5=4, h (-3)=(-3)3+2×(-3)2-4×(-3)+5=8,h (23)=(23)3+2×(23)2-4×23+5=9527, ∴ h (x )的最大值为13,最小值为9527.……………………………………12分 18、(本题满分12分) 已知函数),(log )(1011≠>-+=a a x x x f a(1)求)(x f 的定义域,判断)(x f 的奇偶性并证明;(2)对于],[42∈x ,)()(log )(x x mx f a -->712恒成立,求m 的取值范围。

2024学年湖南省长沙市长郡湘府中学高三5月份综合模拟检测试题数学试题

2024学年湖南省长沙市长郡湘府中学高三5月份综合模拟检测试题数学试题

2024学年湖南省长沙市长郡湘府中学高三5月份综合模拟检测试题数学试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设12,F F 分别是双曲线22221(0,0)x y a b a b-=>>的左右焦点若双曲线上存在点P ,使1260F PF ∠=︒,且122PF PF =,则双曲线的离心率为( ) AB .2CD2.过双曲线2222:1(0,0)x y C a b a b-=>>的右焦点F 作双曲线C 的一条弦AB ,且0FA FB +=,若以AB 为直径的圆经过双曲线C 的左顶点,则双曲线C 的离心率为( ) ABC .2D3.等比数列{}n a 的前n 项和为n S ,若0n a >,1q >,3520a a +=,2664a a =,则5S =( ) A .48B .36C .42D .314.已知x ,y 满足约束条件020x y x y y -≥⎧⎪+≤⎨⎪≥⎩,则2z x y =+的最大值为A .1B .2C .3D .45.5G 网络是一种先进的高频传输技术,我国的5G 技术发展迅速,已位居世界前列.华为公司2019年8月初推出了一款5G 手机,现调查得到该款5G 手机上市时间x 和市场占有率y (单位:%)的几组相关对应数据.如图所示的折线图中,横轴1代表2019年8月,2代表2019年9月……,5代表2019年12月,根据数据得出y 关于x 的线性回归方程为0.042y x a =+.若用此方程分析并预测该款手机市场占有率的变化趋势,则最早何时该款5G 手机市场占有率能超过0.5%(精确到月)( )A .2020年6月B .2020年7月C .2020年8月D .2020年9月6.已知双曲线),其右焦点F 的坐标为,点是第一象限内双曲线渐近线上的一点,为坐标原点,满足,线段交双曲线于点.若为的中点,则双曲线的离心率为( )A .B .2C .D .7.已知复数z 满足()()5z i i --=,则z =( ) A .6iB .6i -C .6-D .68.学业水平测试成绩按照考生原始成绩从高到低分为A 、B 、C 、D 、E 五个等级.某班共有36名学生且全部选考物理、化学两科,这两科的学业水平测试成绩如图所示.该班学生中,这两科等级均为A 的学生有5人,这两科中仅有一科等级为A 的学生,其另外一科等级为B ,则该班( )A .物理化学等级都是B 的学生至多有12人 B .物理化学等级都是B 的学生至少有5人C .这两科只有一科等级为B 且最高等级为B 的学生至多有18人D .这两科只有一科等级为B 且最高等级为B 的学生至少有1人 9.设a R ∈,0b >,则“32a b >”是“3log a b >”的 A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件10.已知集合{}{}2|1,|31x A x x B x ==<,则()RAB =( )A .{|0}x x <B .{|01}x xC .{|10}x x -<D .{|1}x x -11.在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若cos cos 4c a B b A -=,则2222a bc-=( ) A .32B .12C .14D .1812.在ABC 中,点P 为BC 中点,过点P 的直线与AB ,AC 所在直线分别交于点M ,N ,若AM AB λ=,(0,0)AN AC μλμ=>>,则λμ+的最小值为( )A .54B .2C .3D .72二、填空题:本题共4小题,每小题5分,共20分。

高三数学期末综合测试(五)

高三数学期末综合测试(五)

