一元一次方程应用题专题训练
一元一次方程应用题专项练习
一元一次方程应用题专项练习一、单选题1.学校需制作若干块标志牌,由一名工人做要50h 完成.现计划由一部分工人先做4h ,然后增加5人与他们一起做6h 完成这项工作.假设这些工人的工作效率一样,具体应先安排多少人工作?小华的解法如下:设先安排x 人做4h .所列方程为46(5)15050x x ++=,其中“450x ”表示的意思是“x 人先做4h 完成的工作量”,“6(5)50x +”表示的意思是“增加5人后(5)x +人再做6小时完成的工作量”.小军所列的方程如下:(46)5615050x +⨯+=,其中,“(46)50x +”表示的含义是()A .x 人先做4h 完成的工作量.B .先工作的x 人前4h 和后6h 一共完成的工作量.C .增加5人后,新增加的5人完成的工作量.D .增加5人后,(5)x +人再做6h 完成的工作量.2.某书店推出如下优惠方案:(1)一次性购书不超过100元不享受优惠;(2)一次性购书超过100元但不超过300元一律九折;(3)一次性购书超过300元一律八折.某同学两次购书分别付款80元、252元,如果他将这两次所购书籍一次性购买,则应付款()元.A .288B .306C .288或316D .288或3063.足球比赛的记分规则:胜一场得3分,平一场得1分,负一场得0分.某队打了14场,负5场,共得19分,那么这个队平了()A .3场B .4场C .5场D .6场4.如图,各正方形中的四个数之间都有相同的规律,根据此规律,x 的值为()A .242B .232C .220D .2525.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?设共有x 人,这个物品的价格是y 元.有下列四个等式:①8x +3=7x ﹣4;②3487y y -+=;③3487y y +-=;④8x ﹣3=7x +4,其中正确的是()A .①②B .②④C .②③D .③④二、填空题6.某学校8个班级进行足球友谊赛,比赛采用单循环赛制(参加比赛的队,每两队之间进行一场比赛),胜一场得3分,平一场得1分,负一场得0分,某班共得15分,并以不败成绩获得冠军,那么该班共胜______场比赛.7.下表是某市居民出行方式以及收费标准:(不足1千米按1千米算)打车方式出租车3千米以内8元;超过3千米的部分2.4元/千米滴滴快车路程:1.4元/千米;时间:0.6元/分钟说明打车的平均车速40千米/时假设乘坐8千米,耗时:8406012÷⨯=分钟;出租车收费:8(83) 2.420+-⨯=元;滴滴快车收费:8 1.4120.618.4⨯+⨯=元.为了提升市场竞争力,出租车公司推出行使里程超过10千米立减4.8元活动.小聪乘坐出租车从甲地到达乙地支付车费22.4元,若改乘滴滴快车从甲地到乙地,则需支付______元.8.我国古代数学名著《张丘建算经》中记载:“今有清酒一斗直粟十斗,醐洒一斗直粟三斗,今持粟三斛,得酒五斗,问清跴酒各几何?”大意是:现有一斗清酒价值10斗谷子,一斗醐洒酒价值3斗谷子,现在拿30斗谷子,共换了5斗酒,问清洒,醐洒酒各几斗?如果设清酒x 斗,那么可列方程为_________.9.明代数学家程大位的《算法统宗》中有这样一个问题:“隔墙听得客分银,不知人数不知银,七两分之多四两,九两分之少半斤.”其大意为:有一群人分银子,如果每人分七两,则剩余四两,如果每人分九两,则还差半斤(注:明代时1斤=16两,故有“半斤八两”这个成语).这个问题中共有_____两银子.10.《九章算术》中记载这样一道题:今有牛、马、羊食人苗.苗主责之粟五斗,羊主曰:“我羊食半马.”马主曰:“我马食半牛.”大意是:现在有一头牛、一匹马、一只羊吃了别人家的禾苗.禾苗的主人要求这些动物的主人共计赔偿五斗粟米.羊的主人说:“我家羊只吃了马吃的禾苗的一半.”马的主人说:“我家马只吃了牛吃的禾苗的一半."按此说法,羊的主人应当赔偿给禾苗的主人多少斗粟米?设羊的主人赔x 斗,根据题意,可列方程为________.三、解答题11.一套精密仪器由一个A 部件和两个B 部件构成,用31m 钢材可以做40个A 部件或240个B 部件,现在要用34m 钢材制作这种仪器.(1)请问用多少钢材做A 部件,多少钢材做B 部件,可以恰好制成整套的仪器?(2)可以制成仪器套.(3)现在某公司要租赁这批仪器a 套,每天的付费方案有两种选择:方案一:当a 不超过50套时,每套支付租金100元;当a 超过50套时,超过的套数每套支付租金打八折;方案二:不论租赁多少套,每套支付租金90元.当a >50时,请回答下列问题:①若按照方案一租赁,公司每天需支付租金元(用含a 代数式表示);若按照方案二租赁,公司每天需支付租金元(用含a 代数式表示).②假如你是公司负责人,请你谋划一下,选择哪种租赁方案更合算?并说明理由.12.我市是蔬菜水果生产大县.去年秋季,我市某果树基地安排26名工人将采摘的水果包装成果篮,每个工人每小时可包装 200 个苹果或者 300 个梨,每个果篮中放 3 个苹果和 2 个梨,为了使包装的水果刚好完整配成果篮,应该安排多少名工人包装苹果,多少名工人包装梨?(1)若设安排x 名工人包装苹果,y 名工人包装梨,请求出x ,y 的值;(2)若每个果篮可卖25元,每名工人每天工作8个小时,问该果树基地一天可以卖得多少钱?13.小敏和小强假期到某厂参加社会实践,该工厂用白板纸做包装盒,设计每张白板纸做盒身3个或者盒盖5个,且一个盒身和两个盒盖恰好做成一个包装盒.设裁成盒身的白板纸有x 张,回答下列问题:(1)若有11张白板纸.①请完成下表:x 张白板纸裁成盒身()张白板纸裁成盒盖盒身的个数()0盒盖的个数0()②若盒身与盒盖全部配套用完,求可做多少个包装盒.(2)若仓库中已有5个盒身,4个盒盖和21张白板纸,现把白板纸分成两部分,一部分裁成盒身,一部分裁成盒盖,当盒身与盒盖全部配套用完,可做多少个包装盒?(3)若有n 张(5060)n ≤≤白板纸,先把一张纸适当裁成3个盒身和1个盒盖,余下白板纸分成两部分,一部分裁成盒身,一部分裁成盒盖,当盒身与盒盖全部配套用完,求n 的可能值.14.接种疫苗是阻断新冠病毒传播的有效途径,针对疫苗急需问题,某制药厂紧急批量生产,计划每人每小时生产疫苗500剂,但受某些因素影响,某车间有10名工人不能按时到厂.为了应对疫情,该车间其余工人加班生产,由原来每天工作8小时增加到10小时,每人每小时完成的工作量不变,这样每天能完成预定任务.(1)求该车间当前参加生产的工人有多少人;(2)生产4天后,未到的工人同时到岗加入生产,每天生产时间仍为10小时.若上级分配给该车间共780万剂的生产任务,问该车间还需要多少天才能完成任务.15.某水果店以5元/千克的价格购进一批橙子,很快售罄,该店又再次购进,第二次进货价格比第一次每千克便宜了2元,两次一共购进600千克,且第二次进货的花费是第一次进货花费的1.2倍.(1)该水果店两次分别购进了多少千克的橙子?(2)售卖中,第一批橙子在其进价的基础上加价%a 进行定价,第二批橙子因为进价便宜,因此以第一批橙子的定价再打八折进行销售.销售时,在第一批橙子中有5%的橙子变质不能出售,在第二批橙子中有10%的橙子变质不能出售,该水果店售完两批橙子能获利2102元,求a 的值.16.某超市第一次用3600元购进了甲、乙两种商品,其中甲种商品80件,乙种商品120件.已知乙种商品每件进价比甲种商品每件进价贵5元.甲种商品售价为20元/件,乙种商品售价为30元/件.(注:获利=售价﹣进价)(1)该超市第一次购进甲、乙两种商品每件各多少元?(2)该超市将第一次购进的甲、乙两种商品全部销售完后一共可获得多少利润?(3)该超市第二次又购进同样数量的甲、乙两种商品.其中甲种商品每件的进价不变,乙种商品进价每件少3元;甲种商品按原售价提价a%销售,乙种商品按原售价降价a%销售,如果第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多260元,那么a的值是多少?17.我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后两句的意思是:如果每一间客房都住7人,那么有7人无房可住;如果每一间客房都住9人,那么就空出一间房.求该店有客房多少间?该批住店房客多少人?18.某校计划购买20张书柜和一批书架(书架不少于20只),现从A、B两家超市了解到:同型号的产品价格相同,书柜每张210元,书架每只70元,A超市的优惠政策为每买一张书柜赠送一只书架,B超市的优惠政策为所有商品八折,设购买书架a只.(1)若该校到同一家超市选购所有商品,则到A超市要准备_____元货款,到B超市要准备_____元货款(用含a的式子表示);(2)在(1)的情况下,当购买多少只书架时,无论到哪一家超市所付货款都一样?(3)假如你是本次购买的负责人,学校想购买20张书柜和100只书架,且可到两家超市自由选购,请你设计一种购买方案,使付款额最少,最少付款额是多少?19.甲、乙两家超市新年期间推出优惠活动,推出如表购物优惠方案:甲超市乙超市消费金额(元)优惠活动消费金额(元)优惠活动0~100(包含100)无优惠0~200(包含200)无优惠100~350(包含350)一律享受九折优惠超过200元的部分享受大于200八折优惠大于350一律享受八折优惠(1)小王需要购买价格为240元的商品,去哪家店更划算?(2)小李带了252元去购物、为了买到最多的商品,应选择哪家超市?最多能买到原价为多少元的商品?(3)小刘在甲超市购物、两次购物分别付了80元和288元,如果小刘把这两次购物改为一次性购物,付款多少元?20.相传大禹治水时,“洛水”中出现了一个神龟,其背上有美妙的图案,史称“洛书”.用现在的数字翻译出来,就是三阶幻方.三阶幻方是最简单的幻方,又叫九宫格,其对角线、横行、纵向的数字之和均相等,这个和叫做幻和,正中间那个数叫中心数,且幻和恰好等于中心数的3倍.如图1,是由1、2、3、4、5、6、7、8、9所组成的一个三阶幻方,其幻和为15,中心数为5.(1)如图2所示,则幻和=;(2)若4b =,6c =,求a 的值;(3)由三阶幻方可以衍生出许多有特定规律的新幻方.在如图3所示的“幻方”中,每个小三角形的三个顶点上的数字之和都与中间正方形四个顶点上的数字之和相等,当2x =,=3y -时,则a b c d --+的值为多少?21.数轴是一个非常重要的数学工具,它把数和数轴上的点建立了对应关系,形象地揭示了数与数轴上的点之间的内在联系,是数形结合的基础.小明在一条长方形纸带上画了一条数轴,进行如下操作探究:(1)操作1:折叠纸带,使数轴上表示3的点与表示1-的点重合,则表示数23a +的点与表示数___________(用含a 的式子)的点重合;(2)操作2:若点A 、B 表示的数分别是1-、4,点P 从点A 出发,沿数轴以每秒2个单位长度的速度向左匀速运动;同时,点Q 从点B 出发,沿数轴以每秒4个单位长度的速度向左匀速运动.设运动时间为t 秒,在运动过程中,当t 为何值时,点P 与点Q 之间的距离为2;(3)操作3:在数轴上剪下6个单位长度(从1-到5)的一条线段,并把这条线段沿某点向左对折,然后在重叠部分的某处剪一刀得到三条线段(如图),若这三条线段的长度之比为1:2:3,则折痕处对应的点表示的数可能是___________.22.如图,在数轴上,点O 为原点,点A 表示的数为a ,点B 表示的数为b ,且a ,b 满足29(05)a b +-+=.(1)a =;b =;(2)动点P ,Q 分别从点A ,点B 同时出发,沿着数轴向右匀速运动,点P 的速度为每秒3个单位长度,点Q 的速度为每秒1个单位长度.①几秒时,点P 与点Q 距离2个单位长度?②动点P ,Q 分别从点A ,点B 出发的同时,动点R 也从原点O 出发,沿着数轴向右匀速运动,速度为每秒()3n n >个单位长度.记点P 与点R 之间的距离为PR ,点A 与点Q 之间的距离为AQ ,点O 与点R 之间的距离为OR .设运动时间为t 秒,请问:是否存在n 的值,使得在运动过程中,743PR OR AQ -+的值是定值?若存在,请求出此n 值和这个定值;若不存在,请说明理由.23.为了节约用水,某市决定调整居民用水收费方法,规定如果每户每月用水不超过20吨,每吨水收费2元,如果每户每月用水超过20吨,则超过部分每吨水收费2.5元;小红看到这种收费方法后,想算算她家每月的水费,但她不清楚家里每月用水是否超过20吨.(1)如果小红家每月用水15吨,则水费是元;如果小红家每月用水23吨,则水费是元.(2)如果字母x 表示小红家每月用水的吨数,那么小红家每月的水费该如何用x 的代数式表示.当020x ≤≤时,每个月的水费为:(用含x 的代数式表示);当20x >时,每个月的水费为:(用含x 的代数式表示);(3)小红家第二季度交纳水费的情况如下:月份四月份五月份六月份交费金额(单位:元)263450.5小红家这个季度共用水多少吨?24.探究与发现:a b -表示a 与b 之差的绝对值,实际上也可理解为a 与b 两数在数轴上所对应的两点之间的距离.