初中数学杭州市义蓬一中中考模拟毕业生学业考试第五次适应性测试

合集下载

初中毕业生学业考试适应性试卷数学测试卷(含答案)

初中毕业生学业考试适应性试卷数学测试卷(含答案)

L 九年级数学适应性试题 第1页 共4页2020年初中毕业生学业考试适应性试卷数 学(本试卷满分:150分 考试时间:120分钟)一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分) 1.21-的相反数是( ▲ ) A .2B.-2C .21D .±21 2.计算2)3(a 的结果是( ▲ )A .6aB .3a 2C .6a 2D .9a 23.如图,由5个相同的正方体组合而成的几何体,它的主视图是( ▲ )A. B. C. D.4.若正多边形的一个外角为36°,则这个正多边形是( ▲ )A .正八边形B .正九边形C .正十边形D .正十一边形 5.在战“疫”诗歌创作大赛中,有7名同学进入了决赛,他们的最终成绩均不同.小弘同学想知道自己能否进入前3名,除要了解自己的成绩外,还要了解这7名同学成绩的( ▲ ) A .中位数B .平均数C .众数D .方差6.某公司拟购进A ,B 两种型号机器人.已知用240万元购买A 型机器人和用360万元购买B 型机器人的台数相同,且B 型机器人的单价比A 型机器人多10万元.设A 型机器人每台x 万元,则所列方程正确的是( ▲ )A .10360240+=x xB .x x 36010-240=C .10360240=+x xD .10024-036=x x7.如图,BC 是⊙O 的一条弦,经过点B 的切线与CO 的延长线交于点A ,若∠C=23°,则∠A 的度数为( ▲ )A .38°B .40°C .42°D .44°8.如图,在矩形ABCD 中,将△ABE 沿着BE 翻折,使点A 落在BC 边上的点F 处,再将△DEG 沿着EG 翻折,使 点D 落在EF 边上的点H 处. 若点A ,H ,C 在同一直线上, AB =1,则AD 的长为( ▲ ) A .23 B .215+ C .2 D .1-5(第7题)(第8题)(第3题)L 九年级数学适应性试题 第2页 共4页(第9题)(第15题) (第14题)(第10题)9.甲、乙两个草莓采摘园为吸引顾客,在草莓销售价格相同的基础上分别推出优惠方案,甲园:顾客进园需购买门票,采摘的草莓按六折优惠.乙园:顾客进园免门票,采摘草莓超过一定数量后,超过的部分打折销售.活动期间,某顾客的草莓采摘量为x kg ,若在甲园采摘需总费用y 1元,若在乙园采摘需总费 用y 2元. y 1,y 2与x 之间的函数图象如图所示,则 下列说法中错误..的是( ▲ ) A .甲园的门票费用是60元B .草莓优惠前的销售价格是40元/kgC .乙园超过5 kg 后,超过的部分价格优惠是打五折D .若顾客采摘12 kg 草莓,那么到甲园或乙园的总费用相同10.如图,Rt △ABC 中,∠C =90°,BC =6,DE 是△ABC 的中位线,点D 在AB 上,把点B绕点D 按顺时针方向旋转α(0°<α<180°)角得到点F ,连接AF ,BF . 下列结论:①△ABF 是直角三角形;②若△ABF 和△ABC 全等,则α=2∠BAC 或2∠ABC ; ③若α=90°,连接EF ,则S △DEF =4.5;其中正确的结论是( ▲ ) A .① ② B .① ③ C .① ② ③ D .② ③二、填空题(本题有6小题,每小题5分,共30分) 11.二次根式2+a 中,a 的取值范围是▲ . 12.已知点A (2,-3)和B (-1,m )均在双曲线xky =(k 为常数,且k ≠0)上,则m = ▲ . 13.在一个不透明的袋子中有三张完全相同的卡片,分别编号为1,2,3.若从中随机取出两张卡片,则卡片上编号之和为偶数的概率是 ▲ .14.如图,已知△ABC 中,AB =AC ,∠A =36°,分别以点A ,C 为圆心,大于21AC 的长度为半径画弧,两弧相交于点P ,Q ,直线PQ 与AB 交于点M ,若BC =a ,MB =b ,则AC = ▲ .15.定义:有一组邻边相等的凸四边形叫做等邻边四边形.如图,在Rt △ABC 中,∠ABC =90°,AB =2,BC =1,将△ABC 沿∠ABC 的平分线'BB 的方向平移,得到△'''C B A ,连接'AC ,'CC ,若四边形'ABCC 是等邻边四边形,则平移距离'BB 的长度是 ▲ .16.如图,在正方形ABCD 中,AB =6,点E 在AB 边上,CE 与对角线BD 交于点F ,连接AF ,若AE =2,则sin ∠AFE 的值是 ▲ .(第16题)L 九年级数学适应性试题 第3页 共4页人数类别5人5人30人A B CD 30201510525DC B10%A(第21题)三、解答题(本题共8小题,其中第17-20题每题8分,第21题10分,第22-23题每题12分,第24题14分,共80分) 17.计算:3-112)3-π(0++. 18.解方程组19.等腰三角形的屋顶,是建筑中经常采用的结构形式.在如图所示的等腰三角形屋顶ABC 中,AB =AC ,测得BC =20米,∠C =41°, 求顶点A 到BC 边的距离是多少米?(结果 精确到0.1米.参考数据:sin41°≈0.656, cos41°≈0.755,tan41°≈0.869.)20.如图,“漏壶”是一种古代计时器.在它内部盛一定量的水,水从壶下的小孔漏出.壶 内壁有刻度,人们根据壶中水面的位置计算时间.用x (小时)表示漏水时间,y (厘 米)表示壶底到水面的高度,某次计时过程中,记录到部分数据如下表:(1)问y 与x 的函数关系属于一次函数、二次函数和反比例函数中的哪一种?求出该函数解析式及自变量x 的取值范围;(2)求刚开始计时时壶底到水面的高度.21.为了解阳光社区年龄20~60岁居民对垃圾分类的认识,学校课外实践小组随机抽取了该社区、该年龄段的部分居民进行了问卷调查,并将调查数据整理后绘成如下两幅不完整的统计图.图中A 表示“全部能分类”,B 表示“基本能分类”,C 表示“略知一二”,D 表示“完全不会”.请根据图中信息解答下列问题:(1)补全条形统计图并填空:被调查的总人数是 ▲ 人,扇形图中D 部分所对应的圆心角的度数为 ▲ ;(2)若该社区中年龄20~60岁的居民约3000人,请根据上述调查结果,估计该社区中C 类有多少人?(3)根据统计数据,结合生活实际,请你对社区垃圾分类工作提一条合理的建议.漏水时间x (小时)… 3 4 5 6 … 壶底到水面高度y(厘米) … 9 753….52,95=-=+y x y x (第19题)(第20题)L 九年级数学适应性试题 第4页 共4页22.已知AB 是⊙O 的直径,C 是⊙O 上的一点(不与点A ,B 重合),过点C 作AB 的垂线交⊙O 于点D ,垂足为E 点.(1)如图1,当AE =4,BE =2时,求CD 的长度;(2)如图2,连接AC ,BD ,点M 为BD 的中点.求证:ME ⊥AC .23.已知y 关于x 的二次函数y =x ²-bx +41b²+b -5的图象与x 轴有两个公共点. (1)求b 的取值范围;(2)若b 取满足条件的最大整数值,当m ≤x ≤23时,函数y 的取值范围是n ≤y ≤6-2m , 求m ,n 的值;(3)若在自变量x 的值满足b ≤x ≤b +3的情况下,对应函数y 的最小值为41,求此 时二次函数的解析式.24.已知菱形ABCD 中,∠ABC =60°,AB =4,点M 在BC 边上,过点M 作PM ∥AB 交对角线BD 于点P ,连接PC .(1)如图1,当BM =1时,求PC 的长;(2)如图2,设AM 与BD 交于点E ,当∠PCM =45°时,求证:DE BE=332 ; (3)如图3,取PC 的中点Q ,连接MQ ,AQ .①请探究AQ 和MQ 之间的数量关系,并写出探究过程;②△AMQ 的面积有最小值吗?如果有,请直接写出....这个最小值;如果没有,请说明理由.(第24题)图3图2 图1 (第22题)图1图2L 九年级数学适应性试题 第5页 共4页2020年初中毕业生学业考试适应性试卷数学参考答案及评分意见一、选择题(本题有10小题,每小题4分,共40分) 题号1234567 8 9 10 答案C D B C A A DBDC11. a ≥-2 12. 6 13. 31 14. a +b15. 1或225 (只答对一个得3分) 16.135 三、解答题(本题共8小题,其中第17-20题每题8分,第21题10分,第22-23题每题12分,第24题14分,共80分)17.解:原式 =1-3321++ …………………………………………6分=33 …………………………………………2分18. 解: …………① …………②①+②得: 7x =14, x =2, …………………………………………4分 把x =2代入①得:10+y =9, y = -1, …………………………………………3分∴原方程组的解为:…………………………………………1分 19. 解:作AD 丄BC ,垂足为D 点 …………1分∵AB =AC ,BC =20, ∴BD =CD =21BC =10. …………2分 在Rt △ACD 中,∠C=41°, ∴tan C=tan41°=CDAD, ∴AD =°•41tan CD ≈10×0.869 ≈8.7. …………4分 答:顶点A 到BC 边的距离是8.7米. …………1分20. 解:(1)y 是x 的一次函数; ………………………………2分 设y =k x +b ,把(3,9)与(4,7)代入得: 解得: ………………………………2分 .52,95=-=+y x y x -1.2,==y x .7,9=+=+b k b k .51,2-==L 九年级数学适应性试题 第6页 共4页∴y =-2x +15 (0≤x ≤7.5) ; ………………………………2分(2)把x =0代入y =-2x +15,得y=15,∴刚开始计时时壶底到水面的高度为15厘米. ………………………………2分21. 解:(1)图略(B 类的人数为10),50,36°; ………………………………6分(2)001850300030=×(人) 答:根据样本估计总体,该社区中C 类约有1800人; ………………2分(3)通过数据分析可知,该社区多数居民对垃圾分类知识了解不够,社区工作人员可以通过宣传橱窗加强垃圾分类知识的普及.(符合数据分析结果的建议均 可) ………………2分22.解:(1)如图1,连接OC . …………1分 ∵ AE =4,BE =2, ∴AB =6,∴CO =AO =3, …………1分 ∴OE =AE -AO =1, ∵CD 丄AB ,∴ 由勾股定理可得:CE =22132222=-=-OE OC , (2)分由垂径定理可得CE =DE .∴ CD =2CE =24. (2)分(2)证明:如图2,延长ME 与AC 交于点N . …………1分∵CD 丄AB ,∴∠BED =90°.∵ M 为BD 中点, ∴EM =21BD =DM , …………1分 ∴ ∠DEM =∠D ,∴∠CEN =∠DEM =∠D . ………………2分 ∵ ∠B =∠C ,图1图2L 九年级数学适应性试题 第7页 共4页∴∠CNE =∠BED =90°,即ME 丄AB . ………………2分23. 解:(1)由题意知,∆>0, 即0)5-41(14--22>+××b b b )( , ∴ -4b +20>0 …………2分 解得:b < 5 ; …………1分(2)由题意,b =4,代入得:34-2+=x x y ,∴对称轴为直线22-==abx . …………2分 又∵a =1>0,函数图象开口向上,∴当m ≤x ≤23时,y 随x 的增大而减小, ∴当x =23时,y =n =43-3234-232=+×)(; …………1分 当x =m 时,y =34-2-62+=m m m ,03-2-2=m m , 解得:m 1= -1,m 2=3(不合题意,舍去); ∴ m = -1,n =43-. …………1分 (3) 5-)2-(2b b x y +=,函数大致图象如图所示.①当b ≤0.5b ≤b +3,即-6≤b ≤0时, 函数y 在顶点处取得最小值,有b -5=41, ∴b =412(不合题意,舍去). …………1分 ②当b+3<0.5b ,即b <-6时,取值范围在对称轴左侧,y 随x 的增大而减小, ∴当x =b+3时,y 最小值=41,代入得:415-)2-3(2=++b b b ,051162=++b b , 解得:b 1=-15,b 2=-1(不合题意,舍去), ∴此时二次函数的解析式为:20-)215(2+=x y .…………2分 ③当0.5b <b ,即b>0时,取值范围在对称轴右侧,y 随x 的增大而增大, ∴当x =b 时,y 最小值=41,代入得:415-)2-(2=+b b b ,021-42=+b b , 解得:b 1=-7(不合题意,舍去),b 2=3, ∴此时二次函数的解析式为:2-)23-(2x y =.L 九年级数学适应性试题 第8页 共4页综上所述,符合题意的二次函数的解析式为:20-)215(2+=x y 或 2-)23-(2x y =. ………2分24.解:(1)如图1,作PF ⊥BC 于点F .∵四边形ABCD 是菱形,∠ABC =60°, ∴∠ABD =∠CBD =30°,AB =BC =CD =AD =4.∵PM ∥AB ,∴∠ABD =∠BPM =∠CBD =30°,∠PMF =∠ABC =60°, ∴PM =BM =1,∴MF =21PM =21,PF =23 , ………………2分FC =BC -BM -MF =4-1-21=25,∴PC =22FC PF =7. ………………………………2分(2)证明:如图2,作PG ⊥BC 于点G .∵∠PCM =45°, ∴∠CPG =∠PCM =45°,∴PG =GC . ………………1分 设MG =x ,由(1)可知: BM =PM =2x ,GC =PG=3x ,由BM +MG +GC =BC 得:2x +x +3x =4, ∴x =334+,∴BM =338+. …………………………………………2分∵四边形ABCD 是菱形,∴BM ∥AD , ∴△BEM ∽△DEA ,图1图2L 九年级数学适应性试题 第9页 共4页∴=+==4338DA BM DE BE 332+. …………………………………………2分 (3)①如图3,延长MQ 与CD 交于点H ,连接AH ,AC .∵PM ∥AB ∥CD ,∴∠PMQ =∠CHQ ,∠MPQ =∠HCQ . ∵Q 是PC 的中点, ∴PQ =CQ ,∴△PMQ ≌△CHQ ,∴PM =CH =BM ,MQ =HQ . ………………1分由四边形ABCD 是菱形,∠ABC =60°,易得△ABC 为等边三角形, ∴AB =AC ,∠ABM =∠ACH =60°, ∴△ABM ≌△ACH ,∴AM =AH ,∠BAM =∠CAH , ∴∠MAH =∠BAC =60°,∴△AMH 为等边三角形, ………………1分 ∴AQ ⊥MH ,∠MAQ =21∠MAH =30°, ∴AQ =3MQ . ………………1分 ②△AMQ 的面积有最小值,最小值为323. ………………………………2分图3。

初中数学浙江省杭州市义蓬一中中考模拟数学模拟考试卷.docx

初中数学浙江省杭州市义蓬一中中考模拟数学模拟考试卷.docx
试题15:
绍兴黄酒是中国名酒之一.某黄酒厂的瓶酒车间先将散装黄酒灌装成瓶装黄酒,再将瓶装黄酒装箱出车间,该车间有灌装、装箱生产线共 条, 每条灌装、装箱生产线的生产流量分别如图1、2所示. 某日 ,车间内的生产线全部投入生产,图3表示该时段内未装箱的瓶装黄酒存量变化情况,则灌装生产线有条.
试题16:
古希腊数学家把数1,3,6,10,15,21,……叫做三角形数,它有一定的规律性,若把第一个三角形数记为a ,第二个三角数形记为a ,……,第n个三角形数记为a ,计算a - a ,a - a ……由此推算a -a =a =
试题17:
计算: +(-1) + × - -7
试题18:
每年的5月15日是‘世界助残日’.我区时代超市门前的台阶共高出地面1.2米,为帮助残疾人,便于轮椅行走,准备拆除台阶换成斜坡,又考虑安全,轮椅行走斜坡的坡角不得超过90,已知此商场门前的人行道距门前垂直距离为8米(斜坡不能修在人行道上),问此商场能否把台阶换成斜坡?(参考数据 , , =0.1584)
(1)求证:①△AEF≌△BEC;② 四边形BCFD是平行四边形;
(2)如图2,将四边形ACBD折叠,使D与C重合,HK为折痕,求sin∠ACH的值.
试题23:
随着人民生活水平的不断提高,萧山区家庭轿车的拥有量逐年增加.据统计,家景园小区2008年底拥有家庭轿车144辆,2010年底家庭轿车的拥有量达到225辆.
A.14米 B.28米 C. 米 D. 米
试题8:
已知下列命题:①若 ,则 ;②若 ,则 ;
③角平分线上的点到这个角的两边距离相等;④平行四边形的对角线互相平分;
⑤直角三角形斜边上的中线等于斜边的一半.其中原命题与逆命题均为真命题的是( )

初中数学中考模拟试题:2023年杭州市中考一模数学试卷(含答案)

初中数学中考模拟试题:2023年杭州市中考一模数学试卷(含答案)

