7.高考物理第三章 培优提升练精品

合集下载

高中物理必修3物理 全册全单元精选试卷培优测试卷

高中物理必修3物理 全册全单元精选试卷培优测试卷

高中物理必修3物理 全册全单元精选试卷培优测试卷一、必修第3册 静电场及其应用解答题易错题培优(难)1.如图所示,把一个倾角为θ的绝缘斜面固定在匀强电场中,电场方向水平向右,电场强度大小为E ,有一质量为m 、带电荷量为+q 的物体,以初速度v 0从A 端滑上斜面恰好能沿斜面匀速运动,求物体与斜面间的动摩擦因数.【答案】cos sin cos sin qE mg mg qE θθθθ-+【解析】 【分析】 【详解】物体做匀速直线运动,由平衡条件得:在垂直于斜面方向上:N=mgcosθ+qEsinθ…① 在平行与斜面方向上:f+mgsinθ=qEcosθ…② 滑动摩擦力:f=μN…③ 由①②③可得:f qEcos mgsin N mgcos qEsin θθμθθ-=+= . 【点睛】本题考查了学生受力分析及力的合成以及摩擦定律的相关知识,正确的受力分析是正确解题的关键,学会用正交分解法处理多力合成问题.2.如图所示,在光滑绝缘水平面上B 点的正上方O 处固定一个质点,在水平面上的A 点放另一个质点,两个质点的质量均为m ,带电量均为+Q 。

C 为AB 直线上的另一点(O 、A 、B 、C 位于同一竖直平面上),AO 间的距离为L ,AB 和BC 间的距离均为2L,在空间加一个水平方向的匀强电场后A 处的质点处于静止。

试问: (1)该匀强电场的场强多大?其方向如何?(2)给A 处的质点一个指向C 点的初速度,该质点到达B 点时所受的电场力多大? (3)若初速度大小为v 0,质点到达C 点时的加速度和速度分别多大?【答案】(1)22kQ L ,方向由A 指向C ;(2)22736kQ L ;(3)22kQ mL 220kQ v mL+【解析】 【分析】(1)在空间加一个水平方向的匀强电场后A 处的质点处于静止,对A 进行受力分析,根据平衡条件求解。

