九年级数学相似三角形的性质1

合集下载

九年级相似三角形知识点总结

九年级相似三角形知识点总结

九年级相似三角形知识点总结相似三角形作为九年级数学中的重要内容,涉及到比例、角度、边长等概念。

在本文中,我们将对九年级相似三角形的相关知识点进行总结。

以下是该知识点的详细内容:一、相似三角形的定义与性质相似三角形是指具有相同形状但大小可能不同的三角形。

在两个相似三角形中,对应角度相等,对应边长成比例。

1. 对应角相等性质:若两个三角形的内角分别对应相等,那么这两个三角形是相似的。

2. 对应边成比例性质:若两个三角形的三条边之间成比例,那么这两个三角形是相似的。

3. 相似三角形的比例关系:设两个相似三角形A和B,它们的对应边长分别为a、b和c、d。

则有以下比例关系成立:a/b = c/d = k (k为比例系数)二、相似三角形的判定方法判定两个三角形是否相似,常用以下方法:1. AA相似判定法:若两个三角形的两个角分别对应相等,那么这两个三角形一定相似。

2. AAA相似判定法:若两个三角形的三个角分别对应相等,那么这两个三角形一定相似。

3. SSS相似判定法:若两个三角形的三边分别成比例,那么这两个三角形一定相似。

三、相似三角形的性质应用相似三角形的性质在解决实际问题中有广泛的应用。

以下是相似三角形的性质在实际问题中的应用:1. 测量不可达长度:在实际测量中,有时由于某些原因,无法直接测量出几何图形中的某些边长。

利用相似三角形的比例关系,可以间接计算出这些不可达长度。

2. 高度与距离计算:利用相似三角形的性质,可以求解建筑物高度、山上塔楼高度等实际问题中需要计算的高度和距离。

3. 相似三角形的构造:利用相似三角形的特点,可以进行各种构造问题的求解,如分割线段、求解垂足等问题。

四、相似三角形与比例运算相似三角形的性质与比例运算密切相关。

以下是相似三角形与比例运算的相关内容:1. 比例关系的运用:相似三角形的性质中涉及到边长的比例关系,通过运用比例关系,可以计算出未知边长的具体值。

2. 比例运算的应用:在解决相似三角形实际问题中,我们可以借助比例运算的方法,确定未知量的数值。

初中数学 相似三角形有哪些特点

初中数学 相似三角形有哪些特点

初中数学相似三角形有哪些特点相似三角形是指具有相似形状的三角形,它们的对应角度相等,对应边长之间存在比例关系。

下面是相似三角形的一些重要特点:1. 角度相等:相似三角形的对应角度是相等的。

也就是说,如果两个三角形相似,它们的对应角度是相等的。

例如,如果一个三角形的角A等于另一个三角形的角A,角B等于角B,角C等于角C,那么这两个三角形就是相似的。

2. 边长比例相等:相似三角形的对应边长之间存在比例关系。

也就是说,如果两个三角形相似,它们的对应边长之间的比例是相等的。

例如,如果一个三角形的边a与另一个三角形的边a的比例为m,边b与边b的比例为m,边c与边c的比例为m,那么这两个三角形就是相似的。

3. 高度比例相等:相似三角形的对应高度之间存在比例关系。

也就是说,如果两个三角形相似,它们的对应高度之间的比例是相等的。

例如,如果一个三角形的高度h与另一个三角形的高度h的比例为m,那么这两个三角形就是相似的。

4. 面积比例相等:相似三角形的面积之间存在比例关系。

也就是说,如果两个三角形相似,它们的面积之间的比例是相等的。

面积比例等于边长比例的平方。

例如,如果一个三角形的面积S与另一个三角形的面积S的比例为m,那么这两个三角形的边长比例为√m。

5. 三角形的相似比较:当两个三角形的对应角度相等时,它们是相似的。

根据相似三角形的性质,我们可以使用三个角度对两个三角形进行比较,或者使用两个角度和一个边长的组合来比较。

如果两个三角形的对应角度相等或者其中两个角度和一个对应边长相等,那么这两个三角形是相似的。

6. 旁边角相等:相似三角形的旁边角(与对应边相邻的角)也是相等的。

这是因为相似三角形的对应边长比例相等,所以对应边相邻的角也是相等的。

7. 重心比例相等:相似三角形的重心之间存在比例关系。

重心是三角形的三条中线的交点。

如果两个三角形相似,它们的重心之间的距离比例等于边长比例。

例如,如果一个三角形的重心与另一个三角形的重心的距离比例为m,那么这两个三角形的边长比例也为m。

九年级数学相似三角形的性质1

九年级数学相似三角形的性质1

旁,白狼马立即大笑:"你们这一些龟尔子,神光城主养の私生子,老子现在就代城主教训教训你们!"白狼马举手壹拍,壹道白光乍现,将这一些守卫掀の人仰马翻,倒飞出去几百米,撞在那边の大门上,轰轰作响丶"什么人!""来人啊1""有人袭击!""护卫!"这壹击,惊动了前面の不 少人,马上就有壹帮人窜了出来丶个个都实力不俗,将白狼马给围了起来,白狼马也不怵这些人,此时の他正在气头上:"好啊,来の好啊,老子壹叫神光城主私生子,就冒出了这么多,神光城主,你丫の挺能生の呀!""小子,你是何人!"壹众守卫让开路,壹个白袍老者面色阴沉の走到 了白狼马面前:"污蔑城主大人,你可知是什么罪名!""老不死の,你这是要替你爹洗白吗?"白狼马直接开骂:"你都长这样丑了,看来这神光城主是长の太丑,怕出来见人啊。""杀了这个小子!""马拉隔壁の,嘴太损了,杀了他!"肆贰01浩瀚仙城上"实在是不能忍了!""壹起上!"守 卫们都受不了,这货の嘴够阴损,什么话都敢说丶白狼马这边の冲突,立即引来了周四不少修仙者の围观,马上就有不少人围了过来丶"那是什么情况?""有人敢在城主府前闹事?""估计是活得不耐烦了呀。""丫の,这也是个人才啊,听到了刚刚他们の对骂吗?""哈哈哈,有意思,有 意思。"不少人凑过来看好戏,壹众守卫要上来,将白狼马给治住,白袍老者却摆了摆手让他们暂时不要动手丶他也看得出来,白狼马の修为大概在中高阶大魔神之境他压制是压制得住,但是他の目光却被那边の壹个青年の背影所吸引了丶正是根汉,此时正半飘浮在空中,注视着 这边发生の

2020年中考数学专题24相似三角形判定与性质

2020年中考数学专题24相似三角形判定与性质

【答案】见解析。 【解析】根据平行四边形的性质得到 AD∥CD,AD=BC,得到△EBF∽△EAD,根据相似三角形的性质证明即 可;根据相似三角形的性质列式计算即可. (1)证明:∵四边形 ABCD 是平行四边形, ∴AD∥CD,AD=BC, ∴△EBF∽△EAD, ∴ = =,
∴BF= AD= BC, ∴BF=CF; (2)∵四边形 ABCD 是平行四边形, ∴AD∥CD,
C.4
D.
【答案】B 【解析】本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形 的判定与性质等知识点. 由 S△ABC=16.S△A′EF=9 且 AD 为 BC 边的中线知 S△A′DE= S△A′EF= ,S△ABD= S△ABC=8,根据△
DA′E∽△DAB 知(
专题 24 相似三角形判定与性质
专题知识回顾
1.相似三角形:对应角相等,对应边成比例的两个三角形叫做相似三角形。相似多边形对应边的比叫做 相似比。 2.三角形相似的判定方法: (1)定义法:对应角相等,对应边成比例的两个三角形相似。 (2)平行法:平行于三角形一边的直线和其他两边(或两边延长线)相交,构成的三角形与原三角形相 似。 (3)判定定理 1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似, 可简述为两角对应相等,两三角形相似。 (4)判定定理 2:如果一个三角形的两条边和另一个三角形的两条边对应相等,并且夹角相等,那么这两 个三角形相似,可简述为两边对应成比例且夹角相等,两三角形相似。 (5)判定定理 3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似, 可简述为三边对应成比例,两三角形相似。 3.直角三角形相似判定定理: ①以上各种判定方法均适用 ②定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例, 那么这两个直角三角形相似。 ③垂直法:直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。 4. 相似三角形的性质: (1)相似三角形的对应角相等,对应边成比例 (2)相似三角形对应高的比、对应中线的比与对应角平分线的比都等于相似比 (3)相似三角形周长的比等于相似比 (4)相似三角形面积的比等于相似比的平方。

苏教版九年级上册数学第六章【5】相似三角形的性质

苏教版九年级上册数学第六章【5】相似三角形的性质

18m.现在的问题是:被削去的部分面积有多大?它的
A 周长是多少?
30m
D
E
18m
B
C
6.5 相似三角形的性质(1)
全等三角形 对应边相等 对应角相等 周长相等 面积相等
相似三角形 对应边的比等于相似比 对应角相等 周长的比等于相似比 面积的比等于相似比的平方
6.5 相似三角形的性质 (2)
6.5 相似三角形的性质(2)
A
B
C
如图,△ABC∽△A'B'C',
A′
△ABC与△A'B'C'的相似比是2:3,
则△ABC与△A'B'C'的面积比是
多少?你的依据是什么?
B′
C′
回顾“相似三角形的面积比
等于相似比的平方”这个结论
的探究过程,你有什么发现?
6.5 相似三角形的性质(2)
如图,△ABC∽△ A'B'C', △ABC与△ A'B'C'的 相似比是k,AD、A 'D'是对应高. A′
如图,△ABC∽△A′B′C′,△ABC与△A′B′C′的 相似比是k,AD、A′D′是对应高. A′
A
zxxkw
学科网
学 科网
B
DC
S ∵△ABC∽△A'B'C'
B′
∴∠B=∠B'
S ∵AD⊥BC, A'D′⊥B'C'
∴∠ADB=∠A′D′B'=90°
∴△ABD∽△A'B'D'
D′ 1C′
ABC =