2023年杭州(市)初中毕业升学适应性考试数学试题卷亲爱的同学:欢迎参加考试!请你认真审题,积极思考,细心答题,发挥最佳水平.答题时,请注意以下几点:1.全卷共4页,有三大题,24小题.全卷满分150分.考试时间120分钟.2.答案必须写在答题纸相应的位置上,写在试题卷、草稿纸上均无效.3.答题前,认真阅读答题纸上的《注意事项》,按规定答题.祝你成功!卷Ⅰ一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.给出四个数0,2,1,-2,其中最大的数是(▲ )A.0 B.2C.1 D.-22.有一个正方体原料,挖去一个小正方体,得到如图所示的零件,则这个零件的主视图是(▲ )A.B.C.D.3.一个不透明的盒子里有3个红球、5个白球,它们除颜色外其他都一样.现从盒子中随机取出一个球,则取出的球是白球的概率是(▲ )A.31B.51C.85D.834.计算3332aa⋅的结果是(▲ )A. 35a B. 36a C. 66a D. 96a5.不等式)2(3-x≥4+x的解集是(▲ )A.x≥5 B.x≥3 C.x≤5 D.x≥-56.如图,C,D是⊙O上位于直径AB异侧的两点,若∠ACD=20°,则∠BAD的度数是(▲ )A.40°B.50°C.60°D.70°7.随着电影《流浪地球》的热映,其同名科幻小说的销量也急剧上升. 某书店分别用2000元和3000 元两次购进该小说,第二次数量比第一次多50套,两次进价相同. 设该书店第一次购进x套,根据题意,列方程正确的是(▲ )A.5030002000-=xxB.xx3000502000=-C.5030002000+=xxD.xx3000502000=+(第6题)B(第15题)图2图 1EDCBA1.5m2.5m1.5mGCD H(第10题)AOC(第14题)(第9题)y x BAOCD(第16题)HEC8.已知反比例函数xy 2-=,点A (b a -,2),B (c a -,3)在这个函数图象上,下列对于a ,b ,c 的大小判断正确的是( ▲ )A .a <b <cB .a <c <bC .c <b <aD .b <c <a 9.如图,直线2+-=x y 分别交x 轴、y 轴于点A ,B ,点D 在BA 的延长线上,OD 的垂直平分线交线段AB 于点C . 若△OBC 和△OAD 的周长相等,则OD 的长是( ▲ )A .2B .22C .225 D .410.在数学拓展课《折叠矩形纸片》上,小林折叠矩形纸片ABCD 进行如下操作:①把△ABF 翻折,点B 落在CD 边上的点E 处,折痕AF 交BC 边于点F ;②把△ADH 翻折,点D 落在AE 边上的点G 处,折痕AH 交CD 边于点H . 若AD =6,AB =10,则EFEH的值是( ▲ )A .45 B .34 C .35 D .23 卷Ⅱ二、填空题(本题有6题,每小题5分,共30分) 11.分解因式:=+a a 422▲ . 12.已知函数3+=x y ,自变量x 的取值范围是 ▲ .13.若一组数据4,a ,7,8,3的平均数是5,则这组数据的中位数是 ▲ . 14.如图,AB 是半圆O 的直径,AB =8,点C 为半圆上的一点. 将此半圆沿BC 所在的直线折叠,若BC 恰好过圆心O ,则图中阴影部 分的面积是 ▲ .15.图1是一款优雅且稳定的抛物线型落地灯. 防滑螺母C 为抛物线支架的最高点,灯罩D 距离地面1.86米,灯柱AB 及支架的相关数据如图2所示. 若茶几摆放在灯罩的正下方,则茶几到灯柱的距离AE 为 ▲ 米.16.如图,在Rt △ABC 中,∠ACB =90°,sin ∠BAC =32,点D 在AB 的延长线上,BD =BC ,AE 平分∠BAC 交CD 于点E . 若AE =25,则点A 到直线CD 的距离AH 为 ▲ ,BD 的长为 ▲ .(第18题)三、解答题(本题有8小题,共80分,解答需写出必要的文字说明、演算步骤或证明过程) 17.(本题10分)(1)计算:02)32(12)2(-+-. (2)化简:)4()2)(2(---+a a a a .18.(本题8分)如图,在□ABCD 中,DE 平分∠ADB ,交AB 于E , BF 平分∠CBD ,交CD 于点F . (1)求证:△ADE ≌△CBF .(2)当AD 与BD 满足什么数量关系时,四边形DEBF 是矩形?请说明理由.19.(本题10分)某报社为了解温州市民对大范围雾霾天气的成因、影响以及应对措施的看法,做了一次抽样调查,调查结果共分为四个等级:A .非常了解;B .比较了解;C .基本了解;D .不了解. 根据调查统计结果,绘制了不完整的三种统计图表.请结合统计图表,回答下列问题:(1)本次参与调查的市民共有 ▲ 人,m = ▲ ,n = ▲ . (2)统计图中扇形D 的圆心角是 ▲ 度.(3)某校准备开展关于雾霾的知识竞赛,九(3)班郑老师欲从2名男生和1名女生中任选2人参加比赛,求恰好选中“1男1女”的概率(要求列表或画树状图).20.(本题6分)在直角坐标系中,我们把横、纵坐标都为整数的点称为整点.如图,已知整点A (2,2),B (4,1),请在所给网格区域(含边界)上找到整点P . (1)画一个等腰三角形P AB ,使点P 的纵坐标比点A 的横坐标大1. (2)若△P AB 是直角三角形,则这样的点P 共有 ▲ 个.(第20题)(第20题备用图)(第19题)(第21题)(第23题)(第24题)21.(本题10分)如图,点E 在△ABC 的边AB 上,过点B ,C 的⊙O 切AC 于点C ,直径CD 交BE 于点F ,连结BD ,DE 已知∠A =∠CDE ,AC =22,BD =1. (1)求⊙O 的直径.(2)过点F 作FG ⊥CD 交BC 于点G ,求FG 的长.22.(本题10分)如图,抛物线142-+-=x x y 与y 轴交于点C , CD ∥x 轴交抛物线于另一点D ,AB ∥x 轴交抛物线于点A ,B ,点A 在点B 的左侧,且两点均在第一象限,BH ⊥CD 于点H . 设点A 的横坐标为m .(1)当m =1时,求AB 的长.(2)若)(2DH CH AH -=,求m 的值.23.(本题12分)现有一块矩形地皮,计划共分九个区域. 区域甲、乙是两个矩形主体建筑,区域丙为梯形停车场,区域①~④是四块三角形绿化区,△AEL 和△CIJ 为综合办公区(如图所示). ∠HEL =∠ELI =90°,MN ∥BC ,AD =220米,AL =40米,AE =IC =30米. (1)求HI 的长. (2)若BG =KD ,求主体建筑甲和乙的面积和.(3)设LK =3x 米,绿化区②的面积为S 平方米. 若要求绿化区②与④的面积之差不少于1200平方米,求S 关于x 的函数表达式,并求出S 的最小值.24.(本题14分)如图,AB 是半圆O 的直径,半径OC ⊥AB ,OB =4,D 是OB 的中点,点E 是BC上一动点,连结AE ,DE .(1)当点E 是BC 的中点时,求△ADE 的面积.(2)若tan ∠AED =23,求AE 的长.(3)点F 是半径OC 上一动点,设点E 到直线OC 的距离为m . ①当△DEF 是等腰直角三角形时,求m 的值.②延长DF 交半圆弧于点G ,若AG =EG ,AG ∥DE ,直接写出DE 的长.G FEACBO杭州市)初中毕业升学适应性考试数学参考答案一、选择题:(本题有10题,每小题4分,共40分)二、填空题:(本题有6题,每小题5分,共30分. 第16题两空分别计2分和3分) 11.2a (a +2) 12.x ≥-3 13.4 14.38π15.2.7 16.5,62 三、解答题:(本题有8小题,共80分)17.(1)解:原式=1324-+ (3分) 注:每项计算正确得1分. =323+ (2分)(2)解:原式=a 2-4-a 2+4a (4分)注:每项化简正确得2分.=4a -4 (1分) 18.(1)证明:在□ABCD 中,AD ∥BC ,AD =BC ,∠A =∠C (1分)∴∠ADB =∠CBD∵DE 平分∠ADB ,BF 平分∠CBD∴∠ADE =∠FBC (2分)∴ △ADE ≌△CBF . (1分)(2)解:AD =BD . 理由如下: (1分)∵ △ADE ≌△CBF ,∴DE =BF ,AE =CF 又∵AB =CD ,∴BE =DF (1分) ∴四边形DEBF 是平行四边形 ∵AD =BD ,DE 平分∠ADB ∴DE ⊥AB (1分)∴□ABCD 是矩形 (1分) 19.(1)400,15,35 (3分) (2)126 (2分)(3)列表或画树状图略 (3分)23p = (2分)20.(1)如下图,画对一个即可(3分)或 或(2)5 (3分) 21.(1)∵∠A =∠CDE ,∠CDE=∠CBA ,∴∠A=∠CBA (1分) ∴BC =AC 2 (1分) ∵CD 为直径,∴∠CBD =90° (1分)∴CD =()22122+=3 (2分)即⊙O 的直径为3.(2)∵AC 是⊙O 的切线,∴∠ACD =90°题号 1 2 3 4 5 6 7 8 9 10 答案BACCADCBBD丙丙④③②①乙甲P GKN M JD LCIHE A B F∴AC ∥FG (1分)∴∠A =∠GFB =∠CBA , ∴FG =BG . (1分)设FG =x ,则BG =x ,CG =22-x ,∴CD BDCG FG =,即3122=-x x (2分) ∴x =22, 即FG =22. (1分)22.(1)当m =1时,y =-1+4-1=2 (1分) 把y =2代入,得 x 2-4x +3=0 (1分) ∴x 1=1,x 2=3 (1分) ∴AB =3-1=2 (1分) (2)作AE ⊥CD 交CD 于点E ,可算得 CD =4,由抛物线的轴对称性,得 CE =DH , ∴AB =4-2m (1分)∵2()2()22AH CH DH CH CE EH AB =-=-== ∴△ABH 是等腰直角三角形 (1分) ∴BH =AB =4-2m∴点B 的坐标可表示为(4-m ,3-2m ) (1分) ∴3-2m =-(4-m )2+4(4-m )-1 (1分) ∴m =53± (1分)∵A 在B 左侧,∴m =53-. (1分)(注:其它解题方法请参照以上评分标准给分) 23.(1)过E 作EP ∥BC 交LI 于点P在Rt △AEL 中,5040302222=+=+=AL AE EL ,由cos ∠ALE =cos ∠LEP ,得EP505040=(2分) ∴EP =25012542=(1分) ∴HI =EP =2125(1分)(2)连结MN ,则MN =HI =2125∵BH =220-30-2125=2255,tan ∠ALE= tan ∠BEH=34(1分) ∴255324BE =,∴BE =170,∴AB =AE +BE =30+170=200 (1分) 当BG =KD 时,KD =2BC MN - =(220-2125)÷2=4315(1分) ∴315S 200157504S KD CD +=⋅=⨯=甲乙 (1分)(3)由tan ∠KNL =34,得DJ = KN =4x ,∴JC = 200-4x (1分)∵NJ =KD =220-40-3x =180-3x ∴S =JC NJ ⋅1=1(180-3x )(200-4x )=6x 2-660x +18000=6(x -55)2-150 (1分)∵S ②-S ④≥1200,即21NJ ·JC -21GH ·JC =21(NJ -GH )·JC =21IC ·JC =15(200-4x )≥1200 ∴0<x ≤30 (1分)∴当x =30时,S 最小值=3600. (1分)24.(1)作EH ⊥AB 于点H ,连结OE∵OC ⊥AB ,∴∠BOC=90°∵E 为BC 中点,∴∠BOE =21∠BOC=45° ∴EH =OH =22242==OE (1分) ∵D 是OB 的中点∴AD =AO +OD =4+2=6 ∴262262121=⨯⨯=⋅⋅=∆EH AD S ADE (2分) (2)作OM ⊥AE 于点M ,作DN ⊥AE 于点N ,则 AM =EM∴OM ∥DN∵AO =2OD ,∴AM =2MN ,∴MN =EN设DN =3x ,tan ∠AED=32DN EN =,∴EN =MN =2x ∴AM =4x (1分) ∵sin ∠EAB=ADNDAO MO =∴634xOM =,∴OM =2x (1分) 在Rt △AOM 中,(4x )2+(2x )2=42∵x >0,∴x =552 (1分) 即AE =8x =5516. (1分)(注:其它解题方法请参照以上评分标准给分) (3)连结OE①如图3,当EF =DF ,∠EFD=90°时,作EH ⊥OC 于点H 则△EHF ≌△FOD∴FO =EH =m ,HF =OD =2,∴HO =2+m , 在Rt △OEH 中,m 2+(2+m )2=42, ∴)(17,1721舍--=-=m m ,如图4,当DF =DE ,∠FDE=90°时,作EP ⊥OB 于点P , 则△DPE ≌△FOD ∴OP = m ,EP =OD =2,在Rt △OEP 中,m 2+22=42)(32,3221舍-==∴m m ,如图5,当EF =ED ,∠FED=90°时,作EP ⊥OB 于点P ,作EH ⊥OC 于点H 则△EHF ≌△EPD ,∴EP =EH =OP =m ∴△OPE 是等腰直角三角形图1HO图2BAO图4 ACO图3DAO综上所述,m 的值为223217或或 . (5分) (注:每求出1个m 的值得2分,3个都求出得5分)②DE =6. (2分)。

2023年中考模拟试题 :杭州市数学适应性试卷3(含答案)

2023年中考模拟试题 :杭州市数学适应性试卷3(含答案)

杭州市2023年毕业生适应性考试九年级数学 试题卷考生须知:1.全卷满分120分,考试时间120分钟.试题卷共5页,有三大题,共24小题. 2.全卷答案必须做在答题纸卷Ⅰ、卷Ⅱ的相应位置上,做在试题卷上无效. 温馨提示:请仔细审题,细心答题,答题前仔细阅读答题纸上的“注意事项”.卷Ⅰ(选择题)一、选择题(本题有10小题,每小题3分,共30分.请选出各题中唯一的正确选项,不选、多选、错选,均不给分)1..若代数式12-x x有意义,则实数x 的取值范围是( ▲ ) A .0=x B .1=x C .0≠x D .1≠x 2.新冠病毒(2019-nCoV )是一类具有囊膜的正链单股 RNA 病毒,其遗传物质是所有 RNA 病毒中最大的,也是自然界广泛存在的一大类病毒.其粒子的平均直径约为 110nm (纳米),1纳米=9-10米,则110nm 用科学计数法表示可以表示为( ▲ )米.A .7-101.1⨯B .6-101.1⨯C .8-1011⨯D .71011.0-⨯ 3.下列运算中,正确的是( ▲ )A .42232x x x =+B .632x x x =⋅C .632)(x x =D .33)(xy xy = 4.下列水平放置的几何体中,左视图不.是.矩形的是( ▲ )A .B .C .D . 5.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示, 下列结论 ①a <b ;②|b |=|d | ;③a+c =a ;④ad >0中,正确的有( ▲ )A . 4个B . 3个C . 2个D .1个 6.已知圆锥的底面半径为 2cm ,母线长为 4cm ,则圆锥的侧面积是 ( ▲ ) A . 210cm B . 210cm π C . 28cm D .28cm π 7.如图,直线l 1∥l 2,以直线l 2上的点A 为圆心、适当长为半径画弧,分别交直线l 1、l 2于点B 、C ,连接AB 、BC .若∠ACB =68°,则∠1的度数为( ▲ ) A .22°B .32°C .44°D .68°8.对于代数式ax+b (a ,b 是常数),当x 分别等于3、2、1、0时,小虎同学依次求得下面四个结果:3、2、−1、−3,其中只有一个是错误的,则错误的结果是( ▲ )A .3B .2C .−1D .−39. 一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶,设行驶的时间为 x (时) ,两车之间的距离为 y (千米) ,图 中的折线表示从两车出发至快车到达乙地过程中y 与 x 之间的函数关系,已知两车相遇时快车比慢车多行驶 40千米,快车到达乙地时,慢车还有( ▲ )千米到达甲地.A .70B .80C . 90D .100 10.如图,正方形 ABCD 中,AB =4,E ,F 分别是边 AB ,AD 上的动点,AE =DF ,连接 DE , CF 交于点 P ,过点 P 作 PK ∥BC ,且 PK =2,若∠CBK 的度数最大时,则 BK 长为( ▲ )A .6B .52C .102D .24卷Ⅱ(非选择题)二、填空题(本题有6小题,每题4分,共24分) 11.计算:38= ▲ .12.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号1,2,3,4,5.从中随机摸出一个小球,摸出小球的标号为奇数的概率是 ▲ . 13. 如图,一名滑雪运动员沿着倾斜角为34°的斜坡从A 滑行至B . 已知AB =500米,则这名滑雪运动员下降的垂直高度为 ▲ 米. (参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67) 14. 如图,AB ∥CD ,AB=21CD ,S △ABO :S △CDO = . 15.如图正六边形ABCDEF ,点E )0,1(-,将正六边形向右平移a (0>a )个单位,恰好有两个顶点落在反比例函数)0(>=k xky ,则k 的值 ▲ . 16.对于一个函数,如果它的自变量x 与函数值y 满足:当−1≤x ≤1时,−1≤y ≤1,则称这个函数为“闭函数”. 例如:y =x ,y =−x 均是“闭函数”. 已知)0(2≠++=a c bx ax y 是“闭函数”,且抛物线经过点A(1,−1)和点B (−1,1) ,则a 的取值范围是 ▲ .三、解答题(共8小题,第17~19题每题6分,第20、21每题8分,第22、23题每题10分,第24题12分,共66分)17.计算:①︒+30sin 4-2020-0)( ② )())((a b b b a b a -+-+ 18.①解方程: 422=-x x ②解不等式组: ⎪⎩⎪⎨⎧<-+≤+321)2(34x x x x19.如图,已知四边形ABCD 中,AB=AC,∠ABD=∠ACD ,求证:BD=CD. 小明同学的证明方法:证明:在△ABD 与△ACD 中:∵AB=AC,∠ABD=∠ABD,AD=AD ∴△ABD ≌△ACD(SAS) ∴BD=CD请你判断小明的证明是否正确,若不正确,请你写出正确的证明。

2023年浙江省杭州市中考数学模拟卷五

2023年浙江省杭州市中考数学模拟卷五
A. B.4C. D.
9.如图在正方形 内有一点F连接 有 若 的角平分线交 于点E若E为 中点 则 的长为()
A. B.6C. D.5
10.对于多项式 在任意一个字母前加负号称为“加负运算”例如:对b和d进行“加负运算”得到: .规定甲同学每次对三个字母进行“加负运算”乙同学每次对两个字母进行“加负运算”下列说法正确的个数为()
抛掷次数
500
1000
1500
2500
3000
4000
5000
10000
“正面朝上”的次数
2558
2083
2598
5204
“正面朝上”的频率
根据上表下面有三个推断:
①当抛掷次数是1000时“正面朝上”的频率是 所以“正面朝上”的概率是 ;
②随着试验次数的增加“正面朝上”的频率总是在 附近摆动显示出一定稳定性可以估计“正面朝上”的概率是 ;
6.把黑色圆点按如图所示的规律拼图案其中第①个图案中有4个黑色圆点第②个图案中有6个黑色圆点第③个图案中有8个黑色圆点…按此规律排列下去则第⑦个图案中黑色圆点的个数为()
A.12B.14C.16D.18
7.按下图所示程序框图计算若输入的值为 则输出结果为()
A. B. C.4D.
8.如图 是 直径点C、D是 上的两点连接 且 若 则 的长为()
(1)求反比例函数和一次函数的解析式;
(2)根据图象直接写出使一次函数的值大于反比例函数的值的x的取值范围.
21.(10分)如图在 中 以 为直径的 与 交于点D与边 交于点E过点D作 的垂线垂足为F.
(1)求证: 为 的切线;
(2)若 求 的半径及 的值.
22.(12分)在平面直角坐标系中抛物线 .

浙江省杭州市2019-2020学年第五次中考模拟考试数学试卷含解析

浙江省杭州市2019-2020学年第五次中考模拟考试数学试卷含解析

浙江省杭州市2019-2020学年第五次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.点(,2)A a a -是一次函数2y x m =+图象上一点,若点A 在第一象限,则m 的取值范围是( ). A .24m -<< B .42m -<< C .24m -≤≤ D .42m -≤≤2.如果关于x 的一元二次方程k 2x 2-(2k+1)x+1=0有两个不相等的实数根,那么k 的取值范围是( ) A .k>-14 B .k>-14且0k ≠ C .k<-14 D .k ≥-14且0k ≠ 3.对于代数式ax 2+bx+c(a≠0),下列说法正确的是( )①如果存在两个实数p≠q ,使得ap 2+bp+c=aq 2+bq+c ,则a 2x +bx+c=a (x-p )(x-q )②存在三个实数m≠n≠s ,使得am 2+bm+c=an 2+bn+c=as 2+bs+c③如果ac <0,则一定存在两个实数m <n ,使am 2+bm+c <0<an 2+bn+c④如果ac >0,则一定存在两个实数m <n ,使am 2+bm+c <0<an 2+bn+cA .③B .①③C .②④D .①③④4.若α,β是一元二次方程3x 2+2x -9=0的两根,则+βααβ的值是( ). A .427 B .-427 C .-5827 D .58275.下列实数中,最小的数是( )A .3B .π-C .0D .2-6.下列运算中,计算结果正确的是( )A .a 2•a 3=a 6B .a 2+a 3=a 5C .(a 2)3=a 6D .a 12÷a 6=a 2 7.下列图形中,可以看作中心对称图形的是( )A .B .C .D .8.如图,AD 是半圆O 的直径,AD =12,B ,C 是半圆O 上两点.若»»»AB BCCD ==,则图中阴影部分的面积是( )A .6πB .12πC .18πD .24π 9.13-的相反数是 ( )A.13B.13-C.3 D.-310.一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是()A.47B.37C.34D.1311.下列美丽的壮锦图案是中心对称图形的是()A.B.C.D.12.某校有35名同学参加眉山市的三苏文化知识竞赛,预赛分数各不相同,取前18名同学参加决赛. 其中一名同学知道自己的分数后,要判断自己能否进入决赛,只需要知道这35名同学分数的(). A.众数B.中位数C.平均数D.方差二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,点D、E、F分别位于△ABC的三边上,满足DE∥BC,EF∥AB,如果AD:DB=3:2,那么BF:FC=_____.14.一个正方形AOBC各顶点的坐标分别为A(0,3),O(0,0),B(3,0),C(3,3).若以原点为位似中心,将这个正方形的边长缩小为原来的12,则新正方形的中心的坐标为_____.15.将一副三角板如图放置,若20AOD∠=o,则BOC∠的大小为______.16.把多项式a3-2a2+a分解因式的结果是17.如图,要使△ABC∽△ACD,需补充的条件是_____.(只要写出一种)18.布袋中装有2个红球和5个白球,它们除颜色外其它都相同.如果从这个布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是 ________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)计算:2193-⎛⎫--⎪⎝⎭=_____.20.(6分)如图,两座建筑物的水平距离BC为60m.从C点测得A点的仰角α为53° ,从A点测得D点的俯角β为37° ,求两座建筑物的高度(参考数据:34334 37,3737, 53453?35) 55453 sin cos tan sin cos tan ≈≈≈≈≈≈o o o o o o,,,21.(6分)抛物线y=﹣3x2+bx+c(b,c均是常数)经过点O(0,0),A(4,43),与x轴的另一交点为点B,且抛物线对称轴与线段OA交于点P.(1)求该抛物线的解析式和顶点坐标;(2)过点P作x轴的平行线l,若点Q是直线上的动点,连接QB.①若点O关于直线QB的对称点为点C,当点C恰好在直线l上时,求点Q的坐标;②若点O关于直线QB的对称点为点D,当线段AD的长最短时,求点Q的坐标(直接写出答案即可).22.(8分)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.第一批饮料进货单价多少元?若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?23.(8分)(定义)如图1,A,B为直线l同侧的两点,过点A作直线1的对称点A′,连接A′B交直线l于点P,连接AP,则称点P为点A,B关于直线l的“等角点”.(运用)如图2,在平面直坐标系xOy中,已知A(2,),B(﹣2,﹣)两点.(1)C(4,),D(4,),E(4,)三点中,点是点A,B关于直线x=4的等角点;(2)若直线l垂直于x轴,点P(m,n)是点A,B关于直线l的等角点,其中m>2,∠APB=α,求证:tan=;(3)若点P是点A,B关于直线y=ax+b(a≠0)的等角点,且点P位于直线AB的右下方,当∠APB=60°时,求b的取值范围(直接写出结果).24.(10分)某学校准备采购一批茶艺耗材和陶艺耗材.经查询,如果按照标价购买两种耗材,当购买茶艺耗材的数量是陶艺耗材数量的2倍时,购买茶艺耗材共需要18000元,购买陶艺耗材共需要12000元,且一套陶艺耗材单价比一套茶艺耗材单价贵150元.求一套茶艺耗材、一套陶艺耗材的标价分别是多少元?学校计划购买相同数量的茶艺耗材和陶艺耗材.商家告知,因为周年庆,茶艺耗材的单价在标价的基础上降价2m元,陶艺耗材的单价在标价的基础降价150元,该校决定增加采购数量,实际购买茶艺耗材和陶艺耗材的数量在原计划基础上分别增加了2.5m%和m%,结果在结算时发现,两种耗材的总价相等,求m的值.25.(10分)(1)计算:|﹣3|+(π﹣2 018)0﹣2sin 30°+(13)﹣1.(2)先化简,再求值:(x﹣1)÷(21x﹣1),其中x为方程x2+3x+2=0的根.26.(12分)如图,已知A(3,0),B(0,﹣1),连接AB,过B点作AB的垂线段BC,使BA=BC,连接AC.如图1,求C点坐标;如图2,若P点从A点出发沿x轴向左平移,连接BP,作等腰直角△BPQ,连接CQ,当点P在线段OA上,求证:PA=CQ;在(2)的条件下若C、P,Q三点共线,求此时∠APB 的度数及P点坐标.27.(12分)某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.求每件甲种、乙种玩具的进价分别是多少元?商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】试题解析:把点(,2)A a a -代入一次函数2y x m =+得,22a a m -=+23m a =-.∵点A 在第一象限上,∴0{20a a >->,可得02a <<, 因此4232a -<-<,即42m -<<,故选B .2.B【解析】【分析】在与一元二次方程有关的求值问题中,必须满足下列条件:(1)二次项系数不为零;(2)在有两个实数根下必须满足△=b 2-4ac≥1.【详解】由题意知,k≠1,方程有两个不相等的实数根,所以△>1,△=b 2-4ac=(2k+1)2-4k 2=4k+1>1. 因此可求得k >14-且k≠1. 故选B .【点睛】本题考查根据根的情况求参数,熟记判别式与根的关系是解题的关键.3.A。