如3x -的几何意义是数轴上表示有理数x 的点与表示有理数3的点之间的距离.(1)如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且20AB =,则数轴上点B 表示的数;(2)若82x -=,则x =.(3)拓展与延伸:在(1)的基础上,解决下列问题:动点P 从O 点出发,以每秒5个单位长度的速度沿数轴向右匀速运动,设运动时间为()0t t >秒.求当t 为多少秒时?A ,P 两点之间的距离为2;(4)数轴上还有一点C 所对应的数为30,动点P 和Q 同时从点O 和点B 出发分别以每秒5个单位长度和每秒10个单位长度的速度向C 点运动,点Q 到达C 点后,再立即以同样的速度返回,点P 到达点C 后,运动停止.设运动时间为()0t t >秒.问当t 为多少秒时?P ,Q 之间的距离为425.如图1是2022年2月的日历表:(1)在图1中用优美的“”U 形框框住五个数,其中最小的数为1,则U 形框中的五个数字之和为_________;(2)在图1中将U 形框上下左右移动,框住日历表中的5个数字,设最小的数字为x ,用代数式表示U 形框框住的五个数字之和为_________;(3)在图1中移动U 形框的位置,若U 形框框住的五个数字之和为53,则这五个数字从小到大依次为_________;(4)在图1日历表的基础上,继续将连续的自然数排列成如图2的数表,在图2中U 形框框住的5个数字之和能等于2023吗?若能,分别写出U 形框框住的5个数字;若不能,请说明理由.26.小颖在国庆期间用五天时间看完了一本课外阅读书,第一天看了全书的15,第二天看的页数比第一天多14,第三天看的页数比第二天多了13,第四天看了52页,第五天看了第三天余下的13,这本课外阅读书共有多少页?27.我们规定:对于数轴上不同的三个点M ,N ,P ,当点M 在点N 左侧时,若点P 到点M 的距离恰好为点P 到点N 的距离的k 倍,且k 为正整数,(即PM kPN =),则称点P 是“[]M N ,整k 关联点”如图,已知在数轴上,原点为O ,点A ,点B 表示的数分别为24A B x x =-=,.(1)原点O ________(填“是”或“不是”)“[]A B ,整k 关联点”;(2)若点C 是“[]A B ,整2关联点”,则点C 所表示的数C x =_______;(3)若点A 沿数轴向左运动,每秒运动2个单位长度,同时点B 沿数轴向右运动,每秒运动1个单位长度,则运动时间为________秒时,原点O 恰好是“[]A B ,整k 关联点”,此时k 的值为_______.(4)点Q 在A ,B 之间运动,且不与A ,B 两点重合,作“[]A Q ,整2关联点”,记为A ',作“[]Q B ,整3关联点”,记为B ',且满足A ',B '分别在线段AQ 和BQ 上.当点Q 运动时,若存在整数m ,n ,使得式子mQA nQB ''+为定值,求出m ,n 满足的数量关系.28.已知M 、N 两点在数轴上所装示的数分别为m 、n ,且m 、n 满足()21020m n -++=:(1)则m =_________,n =_________;(2)①情境:有一个玩具汽车AB 如图所示,放置在数轴上,将汽车沿数轴左右水平移动,当点A 移动到点B 时,点B 所对应的数为m ,当点B 移动到点A 时,点A 所对应的数为n .则玩具汽车的长为_________个单位长度;②应用:一天,小阳问爷爷的年龄,爷爷说:“我若是你现在这么大,你还要40年才出生呢;若是我现在这么大,我已是老寿星,116 岁了!”小阳心想:爷爷的年龄到底是多少岁呢?聪明的你能帮小阳求出来吗?(3)在(2)①的条件下,当汽车AB 以每秒2个单位长度的速度向右运动,同时点P 和点Q 从N 、M 出发,分别以每秒1个单位长度和3个单位长度的速度向左和向右运动.记汽车AB 运动后对应的位置为A B ''.是否存在常数k 使得2PQ kB A '-的值与它们的运动时间无关?若存在,请直接写出k 的值;若不存在,请说明理由.29.如图,点A 表示的数是a ,点B 表示的数是b ,满足210(8)0a b -++=,动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为(0)t t >秒,动点P 表示的数是p .(1)直接写=a ______,b =______,p =______(用含t 的代数式表示);(2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,①问点P 运动多少秒时追上点Q ?②问点P 运动多少秒时与点Q 相距4个单位长度?并求出此时点P 表示的数;(3)点P 、Q 以(2)中的速度同时分别从点A 、B 向右运动,同时点R 从原点O 以每秒7个单位的速度向右运动,是否存在常数m ,使得23QR OP mOR +-的值为定值,若存在请求出m 值以及这个定值;若不存在,请说明理由.30.学校为了让学生积极参加体育锻炼强健体魄,做好大课间活动,计划购买体育用品,价格如下表:备选体育用品篮球排球羽毛球拍价格60元/个35元/个25元/支(1)若用2550元全部用来购买篮球、排球和羽毛球拍,篮球和排球的数量比2:3,排球与羽毛球拍数量的比为4:5,求篮球、排球和羽毛球拍的购买数量各为多少?(2)初一学年计划购买篮球,初二学年计划购买排球,商场的优惠促销活动如下:打折前一次性购物总金额优惠措施不超过500元不优惠超过500元且不超过600元售价打九折超过600元售价打八折按上述优惠条件,若初一年级一次性付款420元,初二年级一次性付款504元,那么这两个年级购买两种体育用品的数量一共是多少?。
一元一次方程应用题专项练习(含答案)
一元一次方程应用题专项练习宇文皓月1.种一批树,如果每人种10棵,则剩6棵未种;如果每人种12棵,则缺6棵.有多少人种树有多少棵树?2.某中外合资企业,按外商要求承做一批机器,原计划13天完成,科技人员采取一种高新技术后,每天多生产10台,结果用12天,不单完成任务,而且逾额了60台,问原计划承做多少台机器?3.心连心艺术团在世纪广场组织了一场义演为“灾区”募捐活动,共售出3000张门票,已知成人票每张15元,学生票每张6元,共收入票款34200元,问:成人票和学生票各多少张?4.甲、乙两人分别后,沿着铁轨反向而行,此时,一列火车匀速地向甲迎面驶来,列车在甲身旁开过,用了15秒,然后在乙身旁开过,用了17秒,已知两人的步行速度都是3.6千米∕时,这列火车有多长?5.一个长方形的养鸡场的长边靠墙,墙长14米,其它三边用竹篱笆围成,现有长为35米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多5米;小赵也打算用它围成一个鸡场,其中长比宽多2米,你认为谁的设计符合实际依照他的设计,鸡场的面积是多少?6.甲乙两个工厂,去年计划总产值为360万元,结果甲厂完成了计划的112%,乙厂比原计划增加了10%,这样两厂共完成的产值为400万元,求去年两厂各逾额完成产值多少万元?7.(1)某长方形足球场的周长为310米,长和宽之差为25米,这个足球场的长与宽分别是多少米?(2)小彬和小明每天早晨坚持跑步,小彬每秒跑4米,小明每秒跑6米.如果小明站在百米跑道的起点处,小彬站在他前面10米处,两人同时同向起跑,几秒后小明能追上小彬?8.某工厂加强节能措施,2008年下半年与上半年相比,月平均用电量减少了0.5万度,全年用电39万度,问这个工厂2008年上半年每月平均用电多少万度?9.某周日小明在家门口搭乘出租车去观赏博物馆,出租车的收费尺度是:不超出3公里的付费7元;超出3公里后,每公里需加收一定费用,超出部分的公里数取整,即小数部分按1公里计算.小明乘出租车到距家6.2公里远的博物馆的车费为18.4元(其中含有1元的燃油附加税),问超出3公里的,每公里加收多少元?10.下边横排有12个方格,每个方格都有一个数字,已知任何相邻三个数字的和都是20,求x的值.12.某商场一种品牌的服装标价为每件1000元,为了介入市场竞争,商场按标价的8.5折(即标价的85%)再让利40元销售,结果每件服装仍可获利20%,这种服装每件的进价是多少元?13.把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.(1)这个班有多少学生?(2)这批图书共有多少本?14.某同学打算骑自行车到野生动物园去观赏,出发时心里盘算,如果以每小时8千米的速度骑行,那么中午12点才干到达;如果以每小时12千米的速度骑行,那么10点就能到达;但最好是不快不慢恰好在11点到达,那么,他行驶的速度是多少最好呢?15.一副羽毛球拍在进价的基础上提高40%后标价,再按标价的8折售出,仍然获利15元,那么羽毛球拍的进价是多少?16.2010年南非“世界杯”期间,中国球迷一行36人从酒店乘出租车到球场观看角逐.球迷领队安插车辆若干,若每辆坐4人,车不敷,每辆坐5人,有的车未坐满.问领队安插的车有多少辆?17.某校三年共购买电脑160台,去年购买数量是前年的3倍,今年购买数量是前年的4倍,求这个学校前年购买了多少台电脑?18.某种出租汽车的车费是这样计算的:路程在4千米以内(含4千米)为10元4角;达到4千米以后,每增加1千米加1元6角;达到15千米后,每增加1千米加2元4角,缺乏1千米按四舍五入法计算.(1)乘座15千米该出租车应交费多少元?(2)某乘客乘座该种出租车交了95元2角,则这个乘客乘该出租车行驶的路程最多为多少千米?19.七年级(1)班数学兴趣小组的同学一起去租车秋游,预计租车费人均分摊1 8元,后来又有4名非兴趣小组同学要求加入,但租车费不变,结果每人可少摊3元,求七(1)班有多少名数学兴趣小组成员?20.某城市按以下规定收取每月的水费:用水量如果不超出6吨,按每吨1.2元收费;如果超出6吨,未超出的部分仍按每吨1.2元收取,而超出部分则按每吨2元收费.如果某用户5月份水费平均为每吨1.8元.问:(1)该用户5月份用去多少水?(2)该用户5月份应交水费多少元?21.甲、乙两人同时从A地出发去B地,甲骑自行车,速度是10km/h,乙步行,速度为6km/h.若甲出发后在路上遇到熟人交谈了半小时后,仍以原速度前往B地,结果甲、乙两人同时到达B地,问A、B两地的路程是多少?22.一件服装先按成本提高60%标价,再以9折出售,结果获利66元,这件服装的标价是多少元?23.某校七(1)班学生步行去介入课外劳技活动,速度为5千米/时,走了48分钟的时候,学校要将一个紧急通知传给班长,通讯员从学校出发,骑摩托车以35千米/时的速度按原路追上去,通讯员用多少时间可以追上七(1)班学生队伍?24.某车间有60名工人,生产甲、乙两种零件,每人每天平均能生产甲种零件10个或乙种零件25个,应分配多少人生产甲种零件,多少人生产乙种零件才干使每天生产的甲种零件和乙种零件刚好配套?(2个甲种零件和1个乙种零件配成一套)25.A、B两地相距15千米,甲汽车在前边以50千米/小时从A出发,乙汽车在后边以40千米/小时从B出发,两车同时出发同向而行(沿BA方向),问经过几小时,两车相距30千米?26.甲、乙两人同时从A地到B地去介入一个会议,甲每分钟走80米,他走到B地等了5分钟.会议才开始,乙每分钟走60米,等他到B地会议已经开始了3分钟,问A、B两地之间的距离有多远?27.甲、乙两根绳子,甲绳长56米,乙绳长25米,两根绳子剪去同样的长度后,甲绳所剩的长度是乙绳所剩长度的3倍还少1米,每根绳子剪去的长度是多少米?28.某工人每天早晨在同一时刻从家里骑车去工厂上班,如果以16千米/时的速度行驶,则可在上班时刻前15分钟到达工厂;如果以12千米/时的速度行驶,则在工厂上班时刻后15分钟到达工厂.(1)求这位工人的家到工厂的路程;(2)这位工人每天早晨在工厂上班时刻前多少小时从家里出发?29.一列列车通过隧道,从车头进隧道到车尾出隧道共用了1分30秒.已知列车的速度为1500米/分,列车的长为150米,那么隧道长为多少米?30.在学校的一次劳动中,在甲处劳动的有27人,在乙处劳动的有19人,后因劳动任务需要,需要另外调20人来支援,使在甲处的人数是在乙处人数的2倍,问应分别调往甲、乙两处各多少人?31.一项工程,甲队单独做20天完成,乙队单独做12天完成,现在由甲队先做4天,剩下的部分由甲队和乙队合作完成,则剩下的部分需要几天完成?32.某校准备到旅游公司租若干辆汽车组织初一学生外出春游,每辆汽车可坐45人,按原计划,就有11人没有座位;如果每辆车放上加座后多坐8人,那么可以少租一辆汽车.问原计划租几辆汽车初一学生共有多少人?33.列方程解应用题:某人从家里骑自行车到学校.若每小时行15千米,可比预定的时间早到15分钟;若每小时行9千米,可比预定的时间晚到15分钟;求从家里到学校的路程有多少千米?34.甲、乙两船在静水中的速度相同,都不超出每小时60千米.甲船从A 港顺流而下,3小时到达B港,乙船从B港逆流而上,4小时到达C港,如果水流速度为每小时10千米,请你通过计算说明A港在C港的上游还是下游.35.