九年级数学相似三角形的性质1

九年级数学相似三角形的性质1

例.判断正误: 1)如果把一个三角形三边的长同时扩大为原来的 10倍,那么它的周长也扩大为原来的10倍。 2)如果把一个三角形的面积扩大为原来的9倍, 那么它的三边也都扩大为原来的9倍。
例.如图所示,D、E分别是AC、AB上的点,
AE AD 3 已知△ABC的面积为100cm2 , AC AB 5 A 求四边形BCDE的面积. E 解:∵ AE AD 3 ,∠A=∠A AC AB 5 D
练习:
A E D
CAMN 3 _____; 5 CABC
M B
N C
S AMN 9 _____; 25 S ABC
议一议: 如图,四边形ABCD与四边形A’B’C’D’相似, 且相似比为k,它们周长的比、面积的 比与相似比有什么关系? 如果把四边形换 C 成五边形,你刚 C’ 才的结论是否仍 D 然成立呢? D’ A
小 结
相似多边形的性质:
相似三角形对应高的比,周长的比都等于
相似比. 相似三角形面积的比等于相似比的平方. 相似多边形周长的比等于相似比. 相似多边形面积的比等于相似比的平方.

自我测试 1、两个矩形相似,它们的对角线之比是1:3,那么 它们的相似比是1:3 ___,周长比是____,面积比是____ 2、若两个相似三角形的相似比是3:5,其中第一 个三角形的周长为21cm,则第二个三角形的 周长为 35 cm. 3、如果把一个三角形每条边的长都扩大为原来 的5倍,那么它的周长扩大为原来的 5 倍, A 而面积扩大为原来的 25 倍。 4、如图,已知△ABC∽△ADE, D E 且BC=2DE,则△ADE与四 C 边形BCDE的面积比为( B ) B (A)1:2 (B)1:3 (C)1;4 (D)1:5

相似三角形的基本定义与性质

相似三角形的基本定义与性质

相似三角形的基本定义与性质相似三角形是中学数学中一个非常重要的概念。

在几何学中,相似三角形是指具有相同形状但不一定相等的三角形。

本文将介绍相似三角形的基本定义与性质,以帮助读者更好地理解和运用相似三角形的知识。

1. 基本定义:相似三角形的定义是:两个三角形的对应角度相等,对应边线之比相等。

换句话说,如果两个三角形的三个角度分别相等,且三边之比相等,那么它们就是相似三角形。

例如,若三角形ABC和三角形DEF的对应角度分别是∠A=∠D,∠B=∠E,∠C=∠F,且边线之比为AB/DE=BC/EF=AC/DF,那么三角形ABC与三角形DEF就是相似三角形。

2. 性质一:相似三角形的对应边线比例相等如果两个三角形相似,那么它们的对应边线之比相等。

也就是说,如果三角形ABC与三角形DEF相似,则有AB/DE=BC/EF=AC/DF。

这一性质在实际应用中非常有用。

例如,当我们在地图上测量两个城市之间的距离时,可以利用相似三角形的边线比例来计算实际距离。

3. 性质二:相似三角形的对应角度相等如果两个三角形相似,那么它们的对应角度相等。

也就是说,如果三角形ABC与三角形DEF相似,则有∠A=∠D,∠B=∠E,∠C=∠F。

这一性质使我们能够根据已知的相似三角形,推导出其他角度的大小关系。

例如,如果我们已知两个三角形相似,且其中一个角度的大小,就可以通过对应角度相等的性质,计算出其他角度的值。

4. 性质三:相似三角形的边线比例等于对应边线的平方如果两个三角形相似,那么它们的边线比例等于对应边线的平方。

也就是说,如果三角形ABC与三角形DEF相似,则有AB/DE=BC/EF=AC/DF=(AB/DE)^2=(BC/EF)^2=(AC/DF)^2。

这一性质可以应用于解决各种问题。

例如,当我们已知三角形的某一边线比例,可以利用相似三角形的边线比例等于对应边线的平方的性质,计算其他边线的比例。

综上所述,相似三角形的基本定义与性质已经介绍完毕。

初中数学知识归纳相似三角形的性质

初中数学知识归纳相似三角形的性质

初中数学知识归纳相似三角形的性质相似三角形是初中数学中重要的概念之一,它在几何学和应用数学中都具有广泛的应用。

相似三角形是指具有相同形状但大小不同的两个三角形。

在本文中,我们将归纳相似三角形的性质,全面了解相似三角形的特点和应用。

一、相似三角形的定义相似三角形的定义是指两个三角形的对应角相等,对应边成比例。

具体表达为:若ΔABC∽ΔA'B'C',则有∠A=∠A',∠B=∠B',∠C=∠C',且AB/A'B' = BC/B'C' = AC/A'C'。

二、相似三角形的性质1. 对应角相等性质:相似三角形的对应角相等,即∠A=∠A',∠B=∠B',∠C=∠C'。

2. 对应边成比例性质:相似三角形的对应边成比例,即AB/A'B' = BC/B'C' = AC/A'C'。

3. 相似三角形的边比例性质:在相似三角形中,各边之间的比值相等。

例如,若ΔABC∽ΔA'B'C',则有AB/BC = A'B'/B'C' = AC/BC =A'C'/B'C'。

三、相似三角形的判定1. AA判定法:若两个三角形的两个角分别相等,则这两个三角形相似。

即若∠A=∠A',∠B=∠B',则ΔABC∽ΔA'B'C'。

2. SAS判定法:若两个三角形的一个角相等,且两个角的对边成比例,则这两个三角形相似。

即若∠A=∠A',AB/A'B' = AC/A'C',则ΔABC∽ΔA'B'C'。

3. SSS判定法:若两个三角形的三边成比例,则这两个三角形相似。

即若AB/A'B' = BC/B'C' = AC/A'C',则ΔABC∽ΔA'B'C'。

《相似三角形的性质》精品课件1

《相似三角形的性质》精品课件1

AD和A′D′. AD与A′D′的比是多少?
A'
∵△ABC∽△A′B′C′ ,
A
∴∠B=∠B' .
又△ABD 和△A' B' D' 都是直角三角形,
BD
C B' D'
∴△ABD ∽△A' B' D' .
C' ∴ AA′DD′= AA′BB′= k .
相似 九 下 数 学 课 堂
二、归纳新知
由此我们可以得到: 相似三角形对应高的比等于相似比. 类似地,可以证明相似三角形对应中线的比与对应角平分线的比也等于相似比. 一般地,我们有:相似三角形对应线段的比等于相似比.
201
2
3
相似 九 下 数 学 课 堂
四、应用举例
例2 解:太阳光是平行光线,因此∠BAO=∠EDF.
又 ∠AOB=∠DFE=90°,
∴ △ABO∽△DEF.
∴ BO = OA . EF FD
∴ BO= OA• EF = 201×2 =134(m) .
FD
3

因此金字塔的高度为 134 m.
201
2
相似三角形周长的比也等于相似比. 相似三角形面积的比等于相似比的平方.
相似 九 下 数 学 课 堂
三、巩固新知
例1 如图,在△ABC 和△DEF 中,AB=2DE,AC=2DF,∠A=∠D.若△ABC
的边 BC 上的高是 6,面积为 12 5,求△DEF 的边 EF 上的高和面积.
解:在△ABC和△DEF中, ∵ AB=2DE,AC=2DF, ∴ DE = DF = 1 .
考查内容:
PQ×90=(PQ+45)×60.
90
七.整式的除法

相似三角形的性质与应用

相似三角形的性质与应用

相似三角形的性质与应用相似三角形是初中数学中的重要概念,它们具有一些特定的性质和各种应用。

本文将介绍相似三角形的性质,以及在实际问题中如何应用相似三角形来解决一些实际问题。

一、相似三角形的性质相似三角形是指具有相同形状但大小不一的两个三角形。

相似三角形具有以下几个基本性质:1. 对应角相等性质:相似三角形中的对应角相等,即相等角所对的边成比例。

例如,若∠A≌∠D,则边AB与边DE的比等于边AC与边DF的比,即AB/DE = AC/DF。

2.对应边成比例性质:相似三角形中的对应边成比例,即边的比和角的比之间成立。

例如,若AB/DE = AC/DF,则∠A≌∠D。

3.三角形的扩大缩小性质:相似三角形中,如果一个三角形的边与另一个三角形的边成比例,那么这两个三角形是相似的。

例如,如果AB/DE = AC/DF且BC/EF = AC/DF,则三角形ABC与三角形DEF相似。

二、相似三角形的应用相似三角形在实际问题中具有广泛的应用。

下面介绍几个常见的应用:1.测量高度:相似三角形可用于测量无法直接测量的高度。

例如,当直接无法测量一座建筑物的高度时,可以利用相似三角形原理,在地面上测量一个已知距离的长度,然后观察建筑物的倾斜角度,从而利用相似三角形的比例关系计算出建筑物的高度。