浙江省杭州市2019-2020学年中考第五次质量检测数学试题含解析

浙江省杭州市2019-2020学年中考第五次质量检测数学试题含解析

浙江省杭州市2019-2020学年中考第五次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,点A 、B 、C 是⊙O 上的三点,且四边形ABCO 是平行四边形,OF ⊥OC 交圆O 于点F ,则∠BAF 等于( )A .12.5°B .15°C .20°D .22.5°2.对于点A (x 1,y 1),B (x 2,y 2),定义一种运算:()()1212A B x x y y ⊕=+++.例如,A (-5,4),B (2,﹣3),()()A B 52432⊕=-++-=-.若互不重合的四点C ,D ,E ,F ,满足C D D E E F F D ⊕=⊕=⊕=⊕,则C ,D ,E ,F 四点【 】A .在同一条直线上B .在同一条抛物线上C .在同一反比例函数图象上D .是同一个正方形的四个顶点 3.函数y kx 1=+与ky x=-在同一坐标系中的大致图象是( ) A 、 B 、 C 、 D 、4.计算()15-3÷的结果等于( ) A .-5B .5C .1-5D .155.下列式子一定成立的是( ) A .2a+3a=6a B .x 8÷x 2=x 4 C .12a a =D .(﹣a ﹣2)3=﹣61a 6.如图,四边形ABCD 是平行四边形,点E 在BA 的延长线上,点F 在BC 的延长线上,连接EF ,分别交AD ,CD 于点G ,H ,则下列结论错误的是( )A.EA EGBE EF=B.EG AGGH GD=C.AB BCAE CF=D.FH CFEH AD=7.计算--|-3|的结果是()A.-1 B.-5 C.1 D.58.△ABC在正方形网格中的位置如图所示,则cosB的值为( )A.55B.255C.12D.29.把6800000,用科学记数法表示为()A.6.8×105B.6.8×106C.6.8×107D.6.8×10810.81的算术平方根是()A.9 B.±9 C.±3 D.311.如图,在平面直角坐标系xOy中,点A从(3,4)出发,绕点O顺时针旋转一周,则点A不经过()A.点M B.点N C.点P D.点Q12.一个正比例函数的图象过点(2,﹣3),它的表达式为()A.3y-2x=B.2y3x=C.3y2x=D.2y-3x=二、填空题:(本大题共6个小题,每小题4分,共24分.)13.计算35的结果等于_____.14.下列图形是用火柴棒摆成的“金鱼”,如果第1个图形需要8根火柴,则第2个图形需要14根火柴,第n根图形需要____________根火柴.15.我国明代数学家程大位的名著《直指算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚一人分3个,小和尚3人分1个,正好分完,试问大、小和尚各几人?设大、小和尚各有,人,则可以列方程组__________.16.如图,MN是⊙O的直径,MN=4,∠AMN=40°,点B为弧AN的中点,点P是直径MN上的一个动点,则PA+PB的最小值为_____.17.一个不透明的袋子中装有6个球,其中2个红球、4个黑球,这些球除颜色外无其他差别.现从袋子中随机摸出一个球,则它是黑球的概率是______.18.在矩形ABCD中,对角线AC、BD相交于点O,∠AOB=60°,AC=6cm,则AB的长是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,四边形ABCD中,∠A=∠BCD=90°,BC=CD,CE⊥AD,垂足为E,求证:AE=CE.20.(6分)图1是某市2009年4月5日至14日每天最低气温的折线统计图.图2是该市2007年4月5日至14日每天最低气温的频数分布直方图,根据图1提供的信息,补全图2中频数分布直方图;在这10天中,最低气温的众数是____,中位数是____,方差是_____.请用扇形图表示出这十天里温度的分布情况.21.(6分)如图,AB是⊙O的直径,点C是的中点,连接AC并延长至点D,使CD=AC,点E是OB上一点,且,CE的延长线交DB的延长线于点F,AF交⊙O于点H,连接BH.求证:BD 是⊙O 的切线;(2)当OB =2时,求BH 的长.22.(8分)阅读材料:对于线段的垂直平分线我们有如下结论:到线段两个端点距离相等的点在线段的垂直平分线上.即如图①,若PA =PB ,则点P 在线段AB 的垂直平分线上请根据阅读材料,解决下列问题:如图②,直线CD 是等边△ABC 的对称轴,点D 在AB 上,点E 是线段CD 上的一动点(点E 不与点C 、D 重合),连结AE 、BE ,△ABE 经顺时针旋转后与△BCF 重合. (I )旋转中心是点 ,旋转了 (度);(II )当点E 从点D 向点C 移动时,连结AF ,设AF 与CD 交于点P ,在图②中将图形补全,并探究∠APC 的大小是否保持不变?若不变,请求出∠APC 的度数;若改变,请说出变化情况.23.(8分)(2013年四川绵阳12分)如图,AB 是⊙O 的直径,C 是半圆O 上的一点,AC 平分∠DAB ,AD ⊥CD ,垂足为D ,AD 交⊙O 于E ,连接CE .(1)判断CD 与⊙O 的位置关系,并证明你的结论;(2)若E 是»AC的中点,⊙O 的半径为1,求图中阴影部分的面积. 24.(10分)车辆经过润扬大桥收费站时,4个收费通道 A .B 、C 、D 中,可随机选择其中的一个通过.一辆车经过此收费站时,选择 A 通道通过的概率是 ;求两辆车经过此收费站时,选择不同通道通过的概率.25.(10分)2019年我市在“展销会”期间,对周边道路进行限速行驶.道路AB 段为监测区,C 、D 为监测点(如图).已知C 、D 、B 在同一条直线上,且AC BC ⊥,CD=400米,tan 2ADC ∠=,35ABC ∠=︒.求道路AB 段的长;(精确到1米)如果AB 段限速为60千米/时,一辆车通过AB 段的时间为90秒,请判断该车是否超速,并说明理由.(参考数据:sin350.57358︒≈,cos350.8195︒≈,tan350.7︒≈)26.(12分)某保健品厂每天生产A ,B 两种品牌的保健品共600瓶,A ,B 两种产品每瓶的成本和利润如表,设每天生产A 产品x 瓶,生产这两种产品每天共获利y 元. (1)请求出y 关于x 的函数关系式;(2)如果该厂每天至少投入成本26 400元,那么每天至少获利多少元?(3)该厂每天生产的A ,B 两种产品被某经销商全部订购,厂家对A 产品进行让利,每瓶利润降低100x元,厂家如何生产可使每天获利最大?最大利润是多少?A B 成本(元/瓶) 50 35 利润(元/瓶)201527.(12分)今年5月,某大型商业集团随机抽取所属的m 家商业连锁店进行评估,将各连锁店按照评估成绩分成了A 、B 、C 、D 四个等级,绘制了如图尚不完整的统计图表. 评估成绩n (分)评定等级 频数 90≤n≤100A 2 80≤n <90B 70≤n <80C 15 n <70D6根据以上信息解答下列问题: (1)求m 的值;(2)在扇形统计图中,求B 等级所在扇形的圆心角的大小;(结果用度、分、秒表示)(3)从评估成绩不少于80分的连锁店中任选2家介绍营销经验,求其中至少有一家是A 等级的概率.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.B 【解析】 【详解】 解:连接OB ,∵四边形ABCO 是平行四边形,∴OC=AB ,又OA=OB=OC , ∴OA=OB=AB , ∴△AOB 为等边三角形, ∵OF ⊥OC ,OC ∥AB , ∴OF ⊥AB , ∴∠BOF=∠AOF=30°, 由圆周角定理得∠BAF=12∠BOF=15° 故选:B2.A 。