高三数学期末综合测试(五)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分。

考试时间120分钟。

第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A C xy x A R U U 则集合},11|{,-=== ( )A .}10|{<≤x xB .}10|{≥<x x x 或C .}1|{≥x xD .}0|{<x x2.已知向量n ⋅=+==||),,2(),1,1(若,则n= ( )A .-3B .-1C .1D .33.有关命题的说法错误的是( )A .命题“若1,0232==+-x x x 则”的逆否命题为:“若023,12≠+-≠x x x 则”B .“x=1”是“0232=+-x x ”的充分不必要条件 C .若q p ∧为假命题,则p 、q 均为假命题D .对于命题使得R x p ∈∃:012<++x x ,则01,:2≥++∈∀⌝x x R x p 均有4.已知函数]4,3[)0(sin 2)(ππωω->=在区间x x f 上的最大值是2,则ω的最小值等于( ) A .32 B .23C .2D .35. 一个正三棱柱的主(正)视图是边长为则它的外接球的表面积等于 A. 8π B.253π C. 9π D.283π 6.设a,b 是两个实数,且a ≠b ,①,322355b a b a b a +>+②)1(222--≥+b a b a ,③ 2>+abb a 。

上述三个式子恒成立的有 ( )A .0个B .1个C .2个D .3个7.各项都是正数的等比数列}{n a 的公比1≠q ,且132,21,a a a 成等差数列,则5443a a a a ++的值 为( )A .251- B .215+ C .215- D .215+或215- 8.设)()(,)()(x f y x f y x f x f '=='和将的导函数是函数的图象画在同一个直角坐标系 中,不可能正确的是( )9.函数()sin()sin()36f x x a x ππ=++-的一条对称轴方程为:2x π= ,则a =A. 1B.C.2D.310.定义在R 上的函数()y f x =,满足(3)()f x f x -=,3()'()02x f x -<,若x 1<x 2,且x 1+x 2>3,则有A. 12()()f x f x <B. 12()()f x f x >C. 12()()f x f x =D.不确定11.已知抛物线1)0(222222=->=by a x p px y 与双曲线有相同的焦点F ,点A 是两曲线的交点,且AF ⊥x 轴,则双曲线的离心率为 ( )A .215+ B .13+ C .12+D .2122+ 12.一次研究性课堂上,老师给出函数)(||1)(R x x xx f ∈+=,甲、乙、丙三位同学在研究此函数时分别给出命题:甲:函数)1,1()(-的值域为x f ; 乙:若21x x ≠则一定有)()(21x f x f ≠;丙:若规定*||1)()),(()(),()(11N n x n xx f x f f x f x f x f n n n ∈+===-对任意则恒成立你认为上述三个命题中正确的个数有( )A .3个B .2个C .1个D .0个第Ⅱ卷(非选择题,共90分)注意事项:1.用0.5mm 的中性笔答在答题纸相应的位置内。

高三数学综合测试题(含答案)

高三数学综合测试题(含答案)