2.计算距离:相似三角形还可用于计算距离。

例如,当无法直接测量两个不相邻点之间的距离时,可以利用相似三角形与已知距离的比例关系计算出所需距离。

3.设计工程:在设计工程中,相似三角形可用于模拟大规模结构的小规模模型。

通过将真实结构缩小成模型,可以通过相似三角形的比例关系获得有关真实结构的信息,从而进行有效的设计和分析。

4.地图测绘:在制作地图时,为了将真实距离转换为地图上的距离,可利用相似三角形的比例关系来缩放。

这样可以保持地图的比例并准确表示真实距离。

总结:相似三角形的性质和应用是初中数学中的重要内容。

准确理解相似三角形性质,并能灵活运用到实际问题中,能够帮助我们解决许多几何和测量方面的困难。

九年级数学相似三角形的性质

九年级数学相似三角形的性质

九年级数学相似三角形的性质【基本概念】相似三角形的根本性质:相似三角形的对应边成比例,对应角相等。

【例1】 如图所示,已知在等边△ABC 的边BC 、AC 上分别有点M 、N ,已知∠AMN=60°,△ABC 的边长为10cm ,且BM=4cm ,求CN 的长。

相似三角形性质定理1:相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似三角形的相似比。

【例2】 如图所示,已知在△ABC 中,AD 是高,矩形EFGH 内接于△ABC ,且边长FG 在BC 上,矩形相邻两边的比为1∶2,若BC=30cm ,AD=10cm ,求矩形EFGH 的面积。

相似三角形性质定理2:相似三角形周长的比等于相似比。

相似三角形性质定理3:相似三角形面积的比等于相似比的平方。

【例3】 如图所示,在平行四边形ABCD 中,AE ∶EB=1∶2。

(1) 求△AEF 与△CDF 的周长的比。

(2) 如果26AEF S cm ,求CDF S相似三角形的实际应用:1、解决同一时刻物高与影长的问题2、利用相似测量无法直接测量的物体(高度、宽度)3、利用相似进行图形方案设计等。

【例4】如图所示,铁道口短臂OA长为1.25米,长臂OB长为16.5米,当短臂端点A下降0.85米时,长臂端点升高多少?(杆的高度可忽略不计)【课堂练习】1、如图所示,在△ABC中,BC=12,BC边上的高为8,△ABC的内接矩形DEFG的一边EF在BC边上,两临边长DE∶EF=2∶3,求矩形的边长。

2、如图所示,在一个长为40cm,宽为30cm的长方形小操场上,王刚从A点出发,沿着A到B到C的路线以3m/s的速度跑向C地,当他出发4s后,张华有东西要交给他,就从A地出发沿王刚走的路线追赶。

当张华跑到距B地2 2 3m的D处时,他和王刚在阳光下的影子恰好重叠在同一条直线上,此时,A 处一根电线杆在阳光下的影子也恰好落在对角线AC上。

(1)求他们影子重叠时,两人相距(DE的长)多少米?(2)求张华追赶王刚的速度是多少?(精确到0.1m/s)3、如图所示,已知:△ABC中,AB=5,BC=3,AC=4,PQ∥AB,P点在AC上(与点A、C不重合),Q点在BC上。

北师大版九年级数学上册 相似三角形的性质 第1课时 课件

北师大版九年级数学上册 相似三角形的性质 第1课时 课件

(k >0), 点 D,E 在 BC 边上,点 D′,E′ 在 B′C′ 边上 .
(1)
若∠BAD
1
=
3
∠BAC

∠B′A′D′
=
1 3
∠B′A′C′
,则
AD AD
等于多少?
图4
由“两角分别相等的两个三角形相似”,可知△ABD∽△A′B′D′,
于是
AD AD
=
AB AB
k
k
0.
探究新知
如图4,已知△ABC∽△A′B′C′ ,△ABC 与△A′B′C′ 的相似比为 k
点 S 在 AB 边上,BC = 60 cm,AD = 40 cm,四边形 PQRS 是正方形.
(1)△ASR 与△ABC 相似吗?为什么?
A
解:∵ 四边形 PQRS 是正方形,
S
ER
∴ RS∥BC. ∴ ∠ASR=∠B,∠ARS=∠C. ∴△ASR∽△ABC.
B
C
PD Q
图5
典例精讲
例 如图5,AD 是△ABC 的高,点 P,Q 在BC边上,点 R 在 AC 边上,
(k >0), 点 D,E 在 BC 边上,点 D′,E′ 在 B′C′ 边上 .
(2)
若BE
=
1 3
BC

B′E′
=
1 3 B′C′
,则
AE AE
等于多少?
图4
由“两边成比例且夹角相等的两个三角形相似”,
可知△ABE∽△A′B′E′,于是
AE = AB k k 0.
AE AB
典例精讲
例 如图5,AD 是△ABC 的高,点 P,Q 在BC边上,点 R 在 AC 边上,

相似三角形的判定和性质-备战2023年中考数学考点微专题

相似三角形的判定和性质-备战2023年中考数学考点微专题

考向5.6 相似三角形的判定和性质【知识要点】1、相似三角形:两个对应角相等,对应边成比例的三角形叫做相似三角形。

说明:证两个三角形相似时和证两个三角形全等一样,通常把表示对应顶点的字母写在对应的位置上,这样便于找出相似三角形的对应角和对应边。

2、相似比:相似三角形对应边的比k,叫做相似比(或叫做相似系数)。

3、相似三角形的基本定理:平分于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似。

说明:这个定理反映了相似三角形的存在性,所以有的书把它叫做相似三角形的存在定理,它是证明三角形相似的判定定理的理论基础。

4、三角形相似的判定定理:(1)判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么就两个三角形相似。

可简单说成:两角对应相等,两三角形相似。

(2)判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似,可简单说成:两边对应成比例且夹角相等,两三角形相似。

(3)判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似,可简单说成:三边对应成比例,两三角形相似。

(4)直角三角形相似的判定定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。

说明:以上四个判定定理不难证明,以下判定三角形相似的命题是正确的,在解题时,也可以用它们来判定两个三角形的相似。

第一:顶角(或底角)相等的两个等腰三角形相似。

第二:腰和底对应成比例的两个等腰三角形相似。

第三:有一个锐角相等的两个直角三角形相似。

第四:直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。

第五:如果一个三角形的两边和其中一边上的中线与另一个三角形的两边和其中一边上的中线对应成比例,那么这两个三角形.相似。

5、相似三角形的性质:(1)相似三角形性质1:相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比。

相似三角形的性质定理(3种题型)-2023年新九年级数学核心知识点与常见题型(沪教版)(解析版)

相似三角形的性质定理(3种题型)-2023年新九年级数学核心知识点与常见题型(沪教版)(解析版)