浙江省杭州市2019-2020学年中考数学五模考试卷含解析

浙江省杭州市2019-2020学年中考数学五模考试卷含解析

浙江省杭州市2019-2020学年中考数学五模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.一个多边形的每个内角均为120°,则这个多边形是( )A .四边形B .五边形C .六边形D .七边形2.有两组数据,A 组数据为2、3、4、5、6;B 组数据为1、7、3、0、9,这两组数据的( ) A .中位数相等 B .平均数不同 C .A 组数据方差更大 D .B 组数据方差更大3.如图,⊙O 内切于正方形ABCD ,边BC 、DC 上两点M 、N ,且MN 是⊙O 的切线,当△AMN 的面积为4时,则⊙O 的半径r 是( )A 2B .2C .2D .34.已知二次函数2(0)y x x a a =-+>,当自变量x 取m 时,其相应的函数值小于0,则下列结论正确的是( )A .x 取1m -时的函数值小于0B .x 取1m -时的函数值大于0C .x 取1m -时的函数值等于0D .x 取1m -时函数值与0的大小关系不确定5.下列计算正确的是( )A .(﹣2a )2=2a 2B .a 6÷a 3=a 2C .﹣2(a ﹣1)=2﹣2aD .a•a 2=a 26.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( )A .606030(125%)x x -=+B .606030(125%)x x-=+ C .60(125%)6030x x ⨯+-= D .6060(125%)30x x⨯+-= 7.如图图形中,是中心对称图形的是( )A .B .C .D .8.一、单选题如图: 在ABC ∆中,CE 平分ACB ∠,CF 平分ACD ∠,且//EF BC 交AC 于M ,若5CM =,则22CE CF +等于( )A .75B .100C .120D .1259.某学校组织艺术摄影展,上交的作品要求如下:七寸照片(长7英寸,宽5英寸);将照片贴在一张矩形衬纸的正中央,照片四周外露衬纸的宽度相同;矩形衬纸的面积为照片面积的3倍.设照片四周外露衬纸的宽度为x 英寸(如图),下面所列方程正确的是( )A .(7+x )(5+x )×3=7×5 B .(7+x )(5+x )=3×7×5 C .(7+2x )(5+2x )×3=7×5 D .(7+2x )(5+2x )=3×7×5 10.如图,将甲、乙、丙、丁四个小正方形中的一个剪掉,使余下的部分不能围成一个正方体,剪掉的这个小正方形是A .甲B .乙C .丙D .丁11.下列命题中错误的有( )个(1)等腰三角形的两个底角相等 (2)对角线相等且互相垂直的四边形是正方形(3)对角线相等的四边形为矩形(4)圆的切线垂直于半径(5)平分弦的直径垂直于弦A .1B .2C .3D .412.计算(﹣3)﹣(﹣6)的结果等于( )A.3 B.﹣3 C.9 D.18二、填空题:(本大题共6个小题,每小题4分,共24分.)13.我国古代数学著作《九章算术》卷七有下列问题:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价几何?”意思是:现在有几个人共同出钱去买件物品,如果每人出8钱,则剩余3钱;如果每人出7钱,则差4钱.问有多少人,物品的价格是多少?设有x人,则可列方程为__________.14.如图,Rt△ABC中,若∠C=90°,BC=4,tanA=43,则AB=___.15.《九章算术》是中国传统数学最重要的著作,在“勾股”章中有这样一个问题:“今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步而见木?”用今天的话说,大意是:如图,DEFG是一座边长为200步(“步”是古代的长度单位)的正方形小城,东门H位于GD的中点,南门K位于ED的中点,出东门15步的A处有一树木,求出南门多少步恰好看到位于A处的树木(即点D在直线AC上)?请你计算KC的长为__________步.16.计算:2(2+2)=_____.17.已知一组数据3 ,x,﹣2,3,1,6的中位数为1,则其方差为____.18.如图,点M、N分别在∠AOB的边OA、OB上,将∠AOB沿直线MN翻折,设点O落在点P处,如果当OM=4,ON=3时,点O、P的距离为4,那么折痕MN的长为______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,一次函数y=kx+b与反比例函数y=的图象相较于A(2,3),B(﹣3,n)两点.求一次函数与反比例函数的解析式;根据所给条件,请直接写出不等式kx+b>的解集;过点B作BC⊥x 轴,垂足为C,求S△ABC.20.(6分)如图,已知AD 是ABC △的中线,M 是AD 的中点,过A 点作AE BC ∥,CM 的延长线与AE 相交于点E ,与AB 相交于点F.(1)求证:四边形AEBD 是平行四边形;(2)如果3AC AF =,求证四边形AEBD 是矩形.21.(6分)为了保证端午龙舟赛在我市汉江水域顺利举办,某部门工作人员乘快艇到汉江水域考察水情,以每秒10米的速度沿平行于岸边的赛道AB 由西向东行驶.在A 处测得岸边一建筑物P 在北偏东30°方向上,继续行驶40秒到达B 处时,测得建筑物P 在北偏西60°方向上,如图所示,求建筑物P 到赛道AB 的距离(结果保留根号).22.(8分)计算:﹣22+(π﹣2018)0﹣2sin60°+|1﹣3| 23.(8分)如图,已知四边形ABCD 是矩形,把矩形沿直线AC 折叠,点B 落在点E 处,连接DE .若DE :AC=3:5,求AD AB的值.24.(10分)如图,△ABC 中,∠A=90°,AB=AC=4,D 是BC 边上一点,将点D 绕点A 逆时针旋转60°得到点E ,连接CE.B(1)当点E在BC边上时,画出图形并求出∠BAD的度数;(2)当△CDE为等腰三角形时,求∠BAD的度数;(3)在点D的运动过程中,求CE的最小值.(参考数值:sin75°=624+,cos75°=624-,tan75°=23+)25.(10分)如图,将矩形ABCD绕点A顺时针旋转,得到矩形AB′C′D′,点C的对应点C′恰好落在CB的延长线上,边AB交边C′D′于点E.(1)求证:BC=BC′;(2)若AB=2,BC=1,求AE的长.26.(12分)如图,△ABC内接于⊙O,过点C作BC的垂线交⊙O于D,点E在BC的延长线上,且∠DEC =∠BAC.求证:DE是⊙O的切线;若AC∥DE,当AB=8,CE=2时,求⊙O直径的长.27.(12分)太原市志愿者服务平台旨在弘扬“奉献、关爱、互助、进步”的志愿服务精神,培育志思服务文化,推动太原市志愿服务的制度化、常态化,弘扬社会正能量,截止到2018年5月9日16:00,在该平台注册的志愿组织数达2678个,志愿者人数达247951人,组织志愿活动19748次,累计志愿服务时间3889241小时,学校为了解共青团员志愿服务情况,调查小组根据平台数据进行了抽样问卷调查,过程如下:(1)收集、整理数据:从九年级随机抽取40名共青团员,将其志愿服务时间按如下方式分组(A:0~5小时;B:5~10小时;C:10~15小时;D:15~20小时;E:20~25小时;F:25~30小时,注:每组含最小值,不含最大值)得到这40名志愿者服务时间如下:B D E AC ED B F C D D D BE C D E E FA F F A D C DB D FC FDE C E E E C E并将上述数据整理在如下的频数分布表中,请你补充其中的数据:志愿服务时间 A B C D E F频数 3 4 10 7(2)描述数据:根据上面的频数分布表,小明绘制了如下的频数直方图(图1),请将空缺的部分补充完整;(3)分析数据:①调查小组从八年级共青团员中随机抽取40名,将他们的志愿服务时间按(1)题的方式整理后,画出如图2的扇形统计图.请你对比八九年级的统计图,写出一个结论;②校团委计划组织志愿服务时间不足10小时的团员参加义务劳动,根据上述信息估计九年级200名团员中参加此次义务劳动的人数约为人;(4)问题解决:校团委计划组织中考志愿服务活动,共甲、乙、丙三个服务点,八年级的小颖和小文任意选择一个服务点参与志服务,求两人恰好选在同一个服务点的概率.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】由题意得,180°(n-2)=120°n ,解得n=6.故选C.2.D【解析】【分析】分别求出两组数据的中位数、平均数、方差,比较即可得出答案.【详解】A 组数据的中位数是:4,平均数是:(2+3+4+5+6) ÷5=4,方差是:[(2-4)2+(3-4)2+(4-4)2+(5-4)2+(6-4)2] ÷5=2; B 组数据的中位数是:3,平均数是:(1+7+3+0+9) ÷5=4,方差是:[(1-4)2+(7-4)2+(3-4)2+(0-4)2+(9-4)2] ÷5=12; ∴两组数据的中位数不相等,平均数相等,B 组方差更大.故选D.【点睛】本题考查了中位数、平均数、方差的计算,熟练掌握中位数、平均数、方差的计算方法是解答本题的关键. 3.C【解析】【分析】连接AC ,交O e 于点,F 设,FN a =则2,NC a =()222,DC a =+()224,AC a =+根据△AMN 的面积为4,列出方程求出a 的值,再计算半径即可.【详解】连接AC ,交O e 于点,FO e 内切于正方形,ABCD MN 为O e 的切线, AC 经过点,,O F FNC V 为等腰直角三角形,2,NC FN =,CD MN 为O e 的切线,,EN NF =设,FN a =则2,NC a =(222,DC a =+()224,AC a =()223,AF AC CF a ∴=-=△AMN 的面积为4, 则14,2MN AF ⋅⋅= 即()122234,2a a ⋅⋅+=解得222,a =- ()()()2121222 2.r EC a ==+=+-= 故选:C.【点睛】考查圆的切线的性质,等腰直角三角形的性质,三角形的面积公式,综合性比较强.4.B【解析】【分析】画出函数图象,利用图象法解决问题即可;【详解】由题意,函数的图象为:∵抛物线的对称轴x=12,设抛物线与x 轴交于点A 、B , ∴AB <1, ∵x 取m 时,其相应的函数值小于0,∴观察图象可知,x=m-1在点A 的左侧,x=m-1时,y >0,故选B .【点睛】本题考查二次函数图象上的点的坐标特征,解题的关键是学会利用函数图象解决问题,体现了数形结合的思想.5.C【解析】【详解】解:选项A ,原式=24a ;选项B ,原式=a 3;选项C ,原式=-2a+2=2-2a ;选项D , 原式=3a故选C6.C【解析】分析:设实际工作时每天绿化的面积为x 万平方米,根据工作时间=工作总量÷工作效率结合提前 30 天完成任务,即可得出关于x 的分式方程.详解:设实际工作时每天绿化的面积为x 万平方米,则原来每天绿化的面积为125%x +万平方米, 依题意得:606030125%x x -=+,即()60125%6030x x ⨯+-=. 故选C .点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键. 7.D【解析】【分析】根据中心对称图形的概念和识别.【详解】根据中心对称图形的概念和识别,可知D 是中心对称图形,A 、C 是轴对称图形,D 既不是中心对称图形,也不是轴对称图形.故选D .【点睛】本题考查中心对称图形,掌握中心对称图形的概念,会判断一个图形是否是中心对称图形.8.B【解析】【分析】根据角平分线的定义推出△ECF 为直角三角形,然后根据勾股定理即可求得CE 2+CF 2=EF 2,进而可求出CE 2+CF 2的值.【详解】解:∵CE 平分∠ACB ,CF 平分∠ACD ,∴∠ACE=12∠ACB ,∠ACF=12∠ACD ,即∠ECF=12(∠ACB+∠ACD )=90°,∴△EFC为直角三角形,又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,∴CM=EM=MF=5,EF=10,由勾股定理可知CE2+CF2=EF2=1.故选:B.【点睛】本题考查角平分线的定义(从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线),直角三角形的判定(有一个角为90°的三角形是直角三角形)以及勾股定理的运用,解题的关键是首先证明出△ECF为直角三角形.9.D【解析】试题分析:由题意得;如图知;矩形的长="7+2x" 宽=5+2x ∴矩形衬底的面积=3倍的照片的面积,可得方程为(7+2X)(5+2X)=3×7×5考点:列方程点评:找到题中的等量关系,根据两个矩形的面积3倍的关系得到方程,注意的是矩形的间距都为等量的,从而得到大矩形的长于宽,用未知数x的代数式表示,而列出方程,属于基础题.10.D【解析】解:将如图所示的图形剪去一个小正方形,使余下的部分不能围成一个正方体,编号为甲乙丙丁的小正方形中剪去的是丁.故选D.11.D【解析】分析:根据等腰三角形的性质、正方形的判定定理、矩形的判定定理、切线的性质、垂径定理判断即可.详解:等腰三角形的两个底角相等,(1)正确;对角线相等、互相平分且互相垂直的四边形是正方形,(2)错误;对角线相等的平行四边形为矩形,(3)错误;圆的切线垂直于过切点的半径,(4)错误;平分弦(不是直径)的直径垂直于弦,(5)错误.故选D.点睛:本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.12.A【解析】原式=−3+6=3,故选A二、填空题:(本大题共6个小题,每小题4分,共24分.)13.8374x x -=+【解析】【分析】根据每人出8钱,则剩余3钱;如果每人出7钱,则差4钱,可以列出相应的方程,本题得以解决【详解】解:由题意可设有x 人,列出方程:8374x x +﹣=,故答案为8374x x +﹣=.【点睛】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.14.1.【解析】【分析】在Rt △ABC 中,已知tanA ,BC 的值,根据tanA=BC AC ,可将AC 的值求出,再由勾股定理可将斜边AB 的长求出.【详解】解:Rt △ABC 中,∵BC=4,tanA=4,3BC AC = ∴3tan BC AC A ==,则 5.AB =故答案为1.【点睛】考查解直角三角形以及勾股定理,熟练掌握锐角三角函数是解题的关键.15.20003【解析】分析:由正方形的性质得到∠EDG=90°,从而∠KDC+∠HDA=90°,再由∠C+∠KDC=90°,得到∠C=∠HDA ,即有△CKD ∽△DHA ,由相似三角形的性质得到CK :KD=HD :HA ,求解即可得到结论.详解:∵DEFG 是正方形,∴∠EDG=90°,∴∠KDC+∠HDA=90°.∵∠C+∠KDC=90°,∴∠C=∠HDA .∵∠CKD=∠DHA=90°,∴△CKD∽△DHA,∴CK:KD=HD:HA,∴CK:100=100:15,解得:CK=20003.故答案为:20003.点睛:本题考查了相似三角形的应用.解题的关键是证明△CKD∽△DHA.16.1.【解析】【分析】去括号后得到答案.【详解】原式=2×2+2×2=2+1=1,故答案为1.【点睛】本题主要考查了去括号的概念,解本题的要点在于二次根式的运算.17.3【解析】试题分析:∵数据﹣3,x,﹣3,3,3,6的中位数为3,∴112x+=,解得x=3,∴数据的平均数=16(﹣3﹣3+3+3+3+6)=3,∴方差=16[(﹣3﹣3)3+(﹣3﹣3)3+(3﹣3)3+(3﹣3)3+(3﹣3)3+(6﹣3)3]=3.故答案为3.考点:3.方差;3.中位数.18.235-【解析】【分析】由折叠的性质可得MN⊥OP,EO=EP=2,由勾股定理可求ME,NE的长,即可求MN的长.【详解】设MN与OP交于点E,∵点O、P的距离为4,∴OP=4∵折叠∴MN⊥OP,EO=EP=2,在Rt△OME中,ME=2223OM OE-=在Rt△ONE中,NE=225-=ON OE∴MN=ME-NE=23-5故答案为23-5【点睛】本题考查了翻折变换,勾股定理,利用勾股定理求线段的长度是本题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)反比例函数的解析式为:y=,一次函数的解析式为:y=x+1;(2)﹣3<x<0或x>2;(3)1.【解析】【分析】(1)根据点A位于反比例函数的图象上,利用待定系数法求出反比例函数解析式,将点B坐标代入反比例函数解析式,求出n的值,进而求出一次函数解析式(2)根据点A和点B的坐标及图象特点,即可求出反比例函数值大于一次函数值时x的取值范围(3)由点A和点B的坐标求得三角形以BC 为底的高是10,从而求得三角形ABC 的面积【详解】解:(1)∵点A(2,3)在y=的图象上,∴m=6,∴反比例函数的解析式为:y=,∴n==﹣2,∵A(2,3),B(﹣3,﹣2)两点在y=kx+b上,∴,解得:,∴一次函数的解析式为:y=x+1;(2)由图象可知﹣3<x<0或x>2;(3)以BC为底,则BC边上的高为3+2=1,∴S △ABC =×2×1=1.20.(1)见解析;(2)见解析.【解析】【分析】(1)先判定AEM DCM V V ≌,可得AE CD =,再根据AD 是ABC △的中线,即可得到AD CD BD ==,依据AE BD P ,即可得出四边形AEBD 是平行四边形;(2)先判定AEF BCF V V ∽,即可得到3AB AF =,依据3AC AF =,可得AB AC =根据AD 是ABC △的中线,可得AD BC ⊥,进而得出四边形AEBD 是矩形.【详解】证明:(1)Q M 是AD 的中点,AM DM ∴=,AE BC Q ∥,AEM DCM ∴∠∠=,又AME DMC ∠∠Q =,AEM DCM ∴V V ≌,AE CD ∴=,又AD Q 是ABC △的中线,AD CD BD ∴==,又AE BD Q ∥,∴四边形AEBD 是平行四边形;(2)AE BC Q ∥,AEF BCF ∴V V ∽, ∴AF AE 1BF BC 2==,即2BF AF =, 3AB AF ∴=,又3AC AF Q =,AB AC ∴=,又AD Q 是ABC △的中线,AD BC ∴⊥,又Q 四边形AEBD 是平行四边形,∴四边形AEBD 是矩形.【点睛】本题主要考查了平行四边形、矩形的判定,等腰三角形的性质以及相似三角形的性质的运用,解题时注意:对角线相等的平行四边形是矩形.21.1003米.【解析】【分析】如图,作PC ⊥AB 于C ,构造出Rt △PAC 与Rt △PBC ,求出AB 的长度,利用特殊角的三角函数值进行求解即可得. 【详解】如图,过P 点作PC ⊥AB 于C ,由题意可知:∠PAC=60°,∠PBC=30°,在Rt △PAC 中,tan ∠PAC=PC AC ,∴AC=33PC , 在Rt △PBC 中,tan ∠PBC=PC BC ,∴3, ∵AB=AC+BC=33340=400, ∴3答:建筑物P 到赛道AB 的距离为3【点睛】本题考查了解直角三角形的应用,正确添加辅助线构造直角三角形,利用特殊角的三角函数值进行解答是关键.22.-4【解析】分析:第一项根据乘方的意义计算,第二项非零数的零次幂等于1,第三项根据特殊角锐角三角函数值计算,第四项根据绝对值的意义化简.详解:原式点睛:本题考查了实数的运算,熟练掌握乘方的意义,零指数幂的意义,及特殊角锐角三角函数,绝对值的意义是解答本题的关键.23.12【解析】【分析】根据翻折的性质可得∠BAC=∠EAC ,再根据矩形的对边平行可得AB ∥CD ,根据两直线平行,内错角相等可得∠DCA=∠BAC ,从而得到∠EAC=∠DCA ,设AE 与CD 相交于F ,根据等角对等边的性质可得AF=CF ,再求出DF=EF ,从而得到△ACF 和△EDF 相似,根据相似三角形得出对应边成比,设DF=3x ,FC=5x ,在Rt △ADF 中,利用勾股定理列式求出AD ,再根据矩形的对边相等求出AB ,然后代入进行计算即可得解.【详解】解:∵矩形沿直线AC 折叠,点B 落在点E 处,∴CE =BC ,∠BAC =∠CAE ,∵矩形对边AD =BC ,∴AD =CE ,设AE 、CD 相交于点F ,在△ADF 和△CEF 中,90ADF CEF AFD CFEAD CE ∠∠︒⎧⎪∠∠⎨⎪⎩====, ∴△ADF ≌△CEF (AAS ),∴EF =DF ,∵AB ∥CD ,∴∠BAC =∠ACF ,又∵∠BAC =∠CAE ,∴∠ACF =∠CAE ,∴AF =CF ,∴AC ∥DE ,∴△ACF ∽△DEF ,∴35EF DE CF AC ==, 设EF =3k ,CF =5k ,由勾股定理得CE =()()22534k k k -=,∴AD =BC =CE =4k ,又∵CD =DF +CF =3k +5k =8k ,∴AB =CD =8k ,∴AD :AB =(4k ):(8k )=12.【点睛】本题考查了翻折变换的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,综合题难度较大,求出△ACF 和△DEF 相似是解题的关键,也是本题的难点.24.(1)∠BAD=15°;(2)∠BAC=45°或∠BAD =60°;(3)62-【解析】【分析】(1)如图1中,当点E 在BC 上时.只要证明△BAD ≌△CAE ,即可推出∠BAD=∠CAE=12(90°-60°)=15°;(2)分两种情形求解①如图2中,当BD=DC 时,易知AD=CD=DE ,此时△DEC 是等腰三角形.②如图3中,当CD=CE 时,△DEC 是等腰三角形;(3)如图4中,当E 在BC 上时,E 记为E′,D 记为D′,连接EE′.作CM ⊥EE′于M ,E′N ⊥AC 于N ,DE 交AE′于O .首先确定点E 的运动轨迹是直线EE′(过点E 与BC 成60°角的直线上),可得EC 的最小值即为线段CM 的长(垂线段最短).【详解】解:(1)如图1中,当点E 在BC 上时.∵AD=AE,∠DAE=60°,∴△ADE是等边三角形,∴∠ADE=∠AED=60°,∴∠ADB=∠AEC=120°,∵AB=AC,∠BAC=90°,∴∠B=∠C=45°,在△ABD和△ACE中,∠B=∠C,∠ADB=∠AEC,AB=AC,∴△BAD≌△CAE,∴∠BAD=∠CAE=12(90°-60°)=15°.(2)①如图2中,当BD=DC时,易知AD=CD=DE,此时△DEC是等腰三角形,∠BAD=12∠BAC=45°.②如图3中,当CD=CE时,△DEC是等腰三角形.∵AD=AE,∴AC垂直平分线段DE,∴∠ACD=∠ACE=45°,∴∠DCE=90°,∴∠EDC=∠CED=45°,∵∠B=45°,∴∠EDC=∠B,∴DE∥AB,∴∠BAD=∠ADE=60°.(3)如图4中,当E在BC上时,E记为E′,D记为D′,连接EE′.作CM⊥EE′于M,E′N⊥AC于N,DE交AE′于O.∵∠AOE=∠DOE′,∠AE′D=∠AEO,∴△AOE∽△DOE′,∴AO:OD=EO:OE',∴AO:EO=OD:OE',∵∠AOD=∠EOE′,∴△AOD∽△EOE′,∴∠EE′O=∠ADO=60°,∴点E的运动轨迹是直线EE′(过点E与BC成60°角的直线上),∴EC的最小值即为线段CM的长(垂线段最短),设E′N=CN=a,则AN=4-a,在Rt△ANE′中,tan75°=AN:NE',∴34aa-,∴23 3∴22263.在Rt△CE′M中,62∴CE62【点睛】本题考查几何变换综合题、等腰直角三角形的性质、等边三角形的性质、全等三角形的判定和性质、相似三角形的判定和性质、轨迹等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,学会利用垂线段最短解决最值问题,属于中考压轴题.25.(1)证明见解析;(2)AE=54.【解析】【分析】(1)连结AC、AC′,根据矩形的性质得到∠ABC=90°,即AB⊥CC′,根据旋转的性质即可得到结论;(2)根据矩形的性质得到AD=BC,∠D=∠ABC′=90°,根据旋转的性质得到BC′=AD′,AD=AD′,证得BC′=AD′,根据全等三角形的性质得到BE=D′E,设AE=x,则D′E=2﹣x,根据勾股定理列方程即可得到结论.【详解】解::(1)连结AC、AC′,∵四边形ABCD为矩形,∴∠ABC=90°,即AB⊥CC′,∵将矩形ABCD 绕点A顺时针旋转,得到矩形AB′C′D′,∴AC=AC′,∴BC=BC′;(2)∵四边形ABCD 为矩形,∴AD=BC,∠D=∠ABC′=90°,∵BC=BC′,∴BC′=AD′,∵将矩形ABCD 绕点 A 顺时针旋转,得到矩形AB′C′D′,∴AD=AD′,∴BC′=AD′,在△AD′E 与△C′BE中∴△AD′E≌△C′BE,∴BE=D′E,设AE=x,则D′E=2﹣x,在Rt△AD′E 中,∠D′=90°,由勾定理,得x2﹣(2﹣x)2=1,解得x=,∴AE=.【点睛】本题考查了旋转的性质,三角形全等的判定和性质,勾股定理的应用等,熟练掌握性质定理是解题的关键.26.(1)见解析;(2)⊙O直径的长是45.【解析】【分析】(1)先判断出BD是圆O的直径,再判断出BD⊥DE,即可得出结论;(2)先判断出AC⊥BD,进而求出BC=AB=8,进而判断出△BDC∽△BED,求出BD,即可得出结论.【详解】证明:(1)连接BD,交AC于F,∵DC⊥BE,∴∠BCD=∠DCE=90°,∴BD是⊙O的直径,∴∠DEC+∠CDE=90°,∵∠DEC=∠BAC,∴∠BAC+∠CDE=90°,∵弧BC=弧BC,∴∠BAC=∠BDC,∴∠BDC+∠CDE=90°,∴BD⊥DE,∴DE是⊙O切线;解:(2)∵AC∥DE,BD⊥DE,∴BD⊥AC.∵BD是⊙O直径,∴AF=CF,∴AB=BC=8,∵BD⊥DE,DC⊥BE,∴∠BCD=∠BDE=90°,∠DBC=∠EBD,∴△BDC∽△BED,∴BDBE=BCBD,∴BD2=BC•BE=8×10=80,∴BD=即⊙O直径的长是【点睛】此题主要考查圆周角定理,垂径定理,相似三角形的判定和性质,切线的判定和性质,第二问中求出BC=8是解本题的关键.27.(1)7,9;(2)见解析;(3)①在15~20小时的人数最多;②35;(4)1 3 .【解析】【分析】(1)观察统计图即可得解;(2)根据题意作图;(3)①根据两个统计图解答即可;②根据图1先算出不足10小时的概率再乘以200人即可;(4)根据题意画出树状图即可解答.【详解】解:(1)C的频数为7,E的频数为9;故答案为7,9;(2)补全频数直方图为:(3)①八九年级共青团员志愿服务时间在15~20小时的人数最多;②200×740=35,所以估计九年级200名团员中参加此次义务劳动的人数约为35人;故答案为35;(4)画树状图为:共有9种等可能的结果数,其中两人恰好选在同一个服务点的结果数为3,所以两人恰好选在同一个服务点的概率=39=13.【点睛】本题考查了条形统计图与扇形统计图与树状图法,解题的关键是熟练的掌握条形统计图与扇形统计图与树状图法.。