从甲地到乙地的长途汽车原需行驶3.5个小时,开通高速公路后,路程缩短了30千米,而车速平均每小时增加了30千米,只需2个小时即可到达.求甲乙两地之间高速公路的路程.36.甲乙两地相距240千米,从甲站开出一列慢车,速度为每小时80千米,从乙站开出一列快车,速度为每小时120千米.(1)若两车同时开出,背向而行,经过多长时间两车相距540千米?(2)若两车同时开出,同向而行(快车在后),经过多长时间快车可追上慢车?(3)若两车同时开出,同向而行(慢车在后),经过多长时间两车相距300千米?37.电气机车和磁悬浮列车从相距298千米的两地同时出发相对而行,磁悬浮列车的速度比电气机车速度的5倍还快20千米/时,半小时后两车相遇.两车的速度各是多少?38.粗蜡烛和细蜡烛的长短一样,粗蜡烛可以点5小时,细蜡烛可以点4小时,如果同时点燃这两支蜡烛,过了一段时间后,剩余的粗蜡烛长度是细蜡烛长度的2倍,问这两支蜡烛已点燃了多少时间?39.一队学生从学校步行去博物馆,他们以5km/h的速度行进需要40分钟,他们出发24分钟后,一名教师骑自行车以15km/h的速度按原路追赶学生队伍,问这名教师能否在学生到达之前追上他们?40.民航规定:乘坐飞机普通舱旅客一人最多可免费携带20千克行李,超出部分每千克按飞机票价的1.5%购买行李票.一名旅客带了45千克行李乘机,机票连同行李费共付1485元,求该旅客的机票票价.41.某城区居民用水实行阶梯收费、每户每月用水量如果未超出20吨,按每吨1.9元收费;如果超出20吨,未超出部分按每吨1.9元收费,超出部分按每吨2.8元收费,若该城市某户11月份水费平均每吨2.2元,求该户11月份用水多少吨?42.甲、乙两站相距360千米,一列慢车从甲站开出,每小时行50千米,一列快车从乙站开出,每小时行70千米,两车同时开出,相向而行,多长时间相遇?43.某商场因换季,将一品牌服装打折销售,每件服装如果按标价的六折出售将亏10元,而按标价的八折出售将赚70元,问:(1)每件服装的标价和成天职别是多少元?(2)为使销售该品牌服装每件获得20%的利润率,应按标价的几折出售?44.某班在绿化校园的活动中共植树130棵,有5位学生每人种树2棵,其余学生每人种树3棵,问这个班共有多少学生?45.郑州市某停车场的收费尺度如下:大型汽车的停车费为6元/辆,小型汽车的停车费为4元/辆.现在停车场停有大、小型汽车共50辆,这些车辆共缴纳了210元停车费,问其中大、小型汽车各缴纳了多少元停车费?46.某车间28名工人生产螺栓和螺母,每人每天平均生产螺栓1200个或螺母1800个,每天生产的螺栓和螺母按1:2配套,应各分配多少名工人生产螺栓和生产螺母?47.一项工作,如果由甲单独做,需7.5小时完成;如果由乙单独做.需要5小时完成.如果让甲、乙两人一起做1小时,再由乙单独完成剩余部分,还需多长时间完成?48.某车间20个工人生产螺钉和螺母,每人每天平均生产螺母800个或螺钉600个,一个螺钉要配2个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉呢?49.某地居民生活用电基本价格为0.5元/度,并规定了每月基本用电量,超出部分的电量每度电价比基本用电量的每度价格增加0.05元,某户8月份用电量为240度,应缴电费为122元,求每月的基本用电量.50.经测算,海拔高度每增加100米,气温下降0.6℃,已知高空中一气球所在的位置的温度是﹣4℃,此时地面温度是5℃,求该气球与地面的距离.51.有粗细两支蜡烛,粗蜡烛长是细蜡烛的三分之一,粗蜡烛点完用3个小时,细蜡烛点完用1小时.一次停电后同时点燃两支蜡烛,来电时发现两支蜡烛剩余部分刚好一样长,问停电的时间是多长?52.运动场的环形跑道一圈长400米,甲乙二人角逐跑步,甲每分钟跑300米,乙每分钟跑200米;两人同地同方向,同时出发,经过多少时间两人第一次相遇?53.根据我省“十二五”铁路规划,徐州至连云港的客运专线项目建成后,两地间列车的最短客运时间将由现在的2小时18分钟缩短为36分钟,速度每小时将提高260km,求提速后的列车速度.(精确到1km/h)54.一项工程,甲队单独施工15天完成,乙队单独9天完成,现在由甲、乙两队合作3天,剩下的由甲队单独完成,还需几天可以完成?55.为了减少库存,盘活资金,某商厦决定将某款玩具打5折销售,小莹爸爸用了300元买到的玩具比打折前花同样多的钱买到的玩具多3个,求每个玩具的原价是多少元?56.整理一批图书,由一人做要40小时完成.先安插一批人整理,2小时后其中两人因有其它任务离开,然后由余下的人又整理了4小时,完成了这项工作.假设每个人的工作效率相同,则先安插了多少人整理图书?57.一个长方形的场地,长是宽的2.5倍,现根据需要将长方形的场地进行扩建,若把它的长和宽各加长20m后,则此时它的长是宽的2倍,求扩建前长方形场地的长与宽.58.某中学要搬运一批图书,由甲班单独搬运需要9小时完成,由乙班单独搬运需要6小时完成.现在计划由甲班先单独搬运4小时,剩下的由乙班辅佐和甲班一起搬运,则甲、乙两班合作几小时后可完成任务?59.A、B两地相距50千米,一人从A地以每小时5千米的速度向B地行走,另一人从B地以每小时10千米的速度向A地运动.若两人恰好在中点相遇,那么从B地运动的人比从A地运动的人慢多少小时出发呢?60.某厂要加工一批零件,若6人加工,每人每天生产10个,则需100天才干完成任务.现在为了赶进度,用20人加工,每人每天生产12个,需要多少天才干完成任务?61.学校部分师生到离校28千米的地方观赏学习.开始一段路是步行,速度是4千米/小时,余下的路程乘汽车,汽车的速度是40千米/小时,全程共用了1小时.求步行和乘车各用了多少时间.62.某商店推销了一批节能灯,每盏灯20元,在运输过程中损坏了2盏,然后以每盏25元售完,共获利150元,问该商店共进了多少盏节能灯.63.某学校教学楼需装修,若甲工程队单独完成需8周,若乙工程队单独完成需12周,现在投标结果是由乙工程队先做7周后,再由甲、乙两队合作,求合作几周可以完成任务?64.某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少1500度,全年用电12万度.这个工厂去年上半年每月平均用电多少度?65.早上8点钟,甲、乙、丙三人在一条笔挺的公路上同时从东往西直行,乙在甲前400米,丙在乙前400米,甲、乙、丙三人的速度分别为每分钟120米、100米、90米.问经过多少分钟甲和乙、甲和丙的距离相等?66.某同学在A、B两家超市发现他看中的两款随身听的单价相同,两种分歧颜色的书包的单价也相同.已知随身听和书包单价之和是452元,且随身听的单价是书包单价的4倍少8元.求该同学看中的随身听和书包的单价各是多少元?67.有一项工程,若由一人做需要20小时完成,现在先由若干人做2小时,然后增加2人再共同做4小时,完成了这项工程,假设这些人的工作效率相同,问开始时介入做这项工程的有多少人?68.小明的妈妈从商店给小明买回一条裤子,小明问妈妈:“这条裤子多少钱?”妈妈说:“按标价给我打七折,又让了我4元钱,是94元.”你知道这条裤子的标价吗?69.一轮船航行于两个码头之间,逆水需10小时,顺水需6小时.已知水流速度为3千米/时,求该船在静水中的速度和两码头间的距离.70.甲乙两书店共有数学练习册300本,某日甲店卖掉20本,乙店卖掉56本,此时甲乙两店剩余的数学练习册相等.求原先甲乙两店各有数学练习册多少本.71.某学校组织七年级学生去春游,计划租用若干辆车.若增加一辆车,每车正好坐40人,若减少一辆车,则每辆车坐50人,有一辆车还空着10人座位,问七年级共有多少名学生?72.某商店在某一时间内以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损40%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?73.一列火车匀速行驶,经过一条长720米的隧道需要30秒的时间,隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是6秒,求这列火车的速度和火车的长度.74.格子们是白族人民智慧的结晶,是剑川木雕的代表作品之一.一个格子们是由一块中板和两块腰板组构而成的.剑川县民族木雕厂有22名木雕工人在生产格子们,每人每月平均雕12块中板或20块腰板,为了使每个月的产品配套,应该分配多少名工人雕中板?多少名工人雕腰板?75.小明、小杰两人在400米的环形跑道上练习跑步,小明每分钟跑300米,小杰每分钟跑220米.小明、小杰两人同时同向出发,起跑时,小杰在小明前面100米处.(1)出发几分钟后,小明、小杰第一次相遇?(2)出发几分钟后,小明、小杰第二次相遇?(3)出发几分钟后,小明、小杰的路程第三次相差20米?76.要加工200个零件,甲先单独加工了5小时,然后又与乙一起加工了4小时完成了任务.已知甲每小时比乙多加工2个零件,问甲、乙二人每小时各加工多少个零件?77.从甲站到乙站原需16小时.采取“和谐”号动车组提速后,列车行驶速度提高了176千米/时,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.78.某工作甲单独做需15小时完成,乙单独做需12小时完成,若甲先单独做1小时,之后乙再单独做4小时,剩下的工作由甲乙两人合作,请问再做几小时可完成全部工作的十分之七?79.现加工一批机器零件,甲单独完成需4天,乙单独完成需6天.现由乙先做1天,然后两人合做,完成后共得酬报600元.若按个人完成的工作量给付酬报,你应如何分配呢?80.某文件需要打印,小李独立做需要6小时完成,小王独立做需要8小时完成.如果他们俩共同做,需要多长时间?81.王先生计划骑车以每小时10千米的速度由A地到B地,这样即可在规定时间到达B地,但他因事将原计划的出发时间推迟了10分钟,便只好以每小时12千米的速度前进,结果比规定时间早5分钟到达B地,求A、B两地间的路程.82.七年级学生在会议室开会,每排坐12人,则有11人无处坐,每排坐14人,则余1人独坐1排,问有多少学生?座位有多少排?83.小明周六去昌平图书馆查阅资料,他家距昌平图书馆35千米.小明从家出发先步行20分钟到车站,紧接着坐上一辆公交车,公交车行驶40分钟后到达图书馆.已知公交车的平均速度是步行的平均速度的7倍,求公交车平均每小时行驶多少千米?84.A、B两地相距90千米.甲从A地骑自行车去B地.1小时后乙骑摩托车也从A地去B地.已知甲每小时行12千米.乙每小时行30千米.(1)乙出发后多少时间追上甲?(2)若乙到达B地后立即返回,则在返回路上与甲相遇时距乙出发多少时间?85.某文艺团体为希望工程组织了一场募捐义演,共售出1 000张票,筹得票款6 950元,已知成人票每张10元,学生票每张5元.(1)问成人票和学生票各售出多少张?(2)如果票价和售出的总票数不变,所得票款能为6932元吗?说明你的理由.(3)如果票价和售出的总票数不变,若想筹得票款8 000元,问至少要售出多少张成人票?86.在暖气管线中装有甲、乙两种水管共25根,总长为155米,甲种水管每根长5米,乙种水管每根长8米,请问甲、乙两种水管各有多少根?87.某铁路由于沿线多为山壑,需修建桥梁和隧道共300个,桥梁和隧道的长度约占这条铁路全长的五分之四,其中桥梁数量(座)又比隧道数量(条)多50%.这条铁路工程总投资约135亿元,平均每千米造价约4500万元.(1)求该铁路隧道数量.(2)若该铁路平均每条隧道长度大约是平均每座桥梁长度的6倍.求该铁路隧道的总长度.88.甲乙两人承包铺地砖任务,若甲单独做需20小时完成,乙单独做需要12小时完成.甲乙二人合做6小时后,乙有事离开,剩下的由甲单独完成.问甲还要几个小时才可完成任务?89.现有一个内直径为6厘米的圆柱形烧杯,里面有高2厘米的液体.将这些液体倒入一个内直径是2厘米的圆柱形量筒内,这个量筒内液体的液面高度是多少厘米?90.老师想为希望小学四年级(1)班的同学购买学习用品,了解到某商店每个书包的价格比每本词典多8元,用124元恰好可以买到3个书包和2本词典.每个书包和每本词典的价格各是多少元?91.一架飞机在两城市之间飞行,顺风需4小时20分,逆风需要4小时40分,已知风速是每小时30千米,求此飞机自己的飞行速度.92.为了从小培养学生的足球兴趣,给国家培养并输送少年足球人才.在县教体局的大力建议和有力推进下,全县各个学校都组建了学校足球队.某校队在练球时发现,若每人领一个少6个球,若每二人领一个则余6个球.校足球队又添新队员5人,为了包管训练时一人一球,还需新购多少个足球?93.某文艺团体为“希望工程”募捐义演,成人票8元,学生票5元.如果本次义演共售出1 000张票,筹得票款为6 950元.求成人票和学生票各售出多少张?94.水果店有一种5千克一袋装的苹果,如果小明单独买一袋,那么所带的钱还差5元;如果小杰单独买一袋,那么所带的钱还差3元;如果两人所带的钱合在一起买一袋,那么就多余8元.试问苹果每千克多少元?95.某车间安插甲、乙两人共加工400个零件,甲与乙一起加工了4小时后,又由甲单独加工了6小时才完成任务,已知甲比乙每小时少加工2个零件,求甲、乙两人每小时各加工多少零件?96.一家商店将一件西装按成本价提高50%后标价,后因节日促销按标价的8折优惠出售,每件以960元卖出,则这件西装的成本价是多少元?97.列方程解应用题:一架飞机在两城之间飞行,风速为24千米/小时.顺风飞行需要2小时50分,逆风飞行需要3小时,求无风时飞机的航速和两城之间的航程.98.某书店在促销活动中,推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠.有一次,小明到该书店购书,到收银台付款时,他先买优惠卡再凭卡付款,结果节省了12元,求小明不凭卡购书的书价为多少元?99.一条地下管线,甲工程队单独铺设需12天,乙工程队单独铺设需要18天,若果现有甲工程队铺设2天后再由甲、乙两个工程队共同铺设,还需要多少天可以铺好这条管线?100.某种商品的进价为400元,标价为600元,打折出售的利润率为5%,那么,此商品是按几折销售的?101.某商场进了一批豆浆机,按进价的180%标价,春节期间,为了能吸引消费者,打7折销售,此时每台豆浆机仍可获利52元,请问每台豆浆机的进价是多少元?102.某文艺团体为“希望工程”募捐组织了一场义演,共售出1000张票,筹得票款6950元,已知成人票8元一人,学生票5元一人,问成人票与学生票各售出多少张?103.两船从长江同一港口同时出发反向而行,甲船顺水航行,乙船逆水航行,两船在静水中的速度都是50km/h,若2小时后甲船比乙船多行驶了80km,那么水流的速度是多少?104.足球循环赛中,A队胜B队,比分为3:1(即A队进3球,B队进1球);B队胜C队,比分为2:0,C队胜A队,比分为1:0;计算各队在这轮循环中的净胜球数.105.一艘船从甲码头到乙码头顺流行驶,用了3小时;从乙码头返回甲码头逆流行驶,用了4.5小时.已知船在静水中的平均速度为25千米/时,求水流的速度与两个码头之间的距离.。