(2)质点到达B 点时受竖直向下的O 点的库仑力和水平向右的电场力,根据力的合成求解 (3)根据牛顿第二定律求出加速度,根据动能定理求出C 点时速度。

人教版高中物理选择性必修第三册 第3章 2 3 课后提升训练

人教版高中物理选择性必修第三册 第3章 2 3 课后提升训练

第三章 2 3A组·基础达标1.在一个与外界没有热交换的房间内打开冰箱门,冰箱正常工作,过一段时间房间内的温度将( )A.降低B.升高C.不变D.无法确定【答案】B【解析】取房间内气体及电冰箱(有散热装置)为系统,冰箱消耗电能,对系统做功,系统总内能增加,房间内温度升高,B正确.2.压力锅结构如图所示,盖好锅盖,将压力阀套在出气孔上,对压力锅加热,当锅内气体压强达到一定值时,气体就把压力阀顶起.假定在压力阀被顶起时,停止加热,锅内气体对压力阀及外界做功1.5 J,并向外界释放了2.5 J的热量,则下列说法中正确的是( )A.锅内原有气体的内能没有发生变化B.锅内原有气体的内能增加了3 JC.锅内原有气体的内能减少了3 JD.锅内原有气体的内能减少了4 J【答案】D【解析】由于锅内气体对外界做功1.5 J,则W=-1.5 J,并向外界释放了2.5 J的热量,则Q=-2.5 J,根据热力学第一定律ΔU=W+Q,故内能ΔU=-1.5 J+(-2.5 J)=-4 J,故气体的内能减少4 J,D正确.3.如图所示,直立容器内部有被隔板隔开的A、B两部分气体,A的密度小,B的密度大,抽出隔板,加热气体使两部分气体均匀混合,设在此过程中气体吸热为Q,气体内能增量为ΔU,则( )A.ΔU=Q B.ΔU<QC.ΔU>Q D.无法比较【答案】B【解析】A、B两部分气体密度不同,混合后其重力势能将发生变化,刚开始时A、B气体的合重心在中线下方,均匀混合后重心在中线上,重心上升了,所以气体的重力势能增加了,由能量守恒定律知,吸收的热量一部分增加气体的内能,一部分增加重力势能,即Q=ΔU+ΔE p,所以Q >ΔU,故B正确.4.如图所示容器中,A、B各有一个可自由移动的轻活塞,活塞下是水,上为空气,大气压恒定.A、B底部由带有阀门K的管道相连,整个装置与外界绝热.原先A中水面比B中高,打开阀门,使A中的水逐渐向B中流,最后达到平衡.在这个过程中,下面说法正确的是( )A.大气压力对水做功,水的内能增加B.水克服大气压力做功,水的内能减少C.大气压力对水不做功,水的内能不变D.大气压力对水不做功,水的内能增加【答案】D【解析】由W=p·S·Δh=p·ΔV可知大气压力对A、B两管中水做功代数和为零,但由于水的重心下降,重力势能减小,由能量守恒定律可知水的内能增加,D正确.5.如图所示,一定质量的理想气体,由状态a经过ab过程到达状态b或者经过ac到达状态c;设气体在状态b和状态c的温度分别为T b和T c,在过程ab和ac中吸收的热量分别为Q ab和Q ac,则( )A.T b>T c,Q ab>Q ac B.T b=T c,Q ab>Q acC.T b>T c,Q ab<Q ac D.T b=T c,Q ab<Q ac【答案】B【解析】因为p b V b=p c V c,故T b=T c,所以ac和ab两个过程的内能变化量相同;而ac过程是个等容过程,做功是零,故Q ac=ΔU,又因为ab 过程是个等压过程,体积增大,故气体对外做功,故Q ab=ΔU+W,所以Q ab>Q ac,B正确.6.如图为某种椅子与其升降部分的结构示意图,M、N两筒间密闭了一定质量的气体,M可沿N的内壁上下滑动,设筒内气体不与外界发生热交换,在M向下滑动的过程中( )A.外界对气体做功,气体内能增大B.外界对气体做功,气体内能减小C.气体对外界做功,气体内能增大D.气体对外界做功,气体内能减小【答案】A【解析】本题考查了热力学第一定律,理解做功和热传递可以改变物体的内能.筒内气体不与外界发生热交换,M向下滑动的过程中,外界对气体做功,由热力学第一定律可知气体内能增大,A正确.7.(多选)行驶中的汽车制动后滑行一段距离,最后停下;流星在夜空中坠落并发出明亮的火焰;降落伞在空中匀速下降;条形磁铁在下落过程中穿过闭合线圈,线圈中产生电流.上述不同现象中所包含的相同的物理过程是( )A.物体克服阻力做功B.物体的动能转化为其他形式的能量C.物体的势能转化为其他形式的能量D.物体的机械能转化为其他形式的能量【答案】AD【解析】这四个现象中,物体运动过程都受到阻力,汽车主要是制动阻力,流星坠落和降落伞降落是空气阻力,条形磁铁下落过程受到磁场阻力,因而物体都克服阻力做功,A正确.四个物体运动过程中,汽车是动能转化为内能,流星、降落伞、条形磁铁是重力势能转化为内能或其他形式的能,总之都是机械能转化为其他形式的能,D正确.8.(多选)如图所示,A、B两点表示一定质量的某种理想气体的两个状态,当气体从状态A变化到状态B时( )A.体积必然变大B.有可能经过体积减小的过程C.外界必然对气体做正功D.气体必然从外界吸热【答案】ABD【解析】本题是气体状态变化、图像与热力学第一定律结合的综合分析题.连接OA、OB,得到两条等容线,故有V B>V A,所以A正确.