浙江省杭州市2019-2020学年中考数学第五次调研试卷含解析

浙江省杭州市2019-2020学年中考数学第五次调研试卷含解析

浙江省杭州市2019-2020学年中考数学第五次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.某市今年1月份某一天的最高气温是3℃,最低气温是—4℃,那么这一天的最高气温比最低气温高A.—7℃B.7℃C.—1℃D.1℃2.点M(a,2a)在反比例函数y =8x的图象上,那么a 的值是( )A .4 B.﹣4 C.2 D.±23.在一次体育测试中,10名女生完成仰卧起坐的个数如下:38,52,47,46,50,50,61,72,45,48,则这10名女生仰卧起坐个数不少于50个的频率为()A.0.3 B.0.4 C.0.5 D.0.64.若|a|=﹣a,则a为()A.a是负数B.a是正数C.a=0 D.负数或零5.等式组26058xx x+⎧⎨≤+⎩>的解集在下列数轴上表示正确的是().A.B.C.D.6.已知某校女子田径队23人年龄的平均数和中位数都是13岁,但是后来发现其中一位同学的年龄登记错误,将14岁写成15岁,经重新计算后,正确的平均数为a岁,中位数为b岁,则下列结论中正确的是()A.a<13,b=13 B.a<13,b<13 C.a>13,b<13 D.a>13,b=137.下列各式中,正确的是()A.t5·t5 = 2t5B.t4+t2 = t 6C.t3·t4 = t12D.t2·t3 = t58.某中学为了创建“最美校园图书屋”,新购买了一批图书,其中科普类图书平均每本书的价格是文学类图书平均每本书价格的1.2倍.已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是多少元?设学校购买文学类图书平均每本书的价格是x元,则下面所列方程中正确的是()A.1200012000100 1.2x x=+B.12000120001001.2x x=+C.1200012000100 1.2x x=-D.12000120001001.2x x=-9.如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(﹣1,1),点B在x轴正半轴上,点D在第三象限的双曲线6yx=上,过点C作CE∥x轴交双曲线于点E,连接BE,则△BCE的面积为()A .5B .6C .7D .810.cos30°的相反数是( )A .3-B .12-C .3-D .2- 11.如图,在Rt △ABC 中,∠ACB=90°,BC=12,AC=5,分别以点A ,B 为圆心,大于线段AB 长度的一半为半径作弧,相交于点E ,F ,过点E ,F 作直线EF ,交AB 于点D ,连接CD ,则△ACD 的周长为( )A .13B .17C .18D .2512.如图,AB 为⊙O 的直径,C 、D 为⊙O 上的点,若AC =CD =DB ,则cos ∠CAD =( )A .13B .2C .12D 3二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在正方形ABCD 中,4=AD ,点E 在对角线AC 上运动,连接DE ,过点E 作 EF ED ⊥,交直线AB 于点F (点F 不与点A 重合),连接DF ,设CE x =,tan ADF y ∠=,则x 和y 之间的关系是__________(用含x 的代数式表示).14.一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出2个球,都是黄球的概率为 .15.如图,PA,PB是⊙O是切线,A,B为切点,AC是⊙O的直径,若∠P=46°,则∠BAC= ▲ 度.16.若方程x2+(m2﹣1)x+1+m=0的两根互为相反数,则m=______17.已知直线m∥n,将一块含有30°角的直角三角板ABC按如图方式放置,其中A、B两点分别落在直线m、n上,若∠1=20°,则∠2=_____度.18.如图所示,一个宽为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么该光盘的半径是____cm.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在规格为8×8的边长为1个单位的正方形网格中(每个小正方形的边长为1),△ABC 的三个顶点都在格点上,且直线m、n互相垂直.(1)画出△ABC关于直线n的对称图形△A′B′C′;(2)直线m上存在一点P,使△APB的周长最小;①在直线m上作出该点P;(保留画图痕迹)②△APB的周长的最小值为.(直接写出结果)20.(6分)立定跳远是嘉兴市体育中考的抽考项目之一,某校九年级(1),(2)班准备集体购买某品牌的立定跳远训练鞋.现了解到某网店正好有这种品牌训练鞋的促销活动,其购买的单价y(元/双)与一次性购买的数量x(双)之间满足的函数关系如图所示.当10≤x<60时,求y关于x的函数表达式;九(1),(2)班共购买此品牌鞋子100双,由于某种原因需分两次购买,且一次购买数量多于25双且少于60双;①若两次购买鞋子共花费9200元,求第一次的购买数量;②如何规划两次购买的方案,使所花费用最少,最少多少元?21.(6分)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是;(3)△A2B2C2的面积是平方单位.22.(8分)已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△PAB的面积有最大值?(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.23.(8分)综合与探究如图,抛物线y=﹣2323333x x -+与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,直线l 经过B ,C 两点,点M 从点A 出发以每秒1个单位长度的速度向终点B 运动,连接CM ,将线段MC 绕点M 顺时针旋转90°得到线段MD ,连接CD ,BD .设点M 运动的时间为t (t >0),请解答下列问题:(1)求点A 的坐标与直线l 的表达式;(2)①直接写出点D 的坐标(用含t 的式子表示),并求点D 落在直线l 上时的t 的值;②求点M 运动的过程中线段CD 长度的最小值;(3)在点M 运动的过程中,在直线l 上是否存在点P ,使得△BDP 是等边三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.24.(10分)阅读材料:小胖同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组旋转全等的三角形.小胖把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小胖发现若∠BAC =∠DAE ,AB =AC ,AD =AE ,则BD =CE .(1)在图1中证明小胖的发现;借助小胖同学总结规律,构造“手拉手”图形来解答下面的问题:(2)如图2,AB =BC ,∠ABC =∠BDC =60°,求证:AD+CD =BD ;(3)如图3,在△ABC 中,AB =AC ,∠BAC =m°,点E 为△ABC 外一点,点D 为BC 中点,∠EBC =∠ACF ,ED ⊥FD ,求∠EAF 的度数(用含有m 的式子表示).25.(10分)观察下列等式:①1×5+4=32;②2×6+4=42;③3×7+4=52;…(1)按照上面的规律,写出第⑥个等式:_____;(2)模仿上面的方法,写出下面等式的左边:_____=502;(3)按照上面的规律,写出第n 个等式,并证明其成立.26.(12分)先化简,再求值:222221412()x x x x x x x x-+-+÷-+,且x 为满足﹣3<x <2的整数. 27.(12分)已知抛物线y =ax 2﹣bx .若此抛物线与直线y =x 只有一个公共点,且向右平移1个单位长度后,刚好过点(3,1).①求此抛物线的解析式;②以y 轴上的点P (1,n )为中心,作该抛物线关于点P 对称的抛物线y',若这两条抛物线有公共点,求n 的取值范围;若a >1,将此抛物线向上平移c 个单位(c >1),当x =c 时,y =1;当1<x <c 时,y >1.试比较ac 与1的大小,并说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】求最高气温比最低气温高多少度,即是求最高气温与最低气温的差,这个实际问题可转化为减法运算,列算式计算即可.【详解】3-(-4)=3+4=7℃.故选B.2.D【解析】【分析】根据点M(a,2a)在反比例函数y=8x的图象上,可得:228a=,然后解方程即可求解.【详解】因为点M(a,2a)在反比例函数y=8x的图象上,可得:228a=,24a=,解得:2a=±,故选D.【点睛】本题主要考查反比例函数图象的上点的特征,解决本题的关键是要熟练掌握反比例函数图象上点的特征. 3.C【解析】【分析】用仰卧起坐个数不少于10个的频数除以女生总人数10计算即可得解.【详解】仰卧起坐个数不少于10个的有12、10、10、61、72共1个,所以,频率=510=0.1.故选C.【点睛】本题考查了频数与频率,频率=频数数据总和.4.D【解析】【分析】根据绝对值的性质解答. 【详解】解:当a≤0时,|a|=-a,∴|a|=-a时,a为负数或零,故选D.【点睛】本题考查的是绝对值的性质,①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数-a;③当a是零时,a的绝对值是零.5.B【解析】【分析】分别求出每一个不等式的解集,然后在数轴上表示出每个不等式的解集,对比即可得.【详解】26058xx x+>⎧⎨≤+⎩①②,解不等式①得,x>-3,解不等式②得,x≤2,在数轴上表示①、②的解集如图所示,故选B.【点睛】本题考查了解一元一次不等式组,在数轴上表示不等式的解集,不等式的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.A【解析】试题解析:∵原来的平均数是13岁,∴13×23=299(岁),∴正确的平均数a=≈12.97<13,∵原来的中位数13岁,将14岁写成15岁,最中间的数还是13岁,∴b=13;故选A.考点:1.平均数;2.中位数.7.D【解析】选项A,根据同底数幂的乘法可得原式=t10;选项B,不是同类项,不能合并;选项C,根据同底数幂的乘法可得原式=t7;选项D,根据同底数幂的乘法可得原式=t5,四个选项中只有选项D正确,故选D.8.B【解析】【分析】首先设文学类图书平均每本的价格为x元,则科普类图书平均每本的价格为1.2x元,根据题意可得等量关系:学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,根据等量关系列出方程,【详解】设学校购买文学类图书平均每本书的价格是x元,可得:12000120001001.2x x=+故选B.【点睛】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.9.C【解析】【分析】作辅助线,构建全等三角形:过D作GH⊥x轴,过A作AG⊥GH,过B作BM⊥HC于M,证明△AGD≌△DHC≌△CMB,根据点D的坐标表示:AG=DH=-x-1,由DG=BM,列方程可得x的值,表示D和E的坐标,根据三角形面积公式可得结论.【详解】解:过D作GH⊥x轴,过A作AG⊥GH,过B作BM⊥HC于M,设D(x,6x ),∵四边形ABCD是正方形,∴AD=CD=BC,∠ADC=∠DCB=90°,易得△AGD≌△DHC≌△CMB(AAS),∴AG=DH=﹣x﹣1,∴DG=BM,∵GQ=1,DQ=﹣6x,DH=AG=﹣x﹣1,由QG+DQ=BM=DQ+DH得:1﹣6x=﹣1﹣x﹣6x,解得x=﹣2,∴D(﹣2,﹣3),CH=DG=BM=1﹣62-=4,∵AG=DH=﹣1﹣x=1,∴点E的纵坐标为﹣4,当y=﹣4时,x=﹣32,∴E(﹣32,﹣4),∴EH=2﹣32=12,∴CE=CH﹣HE=4﹣12=72,∴S△CEB=12CE•BM=12×72×4=7;故选C.【点睛】考查正方形的性质、全等三角形的判定和性质、反比例函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会构建方程解决问题.10.C【解析】【分析】先将特殊角的三角函数值代入求解,再求出其相反数.【详解】∵cos30°=32,∴cos30°的相反数是32 ,故选C.【点睛】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值以及相反数的概念.11.C【解析】在Rt△ABC中,∠ACB=90°,BC=12,AC=5,根据勾股定理求得AB=13.根据题意可知,EF为线段AB的垂直平分线,在Rt △ABC 中,根据直角三角形斜边的中线等于斜边的一半可得CD=AD=12AB ,所以△ACD 的周长为AC+CD+AD=AC+AB=5+13=18.故选C.12.D【解析】【分析】 根据圆心角,弧,弦的关系定理可以得出»AC =»CD =»BD =°°1180603⨯=,根据圆心角和圆周角的关键即可求出CAD ∠的度数,进而求出它的余弦值.【详解】解:AC CD DB ==Q»AC =»CD =»BD =°°1180603⨯=, °°160302CAD ∠=⨯=°cos cos302CAD ∠==故选D .【点睛】本题考查圆心角,弧,弦,圆周角的关系,熟记特殊角的三角函数值是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.y x 14=-+或y x 14=- 【解析】【分析】①当F 在边AB 上时,如图1作辅助线,先证明FGE V ≌EHD V ,得FG EH x 2==,AF 4=,根据正切的定义表示即可; ②当F 在BA 的延长线上时,如图2,同理可得:FGE V ≌EHD V ,表示AF 的长,同理可得结论.【详解】解:分两种情况:①当F 在边AB 上时,如图1,过E 作GH //BC ,交AB 于G ,交DC 于H ,Q 四边形ABCD 是正方形,ACD 45∠∴=o ,GH DC ⊥,GH AB ⊥, 2EH CH x 2∴==,FGE EHD 90∠∠==o , 2DH 4x GE 2∴=-=, GFE HED ∠∠=Q ,FGE V ∴≌EHD V ,2FG EH x ∴==, 2BG CH x ==Q , AF 42x ∴=-,Rt ADF V 中,AF 42x tan ADF y AD ∠-===, 即2y x 14=-+; ②当F 在BA 的延长线上时,如图2,同理可得:FGE V ≌EHD V ,FG EH x 2∴==,BG CH x 2==Q ,AF 4∴=-,Rt ADF V 中,AF 4tan ADF y x 1AD 44∠-====-. 【点睛】 本题考查了正方形的性质、三角形全等的性质和判定、三角函数等知识,熟练掌握正方形中辅助线的作法是关键,并注意F 在直线AB 上,分类讨论.14.310【解析】【分析】让黄球的个数除以球的总个数即为所求的概率.【详解】解:因为一共10个球,其中3个黄球,所以从袋中任意摸出2个球是黄球的概率是310. 故答案为:310. 【点睛】本题考查了概率的基本计算,用到的知识点为:概率等于所求情况数与总情况数之比.15.1.【解析】【分析】由PA 、PB 是圆O 的切线,根据切线长定理得到PA=PB ,即三角形APB 为等腰三角形,由顶角的度数,利用三角形的内角和定理求出底角的度数,再由AP 为圆O 的切线,得到OA 与AP 垂直,根据垂直的定义得到∠OAP 为直角,再由∠OAP-∠PAB 即可求出∠BAC 的度数【详解】∵PA ,PB 是⊙O 是切线,∴PA=PB.又∵∠P=46°, ∴∠PAB=∠PBA=00018046=672-. 又∵PA 是⊙O 是切线,AO 为半径,∴OA ⊥AP.∴∠OAP=90°.∴∠BAC=∠OAP ﹣∠PAB=90°﹣67°=1°. 故答案为:1【点睛】此题考查了切线的性质,切线长定理,等腰三角形的性质,以及三角形的内角和定理,熟练掌握定理及性质是解本题的关键.16.﹣1【解析】【分析】根据“方程 x 2+(m 2﹣1)x+1+m =0 的两根互为相反数”,利用一元二次方程根与系数的关系,列出关于 m的等式,解之,再把 m 的值代入原方程, 找出符合题意的 m 的值即可.【详解】∵方程 x 2+(m 2﹣1)x+1+m =0 的两根互为相反数,∴1﹣m 2=0,解得:m =1 或﹣1,把 m =1代入原方程得:x 2+2=0,该方程无解,∴m =1不合题意,舍去,把 m =﹣1代入原方程得:x 2=0,解得:x 1=x 2=0,(符合题意),∴m =﹣1,故答案为﹣1.【点睛】本题考查了根与系数的关系,正确掌握一元二次方程两根之和,两个之积与系数之间的关系式解题的关键.若x 1,x 2为方程的两个根,则x 1,x 2与系数的关系式:12b x x a +=-,12c x x a⋅=. 17.1【解析】【分析】根据平行线的性质即可得到∠2=∠ABC+∠1,据此进行计算即可.【详解】解:∵直线m∥n,∴∠2=∠ABC+∠1=30°+20°=1°,故答案为:1.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.18.5【解析】【分析】本题先根据垂径定理构造出直角三角形,然后在直角三角形中已知弦长和弓形高,根据勾股定理求出半径,从而得解.【详解】解:如图,设圆心为O,弦为AB,切点为C.如图所示.则AB=8cm,CD=2cm.连接OC,交AB于D点.连接OA.∵尺的对边平行,光盘与外边缘相切,∴OC⊥AB.∴AD=4cm.设半径为Rcm,则R2=42+(R-2)2,解得R=5,∴该光盘的半径是5cm.故答案为5【点睛】此题考查了切线的性质及垂径定理,建立数学模型是关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)详见解析;(21032.【解析】【分析】(1)根据轴对称的性质,可作出△ABC关于直线n的对称图形△A′B′C′;(2)①作点B关于直线m的对称点B'',连接B''A与x轴的交点为点P;②由△ABP的周长=AB+AP+BP=AB+AP+B''P,则当AP与PB''共线时,△APB的周长有最小值.【详解】解:(1)如图△A′B′C′为所求图形.(2)①如图:点P为所求点.②∵△ABP的周长=AB+AP+BP=AB+AP+B''P∴当AP与PB''共线时,△APB的周长有最小值.∴△APB的周长的最小值102102【点睛】本题考查轴对称变换,勾股定理,最短路径问题,解题关键是熟练掌握轴对称的性质.20.(1)y=150﹣x;(2)①第一批购买数量为30双或40双.②第一次买26双,第二次买74双最省钱,最少9144元.【解析】【分析】(1)若购买x双(10<x<1),每件的单价=140﹣(购买数量﹣10),依此可得y关于x的函数关系式;(2)①设第一批购买x双,则第二批购买(100﹣x)双,根据购买两批鞋子一共花了9200元列出方程求解即可.分两种情况考虑:当25<x≤40时,则1≤100﹣x<75;当40<x<1时,则40<100﹣x<1.②把两次的花费与第一次购买的双数用函数表示出来.【详解】解:(1)购买x双(10<x<1)时,y=140﹣(x﹣10)=150﹣x.故y关于x的函数关系式是y=150﹣x;(2)①设第一批购买x双,则第二批购买(100﹣x)双.当25<x≤40时,则1≤100﹣x<75,则x(150﹣x)+80(100﹣x)=9200,解得x1=30,x2=40;当40<x<1时,则40<100﹣x<1,则x(150﹣x)+(100﹣x)[150﹣(100﹣x)]=9200,解得x=30或x=70,但40<x<1,所以无解;答:第一批购买数量为30双或40双.②设第一次购买x双,则第二次购买(100﹣x)双,设两次花费w元.当25<x≤40时w=x(150﹣x)+80(100﹣x)=﹣(x﹣35)2+9225,∴x=26时,w有最小值,最小值为9144元;当40<x<1时,w=x(150﹣x)+(100﹣x)[150﹣(100﹣x)]=﹣2(x﹣50)2+10000,∴x=41或59时,w有最小值,最小值为9838元,综上所述:第一次买26双,第二次买74双最省钱,最少9144元.【点睛】考查了一元二次方程的应用,根据实际问题列一次函数关系式,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.21.(1)(2,﹣2);(2)(1,0);(3)1.【解析】试题分析:(1)根据平移的性质得出平移后的图从而得到点的坐标;(2)根据位似图形的性质得出对应点位置,从而得到点的坐标;(3)利用等腰直角三角形的性质得出△A2B2C2的面积.试题解析:(1)如图所示:C1(2,﹣2);故答案为(2,﹣2);(2)如图所示:C2(1,0);故答案为(1,0);(3)∵=20,=20,=40,∴△A2B2C2是等腰直角三角形,∴△A2B2C2的面积是:××=1平方单位.故答案为1.考点:1、平移变换;2、位似变换;3、勾股定理的逆定理22.(1)抛物线解析式为y=﹣12x2+2x+6;(2)当t=3时,△PAB的面积有最大值;(3)点P(4,6).【解析】【分析】(1)利用待定系数法进行求解即可得;(2)作PM⊥OB与点M,交AB于点N,作AG⊥PM,先求出直线AB解析式为y=﹣x+6,设P(t,﹣12t2+2t+6),则N(t,﹣t+6),由S△PAB=S△PAN+S△PBN=12PN•AG+12PN•BM=12PN•OB列出关于t的函数表达式,利用二次函数的性质求解可得;(3)由PH⊥OB知DH∥AO,据此由OA=OB=6得∠BDH=∠BAO=45°,结合∠DPE=90°知若△PDE为等腰直角三角形,则∠EDP=45°,从而得出点E与点A重合,求出y=6时x的值即可得出答案.【详解】(1)∵抛物线过点B(6,0)、C(﹣2,0),∴设抛物线解析式为y=a(x﹣6)(x+2),将点A(0,6)代入,得:﹣12a=6,解得:a=﹣12,所以抛物线解析式为y=﹣12(x﹣6)(x+2)=﹣12x2+2x+6;(2)如图1,过点P作PM⊥OB与点M,交AB于点N,作AG⊥PM于点G,设直线AB 解析式为y=kx+b ,将点A (0,6)、B (6,0)代入,得:660b k b =⎧⎨+=⎩, 解得:16k b =-⎧⎨=⎩, 则直线AB 解析式为y=﹣x+6, 设P (t ,﹣12t 2+2t+6)其中0<t <6, 则N (t ,﹣t+6), ∴PN=PM ﹣MN=﹣12t 2+2t+6﹣(﹣t+6)=﹣12t 2+2t+6+t ﹣6=﹣12t 2+3t , ∴S △PAB =S △PAN +S △PBN =12PN•AG+12PN•BM =12PN•(AG+BM ) =12PN•OB =12×(﹣12t 2+3t )×6 =﹣32t 2+9t =﹣32(t ﹣3)2+272, ∴当t=3时,△PAB 的面积有最大值;(3)△PDE 为等腰直角三角形,则PE=PD ,点P (m ,-12m 2+2m+6), 函数的对称轴为:x=2,则点E 的横坐标为:4-m ,则PE=|2m-4|,即-12m 2+2m+6+m-6=|2m-4|, 解得:m=4或-2或1717-2和17)故点P 的坐标为:(4,6)或(5-17,317-5). 【点睛】 本题考查了二次函数的综合问题,涉及到待定系数法、二次函数的最值、等腰直角三角形的判定与性质等,熟练掌握和灵活运用待定系数法求函数解析式、二次函数的性质、等腰直角三角形的判定与性质等是解题的关键.23.(1)A (﹣3,0),y=﹣3x+3;(2)①D (t ﹣3+3,t ﹣3),②CD 最小值为6;(3)P (2,﹣3),理由见解析.【解析】【分析】(1)当y=0时,﹣2323333x x -+=0,解方程求得A (-3,0),B (1,0),由解析式得C (0,3),待定系数法可求直线l 的表达式;(2)分当点M 在AO 上运动时,当点M 在OB 上运动时,进行讨论可求D 点坐标,将D 点坐标代入直线解析式求得t 的值;线段CD 是等腰直角三角形CMD 斜边,若CD 最小,则CM 最小,根据勾股定理可求点M 运动的过程中线段CD 长度的最小值;(3)分当点M 在AO 上运动时,即0<t <3时,当点M 在OB 上运动时,即3≤t≤4时,进行讨论可求P 点坐标.【详解】(1)当y=0时,﹣2323333x x -+=0,解得x 1=1,x 2=﹣3, ∵点A 在点B 的左侧,∴A (﹣3,0),B (1,0),由解析式得C (0,3),设直线l 的表达式为y=kx+b ,将B ,C 两点坐标代入得b=3mk ﹣3,故直线l 的表达式为y=﹣3x+3;(2)当点M 在AO 上运动时,如图:由题意可知AM=t ,OM=3﹣t ,MC ⊥MD ,过点D 作x 轴的垂线垂足为N ,∠DMN+∠CMO=90°,∠CMO+∠MCO=90°,∴∠MCO=∠DMN ,在△MCO 与△DMN 中,{MD MCDCM DMN COM MND=∠=∠∠=∠,∴△MCO ≌△DMN ,∴MN=OC=3,DN=OM=3﹣t ,∴D (t ﹣3+3,t ﹣3);同理,当点M 在OB 上运动时,如图,OM=t ﹣3,△MCO ≌△DMN ,MN=OC=3,ON=t ﹣3+3,DN=OM=t ﹣3,∴D (t ﹣3+3,t ﹣3).综上得,D (t ﹣3+3,t ﹣3).将D 点坐标代入直线解析式得t=6﹣3线段CD 是等腰直角三角形CMD 斜边,若CD 最小,则CM 最小,∵M 在AB 上运动,∴当CM ⊥AB 时,CM 最短,CD 最短,即3CD 6;(3)当点M 在AO 上运动时,如图,即0<t <3时,∵tan∠CBO=OCOB3∴∠CBO=60°,∵△BDP是等边三角形,∴∠DBP=∠BDP=60°,BD=BP,∴∠NBD=60°,DN=3﹣t,3,NB=4﹣t3tan∠NBO=DN NB,43t--3t=33经检验t=33是此方程的解,过点P作x轴的垂线交于点Q,易知△PQB≌△DNB,∴BQ=BN=4﹣t3=1,3OQ=2,P(23;同理,当点M在OB上运动时,即3≤t≤4时,∵△BDP是等边三角形,∴∠DBP=∠BDP=60°,BD=BP,∴∠NBD=60°,DN=t﹣3,NB=t﹣31=t﹣3tan∠NBD=DN NB,43t-+3t=33经检验t=33是此方程的解,t=33.故P(23.【点睛】考查了二次函数综合题,涉及的知识点有:待定系数法,勾股定理,等腰直角三角形的性质,等边三角形的性质,三角函数,分类思想的运用,方程思想的运用,综合性较强,有一定的难度.24.(1)证明见解析;(2)证明见解析;(3)∠EAF =12 m°.【解析】分析:(1)如图1中,欲证明BD=EC ,只要证明△DAB ≌△EAC 即可;(2)如图2中,延长DC 到E ,使得DB=DE .首先证明△BDE 是等边三角形,再证明△ABD ≌△CBE 即可解决问题;(3)如图3中,将AE 绕点E 逆时针旋转m°得到AG ,连接CG 、EG 、EF 、FG ,延长ED 到M ,使得DM=DE ,连接FM 、CM .想办法证明△AFE ≌△AFG ,可得∠EAF=∠FAG=12m°. 详(1)证明:如图1中,∵∠BAC=∠DAE ,∴∠DAB=∠EAC ,在△DAB 和△EAC 中,AD AE DAB EAC AB AC ⎧⎪∠∠⎨⎪⎩===,∴△DAB ≌△EAC ,∴BD=EC .(2)证明:如图2中,延长DC 到E ,使得DB=DE .∵DB=DE ,∠BDC=60°,∴△BDE 是等边三角形,∴∠BD=BE ,∠DBE=∠ABC=60°,∴∠ABD=∠CBE ,∵AB=BC ,∴△ABD≌△CBE,∴AD=EC,∴BD=DE=DC+CE=DC+AD.∴AD+CD=BD.(3)如图3中,将AE绕点E逆时针旋转m°得到AG,连接CG、EG、EF、FG,延长ED到M,使得DM=DE,连接FM、CM.由(1)可知△EAB≌△GAC,∴∠1=∠2,BE=CG,∵BD=DC,∠BDE=∠CDM,DE=DM,∴△EDB≌△MDC,∴EM=CM=CG,∠EBC=∠MCD,∵∠EBC=∠ACF,∴∠MCD=∠ACF,∴∠FCM=∠ACB=∠ABC,∴∠1=3=∠2,∴∠FCG=∠ACB=∠MCF,∵CF=CF,CG=CM,∴△CFG≌△CFM,∴FG=FM,∵ED=DM,DF⊥EM,∴FE=FM=FG,∵AE=AG,AF=AF,∴△AFE≌△AFG,∴∠EAF=∠FAG=12 m°.点睛:本题考查几何变换综合题、旋转变换、等腰三角形的性质、全等三角形的判定和性质等知识,解题的关键是学会利用“手拉手”图形中的全等三角形解决问题,学会构造“手拉手”模型,解决实际问题,属于中考压轴题.25.6×10+4=8248×52+4【解析】【分析】(1)根据题目中的式子的变化规律可以解答本题;(2)根据题目中的式子的变化规律可以解答本题;(3)根据题目中的式子的变化规律可以写出第n个等式,并加以证明.【详解】解:(1)由题目中的式子可得,第⑥个等式:6×10+4=82,故答案为6×10+4=82;(2)由题意可得,48×52+4=502,故答案为48×52+4;(3)第n个等式是:n×(n+4)+4=(n+2)2,证明:∵n×(n+4)+4=n2+4n+4=(n+2)2,∴n×(n+4)+4=(n+2)2成立.【点睛】本题考查有理数的混合运算、数字的变化类,解答本题的关键是明确有理数的混合运算的计算方法.26.-5【解析】【分析】根据分式的运算法则即可求出答案.【详解】原式=[2(1)(1)xx x--+(2)(2)(2)x xx x-++]÷1x=(1xx-+2xx-)•x=x﹣1+x﹣2=2x﹣3由于x≠0且x≠1且x≠﹣2,所以x=﹣1,原式=﹣2﹣3=﹣5【点睛】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.27.(1)①212y x x =-+;②n≤1;(2)ac≤1,见解析. 【解析】【分析】 (1)①△=1求解b =1,将点(3,1)代入平移后解析式,即可;②顶点为(1,12)关于P (1,n )对称点的坐标是(﹣1,2n ﹣12),关于点P 中心对称的新抛物线y'=12(x+1)2+2n ﹣12=12x 2+x+2n ,联立方程组即可求n 的范围; (2)将点(c ,1)代入y =ax 2﹣bx+c 得到ac ﹣b+1=1,b =ac+1,当1<x <c 时,y >1. b 2a ≥c ,b≥2ac ,ac+1≥2ac ,ac≥1;【详解】解:(1)①ax 2﹣bx =x ,ax 2﹣(b+1)x =1,△=(b+1)2=1,b =﹣1,平移后的抛物线y =a (x ﹣1)2﹣b (x ﹣1)过点(3,1),∴4a ﹣2b =1,∴a =﹣12,b =﹣1, 原抛物线:y =﹣12x 2+x , ②其顶点为(1,12)关于P (1,n )对称点的坐标是(﹣1,2n ﹣12), ∴关于点P 中心对称的新抛物线y'=12(x+1)2+2n ﹣12=12x 2+x+2n . 由221y=x +x+2n 21y=-x +x 2⎧⎪⎪⎨⎪⎪⎩得:x 2+2n =1有解,所以n≤1. (2)由题知:a >1,将此抛物线y =ax 2﹣bx 向上平移c 个单位(c >1),其解析式为:y =ax 2﹣bx+c 过点(c ,1),∴ac 2﹣bc+c =1 (c >1),∴ac ﹣b+1=1,b =ac+1,且当x =1时,y =c ,对称轴:x =b 2a,抛物线开口向上,画草图如右所示. 由题知,当1<x <c 时,y >1. ∴b 2a≥c ,b≥2ac , ∴ac+1≥2ac ,ac≤1;【点睛】本题考查二次函数的图象及性质;掌握二次函数图象平移时改变位置,而a的值不变是解题的关键.。