相似三角形的性质定理(3种题型)【知识梳理】一、相似三角形性质定理1相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比. 二、相似三角形性质定理2相似三角形周长的比等于相似比. 三、相似三角形性质定理3相似三角形的面积的比等于相似比的平方.【考点剖析】题型一:相似三角形性质定理1例1.已知ABC ∆∽111A B C ∆,顶点A 、B 、C 分别与A 1、B 1、C 1对应,1132AB A B =,BE 、B 1E 1分别是它们的对应中线,且6BE =.求B 1E 1的长. 【答案】4.【解析】解:111ABC A B C ∆∆∽,BE 、11B E 分别是对应中线,1111AB BEA B E B ∴=即11362E B =,114E B =【总结】本题考查相似三角形对应中线的比等于相似比.例2.已知ABC ∆∽111A B C ∆,顶点A 、B 、C 分别与A 1、B 1、C 1对应,12AC =,119A C =,1A ∠的平分线A 1D 1的长为6,求A ∠的平分线的长. 【答案】8.【解析】解:111ABC A B C ∆∆∽,AD 、11A D 分别是A ∠、1A ∠的平分线,1111AC AD A C A D ∴=即1296AD =,8AD ∴=即A ∠的平分线的长为8.【总结】本题考查相似三角形对应角平分线的比等于相似比. 例3.求证:相似三角形对应高的比等于相似比.【解析】已知:如图,111ABC A B C ∆∆∽,且相似比为k ,AD 、11A D 分别是BC 、11B C 的高.求证:11ADkA D =.证明:111ABC A B C ∆∆∽,1B B ∴∠=∠,11ABkA B =;又AD 、11A D 分别是BC 、11B C 的高,11190BDA B D A ∴∠=∠=,111ABD A B D ∴∆∆∽,1111AB ADk A B A D ∴==.【总结】本题考查相似三角形的判定和性质. 例4.求证:相似三角形对应中线的比等于相似比.【解析】已知:如图,111ABC A B C ∆∆∽,且相似比为k ,AD 、11A D 分别是边BC 、11B C 的 中线.求证: 11ADk A D =.证明:111ABC A B C ∆∆∽,1B B ∴∠=∠,1111AB CBkA B C B ==;又AD 、11A D 分别是边BC 、11B C 的中线,12BD BC ∴=,111112B D B C =,∴11DB k D B =,1111AB BD A B B D ∴=,111ABD A B D ∴∆∆∽,1111AB ADkA B A D ∴==.【总结】本题考查相似三角形的判定和性质的运用.例5.求证:相似三角形对应角平分线的比等于相似比.【解析】已知:如图,111ABC A B C ∆∆∽,且相似比为k ,AD 、11A D 分别是BAC ∠、111B A C ∠ 的角平分线.求证:11ADk A D =.证明:111ABC A B C ∆∆∽,1B B ∴∠=∠,111BAC B A C ∠=∠,11ABkA B =;又AD 、11A D 分别是BAC ∠、111B A C ∠的角平分线,11111111,22BAD BAC B A D B A C ∴∠=∠∠=∠,111BAD B A D ∴∠=∠,111ABD A B D ∴∆∆∽,1111AB ADk A B A D ∴==.【总结】本题考查相似三角形的判定和性质.例 6.如图,ABC ∆和111A B C ∆中,AD 和BE 是ABC ∆的高,11A D 和11B E 是111A B C ∆的高,且1C C ∠=∠,1111AD ABA D AB =. 求证:1111AD BEA DB E =【解析】AB C D EA 1E 1D 1 C 1B 1证明:1111AB ADA B A D =,又111ADB A D B ∠=∠,111ABD A B D ∴∆∆∽,111ABD A B D ∴∠=∠,又1C C ∠=∠,111ABC A B C ∴∆∆∽,又BE 、11B E 分别是ABC ∆、111A B C ∆的高,1111BE AB E B A B ∴=,1111BE ADE B A D ∴=.【总结】本题考查相似三角形的判定和性质的综合运用.例7.如图,D 是ABC ∆的边BC 上的点,BAD C ∠=∠,BE 是ABC ∆的角平分线,交AD 于点F ,1BD =,3CD =,求BF :BE .【解析】解:BE 是ABC ∆的角平分线,∴ABF EBC ∠=∠,又BAD C ∠=∠,ABF CBE ∴∆∆∽,AB BFCB BE ∴=,又BAD C ∠=∠,ABD ABC ∠=∠BAD BCA ∴∆∆∽,AB BD BC BA ∴=,14AB AB ∴=,2AB ∴=,12AB BC ∴=,1:2BF BE ∴=.【总结】本题考查相似三角形的判定和性质的综合运用.例8.如图,在ABC ∆中,矩形DEFG 的一边DE 在BC 边上,顶点G 、F 分别在AB 、AC 边上,AH 是BC 边上的高,AH 与GF 交于点K .若32AH cm =,48BC cm =,矩形DEFG 的周长为76cm ,求矩形DEFG 的面积.【答案】2360cm .AB C DEFABC D EFGH K【解析】解:设DG xcm =,()38FG x cm=−矩形DEFG ,//90GF BC GDB ∴∠=,,GF AGBC AB ∴=,又AH 是高,90AHB ∴∠=,GDB AHB ∴∠=∠//DG AH ∴,DG BG AH AB ∴=,1DG GFAH BC ∴+=,3813248x x −∴+=,20x ∴=,∴20DG cm =,18FG cm =,2360DEFG S cm ∴=矩形. 【总结】本题考查三角形一边的平行线定理,矩形的周长面积等知识.例9.如图,正方形DEFG 的边EF 在ABC ∆的边BC 上,顶点D 、G 分别在边AB 、AC 上,AH 是ABC ∆的高,BC = 60厘米,AH = 40厘米,求正方形DEFG 的边长.【答案】24.【解析】设正方形EFGD 的边长为x ,//DG BC ,DG AD APBC AB AH ∴==.406040x x −∴=,24x ∴=,∴正方形EFGD 的边长为24.【总结】本题考查三角形内接正方形的相关知识,主要还是通过比例相等来列式建立关系. 例10.在锐角∆ABC 中,矩形DEFG 的顶点D 在AB 边上,顶点E 、F 在BC 边上,顶点G 在AC 边上,如果矩形DEFG 的长为6,宽为4,设底边BC 上的高为x ,∆ABC 的面积为y ,求y 与x 的函数关系式.ABCDEF GH P【答案】23(4)4x y x x =>−.【解析】解:如图, 矩形DEFG ,//90GD BC DEC ∴∠=,,GD AD BC AB ∴=.又 AH 是高,90AHC ∴∠=. DEC AHC ∴∠=∠, //DE AH ∴,DE BDAH AB ∴=, 1DG DEBC AH ∴+=, 641BC x ∴+=,64xBC x ∴=−,又12ABC S y BC AH ∆==,∴()2344x y x x =>−.【总结】本题考查三角形一边的平行线定理,矩形的面积等知识.题型二:相似三角形性质定理2例11.若ABC ∆∽DEF ∆,ABC ∆与DEF ∆的相似比为1:2,则ABC ∆与DEF ∆的周长比为( )(A )1:4 (B )1:2 (C )2:1 (D )1:2【答案】B【总结】相似三角形的周长比等于相似比.例12.已知ABC ∆∽111A B C ∆,顶点A 、B 、C 分别与A 1、B 1、C 1对应,它们的周长分别为48和60,且12AB =,1125B C =,求BC 和A 1B 1的长.【答案】112015BC A B ==,.【解析】解:111ABC A B C ∆∆∽,1111111ABC A B C C AB CBC A B C B ∆∆∴==;又111484605ABC A B C C C ∆∆==,∴1120,15BC A B ==.【总结】本题考查相似三角形的性质.例13.如果两个相似三角形的最长边分别为35厘米和14厘米,它们的周长相差60厘米,那么大三角形的周长是.【答案】100cm .【解析】两三角形的相似比为5:2,则周长比为5:2,设大三角形周长为5acm ,小三 角形周长为2acm ,则5260a a −=,所以20a =,所以大三角形的周长为100cm . 【总结】相似三角形的周长比等于相似比.例14.如图,在ABC ∆中,12AB =,10AC =,9BC =,AD 是BC 边上的高.将ABC ∆沿EF 折叠,使点A 与点D 重合,则DEF ∆的周长为.【答案】312.【解析】由折叠得EF 垂直平分AD ,AD 是BC 上的高,ABCD EF//EF BC ∴,AEF ABC ∴∆∆∽,12AEF ABC C C ∆∆∴=,9101231ABC C ∆=++=,312AEF C ∆∴=.【总结】本题考查相似三角形的性质和判定.例15.如图,梯形ABCD 的周长为16厘米,上底3CD =厘米,下底7AB =厘米,分别延长AD 和BC 交于点P ,求PCD ∆的周长.【答案】152cm .【解析】解:梯形ABCD ,//CD AB ∴,AEF ABC ∴∆∆∽,37PDC PAB C CD C AB ∆∆∴==,即327PDC PDC ABCD C C C CD ∆∆=+−梯形, 31667PDC PDC C C ∆∆∴=+−,152PDC C cm ∆∴=.【总结】本题考查相似三角形的性质和判定.例16.如图,在ABC ∆中,=90C ∠︒,5AB =,3BC =,点P 在AC 上(与点A 、C 不重合),点Q 在BC 上,PQ //AB .当PQC ∆的周长与四边形P ABQ 的周长相等时,求CP 的长.【答案】247.【解析】解:CPQ PABQC C ∆=四边形,ABCD PABCPQCP CQ PQ BQ PQ AP AB ∴++=+++, CP CQ BC CQ AC CP AB ∴+=−+−+, 5AB =,3BC =,90C ∠=,4AC ∴=,345CP CQ CQ CP ∴+=−+−+,6CP CQ ∴+=,//PQ AB ,CP CQCA CB ∴=,∴643CP CP −=,247CP =. 【总结】本题考查了三角形一边的平行线性质,主要考查了学生的推理能力.题型三:相似三角形性质定理3例17.(1)如果把一个三角形的三边的长扩大为原来的100倍,那么这个三角形的面积扩大为原来的倍;(2)如果一个三角形保持形状不变但面积扩大为原来的100倍,那么这个三角形的边长扩大为原来的倍.【答案】(1)10000;(2)10.【总结】相似三角形的面积比等于相似比的平方.例16.两个相似三角形的面积分别为5cm 2和16cm 2,则它们的对应角的平分线的比为( )(A )25:256(B )5:16(C )5:4(D )以上都不对.【答案】C【解析】相似三角形对应角平分线的比等于相似比,对应面积的比等于相似比的平方. 【总结】本题考查相似三角形的性质.例18.如图,点D 、E 分别在ABC ∆的边AB 和AC 上,DE //BC ,6DE =,9BC =,16ADE S ∆=.求ABC S ∆的值.【答案】36.ABCD E【解析】解://DE BC ,ADE ABC ∴∆∆∽,226499ADE ABC S DE S BC ∆∆⎛⎫⎛⎫∴=== ⎪ ⎪⎝⎭⎝⎭,36ADE S ∆∴=. 【总结】本题考查相似三角形的判定及性质.例19.如图,在ABC ∆中,D 是AB 上一点,若B ACD ∠=∠,4AD cm =,6AC cm =,28ACD S cm ∆=,求ABC ∆的面积.【答案】218cm .【解析】解:B ACD ∠=∠,A A ∠=∠,ACD ABC ∴∆∆∽,222439ACD ABC S AD S AC ∆∆⎛⎫⎛⎫∴=== ⎪ ⎪⎝⎭⎝⎭, 又28ACD S cm ∆=,218ABC S cm ∆∴=.