高三数学试题(理科)一、选择题(本大题共12小题,每小题5.0分,共60分)1.已知复平面内的平行四边形ABCD中,定点A对应的复数为i(i是虚数单位),向量BC 对应的复数为2+i,则点D对应的复数为()A. 2 B. 2+2i C.-2 D.-2-2i2.在判断两个变量y与x是否相关时,选择了4个不同的模型,它们的相关指数分别为:模型1的相关指数为0.98,模型2的相关指数为0.80,模型3的相关指数为0.50,模型4的相关指数为0.25.其中拟合效果最好的模型是().A.模型1 B.模型2 C.模型3 D.模型43.设随机变量X的分布列如下表,且E(X)=1.6,则a-b=()A.0.2B.0.1C.-0.2D.-0.44.若方程x3-3x+m=0在[0,2]上有解,则实数m的取值范围是()A. [-2,2] B. [0,2]C. [-2,0]D. (-∞,-2)∪(2,+∞)5.已知圆上9个点,每两点连一线段,所有线段在圆内的交点有()A.36个 B.72个 C.63个 D.126个6.函数f(x)=ax3+x+1有极值的一个充分而不必要条件是()A.a<0 B.a>0 C.a<-1 D.a<17.若(n∈N*),且,则() A.81 B.16 C.8 D.18.一个篮球运动员投篮一次得3分的概率为a,得2分的概率为b,不得分的概率为c(a,b,c∈(0,1)),已知他投篮一次得分的均值为2(不计其他得分情况),则ab的最大值为()A. B. C. D.9.高三毕业时,甲、乙、丙等五位同学站成一排合影留念,已知甲、乙二人相邻,则甲、丙相邻的概率是()A. B. C. D.10.已知x与y之间的几组数据如表:假设根据如表数据所得线性回归直线方程为,若某同学根据表中的前两组数据(1,0)和(2,2)求得的直线方程为,则以下结论正确的是()A., B., C., D.,11.某人射击一发子弹的命中率为0.8,现在他射击19发子弹,理论和实践都表明,在这19发子弹中命中目标的子弹数X的概率满足P(X=k)=(k=0,1,2,…,19),则他射完19发子弹后,击中目标的子弹最可能是 ()A.14发 B.15发 C.16发 D.15发或16发12.函数f(x)=ax3+bx2+cx+d(a≠0),若a+b+c=0,导函数f′(x)满足f′(0)f′(1)>0,设f′(x)=0的两根为x1,x2,则|x1-x2|的取值范围是()A.323⎡⎫⎪⎢⎪⎣⎭,B.14,39⎡⎤⎢⎥⎣⎦C.133⎡⎫⎪⎢⎪⎣⎭, D.1193⎡⎫⎪⎢⎣⎭,第II 卷非选择题二、填空题(本大题共4小题,每小题5.0分,共20分)13.某人从某城市的A地乘公交车到火车站,由于交通拥挤,所需时间(单位:分钟)X~N(50,),则他在时间段(30,70]内赶到火车站的概率为________.14.如图(1),在三角形ABC中,AB⊥AC,若AD⊥BC,则AB2=BD·BC;若类比该命题,如图(2),三棱锥A-BCD中,AD⊥面ABC,若A点在三角形BCD所在平面内的射影为M,则有________.15.设M=,则M与1的大小关系是__________.16.若对任意的x∈A,则x∈,就称A是“具有伙伴关系”的集合.集合M={-1,0,,,1,2,3,4}的所有非空子集中,具有伙伴关系的集合的个数为________.三、解答题(本大题共6小题,共70分)17.(本小题共12分)已知一元二次方程x2-ax+1=0(a∈R).(1)若x=37+i44是方程的根,求a的值;(2)若x1,x2是方程两个虚根,且|x1-1|>|x2|,求a的取值范围.18. (本小题共12分)随着生活水平的提高,人们的休闲方式也发生了变化.