2021-2022学年浙江省杭州公益中学中考数学适应性模拟试题含解析

2021-2022学年浙江省杭州公益中学中考数学适应性模拟试题含解析

2021-2022中考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图是本地区一种产品30天的销售图象,图①是产品日销售量y (单位:件)与时间t (单位;天)的函数关系,图②是一件产品的销售利润z (单位:元)与时间t (单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列结论错误的是( )A .第24天的销售量为200件B .第10天销售一件产品的利润是15元C .第12天与第30天这两天的日销售利润相等D .第27天的日销售利润是875元2.某校120名学生某一周用于阅读课外书籍的时间的频率分布直方图如图所示.其中阅读时间是8~10小时的频数和频率分别是( )A .15,0.125B .15,0.25C .30,0.125D .30,0.253.下列运算正确的是( ) A .a 3•a 2=a 6B .a ﹣2=﹣21aC .3﹣33D .(a+2)(a ﹣2)=a 2+44.下列计算正确的是A .a 2·a 2=2a 4 B .(-a 2)3=-a 6 C .3a 2-6a 2=3a 2 D .(a -2)2=a 2-4 5.如图,将一副三角板如此摆放,使得BO 和CD 平行,则∠AOD 的度数为( )A .10°B .15°C .20°D .25°6.关于x 的分式方程230x x a+=-解为4x =,则常数a 的值为( ) A .1a =B .2a =C .4a =D .10a =7.2018的相反数是( ) A .12018B .2018C .-2018D .12018-8.已知点M (-2,3 )在双曲线上,则下列一定在该双曲线上的是( )A .(3,-2 )B .(-2,-3 )C .(2,3 )D .(3,2)9.如图,菱形ABCD 的边长为2,∠B=30°.动点P 从点B 出发,沿 B-C-D 的路线向点D 运动.设△ABP 的面积为y(B 、P 两点重合时,△ABP 的面积可以看作0),点P 运动的路程为x ,则y 与x 之间函数关系的图像大致为( )A .B .C .D .10.二次函数y=ax 2+bx ﹣2(a≠0)的图象的顶点在第三象限,且过点(1,0),设t=a ﹣b ﹣2,则t 值的变化范围是( ) A .﹣2<t <0B .﹣3<t <0C .﹣4<t <﹣2D .﹣4<t <011.如图是由四个小正方体叠成的一个几何体,它的左视图是( )A .B .C .D .12.下列对一元二次方程x 2+x ﹣3=0根的情况的判断,正确的是( ) A .有两个不相等实数根 B .有两个相等实数根 C .有且只有一个实数根D .没有实数根二、填空题:(本大题共6个小题,每小题4分,共24分.)13.不等式组11251xx-≥⎧⎨-<⎩的解集是_____;14.观察下列各等式:231-+=56784--++=1011121314159---+++=171819202122232416----++++=……根据以上规律可知第11行左起第一个数是__.15.若点M(k﹣1,k+1)关于y轴的对称点在第四象限内,则一次函数y=(k﹣1)x+k的图象不经过第象限.16.因式分解:mn(n﹣m)﹣n(m﹣n)=_____.17.分解因式:mx2﹣4m=_____.18.一次函数y=kx+b的图像如图所示,则当kx+b>0 时,x的取值范围为___________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知,等腰Rt△OAB中,∠AOB=90°,等腰Rt△EOF中,∠EOF=90°,连结AE、BF.求证:(1)AE=BF;(2)AE⊥BF.20.(6分)我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”.(1)概念理解:如图1,在△ABC中,AC=6,BC=3,∠ACB=30°,试判断△ABC是否是”等高底”三角形,请说明理由.(1)问题探究:如图1,△ABC 是“等高底”三角形,BC 是”等底”,作△ABC 关于BC 所在直线的对称图形得到△A 'BC ,连结AA ′交直线BC 于点D .若点B 是△AA ′C 的重心,求ACBC的值. (3)应用拓展:如图3,已知l 1∥l 1,l 1与l 1之间的距离为1.“等高底”△ABC 的“等底”BC 在直线l 1上,点A 在直线l 1上,有一边的长是BC 的2倍.将△ABC 绕点C 按顺时针方向旋转45°得到△A 'B 'C ,A ′C 所在直线交l 1于点D .求CD 的值.21.(6分)有两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁.现在任意取出一把钥匙去开任意一把锁.(1)请用列表或画树状图的方法表示出上述试验所有可能结果; (2)求一次打开锁的概率. 22.(8分)如图,抛物线21y x bx 2c =-++与x 轴交于A ,B ,与y 轴交于点C (0,2),直线1x 22y =-+经过点A ,C .(1)求抛物线的解析式;(2)点P 为直线AC 上方抛物线上一动点; ①连接PO ,交AC 于点E ,求PEEO的最大值; ②过点P 作PF ⊥AC ,垂足为点F ,连接PC ,是否存在点P ,使△PFC 中的一个角等于∠CAB 的2倍?若存在,请直接写出点P 的坐标;若不存在,请说明理由.23.(8分)某报社为了解市民对“社会主义核心价值观”的知晓程度,采取随机抽样的方式进行问卷调查,调查结果分为“A .非常了解”、“B .了解”、“C .基本了解”三个等级,并根据调查结果绘制了如下两幅不完整的统计图.这次调查的市民人数为________人,m =________,n =________;补全条形统计图;若该市约有市民100000人,请你根据抽样调查的结果,估计该市大约有多少人对“社会主义核心价值观”达到“A .非常了解”的程度.24.(10分)(本题满分8分)如图,四边形ABCD 中,,E 是边CD 的中点,连接BE 并延长与AD 的延长线相较于点F .(1)求证:四边形BDFC 是平行四边形;(2)若△BCD 是等腰三角形,求四边形BDFC 的面积.25.(10分)如图,方格纸中每个小正方形的边长都是1个单位长度,ABC ∆在平面直角坐标系中的位置如图所示.(1)直接写出ABC ∆关于原点O 的中心对称图形111A B C ∆各顶点坐标:1A ________1B ________1C ________; (2)将ABC ∆绕B 点逆时针旋转90︒,画出旋转后图形22A BC ∆.求ABC ∆在旋转过程中所扫过的图形的面积和点C 经过的路径长.26.(12分)为了解今年初三学生的数学学习情况,某校对上学期的数学成绩作了统计分析,绘制得到如下图表.请结合图表所给出的信息解答下列问题:成绩频数频率优秀45 b良好 a 0.3合格105 0.35不合格60 c(1)该校初三学生共有多少人?求表中a,b,c的值,并补全条形统计图.初三(一)班数学老师准备从成绩优秀的甲、乙、丙、丁四名同学中任意抽取两名同学做学习经验介绍,求恰好选中甲、乙两位同学的概率.27.(12分)剪纸是中国传统的民间艺术,它画面精美,风格独特,深受大家喜爱,现有三张不透明的卡片,其中两张卡片的正面图案为“金鱼”,另外一张卡片的正面图案为“蝴蝶”,卡片除正面剪纸图案不同外,其余均相同.将这三张卡片背面向上洗匀从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求抽出的两张卡片上的图案都是“金鱼”的概率.(图案为“金鱼”的两张卡片分别记为A1、A2,图案为“蝴蝶”的卡片记为B)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解析】试题解析:A 、根据图①可得第24天的销售量为200件,故正确;B 、设当0≤t≤20,一件产品的销售利润z (单位:元)与时间t (单位:天)的函数关系为z=kx+b , 把(0,25),(20,5)代入得:25205b k b ⎧⎨+⎩==,解得:125k b -⎧⎨⎩==,∴z=-x+25,当x=10时,y=-10+25=15, 故正确;C 、当0≤t≤24时,设产品日销售量y (单位:件)与时间t (单位;天)的函数关系为y=k 1t+b 1, 把(0,100),(24,200)代入得:11110024200b k b ⎧⎨+⎩==,解得:11256100k b ⎧⎪⎨⎪⎩==,∴y=256t +100, 当t=12时,y=150,z=-12+25=13,∴第12天的日销售利润为;150×13=1950(元),第30天的日销售利润为;150×5=750(元), 750≠1950,故C 错误;D 、第30天的日销售利润为;150×5=750(元),故正确. 故选C 2、D 【解析】 分析:根据频率分布直方图中的数据信息和被调查学生总数为120进行计算即可作出判断. 详解:由频率分布直方图可知:一周内用于阅读的时间在8-10小时这组的:频率:组距=0.125,而组距为2, ∴一周内用于阅读的时间在8-10小时这组的频率=0.125×2=0.25, 又∵被调查学生总数为120人,∴一周内用于阅读的时间在8-10小时这组的频数=120×0.25=30.综上所述,选项D 中数据正确. 故选D.点睛:本题解题的关键有两点:(1)要看清,纵轴上的数据是“频率:组距”的值,而不是频率;(2)要弄清各自的频数、频率和总数之间的关系. 3、C 【解析】直接利用同底数幂的乘除运算法则、负指数幂的性质、二次根式的加减运算法则、平方差公式分别计算即可得出答案. 【详解】A 、a 3•a 2=a 5,故A 选项错误;B 、a ﹣2=21a ,故B 选项错误;C 、,故C 选项正确;D 、(a+2)(a ﹣2)=a 2﹣4,故D 选项错误, 故选C . 【点睛】本题考查了同底数幂的乘除运算以及负指数幂的性质以及二次根式的加减运算、平方差公式,正确掌握相关运算法则是解题关键. 4、B【解析】【分析】根据同底数幂乘法、幂的乘方、合并同类项法则、完全平方公式逐项进行计算即可得. 【详解】A. a 2·a 2=a 4 ,故A 选项错误; B. (-a 2)3=-a 6 ,正确;C. 3a 2-6a 2=-3a 2 ,故C 选项错误;D. (a -2)2=a 2-4a+4,故D 选项错误, 故选B.【点睛】本题考查了同底数幂的乘法、幂的乘方、合并同类项、完全平方公式,熟练掌握各运算的运算法则是解题的关键.5、B 【解析】根据题意可知,∠AOB=∠ABO=45°,∠DOC=30°,再根据平行线的性质即可解答 【详解】根据题意可知∠AOB=∠ABO=45°,∠DOC=30°∴∠BOC=∠DCO=90°∴∠AOD=∠BOC-∠AOB-∠DOC=90°-45°-30°=15° 故选B 【点睛】此题考查三角形内角和,平行线的性质,解题关键在于利用平行线的性质得到角相等 6、D 【解析】根据分式方程的解的定义把x=4代入原分式方程得到关于a 的一次方程,解得a 的值即可. 【详解】解:把x=4代入方程230x x a+=-,得 23044a+=-, 解得a=1.经检验,a=1是原方程的解 故选D .点睛:此题考查了分式方程的解,分式方程注意分母不能为2. 7、C 【解析】【分析】根据只有符号不同的两个数互为相反数进行解答即可得. 【详解】2018与-2018只有符号不同,由相反数的定义可得2018的相反数是-2018, 故选C.【点睛】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键. 8、A 【解析】因为点M (-2,3)在双曲线上,所以xy=(-2)×3=-6,四个答案中只有A 符合条件.故选A 9、C 【解析】先分别求出点P 从点B 出发,沿B→C→D 向终点D 匀速运动时,当0<x≤2和2<x≤4时,y 与x 之间的函数关系式,即可得出函数的图象.由题意知,点P 从点B 出发,沿B→C→D 向终点D 匀速运动,则 当0<x≤2,y=12x , 当2<x≤4,y=1,由以上分析可知,这个分段函数的图象是C . 故选C . 10、D 【解析】由二次函数的解析式可知,当x=1时,所对应的函数值y=a+b-2,把点(1,0)代入y=ax 2+bx-2,a+b-2=0,然后根据顶点在第三象限,可以判断出a 与b 的符号,进而求出t=a-b-2的变化范围. 【详解】解:∵二次函数y=ax 2+bx-2的顶点在第三象限,且经过点(1,0) ∴该函数是开口向上的,a>0 ∵y=ax 2+bx ﹣2过点(1,0), ∴a+b-2=0. ∵a>0, ∴2-b>0.∵顶点在第三象限, ∴-2b a<0. ∴b>0. ∴2-a>0. ∴0<b<2. ∴0<a<2. ∴t=a-b-2. ∴﹣4<t <0. 【点睛】本题考查大小二次函数的图像,熟练掌握图像的性质是解题的关键. 11、A 【解析】试题分析:如图是由四个小正方体叠成的一个几何体,它的左视图是.故选A.考点:简单组合体的三视图.12、A【解析】【分析】根据方程的系数结合根的判别式,即可得出△=13>0,进而即可得出方程x2+x﹣3=0有两个不相等的实数根.【详解】∵a=1,b=1,c=﹣3,∴△=b2﹣4ac=12﹣4×(1)×(﹣3)=13>0,∴方程x2+x﹣3=0有两个不相等的实数根,故选A.【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、x≤1【解析】分析:分别求出不等式组中两个不等式的解集,找出解集的公共部分即可确定出不等式组的解集.详解:10251xx-≤⎧⎨-<⎩①②,由①得:x 1.≤由②得:x3<.则不等式组的解集为:x1≤.故答案为x≤1.点睛:本题主要考查了解一元一次不等式组.14、-1.【解析】观察规律即可解题.【详解】解:第一行=12=1,第二行=22=4,第三行=32=9... ∴第n行=n2,第11行=112=121,又∵左起第一个数比右侧的数大一,∴第11行左起第一个数是-1.【点睛】本题是一道规律题,属于简单题,认真审题找到规律是解题关键.15、一【解析】试题分析:首先确定点M 所处的象限,然后确定k 的符号,从而确定一次函数所经过的象限,得到答案. ∵点M (k ﹣1,k+1)关于y 轴的对称点在第四象限内, ∴点M (k ﹣1,k+1)位于第三象限,∴k ﹣1<0且k+1<0, 解得:k <﹣1,∴y=(k ﹣1)x+k 经过第二、三、四象限,不经过第一象限考点:一次函数的性质16、()()1n n m m -+【解析】mn(n-m)-n(m-n)= mn(n-m)+n(n-m)=n(n-m)(m+1),故答案为n(n-m)(m+1).17、m (x+2)(x ﹣2)【解析】提取公因式法和公式法相结合因式分解即可.【详解】原式()24,m x =- ()()22.m x x =+-故答案为()()22.m x x +-【点睛】本题主要考查因式分解,熟练掌握提取公因式法和公式法是解题的关键.分解一定要彻底.18、x >1【解析】分析:题目要求 kx+b>0,即一次函数的图像在x 轴上方时,观察图象即可得x 的取值范围.详解:∵kx+b>0,∴一次函数的图像在x 轴上方时,∴x 的取值范围为:x>1.故答案为x>1.点睛:本题考查了一次函数与一元一次不等式的关系,主要考查学生的观察视图能力.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、见解析【解析】(1)可以把要证明相等的线段AE ,CF 放到△AEO ,△BFO 中考虑全等的条件,由两个等腰直角三角形得AO=BO ,OE=OF ,再找夹角相等,这两个夹角都是直角减去∠BOE 的结果,所以相等,由此可以证明△AEO ≌△BFO ; (2)由(1)知:∠OAC=∠OBF ,∴∠BDA=∠AOB=90°,由此可以证明AE ⊥BF【详解】解:(1)证明:在△AEO 与△BFO 中,∵Rt △OAB 与Rt △EOF 等腰直角三角形,∴AO=OB ,OE=OF ,∠AOE =90°-∠BOE =∠BOF ,∴△AEO ≌△BFO ,∴AE=BF ;( 2)延长AE 交BF 于D ,交OB 于C ,则∠BCD =∠ACO由(1)知:∠OAC =∠OBF ,∴∠BDA =∠AOB =90°,∴AE ⊥BF .20、(1)△ABC 是“等高底”三角形;(1)132;(3)CD 21032,1. 【解析】(1)过A 作AD ⊥BC 于D ,则△ADC 是直角三角形,∠ADC =90°,根据30°所对的直角边等于斜边的一半可得:132AD AC ==,根据“等高底”三角形的概念即可判断. (1)点B 是'AA C 的重心,得到2BC BD =,设BD x =,则23AD BC x CD x ===,, 根据勾股定理可得13AC x =,即可求出它们的比值.(3)分两种情况进行讨论:①当2AB BC =时和②当2AC BC =时.【详解】(1)△ABC 是“等高底”三角形; 理由:如图1,过A 作AD ⊥BC 于D ,则△ADC 是直角三角形,∠ADC =90°,∵∠ACB =30°,AC=6,∴132AD AC ==, ∴AD =BC =3,即△ABC 是“等高底”三角形; (1)如图1,∵△ABC 是“等高底”三角形,BC 是“等底”,∴AD BC =,∵△ABC 关于BC 所在直线的对称图形是'A BC ,∴∠ADC =90°,∵点B 是'AA C 的重心,∴2BC BD =,设BD x =,则23AD BC x CD x ===,, 由勾股定理得13AC x =,∴131322AC x BC x == (3)①当2AB BC =时,Ⅰ.如图3,作AE ⊥BC 于E ,DF ⊥AC 于F ,∵“等高底”△ABC 的“等底”为BC ,l 1∥l 1,l 1与l 1之间的距离为1,2AB BC =. ∴222BC AE AB ,,=== ∴BE =1,即EC =4, ∴25AC ,=∵△ABC 绕点C 按顺时针方向旋转45°得到△A'B'C ,∴∠DCF =45°,设DF CF x ==,∵l 1∥l 1,∴ACE DAF ∠=∠,∴1,2DF AE AF CE == 即2AF x =, ∴325AC x ==,∴225,210,33x CD x === Ⅱ.如图4,此时△ABC 等腰直角三角形,∵△ABC 绕点C 按顺时针方向旋转45°得到''A B C ,∴ACD 是等腰直角三角形,∴222CD ==. ②当2AC BC =时,Ⅰ.如图5,此时△ABC 是等腰直角三角形,∵△ABC 绕点C 按顺时针方向旋转45°得到△A'B'C ,∴1'A C l ⊥,∴2CD AB BC ===;Ⅱ.如图6,作AE BC ⊥于E ,则AE BC =,∴22AC BC AE ==,∴45ACE ∠=︒,∴△ABC 绕点C 按顺时针方向旋转45°,得到''A B C 时,点A '在直线l 1上,∴'A C ∥l 1,即直线'A C 与l 1无交点,综上所述,CD 210,22,2.3 【点睛】属于新定义问题,考查对与等底高三角形概念的理解,勾股定理,等腰直角三角形的性质等,掌握等底高三角形的性质是解题的关键.21、(1)详见解析(2)14【解析】设两把不同的锁分别为A 、B ,能把两锁打开的钥匙分别为a 、b ,其余两把钥匙分别为m 、n ,根据题意,可以画出树形图,再根据概率公式求解即可.【详解】(1)设两把不同的锁分别为A 、B ,能把两锁打开的钥匙分别为a 、b ,其余两把钥匙分别为m 、n ,根据题意,可以画出如下树形图:由上图可知,上述试验共有8种等可能结果;(2)由(1)可知,任意取出一把钥匙去开任意一把锁共有8种可能的结果,一次打开锁的结果有2种,且所有结果的可能性相等.∴P (一次打开锁)=2184=. 【点睛】如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率()m P A n =. 22、(1)213222y x x =-++;(2)①PE EO 有最大值1;②(2,3)或(2911,300121) 【解析】(1)根据自变量与函数值的对应关系,可得A ,C 点坐标,根据代定系数法,可得函数解析式;(2)①根据相似三角形的判定与性质,可得PE PM OE OC=,根据平行于y 轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得二次函数,根据二次函数的性质,可得答案; ②根据勾股定理的逆定理得到△ABC 是以∠ACB 为直角的直角三角形,取AB 的中点D ,求得D (32,0),得到DA=DC=DB=52,过P 作x 轴的平行线交y 轴于R ,交AC 于G ,情况一:如图,∠PCF=2∠BAC=∠DGC+∠CDG ,情况二,∠FPC=2∠BAC ,解直角三角形即可得到结论.【详解】(1)当x=0时,y=2,即C (0,2),当y=0时,x=4,即A (4,0),将A ,C 点坐标代入函数解析式,得2412402b c c -⨯⎧⎪⎩++⎪⎨==, 解得232b c ⎧⎪⎨⎪⎩==, 抛物线的解析是为213222y x x =-++;(2)过点P向x轴做垂线,交直线AC于点M,交x轴于点N,∵直线PN∥y轴,∴△PEM~△OEC,∴PE PM OE OC=把x=0代入y=-12x+2,得y=2,即OC=2,设点P(x,-12x2+32x+2),则点M(x,-12x+2),∴PM=(-12x2+32x+2)-(-12x+2)=-12x2+2x=-12(x-2)2+2,∴PE PMOE OC==()221222x--+,∵0<x<4,∴当x=2时,PE PMOE OC==()221222x--+有最大值1.②∵A(4,0),B(-1,0),C(0,2),∴55AB=5,∴AC2+BC2=AB2,∴△ABC是以∠ACB为直角的直角三角形,取AB的中点D,∴D(32,0),∴DA=DC=DB=52,∴∠CDO=2∠BAC,∴tan∠CDO=tan(2∠BAC)=43,过P作x轴的平行线交y轴于R,交AC的延长线于G,情况一:如图,∴∠PCF=2∠BAC=∠PGC+∠CPG,∴∠CPG=∠BAC,∴tan∠CPG=tan∠BAC=12,即12 RCRP=,令P(a,-12a2+32a+2),∴PR=a,RC=-12a2+32a,∴2131 222a aa-+=,∴a1=0(舍去),a2=2,∴x P=2,-12a2+32a+2=3,P(2,3)情况二,∴∠FPC=2∠BAC,∴tan∠FPC=43,设FC=4k,∴PF=3k,PC=5k,∵tan∠PGC=312 kFG=,∴FG=6k,∴CG=2k,5,∴25k,RG=455k,5455115k,∴211551325225k PR a RC a a k ==-+, ∴a 1=0(舍去),a 2=2911, x P =2911,-12a 2+32a+2=300121,即P (2911,300121), 综上所述:P 点坐标是(2,3)或(2911,300121). 【点睛】本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用相似三角形的判定与性质得出PE PM OE OC=,又利用了二次函数的性质;解(3)的关键是利用解直角三角形,要分类讨论,以防遗漏. 23、 (1)500,12,32;(2)补图见解析;(3)该市大约有32000人对“社会主义核心价值观”达到“A .非常了解”的程度.【解析】(1)根据项目B 的人数以及百分比,即可得到这次调查的市民人数,据此可得项目A ,C 的百分比;(2)根据对“社会主义核心价值观”达到“A .非常了解”的人数为:32%×500=160,补全条形统计图;(3)根据全市总人数乘以A 项目所占百分比,即可得到该市对“社会主义核心价值观”达到“A 非常了解”的程度的人数.【详解】试题分析:试题解析:(1)280÷56%=500人,60÷500=12%,1﹣56%﹣12%=32%, (2)对“社会主义核心价值观”达到“A .非常了解”的人数为:32%×500=160, 补全条形统计图如下:(3)100000×32%=32000(人),答:该市大约有32000人对“社会主义核心价值观”达到“A .非常了解”的程度.24、(1)见解析;(2)6或【解析】 试题分析:(1)根据平行线的性质和中点的性质证明三角形全等,然后根据对角线互相平分的四边形是平行四边形完成证明;(2)由等腰三角形的性质,分三种情况:①BD=BC,②BD=CD,③BC=CD,分别求四边形的面积.试题解析:(1)证明:∵∠A=∠ABC=90°∴AF ∥BC∴∠CBE=∠DFE,∠BCE=∠FDE∵E 是边CD 的中点∴CE=DE∴△BCE ≌△FDE (AAS )∴BE=EF∴四边形BDFC 是平行四边形(2)若△BCD 是等腰三角形①若BD=DC在Rt △ABD 中,AB=∴四边形BDFC 的面积为S=×3=6;②若BD=DC 过D 作BC 的垂线,则垂足为BC 得中点,不可能;③若BC=DC过D 作DG ⊥BC,垂足为G在Rt △CDG 中,DG=∴四边形BDFC 的面积为S=.考点:三角形全等,平行四边形的判定,勾股定理,四边形的面积25、(1)1(3,3)A -,1(4,1)B -,1(0,2)C -;(2)作图见解析,面积71724π=+,17l =. 【解析】(1)由ABC ∆在平面直角坐标系中的位置可得A 、B 、C 的坐标,根据关于原点对称的点的坐标特点即可得1A 、1B 、1C 的坐标;(2)由旋转的性质可画出旋转后图形22A BC ∆,利用面积的和差计算出22∆A BC S ,然后根据扇形的面积公式求出2扇形CBC S ,利用ABC ∆旋转过程中扫过的面积222S A BC CBC S S ∆+=扇形进行计算即可.再利用弧长公式求出点C 所经过的路径长.【详解】解:(1)由ABC ∆在平面直角坐标系中的位置可得:(3,3)-A ,(4,1)B -,(0,2)C ,∵111A B C ∆与ABC ∆关于原点对称,∴1(3,3)A -,1(4,1)B -,1(0,2)C -(2)如图所示,22A BC ∆即为所求,∵(4,1)B -,(0,2)C , ∴22(40)(12)17=--+-=BC∴2扇形CBC S 2290(17)1734604πππ⋅⨯===BC , ∵22∆A BC S 1117421213142222=⨯-⨯⨯-⨯⨯-⨯⨯=, ∴ABC ∆在旋转过程中所扫过的面积: 222扇形∆+=A BC CBC S S S 71724π=+ 点C 所经过的路径:9017171802ππ⨯==l . 【点睛】本题考查的是图形的旋转、及扇形面积和扇形弧长的计算,根据已知得出对应点位置,作出图形是解题的关键.26、(1)300人(2)b=0.15,c=0.2;(3)16【解析】分析:(1)利用合格的人数除以该组频率进而得出该校初四学生总数;(2)利用(1)中所求,结合频数÷总数=频率,进而求出答案;(3)根据题意画出树状图,然后求得全部情况的总数与符合条件的情况数目;二者的比值就是其发生的概率.详解:(1)由题意可得:该校初三学生共有:105÷0.35=300(人),答:该校初三学生共有300人;(2)由(1)得:a=300×0.3=90(人),b==0.15, c==0.2; 如图所示:(3)画树形图得:∵一共有12种情况,抽取到甲和乙的有2种,∴P(抽到甲和乙)==.点睛:此题主要考查了树状图法求概率以及条形统计图的应用,根据题意利用树状图得出所有情况是解题关键.27、4 9【解析】【分析】列表得出所有等可能结果,然后根据概率公式列式计算即可得解【详解】列表如下:A1A2 BA1(A1,A1)(A2,A1)(B,A1)A2(A1,A2)(A2,A2)(B,A2)B (A1,B)(A2,B)(B,B)由表可知,共有9种等可能结果,其中抽出的两张卡片上的图案都是“金鱼”的4种结果,所以抽出的两张卡片上的图案都是“金鱼”的概率为49.【点睛】本题考查了列表法和树状图法,用到的知识点为:概率=所求情况数与总情况数之比.。