【总结】本题考查相似三角形的判定及性质.例20.如图,在ABC ∆中,点D 、E 在AB 、AC 上,DE //BC ,ADE ∆和四边形BCED 的面积相等,求AD :BD 的值.【答案】21+.ABCDABCD E【解析】解://DE BC ,ADE ABC ∴∆∆∽,2ADE ABC S AD S AB ∆∆⎛⎫∴= ⎪⎝⎭,ADE BCEDS S ∆=四边形,12ADE ABC S S ∆∆∴=,12AD AB ∴=,12121AD DB ∴==+−.【总结】本题考查相似三角形的判定及性质.例21.如图,在ABC ∆中,AD BC ⊥,BE AC ⊥,D 、E 分别为垂足.若60C ∠=︒,1CDE S ∆=,求四边形DEAB 的面积.【答案】3. 【解析】解:AD BC BE AC ⊥⊥,,90CDA BEC ∴∠=∠=.90CDA BEC ∴∠=∠=,CBE CAD ∴∆∆∽,CD CACE CB ∴=.90CDA BEC ∴∠=∠=,CBE CAD ∴∆∆∽,CD CACE CB ∴=,DCE ACB ∴∆∆∽,2DCE ACB S CD S CA ∆∆⎛⎫∴= ⎪⎝⎭,又60C ∠=, 30CBE CAD ∴∠=∠=,12CD CA =,14DCE ACB S S ∆∆∴=,13DCE BDEA S S ∆∴=四边形,1CDE S ∆=,3DEAB S ∴=四边形.【总结】本题考查相似三角形的性质及判定,直角三角形的性质等知识.例22.如图,Rt ABC ∆中,点D 是BC 延长线上一点,直线EF //BD 交AB 于点E , 交AC 于点G ,交AD 于点F ,若13AEG EBCG S S ∆=四边形,求CFAD的值.A B CDEF【答案】21.【解析】解://EF BD ,AEG AEC ∴∆∆∽,AE AFAB AD ∴=,2AEG ABC S AE S AB ∆∆⎛⎫∴= ⎪⎝⎭,13AEG EBCGS S ∆=四边形,14AEG ABC S S ∆∆∴=,12AE AF AB AD ∴==,Rt ABC ∆,90ACD ACB ∴∠=∠=,CF ∴是中线,12CF AD ∴=,12CF AD ∴=.【总结】本题考查相似三角形的性质,直角三角形的性质,三角形一边的平行线等知识.【过关检测】一、单选题1.(2022秋·上海浦东新·九年级校考期中)两个相似三角形的对应角平分线的比为1:4,则它们的周长比为( ) A .1:4 B .1:2C .1:16D .以上答案都不对【答案】A【分析】两个相似三角形的对应边的比,对应角平分线的比,对应中线的比,对应高线的比,周长的比都等于相似比.【详解】两个相似三角形的对应角平分线的比为1:4,∴两个相似三角形的相似比为1:4, ∴周长的比为1:4.ABCDEFG故选A .【点睛】本题考查相似三角形的性质,解题的关键是熟记相似三角形的性质并灵活运用.在ABC 的边,ABC 的面积是A .4B .8【答案】A【分析】过点A 作AH BC ⊥于H ,交GF 于M ,如图,先利用三角形面积公式计算出8AH =,设正方形DEFG 的边长为x ,则,,8GF x MH x AM x ===−,再证明AGF ABC ∽,则根据相似三角形的性质得方程,然后解关于x 的方程即可.【详解】解:如图,过点A 作AH BC ⊥于H ,交GF 于M ,∵ABC 的面积是32,8BC =, ∴2132BC AH ⋅=,∴8AH =,设正方形DEFG 的边长为x ,则,,8GF x MH x AM x ===−, ∵GF BC ∥,∴AGF ABC ∽, ∴GF AMBC AH = , 888x x −∴= ,解得∶4x =,即这个正方形的边长是4. 故选:A .【点睛】本题考查了相似三角形的判定与性质及正方形的性质,添加合适的辅助线是解题的关键. 3.(2022秋·上海嘉定·九年级校考期中)已知两个相似三角形的相似比为49:,那么它们的面积比为( ) A .23: B .818:C .49:D .1681:【答案】D【分析】根据相似三角形的面积比等于相似比的平方,即可得到答案.【详解】解:两个相似三角形的相似比为49:, ∴它们的面积比1618:故选D .【点睛】本题考查了相似三角形的性质,熟练掌握相似三角形的面积比等于相似比的平方是解题关键. 九年级统考期中)已知ABC 的三边长分别为,DEF 的一边长,如果这两个三角形相似,那么DEF 的另两边长可能是(【答案】B【分析】根据三边对应成比例的三角形相似,即可求得.注意DEF 中为5cm 边长的对应边可能是6cm 或7.5cm 或9cm ,所以有三种情况.【详解】解:设DEF 的另两边为cm,cm x y , 若DEF 中为5cm 边长的对应边为6cm , 则:567.59x y==,解得:254x =,152y =; 若DEF 中为5cm 边长的对应边为7.5cm ,则:57.569x y ==,解得:4x =,6y =;若DEF 中为5cm 边长的对应边为9cm , 则:5967.5x y ==,解得:103x =,256y =; 结合选项可得B 选项可选. 故选:B .【点睛】此题考查了相似三角形的判定:三边对应成比例的三角形相似.解此题的关键要注意DEF 中为5cm 边长的对应边不确定,答案不唯一,要仔细分析,小心别漏解.九年级上海市华东模范中学校考期中)如图,在ABC 中,:ADEABCSS为(A .3:5 【答案】C【分析】根据DE BC ∥可知ADEABC ,由:3:2AD DB =可知:3:5AD AB =,即相似比为3:5,再利用面积比是相似比的平方,即可判断求解. 【详解】解:∵DE BC ∥, ∴ADEABC ,∵:3:2AD DB =, ∴:3:5AD AB =,2239525ADE ABCSAD SAB ⎛⎫⎛⎫∴=== ⎪ ⎪⎝⎭⎝⎭, 故选:C .【点睛】本题考查了相似三角形的判定与性质.用到的知识为:平行于三角形一边的直线与其他两边所截的三角形与原三角形相似,相似三角形对应边的比相等,都等于相似比,相似三角形面积的比等于相似比的平方.DEF 的最短边长为,那么DEF 的周长等于(126【答案】D【分析】由相似三角形的性质:周长的比等于相似比,求出相似比即可求得结果. 【详解】ABC DEF ∽,∴相似比为3193k ==,13ABC DEFC C∴=,33(356)42DEFABCCC ∴==⨯++=;故选:D .【点睛】本题考查了相似三角形的性质,掌握相似三角形周长的比等于相似比是关键.是ABC 的重心,四边形与ABC 面积的比值是(【答案】B【分析】连接DE ,根据三角形中位线定理以及中线的性质可得1,2DE BC DE BC =∥,12ABDABCS S =,12BDEABDSS =,从而得到ADE ACB △△∽,进而得到221112,34AED ABCSD E E D S B G C G BD CE ⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭==,继而得到13DEGBDESS =,14ADEABCSS =,可得1116212DEGABCABCSS S =⨯=,再由ADEDEGAEGD S SS=+四边形,即可.【详解】解:如图,连接DE ,∵点G 是ABC 的重心,∴点D ,E 分别为,AC AB 的中点,∴1,2DE BC DE BC =∥,12ABDABCS S =,12BDEABDSS =,∴ADE ACB △△∽, ∴12DG EG DE BG CG BC ===, ∴221112,34AED ABCSD E E D S B G C G BD CE ⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭==, ∴13DEGBDES S =,14ADE ABCSS =,∴111326DEGABDABDS S S =⨯=, ∴1116212DEG ABCABCSS S =⨯=,∴1114123ADEDEGABCABCABCAEGD S SS S S S =+=+=四边形,即四边形AEGD 与ABC 面积的比值是13.故选:B【点睛】本题主要考查了三角形的重心,相似三角形的判定和性质,三角形中位线定理,熟练掌握三角形的重心,相似三角形的判定和性质,三角形中位线定理是解题的关键. 二、填空题8.(2022秋·上海长宁·九年级校考期中)已知ABC 与DEF 相似,且ABC 与DEF 的面积比为1:4,若DEF 的周长为16,那么ABC 的周长等于________.【答案】8【分析】根据相似三角形的面积的比等于相似比的平方先求出ABC 与DEF 的相似比,然后根据相似三角形的周长的比等于相似比解答即可.【详解】解:∵相似三角形ABC 与DEF 面积的比为1:4, ∴它们的相似比为1:2,∴ABC 与DEF 的周长比为1:2, ∵DEF 的周长为16, ∴ABC 的周长等于8, 故答案为:8.【点睛】本题主要考查了相似三角形面积的比等于相似比的平方,周长的比等于相似比的性质,熟记性质是解题的关键.9.(2022秋·上海奉贤·九年级校联考期中)已知ABC ∽111A B C △,顶点A 、B 、C 分别与1A 、1B 、1C 对应,AB :113A B =:4,BE 、11B E 分别是它们的对应角平分线,则BE :11B E =______. 【答案】3:4【分析】根据相似三角形对应角平分线的比都等于相似比解答即可. 【详解】解:ABC ∽111A B C △,BE ∴:11B E AB =:113A B =:4,故答案为:3:4.【点睛】本题考查的是相似三角形的性质,掌握相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比是解题的关键.10.(2022秋·上海浦东新·九年级校考期中)如图,DE BC ∥,:2:3AE EC =,则:OE OB =________.【答案】2:5【分析】根据:2:3AE EC =可求出:2:5AE AC =,再根据三角形相似的性质即可求解. 【详解】解:∵:2:3AE EC =,∴25AE AC =,∵DE BC ∥,∴25DE AE BC AC ==,且DEO CBO △∽△, ∴25OE DE OB CB ==, 故答案为:2:5.【点睛】本题主要考查比例的性质,相似三角形的性质,理解平行线的性质,相似三角形的性质是解题的关键.11.(2022秋·上海松江·九年级校考期中)已知ABC 和DEF 相似,对应边AB 与DE 之比为3:4,如果DEF 的周长为24,那么ABC 的周长是___________.【答案】18【分析】根据相似三角形的周长之比等于相似比得:3:4ABCDEFCC=,又因为DEF 的周长是24,再建立方程即可.【详解】解:∵ABC 和DEF 相似,对应边AB 与DE 之比为3:4, ∴:3:4ABCDEFCC=,∵DEF 的周长是24, ∴:243:4ABCC=∴ABC 的周长是18, 故答案为:18.【点睛】本题考查了相似三角形的性质,解题的关键是掌握相似三角形的周长之比等于相似比. 12.(2023·上海长宁·统考一模)如图,在ABC 中,90C ∠=︒,正方形EFGH 的边FG 在ABC 的边AB 上,顶点E 、H 分别在边AC 、BC 上,如果其面积为24,那么AF BG ⋅的值为______.【答案】24【分析】通过证明Rt Rt AFE HGB ∽,则AF BG EF HG ⨯=⨯,即可得到答案. 【详解】90C ∠=︒,正方形EFGH 的四个顶点在三角形的边上, 90A B ∴∠+∠=, 90B BHG ∠+∠=,Rt Rt AFE HGB ∴∽, =24AF BG EF HG ∴⨯=⨯.故答案为24.【点睛】本题主要涉及三角形相似的判定和相似三角形的性质应用,掌握相似三角形的判定和性质是解题的关键.,如果ABC 三边长分别是DEF 的两边长为【分析】根据相似三角形的性质列出比例式,代入数据即可求解.