一元一次方程应用题专题练习
一元一次方程应用题专题(15个)一、年龄问题1.小明今年6年,他爷爷今年72岁,问多少年之后小明年龄是他爷爷年龄的14倍?解:设x 年后小明的年龄是爷爷的14倍,根据题意得方程为 : 二、数字问题2.一个两位数它的个位数字比十位数字大3,那么这个两位数可以表示为什么?如果把个位数字和十位数字对调,新的两位数可以表示为什么?〔添表格并完成解答过程〕 解:设这个数的十位数字是x ,根据题意得 解方程得: 答:3.两个连续奇数的和为156,求这两个奇数,设最小的数为x ,列方程得4.一个五位数最高位上的数字是2,如果把这个数字移到个位数字的右边,那么所得的数比原来的数的3倍多489,求原数。
5.将连续的奇数1,3,5,7,9…,排成如下的数表: 〔1〕十字框中的五个数的平均数与15有什么关系?〔2〕假设将十字框上下左右平移,可框住另外的五个数,这五个数的和能等于315吗?假设能,请求出这五个数;假设不能,请说明理由.三、日历时钟问题6、你能在日历中圈出2×2的一个正方形,使得圈出的4个数之和是77吗如果能,3735333121111求出这四天分别是几号如果不能,请说明理由.7、在6点和7点间,时钟分针和时针重合?四、几何等量变化问题〔等周长变化,等体积变化〕常用公式:三角形面积=,正方形面积圆的面积,梯形面积矩形面积柱体体积椎体体积球体体积8、一个用铁丝折成的长方形,它的长为9cm,宽为6cm,把它重新折成一个宽为5cm的长方形,那么新的长方形的宽是多少?设新长方形长为xcm,列方程为9、将棱长为20cm的正方体铁块没入盛水量筒中,量筒底面积为12cm2,问量筒中水面升高了多少cm?10、如下图,两个长方形重叠局部的面积相当于大长方形面积的六分之一,相当于小长方形面积的四分之一,阴影局部的面积为224cm2,求重叠局部面积。
11、如图是两个圆柱体的容器,它们的半径分别是4cm和8cm,高分别为16cm 和10cm,先在第一个容器中倒满水,然后将其全部倒入第二个容器中。
一元一次方程专题训练经典练习题(含答案)
一元一次方程专题训练经典练习题一、解下列一元一次方程1、2x+2=3x+62、 3x-11=253、2(x-1)+3(1-x)=04、5x(2-3.140)=2(x-6)5、0.8x +2=1.6x-26、10%(x+2)=17、2(x+5)=3(x-6) 8、1-2(x-3)=3(x+2)9、3(x-1)=2(x+2)+(1-x) 10、4x-[2+(3x-6)]=111、2x-20%(x+3)=12÷10 12、7x+5(x-2)= 2(x+10)13、4x-4=2(2+x)-3(x+1) 14、1- 12x=215、3- 13x=2(x+1) 16、2(x-34)=8-x17、12(2x+1)+1=2(2-x) 18、x-13(x-5)=2319、-x= -3(x-4) 20、7x·(5 - 4·12)= 5+x21、0.1+x2=2 22、x-10.2=3(x-1)23、x-10.3+x+20.3=2 24 、12+13x =23+125、2x-10.5= 2-3x+20.326、错误! =3x27、错误! =3 28、错误! =错误!29、12{13[14(x+1)+1]+2} =2 30、25(300+x)-35(200+x)=400·110二、一元一次方程应用题1、一艘船在两个码头之间航行,水流的速度是3千米/时,顺水航行需要2小时,逆水航行需要3小时,求两码头之间的距离。
2、小华从家里骑自行车到学校。
若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?3、小兵由A地到B地,若以每小时12千米的速度,他将比原计划的时间迟到20分,若以每小时15千米的速度前进,则比原计划的时间早4分钟到达B地,求A、B两地间的距离。
4、甲、乙两人同时从A地前往相距25.5千米的B地,甲骑自行车,乙步行,甲的速度比乙的速度的2倍还快2千米/时,甲先到达B地后,立即由B地返回,在途中遇到乙,这时距他们出发的时间时已过了3小时。
一元一次方程应用题专项练习
一元一次方程应用题练习工程问题一.工程问题中的三个量及其关系为:工作总量=工作效率×工作时间=工作总量工作效率工作时间=工作总量工作时间工作效率工作效率:单位时间内完成的工作量二.经常在题目中未给出工作总量时,设工作总量为单位1。
即完成某项任务的各工作量的和=总工作量=1.三、工程问题常用等量关系:先做的+后做的=完成量1、做某件工作,甲单独做要8小时才能完成,乙单独做要12小时才能完成,问:①甲做1小时完成全部工作量的几分之几?②乙做1小时完成全部工作量的几分之几?③甲、乙合做1小时完成全部工作量的几分之几?④甲做x小时完成全部工作量的几分之几?⑤甲、乙合做x小时完成全部工作量的几分之几?⑥甲先做2小时完成全部工作量的几分之几?乙后做3小时完成全部工作量的几分之几?甲、乙再合做x小时完成全部工作量的几分之几?三次共完成全部工作量的几分之几?结果完成了工作,则可列出方程:6、一水池有一个进水管,4小时可以注满空池,池底有一个出水管,6小时可以放完满池的水.如果两水管同时打开,那么经过几小时可把空水池灌满?7、某工程,甲单独完成续20天,乙单独完成续12天,甲乙合干6天后,再由乙继续完成,乙再做几天可以完成全部工程?8、将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?家庭作业:1、一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?2、一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管6小时可注满水池;单独开乙管8小时可注满水池,单独开丙管9小时可将满池水排空,若先将甲、乙管同时开放2小时,然后打开丙管,问打开丙管后几小时可注满水池?数字问题一.要搞清楚数的表示方法:某数等于各数位上的数或字母乘以该数位所得之和如一个三位数,一般可设百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1≤a≤9, 0≤b≤9, 0≤c≤9),则这个三位数表示为:100a+10b+c.二.数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n-2表示;奇数用2n+1或2n—1表示。
一元一次方程应用题20道题
20道一元一次方程的应用题:1. 小明买了3本书和2支笔,总共花费了35元。
如果每本书比每支笔贵5元,求每本书和每支笔的价格。
2. 甲、乙两地相距120公里,一辆汽车从甲地出发,以每小时60公里的速度行驶,问多少小时后到达乙地?3. 某商店进行打折活动,一件衣服原价200元,打8折后售价是多少元?4. 小华每天早上跑步,速度为每小时8公里,他跑了30分钟后,求他跑了多少公里?5. 一辆自行车行驶1000米,速度为每小时15公里,求行驶这段路程需要多少分钟?6. 小李的年龄比小王大3岁,今年他们的年龄之和为35岁,求小李和小王的年龄。
7. 一辆汽车加满油可以行驶600公里,现剩余油量可以行驶200公里,求汽车已经行驶了多少公里?8. 某商品进价50元,售价为80元,求该商品的利润率。
9. 一家工厂生产一批产品,原计划每天生产100个,实际每天生产120个,提前5天完成任务。
求原计划需要多少天完成?10. 一辆火车从A地出发,以每小时80公里的速度行驶,3小时后到达B地,求A、B两地之间的距离。
11. 小红有10个苹果,小明有15个苹果,他们把苹果合在一起平均分给5个人,求每个人分到多少个苹果?12. 一辆公交车每站停靠时间为2分钟,行驶全程共需60分钟,如果不计停靠时间,求公交车的平均速度。
13. 某学生语文、数学两门课的平均成绩为85分,已知数学成绩比语文成绩高10分,求该学生的语文和数学成绩。
14. 一家电器店购进一批电视机,每台进价3000元,售价为4000元,求每台电视机的利润。
15. 一辆汽车以每小时60公里的速度行驶,行驶了4小时后,距离目的地还有100公里,求汽车离出发地的距离。
16. 某商品原价100元,连续两次打折后售价为80元,求平均每次打折的折扣率。
17. 小刚每天跑步锻炼,第一天跑了3公里,之后每天比前一天多跑0.5公里,求第五天小刚跑了多少公里?18. 一辆自行车行驶在平直的公路上,速度为每小时15公里,行驶了20分钟后,求自行车行驶的距离。
列一元一次方程解决实际问题专项训练题
列一元一次方程解应用题专题一、填空题1.我国政府为解决老百姓看病难的问题,决定下调药品价格,某种药品在1999年涨价30%后, 2001年降价70%至a 元,则这种药品在1999年涨价前的价格为 元.2.光明中学初中一年级一、二、三班向希望学校共捐书385本.一班与二班捐书的本数之比 为4︰3,—班与三班捐书的本数之比为6 :7,那么二班捐书 本.3.某车间共有86名工人,已知每人平均每天可加工甲种部件15个,或乙种部件12个,或丙种部件9个,要使加工后的部件按3个甲种部件、2个乙种部件和1个丙种部件配套,则应安排 人加工甲种部件, 人加工乙种部件, 人加工丙种部件。
4.甲、乙同在一百米起跑线处,甲留在原地未动,乙则以每秒7 米的速度跑向百米终点,5秒后甲听到乙的叫声,看到乙跌倒在地,已知声音的传播速度是每秒340米,这时乙已经跑了 米。
(精确到个位)5.小明用100元钱去购买笔记本和钢笔共30件,已知每本笔记本2元,每支钢笔5元,那么小明最多能买 支钢笔。
二、选择题:6.某妇人买了一包弹球,其中41是绿色的,81是黄色的,余下的51是蓝色,如果有12个蓝色的弹球,那么她总共买了( )个弹球。