某机构随机调查了n 个人,其中男性占调查人数的.已知男性中有一半的人的休闲方式是运动,而女性只有的人的休闲方式是运动.(1)完成如图2×2列联表:(2)若在犯错误的概率不超过0.05的前提下,可认为“休闲方式有关与性别”,那么本次被调查的人数至少有多少?(3)根据(2)的结论,本次被调查的人中,至少有多少人的休闲方式是运动?参考公式:=,其中n=a+b+c+d.参考数据:19.若n为正整数,试比较3·2n-1与n2+3的大小,分别取n=1,2,3,4,5加以试验,根据试验结果猜测一个一般性结论,并用数学归纳法证明.20.为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物.某人一次种植了n株沙柳.各株沙柳的成活与否是相互独立的,成活率为p,设ξ为成活沙柳的株数,数学期望E(ξ)为3,标准差为.(1)求n和p的值,并写出ξ的分布列;(2)若有3株或3株以上的沙柳未成活,则需要补种.求需要补种沙柳的概率.21.已知函数f(x)=(ax-x2)e x.(1)当a=2时,求f(x)的单调递减区间;(2)若函数f(x)在(-1,1]上单调递增,求a的取值范围;(3)函数f(x)是否可为R上的单调函数?若是,求出a的取值范围,若不是,说明理由.22.设函数f(x)=|x-a|+x.(1)当a=2时,求函数f(x)的值域;(2)若g(x)=|x+1|,求不等式g(x)-2>x-f(x)恒成立时a的取值范围.答案解析1.B2.A3.C4.A5.D【解析】此题可化归为:圆上9个点可组成多少个四边形,每个四边形的对角线的交点即为所求,所以,交点有=126(个)6.C7.A8.D9.C10. C11. D【解析】由≥且≥,解得15≤k≤16,即P(X=15)=P(X=16)最大12.A【解析】由题意得f′(x)=3ax2+2bx+c,∵x1,x2是方程f′(x)=0的两个根,∴x 1+x2=-,x1·x2=,∴|x1-x2|2=(x+x2)2-4x1·x2=.∵a+b+c=0,∴c=-a-b,∴|x 1-x2|2==()2+·+.∵f′(0)·f′(1)>0,f′(0)=c=-(a+b),且f′(1)=3a+2b+c=2a+b,∴(a+b)(2a+b)<0,即2a2+3ab+b2<0,∵a≠0,两边同除以a2,得()2+3+2<0,解得-2<<-1.由二次函数的性质可得,当=-时,|x 1-x2|2有最小值为,当趋于-1时,|x1-x2|2趋于,故|x 1-x2|2∈[,),故|x1-x2|∈[,).13. 0.9544 14.=S △BCM·S△BCD15.【答案】M<1【解析】∴M==1.16.【答案】15【解析】具有伙伴关系的元素组有-1;1;,2;,3;共4组,所以集合M的所有非空子集中,具有伙伴关系的非空集合中的元素,可以是具有伙伴关系的元素组中的任一组、二组、三组、四组,又集合中的元素是无序的,因此,所求集合的个数为+++=15.17.解(1)已知一元二次方程x2-ax+1=0(a∈R),若x=+i是方程的根,则x=-i也是方程的根.(+i)+(-i)=a,解得a=.(2)x 1,x2是方程x2-ax+1=0的两个虚根,不妨设x1=,x2=,a∈(-2,2),|x 1-1|>|x2|,∴(-1)2+(-)2>()2+()2,∴a<1.综上,-2<a<1.18.【解】(1)依题意,被调查的男性人数为,其中有人的休闲方式是运动;被调查的女性人数为,其中有人的休闲方式是运动,则2×2列联表如图。