【详解】解:∵ABC DEF △△∽,∵ABC ,2,2,DEF 的两边长为1x∴21x ==,解得:x所以DEF ..【点睛】本题考查了相似三角形的性质,求出相似比是解题关键.14.(2022秋·上海宝山·九年级统考期中)已知111ABC A B C :△△,顶点A 、B 、C 分别与1A 、1B 、1C 对应,11:3:5AB A B =,E 、1E 分别是边AC 、11AC 的中点,如果1BE =,那么11B E 的长为________. 【答案】53/213【分析】根据相似三角形对应中线的比等于相似比列比例式求解即可.【详解】解答:解:∵11111:35ABC A B C AB A B =∽,:,∴对应中线BE 、11B E 的比值为35:,∴11135B E =::, ∴1153B E =. 故答案为:53.【点睛】本题考查了相似三角形的性质,相似三角形对应中线的比等于相似比. 15.(2022秋·上海杨浦·九年级统考期中)如果两个相似三角形的面积比为3:4,那么它们对应高之比为__________.2 【分析】根据相似三角形的性质,两个相似三角形的面积比等于相似比的平方,因为两个相似三角形的面积比为3:42;再结合两个相似三角形对应高的比等于相似比即可得到答案. 【详解】解:两个相似三角形的面积比为3:4,∴2,∴2,2.【点睛】本题考查相似三角形的性质应用,熟练掌握形式三角形面积比等于相似比的平方,相似三角形对应高的比等于相似比是解决问题的关键. 16.(2023·上海·一模)如果ABC ∽DEF ,且ABC 的三边长分别为3、4、5, DEF 的最短边长为6,那么DEF 的周长等于________.【答案】24【分析】先设DEF 的周长等于c ,再根据相似三角形周长的比等于相似比即可求出c 的值.【详解】解;设DEF 的周长等于l ,∵ABC ∽DEF ,ABC 的三边长分别为3、4、5,DEF 的最短边长为6, ∴33546c ++=,解得24c = .故答案为:24.【点睛】本题考查的是相似三角形的性质,即相似三角形周长的比等于相似比. 17.(2023·上海黄浦·统考一模)已知ABC 的三边长分别为2、3、4,DEF 与ABC 相似,且DEF 周长为54,那么DEF 的最短边的长是______.【答案】12 【分析】先计算出ABC 的周长,进而得出相似比为16∶,进而得出答案. 【详解】解:∵ABC 的三边长分别为2、3、4,∴ABC 的周长为:9∵DEF 与ABC 相似,且DEF 周长为54,∴ABC 与DEF 的周长比为95416=∶∶, ∴ABC 与DEF 的相似比为16∶, 设DEF 的最短边的长是x ,则:216x =∶∶,解得∶12x =.故答案为∶12.【点睛】本题主要考查相似三角形的性质,掌握相似三角形的周长比等于相似比是解题的关键.18.(2023·上海宝山·一模)已知一个三角形的三边之比为2:3:4,与它相似的另一个三角形ABC 的最小边长为4厘米,那么三角形ABC 的周长为 _____厘米.【答案】18【分析】相似三角形的对应边的比相等,因而与已知三角形相似的三角形的三边的比也是2:3:4,即可求得三角形的三边,从而求得周长.【详解】解:所求三角形的三边的比是2:3:4,设最短边是2x 厘米,则24=x ,解得2x =,因而另外两边的长是36x =厘米,48x =厘米.则三角形的周长是68418++=(厘米).故答案为:18.【点睛】本题考查了相似三角形的性质,相似三角形对应边的比相等,由此得到所求三角形的三边的比也是2:3:4,是解题关键. 19.(2022·上海·九年级专题练习)两个相似三角形的面积之比是 9:25, 其中较大的三角形一边上的高是 5 厘米, 那 么另一个三角形对应边上的高为_________厘米.【答案】3【分析】把面积之比转换成相似比,在通过比例求出高 【详解】∵两个三角形面积比为9:25∴两个三角形相似比为3:5设:另一三角形对应边上的高为x∴355x =,解得x=3 故答案为:3【点睛】本题考查相似比和面积比的应用,掌握他们的区别是本题关键. 20.(2023·上海徐汇·统考一模)如图,在Rt ABC △中,90C ∠=︒,2AC =,1BC =,正方形DEFG 内接于ABC ,点G 、F 分别在边AC 、BC 上,点D 、E 在斜边AB 上,那么正方形DEFG 的边长是______.【答案】【分析】过点C 作C M A B ⊥于点M ,交GF 于点N ,首先由勾股定理得出AB 的长,由面积法即可求出CM 的长,可证得CGF CAB ∽,再根据相似三角形的性质,即可得出答案.【详解】解:如图:过点C 作C M A B ⊥于点M ,交GF 于点N ,Rt ABC △中,90C ∠=︒,2AC =,1BC =,AB ∴,1122ABC S AC BC AB CM =⋅=⋅△,∴AC BC CM AB ⋅∴===, ∵正方形DEFG 内接于ABC ,GF EF MN ∴==,GF AB ∥,CGF CAB ∴△∽△,CN GF CM AB ∴=,EF −=,解得:EF =,故答案为:.【点睛】本题考查的是相似三角形的判定和性质、正方形的性质、勾股定理等知识;正确作出辅助线、灵活运用相似三角形的判定定理和性质定理是解题的关键. 21.(2023·上海虹口·校联考二模)如图,在ABC 中,点D 、E 分别在边BC AC 、上,ABE C ∠=∠,DE AB ∥,如果6AB =,9AC =,那么:BDE CDE S S △△的值是______.【答案】4:5【分析】根据已知证明ABE ACB ∽,得出4AE =,进而得出5EC =,根据DE AB ∥,根据平行线分线段成比例,得出45AE BD EC DC ==,即可求解. 【详解】解:∵BAE CAB ∠=∠,ABE C ∠=∠,∴ABE ACB ∽,∵6AB =,9AC =,∴AB AE AC AB =∴24AB AE AC ==,∴945EC AC AE =−=−=,∵DE AB ∥,∴45AE BD EC DC == ∴:BDE CDE S S △△=::4:5BD DC AE EC ==,故答案为:4:5.【点睛】本题考查了相似三角形的性质与判定,平行线分线段成比例,熟练掌握相似三角形的性质与判定是解题的关键.22.(2023·上海·一模)如果梯形的一条对角线把梯形分成的两个三角形相似,那么我们称该梯形为“优美梯形”.如果一个直角梯形是“优美梯形”,它的上底等于2,下底等于4,那么它的周长为______.【答案】8+8【分析】根据 “优美梯形”的定义,得到ABD BDC ∽△△,从而得到90CBD BAD ∠=∠=︒,AD AB BD BC BD CD ==,推出2BD AB CD =⋅,算出BD =再根据勾股定理,得到AD 、BC 的长,即可得到该直角梯形的周长.【详解】解:根据题意,作图如下,ABCD 为直角梯形,90BAD ADC ∴∠=∠=︒,90ABD ADB ∴∠+∠=︒,90ADB BDC ∠+∠=︒,ABD BDC ∴∠=∠,直角梯形ABCD 是“优美梯形”,ABD BDC ∴∽,90CBD BAD ∴∠=∠=︒,AD AB BD BC BD CD ==,2BD AB CD ∴=⋅,2AB =,4CD =,BD ∴,在Rt ABD 中,2AD ,在Rt BCD △中,BC =∴该梯形的周长2428AB BC CD DA =+++=++=+故答案为:8+【点睛】本题考查了直角梯形的性质,相似三角形的性质,勾股定理,熟练掌握相似三角形的性质是解题关键. 23.(2022秋·上海奉贤·九年级校联考期中)如图,在梯形ABCD 中,AD BC ∥,AC 与BD 相交于点O ,如果2ABC ACD S S =,那么COD S △:ABC S =______.【答案】1:3/13【分析】首先根据2ABC ACD S S =,可得AD :1BC =:2;然后根据AOD ∴∽COB ,可得AO :OC OD =:OB AD =:1BC =:2,进而可得AOD S:1BOC S =:4,AOD S :1AOB S =:2,AOD S :1OCD S =△:2,设AOD S k =,分别表达OCD S 和ABC S 进而可得结论.【详解】解:在梯形ABCD 中,//AD BC ,2ABC ACD S S =,AD ∴:1BC =:2;//AD BC ,AOD ∴∽COB ,AO ∴:OC OD =:OB AD =:1BC =:2,AOD S∴:1BOC S =:4,AOD S :1AOB S =:2,AOD S :1OCD S =△:2, 设AOD S k=,则4BOC S k =,2AOB OCD S S k ==, 6ABC AOB BOCS S S k ∴=+=, COD S ∴:2ABC S k =:61k =:3.故答案为:1:3.【点睛】此题主要考查了相似三角形的判定与性质的应用,以及梯形的特征和应用,要熟练掌握.三、解答题24.(上海·九年级校考阶段练习)如图,已知梯形ABCD ,AB ∥DC ,△AOB 的面积等于9,△AOD 的面积等于6,AB =7,求CD 的长.【答案】143【详解】试题分析:由题意易得△COD ∽△AOB ,由此可得:CD DO AB BO =;由△AOB 的面积等于9,△AOD 的面积等于6,可得:23DO BO =,再结合AB=7即可求得CD 的长.试题解析:∵AB ∥DC ,∴△COD ∽△AOB , ∴CD DO AB BO =,∵△AOB 的面积等于9,△AOD 的面积等于6, ∴23DO BO =, ∴23CD DO AB BO ==, 又∵AB =7, ∴273CD =, ∴CD =143.【答案】20平方厘米【分析】根据两个相似三角形的面积比等于对应边的比的平方,结合面积和即可求解.【详解】解:设两个三角形的面积分别为x ,y ,则有22365x y x y ⎧⎛⎫=⎪ ⎪⎨⎝⎭⎪+=⎩,解得2045x y =⎧⎨=⎩;答:较小三角形面积为20平方厘米.【点睛】本题考查的是相似三角形的性质,解题的关键是掌握相似三角形的面积比等于对应边的比的平方.26.(2020秋·上海宝山·九年级统考阶段练习)如图,正方形DEFG 的边EF 在ABC ∆的边上,顶点D 、G 分别在边AB 、AC 上,已知ABC ∆的边15BC =,高10AH =,求:正方形DEFG 的边长和面积.【答案】6,36【分析】由正方形的性质可得DG //BC ,不难证明ADG △∽ABC ,即DG AM BC AH =,设正方形的边长为x ,分别表示出对应边的长度并代入DG AM BC AH =求解,即可得出正方形的边长,即可得出正方形的面积. 【详解】设正方形的边长为x ,正方形DEFH ,AH ⊥BC ,∴DG=GF=MH=x ,DG //BC ,∴ADG=B ∠∠,AM=10-x ,在ADG △与ABC 中,ADG=BAC BAC B ∠=∠⎧⎨∠∠⎩,∴ADG △∽ABC ,∴DG AM BC AH =,∴101510x x −=, 解得:x=6,S=6×6=36.答:正方形的边长为6,面积为36.【点睛】本题主要考查正方形的性质以及相似三角形的判定与性质,设正方形的边长为x ,根据相似比等于高之比列方程求解是解题关键.27.(上海·九年级阶段练习)如图,△ABC是一块锐角三角形的材料,边BC=120mm,高AD=80mm,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少mm.【答案】48mm【分析】设正方形EF=EG=ID=x,根据正方形的性质,得到EF∥BC,△AEF∽△ABC,列出比例式EF AIBC AD=,代入计算即可.【详解】∵四边形EFHG是正方形,AD是高,∴ EF∥BC,四边形EGDI是矩形,∴ EG=ID,设正方形EF=EG=ID=x,∴△AEF∽△ABC,∴EF AI BC AD=,∵ BC=120mm,高AD=80mm,∴80 12080x x−=,解得x=48,故正方形的边长为48mm.【点睛】本题考查了正方形的性质,三角形相似的判定和性质,熟练掌握三角形相似的性质是解题的关键.。