由于没有限制从状态A变化到状态B的过程,所以可先减小气体的体积再增大气体的体积到B状态,故B正确.因为气体体积增大,所以是气体对外界做功,C错误.因为气体对外界做功,而气体的温度又升高,内能增大,由热力学第一定律知气体一定从外界吸热,D正确.9.(多选)如图所示,一定质量的理想气体从状态a开始,经历一系列过程变化后又到达状态a,已知从状态b经过等温过程bc到达状态c,ca平行于横轴V,ab平行于纵轴p,下列说法正确的是( )A.在a到b过程中气体内能增加B.在c到a过程中外界对气体做功C.在a到b过程中气体对外界做功D .在a 到b 过程中气体从外界吸收热量【答案】ABD【解析】气体由a 到b 是等容过程,压强增大,但是气体不做功,故C 错误;由pV T=C ,知温度升高,而理想气体的内能只与温度有关,所以气体的内能增加,A 正确;再由热力学第一定律ΔU=W +Q 可知,内能增加,做功是0,故气体一定从外界吸热,D 正确;气体在c 到a 过程中,压强不变,体积减小,故外界压缩气体对气体做功,B 正确.10.(多选)景颇族的祖先发明的点火器如图所示,用牛角做套筒,木制推杆前端粘着艾绒,猛推推杆,艾绒即可点燃,对筒内封闭的气体,在此压缩过程中的下列说法中不正确的是( )A .气体温度升高,压强不变B .气体温度升高,压强变大C .气体对外界做正功,气体内能增加D .外界对气体做正功,气体内能减少【答案】ACD【解析】由于套筒内封闭着一定质量的气体,当猛推推杆时推杆迅速压缩气体,外界对气体做正功.由于这一过程进行得很快,可以看成是一个近似的绝热过程,即整个系统来不及向外界传递热量.根据热力学第一定律,这时外力做的功只能用来增加气体的内能,这就使气体分子的运动加剧,引起气体分子平均动能增加,气体温度升高.所以艾绒即刻被点燃.由于被封闭的气体质量不变,温度升高,而体积变小,则由气体状态方程知压强变大.故B 选项正确,其他选项都错.B 组·能力提升11.(多选)如图所示,用绝热活塞把绝热容器隔成容积相同的两部分,先把活塞锁住,将质量和温度都相同的理想气体氢气和氧气分别充入容器的两部分,然后提起销子,使活塞可以无摩擦地滑动,当活塞平衡时( )A.氢气的温度不变B.氢气的压强减小C.氢气的体积增大D.氧气的温度升高【答案】BCD【解析】理想气体氢气和氧气的质量虽然相同,但由于氢气的摩尔质量小,故氢气物质的量多,又体积和温度相同,pVT=C,所以氢气产生的压强大,当拔掉销子后,会推动活塞向氧气一方移动,这时氢气对外做功,又无热传递,由ΔU=W+Q可知,氢气内能减少,温度降低,对氧气而言,外界对它做功,体积减小,根据热力学第一定律ΔU=W+Q,无热传递的情况下,氧气内能增加,温度升高.12.(多选)如图所示,绝热的容器内密闭一定质量的气体(不考虑分子间的作用力),用电阻丝缓慢对其加热时,绝热活塞无摩擦地上升,下列说法正确的是( )A.单位时间内气体分子对活塞碰撞的次数减少B.电流对气体做功,气体对外做功,气体内能可能减少C.电流对气体做功,气体对外做功,其内能一定增加D.电流对气体做的功一定大于气体对外做的功【答案】ACD【解析】由题意知,气体压强不变,活塞上升,体积增大,由pVT=C知,气体温度升高,内能一定增加,由能的转化和守恒知,电流对气体做功一定大于气体对外做功,B错误,C、D正确.由气体压强的微观解释知温度升高,气体分子与活塞碰一次对活塞的冲击力增大;而压强不变,单位时间内对活塞的冲击力不变.因此单位时间内对活塞的碰撞次数减少,A正确.13.一定质量的理想气体由状态a沿abc变化到状态c,吸收了340 J 的热量,并对外做功120 J.若该气体由状态a沿adc变化到状态c时,对外做功40 J,则这一过程中气体________(填“吸收”或“放出”)__________J热量.【答案】吸收260【解析】对该理想气体由状态a沿abc变化到状态c,由热力学第一定律可得ΔU=Q+W=340 J-120 J=220 J,即从a状态到c状态,理想气体的内能增加了220 J;若该气体由状态a沿adc变化到状态c时,对外做功40 J,此过程理想气体的内能增加还是220 J,所以可以判定此过程是吸收热量,再根据热力学第一定律可得ΔU=Q+W,得Q=ΔU-W =220 J+40 J=260 J.14.在一个标准大气压下,水在沸腾时,1 g的水由液态变成同温度的水汽,其体积由1.043 cm3变为1 676 cm3.已知水的汽化热为2 263.8 J/g.求:(1)体积膨胀时气体对外界做的功W;(2)气体吸收的热量Q;(3)气体增加的内能ΔU.解:取1 g水为研究系统,1 g沸腾的水变成同温度的水汽需要吸收热量,同时由于体积膨胀,系统要对外做功,所以有ΔU<Q吸.(1)气体在等压(大气压)下膨胀做功W=p(V2-V1)=1.013×105×(1 676-1.043)×10-6 J=169.7 J.(2)气体吸热Q=1×2 263.8 J=2 263.8 J.(3)根据热力学第一定律ΔU=Q+W=2 263.8 J+(-169.7) J=2 094.1 J.。