高中高三数学综合测试卷 试题

高中高三数学综合测试卷 试题

2021年辅仁高中高三数学综合测试卷一、选择题:〔本大题一一共10小题,每一小题5分,一共50分,在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的〕1.集合{0,1,2},{|2,}M N x x a a M ===∈,那么集合N M =〔 〕A .}0{B .}1,0{C .}2,1{D .}2,0{ 2.设f ,g 都是由A 到A 的映射,其对应法那么如下表〔从上到下〕:A .)]1([f gB .)]2([f gC .)]3([f gD .)]4([f g 3.cos 044()()()(1)1033x x f x f f f x x π≤⎧=+-⎨-+>⎩则的值是〔 〕 A .-2 B .-1 C .1 D .24.设l 、m 、n 表示三条不同直线,α、β、γ表示三个不同平面,给出以下四个命题:①假设l ⊥α,m ⊥α,那么l ∥m ;②假设m ⊂β,n 是l 在β内的射影,m ⊥l ,那么m⊥n ;③假设m ⊂α,m ∥n ,那么n ∥α;④假设α⊥γ,β⊥γ,那么α∥β.其中真命题是 〔 〕A .①②B .②③C .①③D .③④5.把函数x x y sin 3cos -=的图象沿向量(,)(0)a m m m =->的方向平移后,所得的图象关于y 轴对称,那么m 的最小值是 〔 〕表1 映射f 的对应法那么 表2 映射g 的对应法那么A .6π B .3π C .23π D .56π 6.数列1231111111110,10,10,,10,n 它的前n 项的积大于105,那么正整数n 的最小值是〔 〕 A .8B .10C .11D .12 7.在)3()1(5x x +-的展开式中,3x 的系数是 〔 〕A.40B.20C.20-D. 40-8.设21,e e 分别为具有公一共焦点F 1与F 2的椭圆和双曲线的离心率,P 为两曲线的一个公一共点,且满足021=⋅PF PF ,那么2212212()e e e e +的值是〔 〕 A .1 B .21 C .2 D .不确定9.某大学的信息中心A 与大学各部门、各院系B ,C ,D ,E ,F ,G ,H ,I 之间拟建立信息联网工程,实际测算的费用如下图〔单位:万元〕,请观察图形,可以不建局部网线,而使得信息中心A 与大学各部门、各院系连通〔直接或者中转〕,那么最少的建网费用是〔 〕 A .12万元 B .13万元 C .14万元D .16万元 10.m N n m f f (),(,1)1,1(*∈=.)*∈N n ,且对任何m .*∈N n 都有:①2),()1,(+=+n m f n m f ;②(1,1)2(,1)f m f m +=,给出以下三个结论:〔1〕9)5,1(=f 〔2〕16)1,5(=f 〔3〕26)6,5(=f ,其中正确的个数为〔 〕A .3B .2C .1D .0二、填空题:本大题一一共6小题,每一小题4分,满分是24分。