A. 48B. 60C. 96D. 720E. 19207.某工厂七月份生产某产品的产量比六月份减少了20%,若八月份产品要达到六月份的产量,则八月份的产量比七月份要增加( ).A.20%B.25%C.80%D.75%8.甲是乙现在的年龄时,乙10岁;乙是甲现在的年龄时,甲25岁,那么( ).A.甲比乙大5岁B.甲比乙大10岁C.乙比甲大10岁D.乙比甲大5岁9.甲、乙、丙、丁4人拿出同样多的钱,合伙订购同样规格的若干货物.货物买来后,甲、乙、丙分别比丁多拿了3、7、14件货物,最后结算时,乙付给丁14元,那么丙应付给丁( )元.A.28B.56C.70D.11210.天池旅馆二层客房比底层的多5间,黄冈市某中学参加数学竞赛有48人,若全部安排在底层,每间住4人,房间不够; 而每间住5人,有的房间未住满,又若全部安排在二层,每间住3人,房间不够;而每间住4人,有的房间未住满,这家旅馆底层共有房间()个.A.9B.10C.llD.12三、解答题:11.某市为了鼓励节约用水,对自来水的收费标准作如下规定:每月每户用水不超过10吨部分,按每吨0.45元收费;超过10吨而不超过20吨部分,按每吨0.80元收费;超过20吨部分按1.5元/吨收费.现已知李老师家六月份缴水费14元,问李老师家六月份用水多少吨?12.某公园有东、西两个门,开园半小时内东门售出成人票65张,儿童票12张,收票款568元,西门售出成人票81张,儿童票8张,收票款680元,问此公园成人票、儿童票每张售价各几元?13.某校为了奖励在数学竞赛中获奖的学生,买了若干本课外读物准备送给他们,如果每人送3本,则还余8本;如果前面每人送5本,则最后一人得到的课外读物不是3本,设该校买了 m本课外读物,有x名学生获奖,请解答下列问题:(1)用含x的代数式表示m ; (2)求出该校的获奖人数及所买课外读物的本数.打以上的,每打还可以按2.70元付款,解答下列问题:(1)初三、一班共57人,每人需要1本A 种练习本,则该班集体去买时,最少需付多少元?(2)初三年级共227人,每人需要1本A 种练习本,则该年级集体去买时,最少需付多少元?15.在3点和4点之间,时钟上的分针和时针在何时重合?16.革命老区百色某芒果种植基地,去年结余为500万元,估计今年可结余960万元,并且今年收入比去年高15%,支出比去年低10%,求去年的收入与支出各是多少万元?17.商场出售的A 型冰箱每台售价2190元,每日耗电量为1度,而B 型节能冰箱每台售价虽比A 型冰箱髙出10%,但每日耗电量却为0.55度,现将A 型冰箱打折出售(打一折后的售价为原价的101),问商场至少打几折出售,消费者购买才合算?(按使用期10年,每年365 天,每度电0.40元计算)18.某园林的门票每张10元,一次使用,考虑到人们的不同需求,也为了吸引更多的游客,该园林除保留原来的售票方法外,还推出了一种“购买个人年票”的售票方法(个人年票以购买日起,可供持票者使用一年).年票分A、B、C三类:A类年票每张120元,持票者进入园林时,无需再用门票;B类年票每张60元,持票者进人该园林时,需再购买门票,每次2元;C类年票每张40元,持票者进入该园林时,需再购买门票,每次3元;(1)如果你只选择一种购买门票的方式,并且你计划在一年中用80元花在该园林的门票上,试通过计算,找出可使进人该园林的次数最多的购票方式;(2)求一年中进入该园林至少超过多少次时,购买A类年票比较合算?19.某人大学毕业后,准备到母校探望曾经教过自己的一位老师.他带了 50元人民币,先到百货公司买了—些罐失和饮料,共用去30元;经过水果市场时,他打算买1500克香蕉和1500克苹果,但发现所带的钱不够,结杲只好少买了 500克香蕉,这样所带钱数尚有结余,已知香蕉每500克3元,苹果价格也是整数,试求苹果的价格。
初一一元一次方程相遇问题经典应用题
初一一元一次方程相遇问题经典应用题一、甲、乙两人从两地同时出发相向而行,甲每分钟走60米,乙每分钟走50米,经过15分钟两人相遇。
两地相距多少米?A. 1650米B. 1500米C. 1350米D. 1800米(答案:A)二、A、B两地相距480千米,甲、乙两车分别从A、B两地相对开出,经过4小时相遇。
已知甲车每小时行65千米,乙车每小时行多少千米?A. 55千米B. 60千米C. 65千米D. 70千米(答案:A)三、小明和小华从两地同时出发,相向而行。
小明每分钟走50米,小华每分钟走70米,经过12分钟两人相遇。
小明比小华少走多少米?A. 120米B. 140米C. 240米D. 280米(答案:C)四、两地相距900千米,甲、乙两车同时从两地相对开出,甲车每小时行80千米,乙车每小时行70千米,两车经过几小时相遇?A. 6小时B. 8小时C. 10小时D. 12小时(答案:C)五、小红和小绿从两地同时出发,相向而行。
小红每分钟走45米,小绿每分钟走55米,两人相遇时,小红比小绿少走了100米。
两人相遇用了多少时间?A. 5分钟B. 10分钟C. 15分钟D. 20分钟(答案:B)六、A、B两地相距600千米,甲车从A地出发,每小时行60千米,乙车从B地出发,每小时行90千米。
两车相向而行,甲车先行1小时后,乙车才出发,乙车出发几小时后与甲车相遇?A. 3小时B. 4小时C. 5小时D. 6小时(答案:C)七、甲、乙两人分别从两地同时出发,相向而行。
甲每分钟走60米,乙每分钟走40米。
相遇时,甲比乙多走了200米。
两人相遇用了多少时间?A. 10分钟B. 15分钟C. 20分钟D. 25分钟(答案:A)八、两地相距800千米,甲、乙两车同时从两地相对开出,甲车每小时行80千米,乙车的速度是甲车的1.2倍。
两车经过几小时相遇?A. 4小时B. 5小时C. 6小时D. 7小时(答案:B)。
一元一次方程应用题(50道)
一元一次方程应用题(50道)一元一次方程应用题(50道)1. 池塘问题:有一个池塘,里面有一些鱼和青蛙。
已知鱼和青蛙的总数为36,头数为100,请问池塘里有多少只鱼和青蛙?2. 苹果贩卖问题:小明每天贩卖一些苹果和橙子。
已知他卖出的苹果数目是橙子的2倍,他总共卖出了15个水果。
请问他每天贩卖多少个苹果和橙子?3. 铁路站台问题:火车站上有一辆高铁和一辆普速列车,一共有30个车厢。
已知高铁的车厢数是普速列车的2倍,问高铁和普速列车各有多少个车厢?4. 小明和小红问题:小明比小红大2岁,两人年龄之和是28岁。
请问小明和小红分别多少岁?5. 汽车和自行车问题:青松和小明一起从A城到B城,青松骑自行车,每小时的速度是12km/h;小明开汽车,每小时速度是60km/h。
已知他们离开A城和到达B城的时间差2个小时,求A城到B城的距离。
6. 水果和蔬菜问题:在一次农贸市场活动中,小王和小李带来各自的水果和蔬菜卖。
已知小王卖出了10个水果和5个蔬菜,而小李卖出了8个水果和7个蔬菜。
小王的水果每个价格是3元,蔬菜每个价格是2元;小李的水果每个价格是4元,蔬菜每个价格是1元。
请分别计算小王和小李卖出水果和蔬菜的总金额。
7. 儿童和成人门票问题:某游乐园门票分为儿童票和成人票。
已知一天销售的门票总数为48张,总金额为240元。
儿童票的价格是每张15元,成人票的价格是每张20元。
请问儿童票和成人票分别售出了多少张?8. 书包和铅笔盒问题:小明的书包和铅笔盒总共有9个,书包比铅笔盒的数量多3。
请问书包和铅笔盒各有多少个?9. 电脑和手机问题:小王带着电脑和手机出门,电脑的重量是手机的2倍,他们的总重量是6kg。
请问电脑和手机各有多重?10. 停车费问题:某停车场停车费为每小时8元。
小明停车了4小时,停车费用为多少元?11. 毛巾和浴巾问题:某商店有毛巾和浴巾两种商品,已知毛巾的价格是浴巾的三分之一。
小张花了27元买了3个毛巾和2个浴巾,请问每个毛巾和浴巾的价格分别是多少元?12. 配菜问题:在一次聚餐中,小明带来了甲菜和乙菜两种配菜。
一元一次方程解应用题-行程问题专项练习 含答案)
一元一次方程解应用题-行程问题专项练习一、单选题1.一条山路,某人从山下往山顶走3小时还有1千米才到山顶,若从山顶走到山下只用150分钟,已知下山速度是上山速度的1.5倍,求山下到山顶的路程.设上山速度为x 千米/分钟,则所列方程为( ).A .31 2.5 1.5x x -=⨯B .31 2.5 1.5x x +=⨯C .31150 1.5x x -=⨯D .1801150 1.5x x +=⨯ 2.小明每天早晨在8时前赶到离家1km 的学校上学.一天,小明以80m/min 的速度从家出发去学校,5min 后,小明爸爸发现小明的语文书落在家里,于是,立即以180m/min 的速度去追赶.则小明爸爸追上小明所用的时间为( )A .2 minB .3minC .4minD .5min3.一货轮往返于上、下游两个码头,逆流而上38个小时,顺流而下需用32个小时,若水流速度为8千米/时,则下列求两码头距离x 的方程正确的是( )A .883238x x -+= B .883238x x -=+ C .832382x x -= D .21323823238x x x ⎛⎫=+ ⎪+⎝⎭ 4.如图所示,甲、乙两动点分别从正方形ABCD 的顶点A ,C 同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的4倍,则它们第2020次相遇在边( )上.A .AB B .BC C .CD D .DA5.A ,B 两地相距600km ,甲车以60km/h 的速度从A 地驶向B 地,当甲车行驶100km 后,乙车以100km/h 的速度沿着相同的道路从A 地驶向B 地.设乙车出发h x 后追上甲车,根据题意可列方程为( )A .60100100x x +=B .60100100x x -=C .60100600x x +=D .60100100600x x ++= 6.《九章算术》中记载了这样一个数学问题:今有甲发长安,五日至齐;乙发齐,七日至长安.今乙发已先二日,甲仍发长安,几何日相逢?译文:甲从长安出发,5日到齐国;乙从齐国出发,7日到长安.现乙先出发2日,甲才从长安出发.问甲乙经过多少日相逢?设甲乙经过x 日相逢,可列 方程( )A .7512x x +=+B .2175x x ++=C .2175x x +-=D .275x x += 7.甲、乙两车分别从A 、B 两地同时出发,相向而行,若快车甲的速度为60/km h ,慢车乙的速度比快车甲慢4/km h ,A 、B 两地相距80km ,求两车从出发到相遇所行时间,如果设xh 后两车相遇,则根据题意列出方程为( )A .4608080x x -+=B .()480x x -=C .()6060480x x +-=D .()6060480x x +-= 8.我国古代著名著作《算学启蒙》中有这样一道题:“良马日行二百四十里,驽马日行一直五十里,驽马先行一十二日,问良马几何追及之.”题意是:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,则快马追上慢马需( )A .20天B .21天C .22天D .23天9.2020年12月30日,连云港市图书馆新馆正式开馆.小明同学从家步行去图书馆,他以5km/h 的速度行进24min 后,爸爸骑自行车以15km/h 的速度按原路追赶小明.设爸爸出发xh 后与小明会合,那么所列方程正确的是( )A .245()1560x x +=B .()52415x x +=C .()51524x x =+D .24515()60x x =+ 10.某中学学生军训,沿着与笔直的铁路并列的公路匀速前进,每小时走4.5千米.一列火车以每小时120千米的速度迎面开来,测得从火车头与队首学生相遇,到车尾与队末学生相遇,共经过12秒.如果队伍长150米,那么火车长( )A .150 米B .215米C .265 米D .310米11.《九章算术》是一部与现代数学的主流思想完全吻合的中国数学经典著作,全书分为九章,在第七章“均衡”中有一题:“今有凫起南海,七日至北海;雁起北海,九日至南悔.今凫雁俱起,问何日相逢?”愈思是:今有野鸭从南海起飞.7天到北海;大雁从北海起飞,9天到南海.现野鸭大雁同时起飞,问经过多少天相逢.利用方程思想解决这一问题时,设经过x 天相遇,根据题意列出的方程是( )A .()971x -=B .()971x +=C .11179x ⎛⎫+= ⎪⎝⎭D .11179x ⎛⎫-= ⎪⎝⎭12.一天早上,小宇从家出发去上学.小宇在离家800米时,突然想起班级今天要进行建党100周年合唱彩排,表演的衣服忘了,于是小宇立即打电话通知妈妈送来,自己则一直保持原来的速度继续赶往学校,妈妈接到电话后,马上拿起衣服以180米/分的速度沿相同的路线追赶小宇,10分钟后追上了小宇,把衣服给小宇后又立即以原速原路返回,小宇拿到衣服后继续原速赶往学校(打接电话、拿取衣服等时间都忽略不计).当小宇妈妈回到家中时,恰好小宇也刚好到学校.则小宇家离学校的距离为()A.1800米B.2000米C.2800米D.3200米二、填空题13.一艘轮船在水中由A地开往B地,顺水航行用了4小时,由B地开往A地,逆水航行比顺水航行多用了1小时,已知此船在静水中速度是18千米/时,水流速度为___________千米/小时.14.一列长150米的火车,以每秒15米的速度通过长600米的桥洞,从列车进入桥洞口算起,这列火车完全通过桥洞所需时间是____秒.15.甲乙两车在南北方向的笔直公路上相距90千米,相向而行.甲出发30分钟后,乙再出发,甲的速度为60千米/时,乙的速度为40千米/时.则甲出发________小时后甲乙相距10千米.16.有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地.若求此人第六天走的路程为多少里.设此人第六天走的路程为x里,依题意,可列方程为________.17.小明与小美家相距1.8千米.有一天,小明与小美同时从各自家里出发,向对方家走去,小明家的狗和小明一起出发,小狗先跑去和小美相遇,又立刻回头跑向小明,又立刻跑向小美……一直在小明与小美之间跑动.已知小明速度为50米/分,小美速度为40米/分,小明家的狗速度为150米分,则小明与小美相遇时,小狗一共跑了__________米.三、解答题18.列方程解应用题:甲、乙两人从相距60千米的两地同时出发,相向而行2小时后相遇,甲每小时比乙少走4千米,求甲、乙两人的速度.19.小明在国庆节期间和父母外出旅游,他们先从宾馆出发去景点A参观游览,在景点A停留1.5h 后,又去景点B,再停留0.5h后返回宾馆.