2020年浙江省杭州市小升初第五次适应性考试数学试题

2020年浙江省杭州市小升初第五次适应性考试数学试题

2020年浙江省杭州市小升初第五次适应性考试数学试题一、选择题1.同学们去社区做好事,每组6人或9人,都正好不多也不少。

去社区做好事的同学至少有()人。

A.3 B.9 C.18 D.542.一个分数的分子缩小3倍,分母扩大3倍,分数值就( )A.缩小3倍B.缩小6倍C.缩小9倍D.不变3.(3分)(2012•廊坊)用一根52厘米长的铅丝,正好可以焊成长6厘米,宽4厘米,高()厘米的长方体教具.A.2B.3C.4D.54.有一段绳子,截下它的23后,还剩23米,那么()A.截去的多B.剩下的多C.一样多D.无法比较5.把一个平行四边形任意分割成两个梯形,这个梯形的()总是相等的。

A.高B.周长C.面积6.下面中各图形的面积相比较,()。

(单位: cm)A.全相等B.全不相等C.有两个相等D.有三个相等7.一个数的最大因数与最小倍数相比较,()。

A.相等B.倍数小于因数C.无法确定D.倍数大于因数8.将10克药粉溶解在10千克水中,药与药水重量的比是()A.1∶101 B.1∶1000 C.1∶1001 D.1∶10109.7个点可以连()条线段.A.7 B.21 C.14 D.7010.与两图中阴影部分面积之和相等的图形是( )A. B. C.二、填空题11.如图,电车从A站经过B站到达C站,然后返回。

去时B站停车,而返回时不停,去时的车速为每小时48千米,返回时的车速是每小时(______)千米。

12.甲、乙、丙丁四位老师,甲老师可以教物理、化学;乙老师可以教数学、英语;丙老师可以教数学、物理、化学;丁老师只能教化学,为了使每个人都能胜任工作,那么教数学的是_________。

13.小铃准备炒一个西红柿鸡蛋的菜,她洗切西红柿用了1.5分,洗葱切葱用了2.5分,敲蛋打蛋用了2分,洗锅2分,把锅烧热1分,将油烧热用3分,炒4分,小玲烧好这道菜花了16分,请你配妙安排,设计出一个顺序,使烧好这道菜的时间最短为(______)分。

浙江省杭州市中考适应性训练数学试卷及答案

浙江省杭州市中考适应性训练数学试卷及答案

浙江省杭州市中考适应性训练数学试卷一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中, 只有一个是正确的.注意可以用多种不同的方法来选取正确答案.1. (-2)2的算术平方根是 ( )A . 2B . ±2C .-2D . 22. 全球可被人类利用的淡水总量仅占地球上总水量的0.00003,因此珍惜水、保护水,是我们每一位公民义不容辞的责任.其中数字0.00003用科学记数法表示为( ) A .4103-⨯ B .4103.0-⨯ C .5103-⨯ D .5103.0-⨯ 3.甲、乙、丙、丁四人进行射击测试,每人10次,射击成绩的平均数都是8.9环,方差分别是20.65S =甲,20.55S =乙,20.50S =丙 20.45S =丁,则射击成绩最稳定的是A .甲B .乙C .丙D .丁 4.如图,点A 、B 、C 、D 、O 都在方格纸的格点上,若△COD 是由△AOB 绕点O 按逆时针方向旋转而得,则旋转的角度为 A .135° B .90° C .45°D .30°5.关于x 的方程2210x kx k ++-=的根的情况描述正确的是A .k 为任何实数,方程都没有实数根B .k 为任何实数,方程都有两个不相等的实数根C .k 为任何实数,方程都有两个相等的实数根D .根据 k 的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种6.如图,是某几何体的三视图及相关数据,则下面判断正确的是A .a c >B .b c >C .2224a b c +=D .222a b c +=7.如图,一张半径为1的圆形纸片在边长为(3)a a ≥的正方形内任意移动,则在该正方形内,这张圆形纸片“不能接触到的部分”的面积是A .2a π- B .2(4)a π- C .π D .4π-ABOCD(第4题)ac8.下列说法中①一个角的两边分别垂直于另一个角的两边,则这两个角相等; ②数据5,2,7,1,2,4的中位数是3,众数是2; ③等腰梯形既是中心对称图形,又是轴对称图形; ④命题“若x =1,则x 2=1”的逆命题是真命题; 正确的有 A .1个B .2个C .3个D .4个9.如图,在平面直角坐标系中,四边形OABC 是菱形,点C 的坐标为(4,0),∠AOC= 60°,垂直于x 轴的直线l 从y 轴出发,沿x 轴正方向以每秒1个单位长度的速度向右平移,设直线l 与菱形OABC 的两边分别交于点M,N (点M 在点N 的上方),若△OMN 的面积为S ,直线l 的运动时间为t 秒(0≤t ≤4),则能大致反映S 与t 的函数关系的图象是10.如图,在正方形ABCD 内有一折线段,其中AE ⊥EF ,EF ⊥FC ,并且AE =6,EF =8,FC=10,则正方形与其外接圆之间形成的阴影部分的面积为A .81162π-B .80160π-C .64128π-D .4998π-二. 认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案. 11.如图,直角梯形ABCD 中,AD ∥BC ,90C ∠=,则A B C ∠+∠+∠= 度.12.化简2211a a a+=-- .tsO242343AtsO242343B tsO242343C tsO242343Dxy ABCO MNl(第9题)BCD(第11题)A(第10题)13.体育小金带了500元钱去买体育用品,已知一个足球x 元,一个篮球y 元。

浙江省杭州市萧山市义蓬一中初中数学中考模拟试卷(一)

浙江省杭州市萧山市义蓬一中初中数学中考模拟试卷(一)

2009年中考模拟试卷 数学卷考生须知:1.本试卷分试题卷和答题卷两部分。

满分120分,考试时间100分钟。

2.答题时,必须在答题卷密封区内写明校名、姓名和准考证号。

3.所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应。

4.考试结束后,上交试题卷和答题卷。

一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分)下面每小题给出的四个选项中, 只有一个是正确的, 请把正确选项前的字母填在答题卷中相应的格子内. 注意可以用多种不同的方法来选取正确答案. 1.下列运算中错误..的是(原创) (A )33=- (B )31-的相反数是3- (C )422= (D )283-=- 2.点K 在直角坐标系中的坐标是()4,3-,则点K 到x 轴和y 轴的距离分别是 (A )3,4 (B )4,3 (C )3,-4 (D )-4,33.在直角三角形ABC 中,∠ACB=90°,过点 B 作线段BD 交AC 于点K ,且CD ∥AB , 若∠A=36°,∠DBC=25°,则∠D 等于(原创) (A )29° (B )25° (C )21° (D )19°4.已知⊙O 1的半径为3厘米,⊙O 2的半径为7厘米,若⊙O 1和⊙O 2的公共点的个数为不超过1个,则两圆的圆心距不可能为(原创)(A )0厘米 (B )4厘米 (C )8厘米 (D )12厘米 5.关于x 不等式132<-xa 的解为1>x ,则a 的值为(原创) (A )1 (B )-1 (C )5 (D )-56.请你应用你学过的数学知识来估计)132)(13(-+在那整数之间(原创) (A )3和4 (B )4和5 (C )5和6 (D )6和7 7.对函数12+=x y 与函数x2y -=下列表述中正确的是(原创) (A )两个函数都经过第四象限(B )两个函数在第二象限内有两个公共点 (C )两个函数在自变量的取值范围内y 都随x 的增加而增加 (D )在第二象限内,函数12+=x y 的值小于函数x2y -=的值 8.已知小芳站在层高为2.5米的六层楼的屋顶上来估计旁边一支烟囱的高度,当小芳以俯角∠COB=45°向下看时,刚好可以看到烟囱的底部,当小芳以仰角∠AOB=30°向上看时,刚好可以看到烟囱的顶部,若小芳的身高为1.5米,请你估计烟囱的高度(732.13,414.12≈≈,结果保留三个有效数字)(原创) (A )22.1米 (B )26.0米 (C )27.9米 (D )32.8米 9.2009年杭州市政府为拉动消费,对八类对象发放了消费券,若读小学六年级的小明同学拿到了面值为50元的消费券1张,面值为20元的消费券2张,面值为5元的消费券2张,共100元,若不同面值消费券的形状和大小一样,只是图案不一样,则小明随意从5张消费券中取出2张,两张消费券的面值之和为25的概率为(原创) (A )52 (B )54 (C )31 (D )3210.如图,矩形的长与宽分别为a 和b ,在矩形中截取两个大小相同的圆作为圆柱的上下底面,剩余的矩形作为圆柱的侧面,刚好能组合成一个没有空隙的圆柱,则a 和b 要满足什么数量关系(原创) (A )121+=πb a (B )122+=πb a (C )221+=πb a (D )12+=πb a二.认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容简介,尽量完整地填写答案11.分解因式:12-a = ;化简:xy y x 2)(2-+= .12.如图是若干只电灯泡的使用寿命进行检测的频数分布折线图,由图可知检测的频数和每只电灯泡平均使用的寿命分别为 。

浙江省义蓬学区11-12学年第一学期九年级数学学习能力测试题

浙江省义蓬学区11-12学年第一学期九年级数学学习能力测试题

2011学年第一学期义蓬学区学习能力测试九年级数学学科试题卷 (本试卷满分120分, 考试时间100分钟)一. 仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的。

注意可以用多种不同的方法来选取正确答案。

1.下列各式中,运算正确的是( )A .632a a a ÷=B .325()a a = C.= D=21-的值( )A .在2和3之间B .在3和4之间C .在4和5之间D .在5和6之间 3.使代数式xx --87有意义的自变量x 的取值范围是( ) A. 7≥x B .87≠>x x 且 C . 87≠≥x x 且 D . 7>x 4.某商店把一商品按标价的九折出售(即优惠10%),仍可获利20%,若该商品的标价为每件28元,则该商品的进价为( )A .19.8元 B. 21元 C. 22.4元 D. 25.2元5.在直角坐标系中,O 为坐标原点,A(1,1),在x 轴上确定一点P ,使△AOP 为等腰三角形,则符合条件的点P 共有( )A .4个B .3个C .2个D .1个6.如图a 是长方形纸带,=20DEF ∠,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的CFE ∠的度数是( )A . 110°B .120°C .140°D . 150° 7.对函数y x 1=-+与函数3y x=下列表述中正确的是( ) A .两个函数都经过第二象限B .两个函数在自变量的取值范围内y 都随x 的减小而减小C .两个函数在第一象限内有两个公共点D .当x 0<时,函数y x 1=-+的值大于函数3y x=的值 8.已知下列命题:①若00a b >>,,则0a b +>;②若22a b ≠,则a b ≠;③角平分线上的点到这个角的两边距离相等;④平行四边形的对角线互相平分;⑤直角三角形斜边上的中线等于斜边的一半.其中原命题与逆命题均为真命题的是( ) A .①③④B .①②④C .③④⑤D .②③⑤A D AC B A EA FA A C A AB 图a 图b图cMH GF EDCBA9.抛物线与直线在同一直角坐标系中,点111222(,),(,)P x y P x y 在抛物线上,点333(,)P x y 在直线上,其中—2<1x <2x,3x <—2,则() A. 2y <1y <3y B. 3y <1y <2y C. 3y <2y <1y D. 1y <2y <3y 10. 如图,ABCD 、CEFG 是正方形,E 在CD 上,直线BE 、DG 交于H ,BD 、AF 交于M ,当E 在线段CD (不与C 、D 重合)上运动时,下列四个结论:① BE ⊥GD ;② AF 、GD 所夹的锐角为45°;③△ABM ∽△DBG ;④ 其中正确的结论个数有( ) A. 1个 B. 2个 C. 3个 D. 4个二. 认真填一填(本题有6个小题,每小题4分,共24分) 要注意认真看清楚题目条件和要填写的内容,尽量完整地填写答案。