高考物理 复习培优练习(含解析)-人教版高三全册物理试题

高考物理 复习培优练习(含解析)-人教版高三全册物理试题

培优练习高考频度:★★★☆☆难易程度:★★★★☆一个带电粒子沿垂直于磁场方向射入匀强磁场中,由于沿途空气电离而使粒子的动能逐渐减小,轨迹如下列图。

假设粒子的电荷量不变,如下有关粒子的运动方向和所带电性的判断正确的答案是A .粒子由a 向b 运动,带正电B .粒子由b 向a 运动,带负电C .粒子由b 向a 运动,带正电D .粒子由a 向b 运动,带负电 【参考答案】B【试题解析】由题意可知,带电粒子沿垂直于磁场方向射入匀强磁场,粒子的能量逐渐减小,速度减小,如此由公式mvr qB=得知,粒子的半径应逐渐减小,由图看出,粒子的运动方向是从b 到a 。

在b 处,粒子所受的洛伦兹力指向圆心,即斜向左上方,由左手定如此判断可知,该粒子带负电。

应当选B 。

一束带电粒子以同一速度v 0从同一位置进入匀强磁场,在磁场中它们的轨迹如下列图。

假设粒子A 的轨迹半径为r 1,粒子B 的轨迹半径为r 2,且r 2=2r 1,q 1、q 2分别是它们的带电荷量,m 1、m 2分别是它们的质量。

如此如下分析正确的答案是A .A 带负电、B 带正电,荷质比之比为1212:1:1q q m m = B .A 带正电、B 带负电,荷质比之比为1212:1:1q q m m =C .A 带正电、B 带负电,荷质比之比为1212:2:1q q m m = D .A 带负电、B 带正电,荷质比之比为1212:1:2q q m m = 如下列图,S 处有一电子源,可向纸面内任意方向发射电子,平板MN 垂直于纸面,在纸面内的长度L =9.1 cm ,中点O 与S 间的距离d =4.55 cm ,MN 与SO 直线的夹角为θ,板所在平面有电子源的一侧区域有方向垂直于纸面向外的匀强磁场,磁感应强度B =2.0×10–4T ,电子质量m =9.1×10–31kg ,电荷量e =–1.6×10–19C ,不计电子重力。