去时的速度是5km/h,回来时的速度是4km/h,来回(包括停留时间在内)一共用去7h,如果回来时的路程比去时多2km,求去时的路程.20.甲、乙两人分别后,沿着铁轨反向而行.此时,一列火车匀速地向甲迎面驶来,列车在甲身旁开过,用了15s;然后在乙身旁开过,用了17s.已知两人的步行速度都是3.6km/h,这列火车有多长?21.如图,在数轴上,点A、点B所表示的数分别是a和b,点A在原点右边,点B在原点左边,它们相距24个单位长度,且点A到原点的距离比点B到原点的距离大8,点P从点A出发,以每秒3个单位的速度向数轴负方向运动,到达点B后,立即以相同的速度反向运动;点Q从点B出发,以每秒1个单位的速度向数轴负方向运动,两点同时出发,设运动时间为t秒.(1)a=,b=;(2)当点P、点Q所表示的数互为相反数时,求t的值;(3)当点P、点Q与原点的距离之和为22时,求t的值.22.问题一:如图①,甲,乙两人分别从相距30km的A,B两地同时出发,若甲的速度为40km/h,乙的速度为30km/h,设甲追到乙所花时间为xh,则可列方程为;问题二:如图②,若将线段AC弯曲后视作钟表的一部分,线段AB对应钟表上的弧AB(1小时的间隔),已知∠AOB=30°.(1)分针OC的速度为每分钟转动度;时针OD的速度为每分钟转动度;(2)若从1:00起计时,几分钟后分针与时针第一次重合?(3)在(2)的条件下,几分钟后分针与时针互相垂直(在1:00~2:00之间)?参考答案1.D解:3小时=180分钟由题意下山的速度为1.5x 千米/分钟,从而可得方程:1801150 1.5x x +=⨯ 故选:D .2.C解:设小明爸爸追上小明所用的时间为min x ,则小明走的路程为(80580)x m ⨯+,小明的爸爸走的路程为180xm ,由题意列式得:805+80180x x ⨯=,解得:4x =.即小明爸爸追上小明所用的时间为4分钟.故选:C3.B解:∵逆流而上38个小时,∴逆流时船本身的速度可以表示为38x 千米/时, ∵顺流而下需用32个小时,∴顺流时船本身的速度可以表示为32x 千米/时, ∵静水的速度是不变的,∴可列方程为883238x x -=+. 故选:B .4.A解:设正方形的边长为a ,甲的速度为v ,则乙的速度为4v ,第一次相遇时间为1t ,第二次相遇时间为2t ,第n 次相遇时间为n t ,甲第一次走的路程为S 1,第二次走的路程为S 2,第n 次走的路程为S n , 1142vt vt a +=, 125a t v=,1125a S v t ==, 2244vt vt a +=, 245a t v=,2245a S v t ==,3344vt vt a +=,345a t v =,3345a S v t ==, … 45n a t v=,45n n a S v t ==, ()12422445555n n a a a a S S S S -=+⋯+=++⋯=, 当2020n =时,()4280781615,655n a a S a -===, 4403.9S a ÷=圈,0.94 3.6a a ⨯=,第2020次相遇在AB 上.故选:A .5.A解:设乙车出发h x 后追上甲车,等量关系为甲车h x 行驶的路程100km +=乙车h x 行驶的路程,据此列方程为60100100x x +=.故选:A.6.B解:根据题意设甲乙经过x 日相逢,则甲、乙分别所走路程占总路程的5x 和27x +,可列方程2175x x ++=. 故选B .7.C解:根据题意可知甲的速度为60/km h ,乙的速度是()604/km h -,相遇后甲行驶的路程+乙行驶的路程=80km ,∴可列方程为()6060480x x +-=.故选:C .8.A解:设快马x 天可以追上慢马,由题意,得240x ﹣150x =150×12,解得:x =20.答:快马20天可以追上慢马.故选:A .9.A解:设爸爸出发xh 后与小明会合,则此时小明出发了2460x ⎛⎫+ ⎪⎝⎭h , 依据题意得:2451560x x ⎛⎫+= ⎪⎝⎭, 故选:A .10.C解:12秒=1300小时,150米=0.15千米, 设火车长x 千米,根据题意得:1300×(4.5+120)=x +0.15, 解得:x =0.265,0.265千米=265米.答:火车长265米.故选:C .11.C解:设野鸭与大雁从南海和北海同时起飞,经过x 天相遇, 根据题意得:11179x ⎛⎫+= ⎪⎝⎭. 故选:C .12.C解:设小宇的速度为x 米/分,根据题意得:1018010800x =⨯-,解得:10x =,则小宇家离学校的距离为10180102800x +⨯=(米),故选:C .13.2解:设水流速度是x 千米/时,依题意有4(x +18)=(4+1)×(18−x ), 解得x =2.答:水流速度是2千米/时.14.50解:设这列火车完全通过桥洞所需时间为x 秒,根据题意得:15x =600+150,解得:x =50.答:这列火车完全通过隧道所需时间是50秒.故答案为:50.15.1或1.2或1解:设甲出发x 小时后甲乙相距10千米, 当甲乙相遇前:306040()901060x x +-=-, 解得x =1;当甲乙相遇后:306040()901060x x +-=+, 解得x =1.2,故答案为:1或1.2.16.2481632378+++++=x x x x x x解:设此人第六天走的路程为x 里,则前五天走的路程分别为2x ,4x ,8x ,16x ,32x 里,依题意得:2481632378+++++=x x x x x x ;故答案是:2481632378+++++=x x x x x x .17.3000解:设经过x 分钟两人相遇,依题意,得:(50+40)x =1800,解得:x =20,所以小狗跑的距离为150×20=3000(米)故答案为:3000.18.甲的速度为13千米每小时,乙的速度为17千米每小时解:设乙的速度为x 千米每小时,则甲的速度为(4)x -千米每小时,根据题意得, 22(4)60x x +-=解得17x =,则甲的速度为17413-=千米每小时 答:甲的速度为13千米每小时,乙的速度为17千米每小时. 19.10km解:设去时的路程为km x ,则回来时的路程就是(2)km x +,去时路上所用的时间为h 5x ,回来时路上所用的时间为2h 4x +.根据题意,得2 1.50.5754x x ++++=. 解得10x =. 因此,去时走的路程是10km .20.255m解:3.6km/h =1m/s .设这列火车的速度为x m/s ,则火车的长为15x +1×15=(15x +15)m , 根据题意得:17x ﹣17×1=15x +15×1, 解得:x =16,∴15(x +1)=255,答:这列火车长255m .21.(1)16,﹣8;(2)t 的值是2;(3)t 的值是1或7.5或11.5或9. 解:(1)∵点A 在原点右边,点B 在原点左边,它们相距24个单位长度,且点A 到原点的距离比点B 到原点的距离大8,0,0a b ∴>< ∴24,8a b a b -=-=∴a =(24+8)÷2=16,b =﹣(24﹣8)÷2=﹣8;故答案为:16,﹣8.(2)①当0≤t ≤8时,点P 表示的数是16﹣3t ,点Q 表示的数是﹣8﹣t , 所以(16﹣3t )+(﹣8﹣t )=0,解得t =2; ②当8<t <16时,点P 表示的数是﹣8+(3t ﹣24)=3t ﹣32,点Q 表示的数是﹣8﹣t , 所以(3t ﹣32)+(﹣8﹣t )=0,解得t =20(舍去); 所以当点P 、点Q 所表示的数互为相反数时,t 的值是2; (3)①当0≤t ≤8时,OP =|16﹣3t |,OQ =8+t , 所以|16﹣3t |+8+t =22,解得t =1或7.5;②当8<t<16时,OP=|3t﹣32|,OQ=8+t,所以|3t﹣32|+8+t=22,解得t=11.5或9;综上,当点P、点Q与原点的距离之和为22时,t的值是1或7.5或11.5或9.22.问题一:(40-30)x=30;问题二:(1)6,0.5;(2)从1:00起计时,6011分钟后分针与时针第一次重合;(3)24011或60011分钟后分针与时针互相垂直(在1:00~2:00之间).解:问题一:依题意有(40-30)x=30;故答案为:(40-30)x=30;问题二:(1)分针OC的速度为每分钟转动6度;时针OD的速度为每分钟转动0.5度;故答案为:6,0.5;(2)设从1:00起计时,y分钟后分针与时针第一次重合,依题意有(6-0.5)y=30,解得y=6011.故从1:00起计时,6011分钟后分针与时针第一次重合;(3)设在(2)的条件下,z分钟后分针与时针互相垂直(在1:00~2:00之间),依题意有(6-0.5)z=90+30或(6-0.5)z=270+30,解得z=24011或z=60011,故在(2)的条件下,24011或60011分钟后分针与时针互相垂直(在1:00~2:00之间).11。
一元一次方程应用题(50道)
1.某工程队承包了某标段全长1755米的过江隧道施工任务,甲、乙两个班组分别从东、西两端同时掘进.已知甲组比乙组平均每天多掘进0.6米,经过5天施工,两组共掘进了45米.求甲、乙两个班组平均每天各掘进多少米?2.将一个内部长、宽、高分别为300cm,300mm和80mm的长方体容器内装满水,然后倒入一个内径是200mm,高是200mm的圆柱形容器内,问水是否溢出来?3.北京市实施交通管理新措施以来,全市公共交通客运量显著增加.据统计,2010年10月11日到2011年2月28日期间,地面公交日均客运量与轨道交通日均客运量总和为1696万人次,地面公交日均客运量比轨道交通日均客运量的4倍少69万人次.在此期间,地面公交和轨道交通日均客运量各为多少万人次?4.全班同学去划船,如果减少一条船,每条船正好坐9位同学;如果增加一条船,每条船上正好坐6位同学。
问这个班有多少位同学?5.在收获季节的某星期天,某中学抽调七年级(1)、(2)两班部分学生去果园帮助村民采摘椪柑,其中,七年级(1)班抽调男同学2人,女同学8人,共摘得柑840千克;七年级(2)班调男同学4人,女同学6人,共摘得椪柑880千克,问这天被抽调的同学中,男同学每人平均摘椪柑多少千克?女同学每人平均摘椪柑多少千克?6.某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少工人生产螺母?7.学校有校舍20000平方米,计划拆除部分旧校舍,建造新校舍,新校舍的建造面积是旧校舍的3倍还多1000平方米。
这样建设完成后的校舍面积比现有校舍面积增加20%,拆除的旧校舍和新建的校舍面积各是多少?已知拆除旧校舍每平方米需费用80元,建造新校舍每平方米需费用700元,完成该计划需多少费用?8.某山中学组织七年级师生秋游,如果单独租用45座客车若干辆,则刚好坐满;如果单独租用60座客车,则可少租1辆,并且剩余15个座位.(1)求参加秋游的人数?(2)已知45座客车的日租金为每辆250元,60座客车的日租金为每辆300元,问:租用哪种车更合算?9.学校组织各班开展“阳光体育”活动,某班体育委员第一次到时商店购买了5个毽子和8根跳绳,花费34元,第二次又去购买了3个毽子和4根跳绳,花费18元,求每个毽子和每个跳绳各多少元?10.在甲处劳动的有27人,在乙处劳动的有19人.现在另调20人去支援,使在甲处的人数为在乙处的人数的2倍,应调往甲、乙两处各多少人?11.某班为奖励在校运会上取得较好成绩的运动员,花了400元钱购买甲.乙两种奖品共30件,其中甲种奖品每件16元,乙种奖品每件12元,求甲乙两种各买多少件?12.在高铁上运行的一列“和谐号”动车组有一等车厢和二等车厢共6节,一共设有座位496个.其中每节一等车厢设座位64个,每节二等车厢设座位92个.试求该列车一等车厢和二等车厢各有多少节?13.某小学在6月1日组织师生共110人到趵突泉公园游览.趵突泉公园规定:成人票价每位40元,学生票价每位20元.该校购票共花费2400元.在这次游览活动中,教师和学生各有多少人?14.某车间每个工人能生产螺栓12个或螺母18个,每个螺栓要有两个螺母配套,现在有工人28人,怎样分配生产螺栓和螺母的工人数,才能使每天生产量刚好配套?15.用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一罐头盒,现有36张白铁皮,用多少张制盒身,多少张制盒底可以使盒身与盒底正好配套?16.食品安全是老百姓关注的话题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A、B两种饮料共100瓶,问A、B两种饮料各生产了多少瓶?17.古运河是扬州的母亲河,为打造古运河风光带,现有一段长为180米的河道整治任务由A、B两工程队先后接力....完成.A工作队每天整治12米,B工程队每天整治8米,共用时20天.求A、B两工程队分别整治河道多少米.18.某中学组织七年级学生春游,如果租用45座的客车,则有15个人没有座位,如果租用同样数量的60座的客车,则除多出一辆外,其余恰好坐满。