人教版九年级下册数学 相似三角形的性质与判定

人教版九年级下册数学   相似三角形的性质与判定

人教版九年级下册数学相似三角形的性质与判定归纳总结:1.平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段的比相等.2.平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段的比相等;平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似.3.相似三角形的判定:①如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似;②如果两个三角形的三组对应边的比相等,那么这两个三角形相似;③如果一个三角形的两个角与另外一个三角形的两个角对应相等,那么这两个三角形相似.4. 相似三角形的性质:(1)相似三角形的面积比等于 .(2)相似三角形对应边,对应角。

(3)相似三角形的对应线段(对应高、对应中线、对应角平分线)之比和周长之比都等于 .5. 相似三角形的概念:对应角、对应边的两个三角形叫做相似三角形,对应边之比叫做 .当相似比为1时,则两个三角形称 .6.四种相似三角形模型:A字、8字、K字、重叠型.1. 如图,点D在△ABC的边AC上,若CD=2,AC=6,且△CDB∽△CBA,则BC的值为.2. 如图,已知△ACD∽△ADB,AC=4,AD=2,则AB的长为.3. 如图,已知△ABC是面积为的等边三角形,△ABC∽△ADE,AB=2AD,∠BAD=45°,AC与DE相交于点F,则点D 到线段AB的距离等于(结果保留根号).4. 如图,在Rt△ABC中,∠C=90°,CD⊥AB于D,且AD:BD=9:4,则AC:BC的值为.5. 如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:25,则S△BDE与S△CDE的比是.6. 如图,矩形EFGH内接于△ABC,且边FG落在BC上,若AD⊥BC,BC=3,AD=2,EF=EH,那么EH的长为.7. 如图,在Rt△ABC中,∠BAC=90°,AD⊥BC,若AB=2,BC=4.则DC的长度为.8. 如图,在直角坐标系xOy中,A(﹣4,0),B(0,2),连接AB并延长到C,连结CO,若△COB∽△CAO,则点C 的坐标为.9. 如图,矩形ABCD中,AB=,BC=,点E在对角线BD上,且BE=1.8,连接AE并延长交DC于点F,则= .10.如图,在△ABC中,已知D、E分别是AB、AC边上的点,且AD=3,AB=8,AC=10,若△ADE与△ABC相似,则AE的长为.11. 如图,正方形ABCD中,AB=2,E为BC中点,两个动点M和N分别在边CD和AD上运动且MN=1,若△ABE与以D、M、N为顶点的三角形相似,则DM为.12. 如图,△ABC中,AC=6,AB=4,点D与点A在直线BC的同侧,且∠ACD=∠ABC,CD=2,点E是线段BC延长线上的动点,当△DCE和△ABC相似时,线段CE的长为13. 如图,在正方形ABCD中,E、F分别是边AD、CD上的点,AE=ED,DF=DC,连接EF并延长交BC的延长线于点G.(1)求证:△ABE∽△DEF;(2)若正方形的边长为4,求BG的长.14. 如图,在△ABC中,∠C=90°,BC=16cm,AC=12cm,点P从B出发沿BC以2cm/s的速度向C移动,点Q从C出发,以1cm/s的速度向A移动,若P、Q分别从B、C同时出发,设运动时间为ts,当为何值时,△CPQ与△CBA相似?15. 如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.动点M从点B出发,在BA边上以每秒3cm的速度向定点A运动,同时动点N从点C出发,在CB边上以每秒2cm的速度向点B运动,且MG⊥BC,运动时间为t秒(0<t<),连接MN.(1)用含t的式子表示MG;(2)当t为何值时,四边形ACNM的面积最小?并求出最小面积;(3)若△BMN与△ABC相似,求t的值.16. 如图所示,Rt△ABC中,已知∠BAC=90°,AB=AC=2,点D在BC上运动(不能到达点B,C),过点D作∠ADE=45°,DE交AC于点E.(1)求证:△ABD∽△DCE;(2)当△ADE是等腰三角形时,求AE的长.。