高中物理必修3物理 全册全单元精选测试卷培优测试卷

高中物理必修3物理 全册全单元精选测试卷培优测试卷

高中物理必修3物理 全册全单元精选测试卷培优测试卷一、必修第3册 静电场及其应用解答题易错题培优(难)1.如图所示,两块竖直放置的平行金属板A 、B ,两板相距d ,两板间电压为U ,一质量为m 的带电小球从两板间的M 点开始以竖直向上的初速度v 0运动,当它到达电场中的N 点时速度变为水平方向,大小变为2v 0 求(1)M 、N 两点间的电势差(2)电场力对带电小球所做的功(不计带电小球对金属板上电荷均匀分布的影响,设重力加速度为g )【答案】20MN Uv U dg=;【解析】 【详解】竖直方向上小球受到重力作用而作匀减速直线运动,则竖直位移大小为h =202v g小球在水平方向上受到电场力作用而作匀加速直线运动,则 水平位移x =022v t ⋅ h =2v t ⋅ 联立得,x =2h =20v g故M 、N 间的电势差为U MN =-Ex =-20v U d g =-20Uv gd从M 运动到N 的过程,由动能定理得 W 电+W G =12m 20(2)v -2012mv 所以联立解得W 电=202mv答:M 、N 间电势差为-20Uv gd,电场力做功202mv .2.如图所示,一个内壁光滑的绝缘细直管竖直放置.在管子的底部固定一电荷量为Q (Q >0)的点电荷.在距离底部点电荷为h 2的管口A 处,有一电荷量为q (q >0)、质量为m 的点电荷由静止释放,在距离底部点电荷为h 1的B 处速度恰好为零.现让一个电荷量为q 、质量为3m 的点电荷仍在A 处由静止释放,已知静电力常量为k ,重力加速度为g ,则该点电荷运动过程中:(1)定性分析点电荷做何运动?(从速度与加速度分析) (2)速度最大处与底部点电荷的距离 (3)运动到B 处的速度大小【答案】(1)先做加速度减小的加速,后做加速度增大的减速运动; (2)3KQqr mg=(3)2123()3B v g h h =-【解析】 【详解】(1)由题意知,小球应先做加速运动,再做减速运动,即开始时重力应大于库仑力;而在下落中,库仑力增大,故下落时加速度先减小,后增大;即小球先做加速度减小的加速,后做加速度增大的减速运动;(2)当重力等于库仑力时,合力为零,此时速度最大,23kQqF mg r 库==解得:3kQqr mg=(3)点电荷在下落中受重力和电库仑力,由动能定理可得:mgh +W E =0;即W E =-mgh ;当小球质量变为3m 时,库仑力不变,故库仑力做功不变,由动能定理可得:3mgh-mgh =123mv 2; 解得:2123()3Bv g h h=-点睛:本题综合考查动力学知识及库仑力公式的应用,解题的关键在于明确物体的运动过程;同时还应注意点电荷由静止开始运动,故开始时重力一定大于库仑力.3.如图所示,在绝缘的水平面上,相隔2L的,A、B两点固定有两个电量均为Q的正点电荷,C、O、D是AB连线上的三个点,O为连线的中点,CO=OD=L/2。一质量为m、电量为q的带电物块以初速度v0从c点出发沿AB连线向B运动,运动过程中物块受到大小恒定的阻力作用。当物块运动到O点时,物块的动能为初动能的n倍,到达D点刚好速度为零,然后返回做往复运动,直至最后静止在O点。已知静电力恒量为k,求:(1)AB两处的点电荷在c点产生的电场强度的大小;(2)物块在运动中受到的阻力的大小;(3)带电物块在电场中运动的总路程。【答案】(1)(2)(3)【解析】【分析】【详解】(1)设两个正点电荷在电场中C点的场强分别为E1和E2,在C点的合场强为E C;则12()2kQEL=;223()2kQEL=则E C=E1-E2解得:E C=2329kQL.(2)带电物块从C点运动到D点的过程中,先加速后减速.AB连线上对称点φC=φD,电场力对带电物块做功为零.设物块受到的阻力为f,由动能定理有:−fL=0−12mv02解得:212f mvL=(3)设带电物块从C到O点电场力做功为W电,根据动能定理得:220011222LW f n mv mv电=-⋅⋅-解得:()201214W n mv -电=设带电物块在电场中运动的总路程为S ,由动能定理有:W 电−fs =0−12mv 02 解得:s=(n+0.5)L 【点睛】本题考查了动能定理的应用,分析清楚电荷的运动过程,应用动能定理、点电荷的场强公式与场的叠加原理即可正确解题.4.如图所示,长=1m L 的轻质细绳上端固定,下端连接一个可视为质点的带电小球,小球静止在水平向右的匀强电场中,绳与竖直方向夹角θ=37°。