山东省德州市陵城区第一中学2025届高三数学第一学期期末综合测试试题含解析

山东省德州市陵城区第一中学2025届高三数学第一学期期末综合测试试题含解析

山东省德州市陵城区第一中学2025届高三数学第一学期期末综合测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知不重合的平面,,αβγ 和直线l ,则“//αβ ”的充分不必要条件是( ) A .α内有无数条直线与β平行 B .l α⊥ 且l β⊥C .αγ⊥ 且γβ⊥D .α内的任何直线都与β平行2.在正项等比数列{a n }中,a 5-a 1=15,a 4-a 2 =6,则a 3=( ) A .2 B .4 C .12D .83.已知,都是偶函数,且在上单调递增,设函数,若,则( )A .且B .且C .且D .且4.随着人民生活水平的提高,对城市空气质量的关注度也逐步增大,下图是某城市1月至8月的空气质量检测情况,图中一、二、三、四级是空气质量等级,一级空气质量最好,一级和二级都是质量合格天气,下面叙述不正确的是( )A .1月至8月空气合格天数超过20天的月份有5个B .第二季度与第一季度相比,空气达标天数的比重下降了C .8月是空气质量最好的一个月D .6月份的空气质量最差.5.已知直线y =k (x ﹣1)与抛物线C :y 2=4x 交于A ,B 两点,直线y =2k (x ﹣2)与抛物线D :y 2=8x 交于M ,N两点,设λ=|AB |﹣2|MN |,则( ) A .λ<﹣16B .λ=﹣16C .﹣12<λ<0D .λ=﹣126.已知双曲线221x y a+=的一条渐近线倾斜角为56π,则a =( )A .3B .3-C .33-D .3-7.已知双曲线C :22221x y a b-=(0a >,0b >)的焦距为2c .点A 为双曲线C 的右顶点,若点A 到双曲线C 的渐近线的距离为12c ,则双曲线C 的离心率是( ) A .2B .3C .2D .38.已知集合{}22|A x y x ==-,2{|}10B x x x =-+≤,则A B =( ) A .[12]-, B .[12]-,C .(12]-,D .2,2⎡⎤-⎣⎦9.如图,ABC ∆内接于圆O ,AB 是圆O 的直径,,//,,,DC BE DC BE DC CB DC CA =⊥⊥22AB EB ==,则三棱锥E ABC -体积的最大值为( )A .14B .13C .12D .2310.设O 为坐标原点,P 是以F 为焦点的抛物线()220y px p =>上任意一点,M 是线段PF 上的点,且2PM MF =,则直线OM 的斜率的最大值为( )A .33B .23C .22D .111.已知椭圆()222210x y a b a b+=>>的左、右焦点分别为1F 、2F ,过点1F 的直线与椭圆交于P 、Q 两点.若2PF Q∆的内切圆与线段2PF 在其中点处相切,与PQ 相切于点1F ,则椭圆的离心率为( )A .22B .32C .23D .3312.已知,αβ是空间中两个不同的平面,,m n 是空间中两条不同的直线,则下列说法正确的是( ) A .若,m n αβ⊂⊂,且αβ⊥,则 m n ⊥ B .若,m n αα⊂⊂,且//,//m n ββ,则//αβ C .若,//m n αβ⊥,且αβ⊥,则 m n ⊥ D .若,//m n αβ⊥,且//αβ,则m n ⊥二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学综合测试题(五)一.填空题:1.设全集是实数集R ,M ={x |31+≤x ,x ∈R},N ={1,2,3,4},则---M ∩N = . 2.函数y = arccos x ,x ∈[-1,0)的反函数是 .3.已知169)34()43(212=⋅-x x,则x = . 4.函数x x y 44sin cos -=的最小正周期T = .5.方程cos 2x ―cos x =0的解集是 .6.已知|→-a |=3,|→-b |=2,→-a 与→-b 的夹角为6π,则|→-a +→-b |= .7.正三棱柱的侧棱与底面三角形的高相等,过侧棱和这高所作截面面积为Q ,则此三棱柱的体积为 .8.双曲线04422=-+t ty x 的虚轴长是 .9.在△ABC 中,若a =8,c =4,且5sin A =2sin C +4sin B ,则b = . 10.在一袋中有10个相同的球,分别标有1,2,3,……,10,今任取3个球,求取得3个球中号码最大者为5的概率是 . 二. 选择题:11.对任意实数b a >,下列不等式中恒成立的是( ) (A )22b a >; (B )1<ab; (C )0)lg(>-b a ; (D )b a 1010>. 12.在6)2(xx -的展开式中,常数项为( ) (A )20; (B )―20; (C )160; (D )―160. 13.下列命题中正确的是( )(A )过已知直线外一点只能作一条直线与已知直线垂直;(B )若直线l 与平面α内的两条直线都垂直,则直线l 必与平面α垂直; (C )若直线a 、b 与平面α所成的角相等,则a ∥b ; (D )若三棱锥的六条棱均相等,则对棱必互相垂直. 14.下列函数中,在定义域内恒为正值的是( ) (A )y = cos (arcsin x ); (B )y = tg (arcsin x ); (C )y = sin (arccos x ); (D )y = sin (arcctg x ). 15.函数y =232)32(+-x x 的单调递减区间是( )(A )[1,2]; (B )[23,+∞); (C )(―∞,1]∪[2,+∞); (D )(―∞,23]. 16.用1~5五个数字,排成没有重复数字且大于20000而且又不是5的倍数的五位数,则可排成的五位数的个数是( )(A )96; (B )78; (C )72; (D )36. 17.在△ABC 中,“sin A =sin B ”是“A =B ”成立的( )条件.(A )充分非必要; (B )必要非充分; (C )充要; (D )非充分非必要.18.