一元一次方程50道题含答案
一元一次方程50道题含答案1.小明现在的年龄是小红的2倍,3年后小明的年龄将是小红的1.5倍,求小红的年龄。
2.若某物品原价是75元,现在以原价的四分之三出售,求现价。
3.一个数的5倍减去7的结果为23,求这个数是多少?4.某车以100元进货,以150元卖出,求进货价格是售价的多少倍?5.两个数之和为35,其中一个数比另一个数多9,求这两个数是多少?6.一桶液体其中含有55升水,经过排水后,剩下的水的部分占原有水的1/5,问这桶液体原有多少升?7.甲乙两人共有264元,如果甲有80元,乙有多少元?8.某班男生和女生的比例是3:5,如果女生人数比男生多8人,求这个班级一共有多少人?9.某个数减去它的四分之一的结果等于36,求这个数是多少?10.甲的年龄是乙的两倍,两年前甲的年龄是乙的3倍,求甲乙的年龄。
11.两个数之差为28,其中一个数比另一个数大4,求这两个数是多少?12.甲乙两人一共走了80千米,甲走的路程是乙的1.5倍,求甲走了多少千米?13.某物品原价是480元,现在以原价的四分之一出售,求现价。
14.一个有三位数的数各位的和是9,个位数字比百位数字大8,求这个数。
15.两个数之和是72,其中一个数是另一个数的2倍,求这两个数。
16.一条绳子从27米长减短到18米,求减短了多少米?17.一个数加上它的三分之一的结果等于40,求这个数。
18.甲乙两人一共有140元,乙的钱是甲的2倍,求甲乙各有多少钱?19.某车以1000元进货,以1500元卖出,求利润率是多少?20.某种药的原价是60元,打折后以原价的4折出售,求现价。
21.两个数之和是56,其中一个数是另一个数的1.5倍,求这两个数。
22.甲乙两人一共有160元,乙的钱是甲的3倍,求甲乙各有多少钱?23.三个数之和是96,其中第一个数是第二个数的5倍,第三个数是第一个数的1/5,求这三个数。
24.某人年龄的一半减去14的结果等于36,求这个人的年龄。
人教版七年级上册数学期末一元一次方程应用题(工程问题)专题训练(含答案)
人教版七年级上册数学期末一元一次方程应用题(工程问题)专题训练1.一项工作,如果由甲单独做,需6小时完成;如果由乙单独做,需要5小时完成.如果让甲、乙两人一起做1小时,再由乙单独完成剩余部分,还需多长时间完成?2.一项道路工程,甲队单独做9天完成,乙队单独做天完成.现在甲、乙两队共同施工3天,因甲另有任务,剩下的工程由乙队完成,则乙队还需几天才能完成?3.整理一批图书,由一个人做要10小时完成.现计划由一部分人先做1小时,然后增加2人与他们一起做2小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?4.某地为了打造风光带,将一段长为的河道整治任务分配给甲,乙两个工程队先后接力完成,共用时天,已知甲工程队每天整治,乙工程队每天整治.求:(1)甲,乙两个工程队分别整治了多长的河道?(2)甲、乙两工程队各整治河道的天数.5.甲、乙两队修一座桥,如果由甲队单独完成,需要15天;如果由乙队单独完成,需要30天.现在由甲队单独做了3天后,承办方接到通知,需要加快修桥进度,后续工程由甲、乙两队共同完成,则甲、乙两队后续需要合作多少天才能修完这座桥?6.甲乙两人承包铺地砖任务,若甲单独做需20小时完成,乙单独做需要12小时完成.甲乙二人合做6小时后,乙有事离开,剩下的由甲单独完成.问甲还要几个小时才可完成任务?12360m 2024m 16m7.将一批工业最新动态信息输入管理储存网络,甲单独完成需要4小时,乙单独完成需要6小时.(1)如果让甲、乙合作,需几小时完成这项工作任务的一半?(2)如果乙先做90分钟,然后甲、乙合作,还需多长时间才能完成这项工作?8.某工程队修一条隧道,计划每天修600米,20天完成,而实际每天多修25%,实际可以提前几天完成?(用比例解)9.一项工程,甲单独做需20天完成 ,乙单独做需15天完成,现在先由甲、乙合作若干天后,剩下的部分由乙独做,先后共用12天,请问甲做了多少天?10.修一条高速公路,甲队修了全长的60%,乙队修了全长的30%,甲队比乙队多修27千米,这条公路全长多少千米?11.甲、乙两人想共同承包一项工程,甲单独做30天完成,乙单独做20天完成,合同规定15天完成,否则每超过1天罚款1000元,甲、乙两人经商量后签订了该合同.正常情况下,甲、乙两人能否履行该合同?12.为了打赢蓝天保卫战,某市环保局对一段长的河道进行整治,整治任务由甲、乙两个工程队来完成.已知甲工程队每天完成,乙工程队每天完成.(1)若该任务由甲、乙两个工程队合作完成,则整治这段河道需要多少天?(2)若甲工程队先单独整治一段时间后离开,剩下的由乙工程队来完成,两队共用时天,求甲、乙工程队分别整治了多长的河道.13.修一条公路,甲单独完成需要20天,乙单独完成需要12天,甲先修4天后,为加快工程进度,乙加入,二人合作完成余下的任务,问还需多少天完成?(列方程解)2400m 30m 50m 6020.某信息管理中心,在距下班还剩4小时的时候,接到将一批工业最新动态信息输入管理储存网络的任务,甲单独做需6小时完成,乙单独做需4小时完成:(1)甲乙合作需要小时完成?(2)若甲先做30分钟,然后甲、乙合作,则甲、乙合作还需多少小时才能完成工作?(3)若甲先做30分钟,然后甲、乙合作1小时,这时又接到新的工作任务,必须调走一人,问剩下那人能否在下班之前完成这项工作?参考答案:。
小学一元一次方程应用题100例附答案(完整版)
小学一元一次方程应用题100例附答案(完整版)1. 小明买了5 个练习本,每个练习本x 元,一共花了10 元,求每个练习本多少钱?-方程:5x = 10-答案:x = 2 (元)2. 学校图书馆有科技书和故事书共80 本,科技书的数量是故事书的3 倍,设故事书有x 本,求故事书的数量。
-方程:x + 3x = 80-答案:x = 20 (本)3. 一辆汽车以每小时60 千米的速度行驶,行驶了x 小时,一共行驶了300 千米,求行驶的时间。
-方程:60x = 300-答案:x = 5 (小时)4. 果园里苹果树比梨树多20 棵,梨树有x 棵,苹果树有50 棵,求梨树的数量。
-方程:50 - x = 20-答案:x = 30 (棵)5. 小明有一些零花钱,买文具用去10 元,还剩下x 元,原来一共有30 元,求剩下的钱。
-方程:x + 10 = 30-答案:x = 20 (元)6. 一个长方形的长是宽的2 倍,宽是x 厘米,周长是30 厘米,求宽的长度。
-方程:2(x + 2x) = 30-答案:x = 5 (厘米)7. 老师给学生分糖果,如果每人分5 颗,还剩下10 颗;如果每人分7 颗,正好分完。
设学生有x 人,求学生人数。
-方程:5x + 10 = 7x-答案:x = 5 (人)8. 一本书有200 页,小明已经看了x 页,还剩下80 页没看,求小明已经看的页数。
-方程:x + 80 = 200-答案:x = 120 (页)9. 甲乙两地相距400 千米,一辆汽车从甲地开往乙地,速度是每小时x 千米,行驶了5 小时后到达乙地,求汽车的速度。
-方程:5x = 400-答案:x = 80 (千米/小时)10. 学校买了一批篮球,每个篮球80 元,一共花了x 元,买了5 个篮球,求一共花的钱。
-答案:x = 400 (元)11. 仓库里有一批货物,运走了x 吨,还剩下30 吨,这批货物原来有50 吨,求运走的货物重量。
人教版七年级上册数学期末一元一次方程应用题(销售盈亏问题)专题训练(含答案)
人教版七年级上册数学期末一元一次方程应用题(销售盈亏问题)专题训练次进货价格比第一次每千克便宜了1.4元,两次一共购进600千克,且第二次进货的费用是第一次进货费用的1.44倍.(1)该水果店两次分别购进了多少千克的砂糖橘?(2)售卖中,第一批砂糖橘在其进价的基础上加价进行定价,第二批砂糖橘因为进价便宜,因此以第一批砂糖橘的定价再打七折进行销售.销售时,在第一批砂糖橘中有3%的砂糖橘变质不能出售,在第二批砂糖橘中有5%的砂糖橘变质不能出售,该水果店售完这两批砂糖橘能获利1700元,求a 的值.19.现在是互联网的时代,微商小古一次购进了一种时令水果250kg ,开始两天他以每千克高于进价的价格卖出180kg ,第三天他发现网上卖该种水果的商家陡增,于是他果断将剩余的该种水果在前两天的售价基础上打折全部售出.最后他卖该种水果获得元的利润.问:(1)这批水果的进价为多少元?(2)计算小古打折卖出剩余的水果比购进这些水果亏了多少元?20.某商店销售一种电器,先将成本价提高30%作为标价进行出售,结果每销售一件该电器可以获利60元利润.(1)求这种电器的成本价为多少?(2)因市场调整原因,商品需要下架,所以当这批电器销售出100台时,剩下的40台按照标价的五折进行销售,请问:商店是赚了还是亏了?赚了或亏了多少钱,为什么?%a 40%4618参考答案:1.(1)设购买乒乓球盒时,两种优惠办法付款一样(2)去乙店购买,2.(1)到乙超市购物更优惠(2)350元3.(1)七(一)班买了彩灯和射灯各15个,35个(2)4.(1)该店用1300元可以购进A 型号的文具40只,购进B 型号的文具60只(2)若把所购进A ,B 两种型号的文具全部销售完,利润率超过,理由见解析5.(1)甲种商品每件进价为元(2)购进甲商品的数量为件,购进乙商品的数量为件(3)每件乙种商品的售价为元6.(1)元(2)元7.(1)(2)甲(3)在甲,乙两商店购买的本数相同.理由见解答.8.(1)绿叶水果店第一次购进甲种苹果千克,乙种苹果千克(2)第二次乙种苹果按原价打折销售9.712.4元或730元10.(1)第一次购进橙子200千克,第二次购进橙子400千克.(2)a 的值为80.1020m =40%40204062.527060(2.140)x +9540611.(1)每件服装的标价是300元,每件服装的成本是200元(2)712.(1)甲纪念品有40件,乙纪念品有60件(2)3400元13.(1)乙种服装每件进价为80元;(2)商场销售完这批服装,共盈利1450元.60%14.(1)40,(2)购进甲种商品40件15.(1)甲、乙两种文具的每件进价分别为80元和100元;(2)乙种文具每件售价为136元.16.(1)购进甲种水果70千克,乙种水果50千克(2)获得的利润是410元17.(1)甲、乙两种品牌书包每个进价分别是80元、60元(2)每个甲种品牌书包售价为116元18.(1)第一次购进砂糖橘200千克,则第二次进砂糖橘400千克(2)a的值为8019.(1)15元/千克(2)亏了462元20.(1)这种电器的成本价为200元(2)商店赚了3200元,理由见解析。
一元一次方程应用题50道题
一元一次方程应用题50道题1.一袋大米重3 kg,比一袋小米重2 kg 多5 kg,两袋共重多少千克?2.一只汽车以每小时60 km 的速度在高速公路行驶,经过3小时行驶了多少公里?3.一个瓶子装有300 ml 水,如果每天喝掉其中的1/5,这瓶水可以喝几天?4.张三和李四两个人合作挖坑,如果张三工作8小时,李四工作6小时,他们一起挖了多少立方米的土方?5.一个长方形花池的长是3 m,宽是2 m,若要在花池周围铺设30 cm 宽的石板,需要多少平方米的石板?6.一本书原价80 元,打了6 折后的价格是多少?7.一家餐馆中午卖出了300 份饭菜,占当天总菜品销售量的1/3,这家餐馆当天总共卖出了多少份饭菜?8.小明的体重是x 公斤,小红的体重是x-10 公斤,已知小明的体重是小红的体重的1.2 倍,求小红的体重是多少公斤?9.一块长方形铁皮长6 米,宽4 米,若每平方米20元,这块铁皮的售价是多少元?10.水果店买了150 公斤苹果,以每公斤5元的价格卖出,若想要盈利600 元,每公斤的成本价是多少元?11.某班同学中男生和女生的比例是3:2,如果班级中有30 名女生,求男生的人数?12.一个正方形花坛的周长是24 米,周围留有1 米的空白地带,求花坛和空白地带的总面积。
13.小明做了一份试卷,正确题数占总题数的3/4,如果正确的题数是30 题,求这份试卷总题数。
14.甲乙两个水龙头一起放水,甲水龙头每分钟放4 升水,乙水龙头每分钟放3 升水,它们一起放水10 分钟的总共放了多少升水?15.一辆汽车开了400 公里的路程,行驶时间是5 小时,求汽车的时速是多少公里?16.一支笔每支卖5 元,卖掉8 支时的总收入是多少元?17.篮球队举行了一场友谊赛,每名队员缴纳30 元参赛费,若入场观众共有150 人,求篮球队一共收入了多少元?18.一块长方形面积是80 平方米,宽是4 米,求长是多少米?19.甲乙两人运动员从同一地点出发,甲以每小时8 km 的速度向东跑,乙以每小时6 km 的速度向西跑,若2 小时后相遇,求两人的相距距离是多少千米?20.三个自行车座椅的长度总和是3 米,第一个座椅长度是2 肘,第二个长度是1 米,求第三个座椅的长度。
跳远列一元一次方程的题目
跳远列一元一次方程的题目
1. 某运动员跳远,他的跳远距离与他的起跳速度成正比。
如果他以每秒5米的
速度起跳,跳远8米,求他以每秒的速度能跳多远?