数学九年级下册《相似三角形的性质(1)》教案

数学九年级下册《相似三角形的性质(1)》教案

的关系.
一、复习回顾 相似三角形的判定方法有哪些?相似三角形有哪些性质? 三角形有哪些相关的线段? 二、共同探究,获取新知 已知:如图,△ABC ∽△A ′B ′C ′,它们的相似比为k ,AD ,A ′D ′是对应高.求证:AD A ′D ′=AB A ′B ′=k. 师:这个题目中已知了哪些条件? 生:△ABC 和△A ′B ′C ′相似,这两个三角形的相似比是k ,AD ,A ′D ′分别是它们的高.学生思考后回答:因为△ABC 和△A ′B ′C ′相似,由相似三角形的对应角相等,所以∠B =∠B ′,∠ADB =∠A ′D ′B ′=90°.根据两角对应相等的两个三角形相似得到△ABD 和△A ′B ′D ′相似.
学生写出证明过程.
如图,△ABC ∽△A ′B ′C ′,它们的相似比为k ,AD ,A ′D ′是对应的中线
求证:AD A ′D ′=AB
A ′
B ′=k. 活动2.已知:如图,△AB
C ∽△A ′B ′C ′,它们的相似比为k ,A
D ,A ′D ′分别是∠BAC 和∠B ′A ′C ′的平分线. 求证:AD A ′D ′=AB A ′B ′=k. 于是我们就得到了相似三角形的一个性质定理. 定理1 相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比. 例 如图,AD 是△ABC 的高,AD =h ,点R 在AC 边上,点S 在AB 边上,SR ⊥AD ,垂足为E.
当SR =12BC 时,求DE 的长.如果SR =13
BC 呢? 作业:教科书P39, 2,。

九年级数学相似三角形性质

九年级数学相似三角形性质

3.如图,梯形ABCD中AB∥CD, AB=a, BD=b, CD=c,若∠DBC=∠A,则a,b,c使方程 aX2-2bX+c=0有( )D C
A.没有实数根 B.有两个相等 实根 C.有两个不等 实根 D.以上都不对
A B
3.如图,梯形ABCD中AB∥CD, AB=a, BD=b, CD=c,若∠DBC=∠A,则a,b,c使方程 aX2-2bX+c=0有( ) D C c
相似三角形
开封市金明区杏花营中学 李晓淑
定义: 对应角相等,对应边成比例的三角形叫相似 三角形. 三角形相似判定: 1.对应角相等,对应边成比例。 2.预备定理:平行于三角形一边的直线和 其他两边(或两边的延长线)相交,所构 成的三角形与原三角形相似。 3.判定定理1:两角对应相等,两三角形相似。 4.判定定理2:两边对应成比例且夹角相等, 两三角形相似。 5.判定定理3:三边对应成比例,两三角形相似。
2.过矩形ABCD的顶点A作对角线AC的垂线 分别与CB,CD的延长线交于E,F.则图中与 C △ABC相似的三角形( )。
A.4个 B. 5个 C. 6个 D. 7个
C D
B A F
E
相似三角形的性质:
1.对应角相等,对应边成比例. 2.相似三角形对应高的比,对应 中线的比,对应角平分线的比, 周长的比都等于相似比. 3.相似三角形面积的比等于相似 比的平方.
直角三角形相似判定的情况 除以上5种方法外,还有:
1.直角三角形被斜边上的高分成的两个直角 三角形相似。 2.如果一个三角形的斜边和一条直角边与另 一个直角三角形的斜边和一条直角边对应成 比例,那么着两个直角三角形相似。
Hale Waihona Puke 1.下列命题正确的是()

数学九年级相似三角形知识点

数学九年级相似三角形知识点

数学九年级相似三角形知识点
在九年级数学中,相似三角形是一个重要的知识点。

下面是与相似三角形相关的主要知识点:
1. 相似三角形的定义:两个三角形的对应角相等,并且对应边成比例,则这两个三角形相似。

2. 相似三角形的性质:相似三角形的对应边比例相等,即如果ABC和A'B'C'是相似三角形,那么AB/A'B' = AC/A'C' = BC/B'C'。

3. 相似三角形的判定方法:
- AAA判定法:如果两个三角形的对应角分别相等,则这两个三角形相似。

- SSS判定法:如果两个三角形的对应边成比例,则这两个三角形相似。

- SAS判定法:如果两个三角形的一个对应角相等,且对应边成比例,则这两个三角形相似。

4. 相似三角形的应用:
- 求比例:已知两个相似三角形的一个边和它的对应边比例,可以求出其他对应边的比例。

- 求长度和面积:已知一个三角形及其相似三角形的一些边的长度,可以通过比例关系求出其他边的长度和面积。

- 证明定理:可通过相似三角形的性质证明一些重要的几何定理,如角平分线定理、四边形内角和定理等。

以上介绍了一些九年级数学中关于相似三角形的知识点,希望对您有帮助!。

九年级数学 相似三角形的性质(1)

九年级数学      相似三角形的性质(1)
四边形DEGF为正方形,其中点D,E分别在边AC,
BC上,点F,G在AB上,求正方形的边长。
C
D
E
A
拓展提高 ☞
变式:如图,在∆ABC中,BC=18,高AD=12, 矩形
EFGH的边EF在BC上,点G,H分别在AC,AB上,EH:
A
EF=1:3,求HG的长。
H
G
B
E
D
FC
课堂小结 ☞
经历了这节课的探索学习,你在知识 上和方法上什么收获呢?请说说看。
《相似三角形的性质》
学 科: 数学 年 级: 九年级
回顾与反思 ☞
1.相似三角形的定义? A' A
B
C B'
C'
2.相似比?
回顾与反思 ☞
3.全等三角形的相似比为多少? 4.全等三角形的性质?
合作探究 ☞
相似三角形应该有什么样的性质?
请大家完成课本106页的想一想
合作探究 ☞
如图,∆ABC∽ ∆A‘B’C‘(相似比记作K), AH,A’H‘分别为BC,B’C’
边上的高线
A'
A
B
H C B'
H'
C'
请把猜想用符号语言表达一下
合作探究 ☞
如图,∆ABC∽ ∆A‘B’C‘(相似比记作K), AM,A’M‘分别为BC,B’C’
边上的中线
A'
A
B
M
C B'
M'
C'
请把猜想用符号语言表达一下
合作探究 ☞
如图,∆ABC∽ ∆A‘B’C‘(相似比记作K), AD,A’D‘分别为∠A, ∠A’
它加工成一个面积最大的正方形桌面?如图①和②是两种不同的加
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D
C ∴∠ADB=∠A’D’B’=9 在0°△ABD和△A′B′D′中
A′
∠B=∠B’
∠ADB=∠A’D’B’ ∴ △ABD∽ △A′B′D′,
B′ D′ C′ ∴AD:A’D’=AB:A’B’.
相似三角形对应高的比,对应中线的比、对应 角平分线的比都等于相似比.
课堂练习:
填空: (1)两个三角形的对应边的比为3:4,则这两
个三角形的对应角平分线的比为_____ ,对应边 上的高的比为____,对应边上的中线的比为____
(2)相似三角形对应角平分线比为0.2,则相似比 为_________,对应中线的比等于______;
相似三角形周长的比等于相似比.
如果△ABC∽△A′B′C′,且△ABC与△A′B′C′ 的相似比为k,即 AB BC CA k ,那么
AB BC CA AB BC CA k AB BC CA
相似三角形面积的比等于相似比的平方。
A
A’
B
DC
B’ D’ C’
△ABC~△A’B’C’,相似比
S为K 1/2 ·BC ·AD
BC · AD
= S’
1/2 · B’C’ ·A=’D’
= K2
B’C’ ·A’
D’
K
K
例1 已知: △ABC∽△A′B′C′,它们的周长分 别为 60cm 和 72cm ,且 AB = 15cm , B′C′= 24cm .求:BC、AC、 A′B′、 A′C′.
3.3相似三角形的性质
回顾与思考
1.识别两个三角形相似的简便方法有哪些?
2.在△ABC与△A/B/C/ 中,AB=10cm,AC=6cm,BC=8cm,A/B/=5cm,A/C/= 3cm,B/C/=4cm,这两个三角形相似吗?说明理由.如 果相似,它们的相似比是多少?
相似的两个三角形 1. 它们的对应角相等 2. 对应边会成比例
面积的比等于相似比的平方
填空
1、两个相似多边形的面积比为4:1,则它们的 相似比为_______,周长比为_______。
2、如果把一个三角形的三条边长都扩大为原来 的100倍,则面积扩大为原来的_______倍,周长 扩大为______倍。
3、如果把一个三角形的面积扩大为原来的100倍, 则边长为原来的_____倍,周长为原来的______倍。

对应高的比


对应角平分线的比
都等于相似比


对应中线的比
如图AD、 A′D′ 分别是锐角△ABC和锐角
△A′B′C′的高,且△ABC∽ △A′B′C′,则
AD:A’D’=AB:A’B’.
A
∵ △ABC∽ △A′B′C′,
∴∠B=∠B’
又因为AD、 A′D′ 分别是
△ABC和△A′B′C′的高
B
△ABC 中,AB = 5cm,BC = 4cm ,CA = 8cm . 已知△ABC∽Байду номын сангаасA′B′C′,且△A′B′C′的周 长为34cm,求△A′B′C′的各边长.
对应角相等
相 似
对应边成比例
三 相似比等于对应边的比

形 对应高的比,对应中线的比、对应角平分
的 线的比都等于相似比.

质 周长的比等于相似比
同学们,再见!
相关文档
最新文档