2020年浙江省初中数学毕业学业水平适应性测试题含答案

2020年浙江省初中数学毕业学业水平适应性测试题含答案

2020浙江省初中数学毕业学业水平适应性测试题亲爱的考生:欢迎参加考试!请你认真审题,仔细答题,发挥最佳水平。

答题时,请注意以下几点:1.全卷共6页,满分150分,考试时间120分钟。

2.答案必须写在答题纸相应的位置上,写在试题卷、草稿纸上无效。

3.答题前,请认真阅读答题纸上的“注意事项”,按规定答题。

4.本次考试不得使用计算器。

一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.-2的倒数是( ▲ ).A.2 B.-12C.12D.-22. 如图的几何体是由四个大小相同的小正方体拼成,则这个几何体的左视图是( ▲ ).从正面看 A. B. C. D.3.台州是“山海水城”, 2017年春节“黄金周”旅游总收入3784000000元,用科学记数法表示为( ▲ ).A.3.784×109B.3.784×1010 C.3784×106D.0.3784×10104.两名同学都进行了5次立定跳远测试.经计算,他们的平均成绩相同,若要比较这两名同学的成绩谁更稳定,通常还需要比较他们成绩的( ▲ ).A.众数B.中位数 C.方差D.以上都不对5.如图,OA是⊙O的半径,弦BC⊥OA,D是⊙O上一点,∠ADC=26º,那么∠AOB的度数为( ▲ ).A.64ºB.26º C.52º D.38º6. 下列计算正确的是( ▲ ).A.2ab ab ab⋅=B.()3322a a=C.()330a a a-=≥D.()0,0a b ab a b⋅=≥≥B CDO(第5题图)7.如图,点E ,F 是□ABCD 对角线上两点,在条件①DE=BF ; ②∠ADE=∠CBF ;③AF =CE ; ④∠AEB=∠CFD 中,添加一个 条件,使四边形DEBF 是平行四边形,可添加的条件是( ▲ ).A .①②③B .①②④C .①③④D .②③④8. 王老师坚持绿色出行,每天先步行到离家500米的公共自行车点取车,然后骑车 4.5千米到校.某天王老师从手机获知,骑车平均每小时比步行多10千米,共用时24分钟.设步行的平均速度为每小时x 千米,则可列方程 ( ▲ ).A .24105.4500=++x x B .6024105.45.0=++x x C .24450010500=+-x x D .60245.4105.0=+-x x 9. 如图,直线l :x y 21=,点A 1(0,1),过点A 1作y 轴的垂线交直线l 于点B 1,以原点O 为圆心,OB 1长为半径画弧交y 轴于点A 2;再过点A 2作y 轴的垂线交直线l 于点B 2,以原点O 为圆心,OB 2长为半径画弧交y 轴于点A 3,…,按此做法进行下去,OA 2017的长为( ▲ ). A .2016)5( B .2017)5( C .20162 D .20172 10.小东同学对图形世界充满兴趣,他先把一个面积为34272cm 的正三角形绕着它的中心旋转60°,旋转前后的两个正三角形构成如图(1)的一个六角星;然后将该六角星按图(2)分割后拼成矩形ABCD . 请你思考小东的问 题:若将该矩形围成圆柱,则圆柱的高为( ▲ ). A .32cm B .33cm C .32cm 或6 cm D .3cm 或33cm 二、填空题(本题有6小题,每小题5分,共30分) 11.因式分解:299x -= ▲ . 12.若⎩⎨⎧=+=+,623,432b a b a 则b a += ▲ . 13.现有一个圆心角为90 º,半径为12 cm 的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),该圆锥底面圆的半径为 ▲ cm .14.一个三位数,若百位、十位、个位上的数字依次增大,就称为“阶梯数”.如123就是(第9题图)yxOB 3B 2B 1A 4A 3A 2 A 1 x y l 21:=(1)(2)B(第10题图)CAEF (第7题图)一个阶梯数.若十位上的数字为5,则从1,6,8中任选两数,与5组成“阶梯数”的概率是 ▲ .15.如图,连接正五边形ABCDE 的各条对角线围成一个新的五边形MNPQR .图中有很多顶角为36 º的等腰三角形,我们把这种三角形称为“黄金三角形”,黄金三角形的底与腰之比为215-.若 AB =215-,则MN = ▲ . 16.如图,Rt △ABC 中,∠ACB =90º,∠CAB =30º, BC =1,将△ABC绕点B 顺时针转动, 并把各边缩小为原来的21,得到△DBE ,点A ,B ,E 在一直线上.P 为边DB 上的动点,则AP +CP 的最小值为 ▲ .三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.计算:()020171(3)2sin 60---+-⋅︒.18.解不等式组:231,20,x x +>⎧⎨-≥⎩并把解集在数轴上表示出来.19.已知y 是x 的函数,表格中给出了几组x 与y 的对应值. (1)以表中各对对应值为坐标,在给定的直角坐标系中描出各点,用光滑曲线顺次 连接.由图象知,它是我们已经学过的 哪类函数?求出函数解析式,并直接写 出a 的值;(2)如果一次函数图象与(1)中图象交于(1,3)和(3,1)两点,在第一象限内,当x 在什么范 围时,一次函数的值小于(1)中函数的值?D(第16题图)(第19题图)20.台州湾循环经济产业集聚区正在投资建设无人机小镇,无人机已运用于很多行业.一测绘无人机从A 处测得某建筑物顶部B 的仰角为37°,底部C 的俯角为60°,此时无人机与建筑物水平距离为30米,建筑物的高度BC 约为多少米?(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.7,3 1.7 )21.为了解某市的空气质量情况,校环保兴趣小组从环境监测网随机抽取了若干天的空气、量情况作为样本进行统计,绘制了如图所示的不完整条形统计图和扇形统计图.请你根据图中提供的信息,解答下列问题: (1)计算被抽取的天数.(2)请补全条形统计图,并求扇形统计图中表示天气“优”的扇形的圆心角度数. (3)请估计该市这一年(365天)达到优和良的总天数.本市若干天天气情况条形统计图2040101051015202530354045优良好轻微污染轻度污染重度污染本市若干天天气情况扇形统计图优轻微污染轻度污染重度污染良好40%(第21题图)(第20题图)CBA22.如图,点P 在菱形ABCD 的对角线AC 上,PA =PD ,⊙O 为△(1)求证:△APD ∽△ADC .(2)若AD =6,AC =8,求⊙O 的半径.23.抛物线214y x bx c =++经过点(1,0)-和(3,0). (1)求该抛物线的解析式及顶点A 的坐标.(2)当33x -<<时,使y m =成立的x 的值恰好只有一个,求m 的值或取值范围.OPDC图1yx3-1OAByx 3-1OACD24.同一平面内的点P 和图形G ,给出如下定义:在图形G 上若存在两点M ,N ,使△PMN 为等边三角形,则称点P 为图形G 的特征点,图形G 为点P 的特征线,△PMN 为图形G 关于点P 的特征三角形.(1)如图1,⊙O 的半径为1, 3OA =,3OB =.在A ,B 两点中,⊙O 的特征点是 .若点C 是⊙O 的特征点,求OC 长度的取值范围.(2)如图2,在Rt △ABC 中,90o C ∠=,AC =1,BC m =.线段AB 是点C 的特征线,线段AB 关于点C 的特征三角形的面积为39,求m 的值. (3)如图3,直角坐标系中的点A (-2,0),B (0,23),点C ,D 分别是射线AB 和x轴上的动点,以CD 为边作正方形角形.当正方形CDEF 的一个顶点落在y 轴上时,求此时正方形的边长.图3xyCOAD FE B图1A OB图2Bxy OAB备用图(第24题图)初中毕业升学适应性测试数学参考答案和评分细则一、选择题(本题有10小题,每小题4分,共40分)题号 1 2 3 4 5 6 7 8 9 10 答案BBACCDDBAD二、填空题(本题有6小题,每小题5分,共30分) 11.9(1)(1)x x +- 12. 2 13. 3 14.1315. 52- 16. 3 三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分)17.(8分)解:原式3112=-++……………………………………………6分 32=……………………………………………2分 18.(8分)解: 解①得:1x >-, ………………………………………2分 解②得:2x ≤ . ………………………………………2分不等式组的解集:12x -<≤ . .............................................2分 在数轴上表示略. (2)分19.(8分)(1)画图略. ………………………………2分是反比例函数. (1)分3y x=(若没有过程直接写出也给分) ………………………………2分65a =. …………………………………1分(2)01x << 或 3x >. …………………………………2分20.(8分)解:过A 作AD ⊥CB ,垂足为点D . …………1分在Rt △ADC 中, AD =30,∠CAD =60°,∴CD =tan 6030351AD ⨯=⨯≈o . …………3分 在Rt △ADB 中,∠BAD =37°,∴BD =ο37tan ⨯AD ≈30×0.7=21. ……………3分 ∴512172BC =+=.答:建筑物的高度BC 约为72米. ……………1分21.(10分)解:(1) 4040÷%=100抽取了100天. ……………………3分 (2)图略. ……………………2分 20÷100×360º=72°表示天气“优”的扇形的圆心角度数圆心角72°. (2)分(3) (20+40)÷100=60%,36560⨯%=219.这一年(365天)达到优和良的总天数为219天.…………………3分22.(12分)(1) 证明:∵PA =PD , ∴∠PDA = ∠PAD . ………………1分∵四边形ABCD 是菱形,∴DA=DC . ………………1分 ∴∠DAC = ∠DCA .∴∠PDA = ∠DCA . ………………1分 ∵∠PAD = ∠DAC ,∴△APD ∽△ADC. ………………2分(2) ∵△APD ∽△ADC , ∴ACAD AD PA =. 可得AP 92=. ………………2分连接PO 并延长交AD 于点Q , ∵ PA =PD ,根据圆的轴对称性, ∴PQ 垂直平分AD .D B AC(第20题图)Q(第22题图)∴PQ 52322=-=AQ AP . ………………2分 连接AO ,设半径为r , 解得52027=r . ………………3分 23. (12分)解:(1)由题意)3)(1(41-+=x x y ,∴2113424y x x =--. …………………………2分顶点A (1,-1) (2)分(2)当3x =-时,3y =;当3x =时,0y =. …………………………2分 由图象得,直线y m =与抛物线恰只有一个交点时,1m =- 或03m ≤<. …2分(3)设抛物线向右平移a 个单位,向上平移b 个单位,平移后的抛物线解析式: 21(1)14y x a b =---+ ∵抛物线过点A (1,-1),把A (1,-1)代入21(1)14y x a b =---+,得214b a =-. ∴21(1,1)4B a a +--,21(1,1)4D a a +-,(12,1)C a +- ∴212BD a =,2AC a =. ∵四边形ABCD 的面积为4,∴211124222AC BD a a ⋅=⨯⨯=,解得2a =. ∴(3,2)B -. (4)分24.(14分) 解:(1) A ; ………………………1分02OC ≤≤. ……………………3分(2)作CD ⊥AB 于点D .∵ 线段AB 是点C 的特征线,∴ CD 为线段AB 关于点C 的特征三角形的高. ∵线段AB 关于点C,∴CD = …… 1分 ∵ 1AC =,∴AD =. .……… 1分 ∴cos AD A AC ==.∵∠ACB =∠CDA =90°,∴∠A =∠B CD ,∴cos CD BC BCD ===∠.∴m =. ……………2分 (3) ①点E 落在y 轴上时,CD8=- ; ……… 2分 ②点F 落在y 轴上时, CD2=- ; ……… 2分(不化简也给分) ③点D 落在y 轴上时,此时点D 与点O 重合,CD =2; ………1分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:-32的值是A.6 B.-6 C.9 D.-9试题2:小华拿着一块正方形木板在阳光下做投影实验,这块正方形木板在地面上形成的投影不可能是试题3:如图,⊙O是△ABC的外接圆,已知∠B=60°,则∠CAO的度数是A.15° B.30° C.45° D.60°试题4:一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒.当你抬头看信号灯时,是绿灯的概率是评卷人得分A. B. C. D.试题5:如图,将放置于平面直角坐标系中的三角板AOB绕O点顺时针旋转90°得△A′OB′.已知∠AOB=30°,∠B=90°,AB=1,则B′点的坐标为A. B. C. D.试题6:某一段时间,小芳测得连续五天的日最低气温后,整理得出下表(有两个数据被遮盖).日期一二三四五方差平均气温最低1℃-1℃2℃0℃■■1℃气温被遮盖的两个数据依次是A.3℃,2 B.3℃, C.2℃,2 D.2℃,试题7:如图,正方形ABCD内有两条相交线段MN、EF,M、N、E、F分别在边AB、CD、AD、BC上.小明认为:若MN = EF,则MN ⊥EF;小亮认为: 若MN⊥EF,则MN = EF.你认为A.仅小明对 B.仅小亮对 C.两人都对 D.两人都不对试题8:如图4,矩形的两条对角线相交于点,,则矩形的对角线的长是(▲)A.2B.4 C.D.试题9:美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.如图,某女士身高165cm,下半身长x 与身高l的比值是0.60,为尽可能达到好的效果,她应穿的高跟鞋的高度大约为A.4cm B.6cm C.8cm D.10cm试题10:如图,把抛物线与直线围成的图形绕原点顺时针旋转后,再沿轴向右平移1个单位得到图形则下列结论错误A.点的坐标是 B.点的坐标是C.四边形是矩形D.若连接则梯形的面积是3试题11:化简:= ▲.试题12:若分式的值为0,则的值等于▲.试题13:我们把依次连接任意一个四边形各边中点所得的四边形叫做中点四边形.若一个四边形的中点四边形是一个矩形,则四边形可以是▲.试题14:若等腰三角形的三条边长分别为,,,则可以取的值为:试题15:.为了解某新品种黄瓜的生长情况,抽查了部分黄瓜株上长出的黄瓜根数,得到下面的条形图,观察该图,可知共抽查了____▲____株黄瓜,并可估计出这个新品种黄瓜平均每株结___▲____根黄瓜.试题16:如图,已知与是两个全等的直角三角形,量得它们的斜边长为10cm,较小锐角为30°,将这两个三角形摆成如图(1)所示的形状,使点在同一条直线上,且点与点重合,将图(1)中的绕点顺时针方向旋转到图(2)的位置,点在边上,交于点,则线段的长为 cm (保留根号).试题17:如图,直角梯形ABCD中,AD∥BC,∠A=90o,∠C=60°,AD=3cm,BC=9cm.⊙O1的圆心O1从点A开始沿折线A—D—C 以1cm/s的速度向点C运动,⊙O2的圆心O2从点B开始沿BA边以cm/s的速度向点A运动,⊙O1半径为2cm,⊙O2的半径为4cm,若O1、O2分别从点A、点B同时出发,运动的时间为t .当t= ▲时⊙O1与⊙O2外切试题18:计算:||试题19:化简:试题20:某中学对全校学生60秒跳绳的次数进行了统计,全校平均次数是100次.某班体育委员统计了全班50名学生60秒跳绳的成绩,列出的频数分布直方图如下(每个分组包括左端点,不包括右端点):求:(1)该班60秒跳绳的平均次数至少是多少?是否超过全校平均次数?(2)该班一个学生说:“我的跳绳成绩在我班是中位数”,请你给出该生跳绳成绩的所在范围.(3)从该班中任选一人,其跳绳次数达到或超过校平均次数的概率是多少?试题21:每年的3—10月份为一年中的黄金旅游月份。

灌云县伊山镇水果种植大户田致富,为了吸引更多的顾客,组织了观光采摘游活动.每一位来采摘水果的顾客都有一次抽奖机会:在一只不透明的盒子里有四张外形完全相同的卡片,抽奖时先随机抽出一张卡片,再从盒子中剩下的3张中随机抽取第二张.(1)请利用树状图(或列表)的方法,表示前后两次抽得的卡片所有可能的情况;(2)如果抽得的两张卡片是同一种水果图片就可获得奖励,那么得到奖励的概率是多少?A B CD试题22:在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,到达乙地卸货后返回.设汽车从甲地出发(h)时,汽车与甲地的距离为(km),与的函数关系如图所示.根据图象信息,解答下列问题:(1)这辆汽车的往、返速度是否相同?请说明理由;(2)求返程中与之间的函数表达式;(3)求这辆汽车从甲地出发4h时与甲地的距离.试题23:如图,△ABC的顶点坐标分别为A(4,6),B(2,3),C(5,2)。

如果将△ABC 绕C点顺时针旋转90°,得到△A1B1C。

(1)请在图中画出△A1B1C,并写出点A1、B1的坐标;(2)求出点A 旋转到A1的弧线的长度;(3)在图中已画好的格点上,是否存在点D,使得S△A1B1D=S△A1B1C,请写出符合条件的所有D点的坐标(C点除外)。

试题24:为实现区域教育均衡发展,我市计划对某县A、B两类薄弱学校全部进行改造。

根据预算,共需资金1575万元。

改造一所A类学校和两所B类学校共需资金230万元;改造两所A类学校和一所B类学校共需资金205万元.(1)改造一所A类学校和一所B类学校所需的资金分别是多少万元?(2)我市计划今年对该县A、B两类学校共6所进行改造,改造资金由国家财政和地方财政共同承担。

若今年国家财政拨付的改造资金不超过400万元;地方财政投入的改造资金不少于70万元,其中地方财政投入到A、B两类学校的改造资金分别为每所10万元和15万元。

请你通过计算求出有几种改造方案?试题25:如图,在平面直角坐标系中,两点的坐标分别为,以为一边作正方形,再以为直径的半圆.设轴交半圆于点,交边于点.(1)求线段的长;(2)连接,试判断直线与⊙的位置关系,并说明你的理由;(3)直线上是否存在着点,使得以为圆心、为半径的圆,既与轴相切又与⊙外切?若存在,试求的值;若不存在,请说明理由.试题26:已知抛物线经过坐标原点,与直线相交于A、B两点,与轴、轴分别相交于点C和D;(1)求A、B两点的坐标;(2)若把抛物线向下平移,使得抛物线经过点C,此时抛物线与直线相交于另一点E,与轴相交于点F,求△CEF的面积;(3)把抛物线上下平移,与直线相交于点G、K,能否使得CG:DK=1:2,若能成立,请求出向上或向下平移几个单位,若不能请说明理由。

试题1答案: D试题2答案: A试题3答案: B试题4答案: C试题5答案: A试题6答案: A试题7答案: C试题8答案: D试题9答案: B试题10答案:D试题11答案:试题12答案:2试题13答案:正方形(对角线互相垂直的四边形均可)试题14答案:试题15答案:60;13试题16答案:试题17答案:3试题18答案:解:原式==1试题19答案:解:原式===1.试题20答案:解:(1)该班60秒跳绳的平均次数至少是:=100.8.因为100.8>100,所以一定超过全校平均次数.(2)这个学生的跳绳成绩在该班是中位数,由4+13+19=36,所以中位数一定在100~120范围内.(3)该班60秒跳绳成绩大于或等于100次的有:19+7+5+2=33(人),.所以,从该班任选一人,跳绳成绩达到或超过校平均次数的概率为0.66.试题21答案:(1)4(2)1/2试题22答案:解:(1)不同.理由如下:往、返距离相等,去时用了2小时,而返回时用了2.5小时,往、返速度不同.(2)设返程中与之间的表达式为,则解之,得.()(评卷时,自变量的取值范围不作要求)(3)当时,汽车在返程中,.这辆汽车从甲地出发4h时与甲地的距离为48km.试题23答案:(1)△A1B1C如图所示,点A1(9,3),B1(6,5)(2)AC=弧AA1==(3)点D(8,0),点D(10,6),点D(2,4)试题24答案:解:(1) 设改造一所A类学校和一所B类学校所需的改造资金分别为a万元和b万元依题意得 a+2b=2302a+b=205解之得 a=60b=85(2) 设今年改造A类学校x所,则改造B类学校为(6-x)所,依题意得:50x+70(6-x)≤40010x+15(6-x)≥70解得 1≤x≤4∵ x取整数∴x=1,2,3,4.即共有4种方案。

答:要使此次销售获利最大,应采用(2)中方案一,即甲种3辆,乙种11辆,丙种6辆,最大利润为16.44万元。

试题25答案:(1)连接,(2)(解法一)∵∴∽∴∴相切(解法二)连接,在中,在中,在中,∴(3)连接,∵⊙与⊙外切∴过作轴于,交于∵⊙与轴相切∴∴∵∽∴(另解:直线所对应的函数关系式为,设,代入得,即,从而)在中,解得,试题26答案:解:(1)有题得:=∴∴∴ A(-1,), B(2,2)(2)把向下平移a个单位经过点C,则抛物线变为:又得,C(-2,0), D(0,1)∴ 0=(-2)2,∴∴=∴E(3, )又 C,F关于y轴对称∴ F(2,0)∴ CF=2-(-2)=4∴S△CEF=×CF×E点纵坐标的绝对值=×4×=5)(3)设抛物线上下平移k个单位,G点坐标为(m,),K点坐标为(n,①G在C上方时∴解得k=0,没有移动,舍去;②G在C下方时∴解得k=-14,即向下平移14个单位所以,当抛物线向下平移14个单位时,满足要求。

相关文档
最新文档