2. 一名运动员跳远,他以每秒8米的速度起跳,跳远的距离与起跳时间呈正比。
如果他跳远12米,求他起跳所需的时间。
3. 一名运动员跳远,他以每秒4米的速度起跳,跳远的距离与起跳速度成正比。
如果他跳远16米,求他起跳的速度。
4. 某运动员跳远,他以每秒6米的速度起跳,跳远的距离与起跳速度成正比。
如果他跳远20米,求他起跳所需的时间。
5. 一名运动员跳远,他起跳的速度为每秒7米,跳远的距离与起跳时间成正比。
如果他跳远14米,求他起跳所需的时间。
6. 某运动员跳远,他以每秒9米的速度起跳,跳远的距离与起跳时间成正比。
如果他起跳所需的时间为2秒,求他跳远的距离。
7. 一名运动员跳远,他以每秒3米的速度起跳,跳远的距离与起跳速度成正比。
如果他跳远24米,求他起跳所需的时间。
8. 某运动员跳远,他起跳所需的时间为3秒,跳远的距离与起跳速度成正比。
如果他以每秒10米的速度起跳,求他能跳多远。
9. 一名运动员跳远,他以每秒2米的速度起跳,跳远的距离与起跳时间成正比。
如果他起跳所需的时间为5秒,求他跳远的距离。
10. 某运动员跳远,他起跳的速度为每秒6米,跳远的距离与起跳时间成正比。
如果他跳远的距离为30米,求他起跳所需的时间。
一元一次方程应用题专项练习(含答案)
一元一次方程应用题专项练习(含答案)一元一次方程是数学中常见的代数方程,具有形如ax + b = 0的一次项和常数项的式子,其中a和b为已知数,x为未知数,a不等于0。
一元一次方程的解即为能够使等式成立的未知数值。
在现实世界中,我们经常会遇到各种需要运用一元一次方程的问题。
下面是一些具体的应用题,帮助我们更好地理解和运用一元一次方程。
1. 购买书籍:小明花了50元买了一本书,并且还剩下10元。
这本书的原价是多少元?解:设这本书的原价为x元,根据题意可得:x - 50 = 10。
整理方程可得:x = 60。
所以,这本书的原价为60元。
2. 鸡兔同笼:在一个笼子里面关了一些鸡和兔子,总共有10个头和26只脚。
问鸡和兔子各有多少只?解:设鸡的数量为x,兔子的数量为y,由题意可得方程组: x + y = 102x + 4y = 26通过解方程可得:x = 4,y = 6。
所以,鸡有4只,兔子有6只。
3. 少女的年龄:某大街上有一个调查团队正在进行抽样调查,一名少女告诉团队成员,她今年的年龄和3年前的年龄之和为35岁。
问这名少女今年几岁?解:设这名少女今年的年龄为x岁,由题意可得方程:x + (x - 3) = 35。
整理方程可得:2x = 38,解得x = 19。
所以,这名少女今年19岁。
4. 骑车还是坐地铁:小刚每天上学都可以选择骑自行车或坐地铁。
骑自行车需要花费10分钟,而坐地铁只需要5分钟。
如果小刚骑自行车上学,他可以多睡10分钟;而如果坐地铁上学,他可以多睡20分钟。
问小刚上学要花费多长时间?解:设小刚骑自行车上学需要的时间为x分钟,由题意可得方程:x + 10 = x + 20 - 5。
整理方程可得:10 = 15,这是不成立的。
所以,这个问题没有实际解。
5. 买苹果:小明花了80元买了一些苹果,然后又花了30元买了一些梨,最后还剩下15元。
若苹果的单价是2元/个,梨的单价是3元/个,那么小明分别买了几个苹果和几个梨?解:设小明买的苹果数量为x个,梨的数量为y个,由题意可得方程组:2x + 3y = 80 - 15x + y = 80 - 15 - 30通过解方程可得:x = 25,y = 10。
一元一次方程应用题20道
一元一次方程应用题20道1.一根长梁上有若干个孔,每个孔之间的距离相等,如果已知第一个孔距离梁的左端为3米,第八个孔距离梁的左端为21米,请问每个孔之间的距离是多少?2.小明父亲今年55岁,比儿子大40岁,求小明多少岁?3.一张纸片被对角线切成两个三角形,较小的三角形面积是6平方厘米,较大三角形面积是12平方厘米,求纸片的长和宽。
4.某商品原价650元,经过打折后售价560元,求打折的折扣率。
5.甲乙两人在一起吃饭,共消费了120元,若甲人均多支付8元,则甲和乙各自支付了多少钱?6.某商场推出了一项促销活动,购买100元以上的商品可以打9折,某顾客购买了一件120元的商品,请问他需要支付多少钱?7.小明家的自来水表显示一共用水了28立方米,水费共计为220元,已知每立方米水的价格为4元,请问小明家一天平均用水量是多少?8.汽车出发时油箱有90升油,每100公里耗油7升,要想到达目的地需要行驶800公里,问还需要加多少油?9.一个长方形空地周长为72米,长比宽大10米,求该空地的面积。
10.小明花费了自己余下的一半钱购买了一本书,再花费自己剩下的1/4钱购买了一件衣服,现在他只剩下60元零5角钱。
请问小明原来有多少钱?11.两个正数的乘积为880,其中一个数比另一个数大18,求这两个数。
12.一条矩形长方体箱子长、宽、高之比为2:3:4,体积为600立方厘米,求箱子的长、宽、高各是多少?13.从A点到B点的直线距离为120千米,汽车以每小时60千米的速度行驶,旅途中要经过两个收费站,第一个收费站距离A 点80千米,第二个收费站距离B点40千米,则车在路上行驶多久?14.父亲比儿子多大18岁,现在父亲的年龄是儿子的3倍,求儿子的年龄。
15.一直船下游行驶了20公里又返回起点,全程用时5小时,其中下游用了2小时,求这条河的水流速度和船在静水中的速度。
16.甲、乙两人从A地到B地,分别以60千米/小时和80千米/小时的速度前进,两人同时出发,相距200千米,求几个小时后两人相遇?17.某校文化节期间,学生卖的糖果原价每袋2元,现降价至每袋1.5元,需售出400袋才能返还成本,请问卖出多少袋能够盈利30元?18.一所学校有男女生共计1000人,女生比男生多60人,已知男生和女生的平均身高之比为4:3,求男生的平均身高。
一元一次方程专题训练经典练习题(含答案)
一元一次方程专题训练经典练习题(含答案)-CAL-FENGHAI.-(YICAI)-Company One1一元一次方程专题训练经典练习题一、解下列一元一次方程1、2x+2=3x+62、 3x-11=253、2(x-1)+3(1-x )=04、5x (2-3.140)=2(x-6)5、0.8x +2=1.6x-26、10%(x+2)=17、2(x+5)=3(x-6) 8、1-2(x-3)=3(x+2)9、3(x-1)=2(x+2)+(1-x ) 10、4x-[2+(3x-6)]=111、2x-20%(x+3)=12÷10 12、7x+5(x-2)= 2(x+10)13、4x-4=2(2+x )-3(x+1) 14、1- 12 x=215、3- 13 x=2(x+1) 16、2(x- 34)=8-x17、12 (2x+1)+1=2(2-x ) 18、x- 13(x-5)= 2319、-x= -3(x-4) 20、7x ·(5 - 4· 12)= 5+x21、0.1+x 2 =2 22、 x-10.2 =3(x-1)23、x-10.3 + x+20.3 =2 24 、12 + 13x = 23 +125、 2x-10.5 = 2- 3x+20.3 26、错误! =3x27、错误! =3 28、错误! =错误!29、12{13[14(x+1)+1]+2} =2 30、 25(300+x )- 35(200+x )=400·110二、一元一次方程应用题1、 一艘船在两个码头之间航行,水流的速度是3千米/时,顺水航行需要2小时,逆水航行需要3小时,求两码头之间的距离。
2、小华从家里骑自行车到学校。
若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?3、小兵由A地到B地,若以每小时12千米的速度,他将比原计划的时间迟到20分,若以每小时15千米的速度前进,则比原计划的时间早4分钟到达B 地,求A、B两地间的距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次方程应用题专题训练
1和差倍分问题(年龄问题、比例问题、日历问题)【只列方程】
1、姐姐4年前的年龄是妹妹的2倍,今年年龄是妹妹的1.5倍,求姐姐今年的年龄。
2、1992年,妈妈52岁,儿子25岁,哪一年妈妈的年龄是儿子的4倍.
3、爸爸和女儿两人岁数加起来是91岁,当爸爸岁数是女儿现在岁数两倍的时候,女儿岁数是爸爸现在岁数的,那么爸爸现在的年龄是多少岁,女儿现在年龄是多少岁.
4、建筑工人在施工中,使用一中混凝土,是由水、水泥、黄沙、碎石搅拌而成的,这四种原料的重量的比是0.7:1:2:4.7,搅拌这种混凝土2100千克,分别需要水、水泥、黄沙、碎石多少千克?
5、小名出去旅游四天,已知四天日期之和为65,求这四天分别是哪几日?
2等积问题【只列方程】
1、直径为30厘米,高为50厘米的圆柱形瓶里存满了饮料,现把饮料倒入底面直径为10厘米的圆柱形小杯中,刚好倒满20杯,求小杯子的高。
2、用60米长的篱笆,围成一个长方形的花圃,若长比宽的2倍少3米,则长方形的面积是多少?
3、将一个长、宽、高分别为15厘米、12厘米和8厘米的长方体钢块,锻造成一个底面边长为12厘米的正方形的长方体零件钢坯。
试问是锻造前长方体钢块的表面积大,还是锻造后的长方体零件钢坯的表面积大?请计算回答。
3行程问题(航行问题、相遇问题、追及问题、火车过桥问题) 【只列方程】
1、一艘轮船,航行于甲、乙两地之间,顺水用5小时,逆水比顺水多用2小时。
已知轮船在静水中的速度是每小时52千米,求水流的速度?
2、小红和小明绕周长为1200米的湖晨练,小红的速度为85米/分,小明比她快10米/分,
(1)如果两人同时同向同一地点开跑,多少分钟两人会相遇?
(2)如果两人同时相向同地开跑,多少分钟两人会相遇?
(3)如果小红在小明前面200米两人同时反向开跑,多少分钟两人会相遇?
3、甲乙两人骑自行车,从相距60千米的两地相向而行,甲每小时走12千米,乙每小时走10千米,如甲走15分钟后乙再出发,问甲出发后几小时与乙相遇?
4、敌军和我军相距27千米,敌军以4千米/小时的速度逃跑,我军迅速以7千米/小时的速度追击敌军,需几小时可以追上?
5、一列火车以每分钟1千米的速度通过一座长400米的桥,用了半分钟,则火车本身的长度为多少米?
6、小强、小芳、小亮在郊游,看到远处一列火车匀速通过一个隧道后,产生了以下对话.各位同学,请根据他们的对话求出这列火车的长。
小亮:我爸爸参与过这个隧道的修建,他告诉我隧
道长500米. 小芳:整列火车完全在隧道里的时间是 20秒 小强:火车从开始进
入隧道到完全开出
隧道共用30秒
4劳力调配及配套问题【只列方程】
1、甲车队有15辆汽车,乙车队有28辆汽车,现调来10辆汽车分给两个车队,使甲车队车数比乙车队车数的一半多2辆,应分配到甲乙两车队各多少辆车?
2、某车间有工人85人,平均每人每天可加工大齿轮16个或小齿轮10人,又知二个大齿轮和三个小齿轮配套一套,问应如何安排劳力使生产的产品刚好成套?
3、某队有55人,每人每天平均挖土2.5方或运土3方,为合理安排劳力,使挖出的土及时运走,应如何分配挖土和运土人数?
5销售盈亏问题【只列方程】
1、某种衣服因换季打折销售,每件衣服如果按标价的5折出售将亏60元;而如果按标价的8折出售将赚120
元。
问这件衣服的标价和成本各是多少元?
2、某商品因换季准备打折出售,如果按定价的七五折出售将赔25元,而按定价的九折出售将赚20元,问这种
商品的定价是多少元?
3、团体购买公园门票,票价如下:
购票人数 1~50人 51~100人 100人以上
每人门票价分别是 65元 55元 45元
问题:今有甲,乙两个旅游团,若分别购票,两团总计应付门票费6570元,若合在一起作为一个团体购票,总计应须付5040元,问这两个旅游团各有多少人?
6银行利率问题【只列方程】1、小颖的爸爸为了准备小颖3年后读高中的费用,准备用1万元参加教育储蓄,•已知教育储蓄一年期的利率为2.25%,三年期的利率为2.70%,现在有两种存法(1)一年,下一年连本带息再存一年,到期后连本带息再存一年(2)接存一个三年期.请你帮着计算一下,小颖的爸爸应选择哪一种储蓄方式?
7数字问题【只列方程】
1、有一个两位数,个位数字是十位数字的4倍,把这个两位数的数字对调位置后,新的两位数比原两位数
多54,则原两位数为多少?
2、若有一个七位自然数,它的第一位数字是3,若把3移到末位,其他数位上的数字顺序不变,则新数等
于这个原数的2倍还多11,求原来的七位数?
8余不足问题【只列方程】
1、用化肥若干千克给一块麦田施肥,每亩用6千克,还差17千克;每亩用5千克,还多3千克,这块麦田
有多少亩?
2、毕业生在礼堂入座,1条长凳坐3人,有25人坐不下;1条长凳坐4人,正好空出4条长凳,则共有多
少名毕业生?长凳有多少条?
4、有一次数学竞赛共20题,规定做对一题得5分,做错或不做的题每题扣2分,小景得了86分,问小景
对了几题?
9工程问题【只列方程】
1、有一个水池,用两个水管注水。
如果单开甲管,2小时30分注满水池,如果单开乙管,5小时注满水池.
(1)如果甲、乙两管先同时注水20分钟,然后由乙单独注水。
问还需要多少时间才能把水池注满?
(2)假设在水池下面安装了排水管丙管,单开丙管3小时可以把一满池水放完。
如果三管同时开放,多少小时才能把一空池注满水?
2、一项工程,甲单独完成需要9天,乙单独完成需要12天,丙单独完成需要15天。
若甲、丙先做3天后,甲因故离开,由乙接替甲工作,问还需多少天能完成这项工程的?
10方案问题【列出方程,并解出来】
1、某中学要添置某种教学仪器,方案1:到商店购买,每件需要8元;方案2:•学校自己制作,每件4元,另外需要制作工具的租用费120元,设需要仪器x件.
(1)分别求出方案1和方案2的总费用;
(2)当购制仪器多少件时,两种方案的费用相同;
(3)若学校需要仪器50件,问采用哪种方案便宜?请说明理由.
2、张老师带领该校七年级“三好学生”去开展夏令营活动,甲旅行社说:“如果老师买全票一张,则学生可享受半价优惠。
”乙旅行社说:“包括老师在内按全票价的6折优惠。
”若全票价为240元,当学生从数为多少人时,两家旅行社的收费一样多?
3、某校七年级组织学生秋游,如果租用若干辆45座的客车,则有15人无座位;如果租用60座的客车,则可比45座的客车少租2辆,且保证人人有座而无空位。
求:(1)七年级共有多少名学生?(2)若45座客车的租金为每辆420元,60座客车的租金为每辆600元,那么应如何安排客车的型号和数量,使得租金最少?是多少元?
11其它问题【列出方程,并解出来】
有一个伿允许单向通过的窄道口,通常情况下,每分种可以通过9人,一天,王老师到达道口,此时,自己前面还有36个人等待通过(假定先到的先过,王老师过道口的时间忽略不计),通过道口,还需7分钟到达学校。
(1)此时,若绕道而行,要15分钟到达学校,从节省时间考虑,王老师应选择绕道去学校,还是选择是通过拥挤的道口去学校?
(2)若在王老师等人的维持下几分钟后,秩序恢复正常(维持秩序期间,每分钟若有3人通过道口),结果王老师比拥挤情况下提前6分钟通过道口问维持秩序的时间是多少?。