在等差数列{n a }中,421,,a a a 恰好成等比数列,且公比为q ,则q 等于( ) (A )1; (B )2; (C )1或21; (D )1或2. 19.)(x f 是定义在(―2,0)∪(0,2)上的偶函数,且在(―2,0)上是单调递减函数,则)21(-f 、)31(f 、)23(f 的大小关系是( )(A ))21(-f >)31(f >)23(f ; (B ))31(f >)23(f >)21(-f ; (C ))23(f >)21(-f >)31(f ; (D ))23(f >)31(f >)21(-f .20.顶点在点(1,―3),焦点与顶点的距离为85,准线平行于y 轴,开口向右的抛物线方程是( )(A ))1(25)3(2-=+x y ; (B ))3(25)1(2+=-x y ; (C ))1(45)3(2-=+x y ; (D ))3(45)1(2+=-x y .三.解答题:21.已知:α、β为一个三角形的内角,且101032cos =α,32)cos(-=+βα. 求:αcos 、βcos 的值.22.已知复数z 满足z •--z i z i 313+=⋅-,求z 的值.23.如图,在长方体ABCD ―A 1B 1C 1D 1中,AB =BC =a ,BB 1=b ,连接A 1B ,过A 作AE ⊥A 1B 交BB 1于E ,交A 1B 于F .(1)求证:D 1B ⊥平面AEC .(2)求三棱锥B ―AEC 的体积.A 1D1A B CD1C1EF24.设数列{n a }的通项公式为n a =2)1(1+n ,令)1()1)(1()(21n a a a n f -⋅⋅⋅--=.(1)试求)1(f ,)2(f ,)3(f 的值; (2)求数列{)(n f }的通项公式. (3)若)()(n f a n g n -=,求]3)([lim -∞→n g n .25.已知抛物线C :)0(52>=m mx y 与椭圆18016)5(22=+-y x 在x 轴上方的两个交点为A 、B ,以AB 为直径的圆恰好过椭圆中心O '.(1)求抛物线C 的方程; (2)求证:抛物线C 的焦点F 为椭圆的左顶点; (3)求|AF|+|BF|的值.高三数学综合测试(五)答案一.填空题:1.{3,4}; 2.x y cos =,x ∈(2π,π]; 3.-1或3; 4.π;5.}32|{Z k k x x ∈=,π; 6.13; 7.33ϑϑ; 8.t -2; 9.8; 10.201.二. 选择题:11.D ;12.D ;13.D ;14.D ;15.B ;16.B ;17.C ;18.D ;19.C ;20.A . 三. 解答题: 21.解:∵101032cos=α,∴5412cos 2cos 2=-=αα. ∵α为一个三角形的内角,∴0<α<2π,⇒53sin =α.∵32)cos(-=+βα,∴2π<α+β<π,⇒35)sin(=+βα.∴αβααβααβαβsin )sin(cos )cos(])cos[(cos +++=-+==15853-. 22.解:z =-1或z =-1-3i .23.(1)证:∵ABCD ―A 1B 1C 1D 1是长方体,∴ D 1A 1⊥平面AA 1B 1B ,⇒A 1B 是D 1B 在平面AA 1B 1B 上的射影.∵AE ⊥A 1B ,由三垂线定理得:D 1B ⊥AE . 又∵D 1D ⊥平面ABCD ,AB =BC ,∴ DB ⊥AC .⇒ D 1B ⊥AC .∵AC ∩AE =A ,∴D 1B ⊥平面AEC .(2)解:∵AE ⊥A 1B ,∴△ABE ∽△BAA 1,⇒1AA ABAB BE =, ba a BE =,∴BE =b a 2. ⇒b a BE BC AB V AEC B 621314=⋅=-)(三棱锥. 24.解:(1))1(f =4341111=-=-a ,)2(f =32)911(43)1)(1(21=-⨯=--a a ,)3(f =85)1611(32)1)(1)(1(321=-⨯=---a a a .(2)猜想:)(n f =)1(22++n n (n ∈N ).①当n =1时,左边=)1(f =43,右边=43)11(221=++,∴左边=右边,等式成立.②假设n =k (k ∈N )时,等式成立,即)(k f =)1(22++k k .则当n =k +1时,)1)(1()1)(1()1(121+--⋅⋅⋅--=+k k a a a a k fA 1D1AB CDB 1C1EF=)1)((1+-k a k f =))2(11()1(222+-++k k k =]1)1[(22)1(++++k k , ∴n =k +1时,等式成立.由①、②可得,等式对于n ∈N 都成立. ∴)(n f =)1(22++n n (n ∈N )(3)]3)([lim -∞→n g n =]3)1(22)1(1[lim ]3)([lim 2-++-+=--∞→∞→n n n n f a n n n =272427157lim 22-=++---∞→n n n n n . 25.解:(1)⎪⎩⎪⎨⎧=+-=18016)5(5222y x mxy ,⇒09)10(2=+-+x m x . 设A (x 1,y 1),B (x 2,y 2),y 1>0,y 2>0. 由韦达定理得:x 1+x 2=10-m ,x 1x 2=9.∵A O '⊥B O ',∴1552211-=-⋅-x y x y , ⇒y 1y 2=-x 1x 2+5(x 1+x 2)-25=-9+50-5m -25=16-5m . ∵y 12=5m x 1,y 22=5m x 2,∴y 12y 22=25m 2x 1x 2. ∵y 1>0,y2>0,∴y1y 2=5m 21x x =15m . ∴15m =16-5m ,⇒m =54,∴抛物线方程为:y 2= 4x .(2)∵p =2,∴焦点坐标为F (1,0).∵椭圆的左顶点坐标为(1,0),∴抛物线C 的焦点F 为椭圆的左顶点.(3)|AF|+|BF|=(x 1+2p )+(x 2+2p)=x 1+x 2+p =10-m +2 =12-m =556.。

相关文档
最新文档