人教版高中物理选择性必修第三册 第3章 1 课后提升训练

人教版高中物理选择性必修第三册 第3章 1 课后提升训练

第三章 1A组·基础达标1.关于热传递,下列说法中正确的是( )A.热传递的实质是温度的传递B.物体间存在着温度差,才能发生热传递C.热传递可以在任何情况下进行D.物体内能发生改变,一定是吸收或放出了热量【答案】B【解析】热传递的实质是物体间内能的转移,故A错误.热传递的条件是物体间存在温度差,高温物体放出热量,低温物体吸收热量,若两物体温度相同,它们之间便不再发生热传递,即达到了热平衡,故B正确,C错误.物体吸收或放出热量,内能会发生变化,但内能变化不一定是热传递引起的,还可以通过做功的方式实现,故D错误.2.(多选)一铜块和一铁块,质量相等,铜块的温度T1比铁块的温度T2高,当它们接触在一起时,如果不和外界交换能量,则( ) A.从两者开始接触到热平衡的整个过程中,铜块内能的减少量等于铁块内能的增加量B.在两者达到热平衡以前的任意一段时间内,铜块内能的减少量不等于铁块内能的增加量C.在两者达到热平衡以前的任意一段时间内,铜块内能的减少量都等于铁块内能的增加量D.达到热平衡时,铜块的温度比铁块的低【答案】AC【解析】热平衡条件是温度相等,热传递的方向是从温度高的物体传向温度低的物体.在热传递过程中高温物体放出的热量等于低温物体吸收的热量,因此A、C正确,B、D错误.3.如图所示,太阳能热水器是一种能够将太阳的光能转化为内能的装置.这种装置可以使装置内的水温度升高,这种改变水的内能的方式是( )A.做功B.热传递C.既有做功也有热传递D.电流的热效应【答案】B【解析】太阳能热水器是通过热传递的方式将水加热,故B正确.4.(多选)下列现象中,通过热传递的方式改变物体内能的是( ) A.打开电灯开关,灯丝的温度升高,内能增加B.夏天喝冰镇汽水来解暑C.冬天搓搓手,会感觉到手变得暖和起来D.太阳能热水器在阳光照射下,水的温度逐渐升高【答案】BD【解析】A是电流做功改变内能的,是不热传递;B是汽水与人体间有温度差,汽水吸热造成的,它属于热传递;C是摩擦做功改变内能的,也不属于热传递;D是太阳给热水器传热,通过热传递的方法改变物体内能的,故B、D正确.5.(多选)在外界不做功的情况下,物体的内能增加了50 J,下列说法中正确的是( )A.一定是物体放出了50 J的热量B.一定是物体吸收了50 J的热量C.一定是物体分子动能增加了50 JD.物体的分子平均动能可能不变【答案】BD【解析】在外界不做功的情况下,系统内能的改变等于传递的热量,内能增加,一定是吸收了相等能量,温度可能不变.6.关于物体的内能和热量,下列说法中正确的有( )A.热水的内能比冷水的内能多B.温度高的物体其热量必定多,内能必定大C.在热传递过程中,内能大的物体其内能将减小,内能小的物体其内能将增大,直到两物体的内能相等D.热量是热传递过程中内能转移量的量度【答案】D【解析】物体的内能由温度、体积及物体的质量决定,不只由温度决定,故A错误;热量是物体吸收或放出的,不是物体含有的,故B错误;在自发的热传递过程中,热量是由高温物体传给低温物体,而内能大的物体不一定温度高,在热传递过程中完全有可能内能大的物体温度低,吸收热量内能继续增大,内能小的物体温度高,内能继续减小,故C错误.关于热量的论述,D是正确的.7.如图所示,在紫铜管内滴入乙醚,盖紧管塞.用手拉住绳子两端迅速往复拉动,管塞会被冲开.管塞被冲开前( )A.外界对管内气体做功,气体内能增大B.管内气体对外界做功,气体内能减小C.管内气体内能不变,压强变大D.管内气体内能增大,压强变大【答案】D【解析】克服绳与金属管间的摩擦做功,使管壁内能增大,温度升高.通过热传递,乙醚的内能增大,温度升高,直至沸腾,管塞会被冲开.管塞被冲开前管内气体内能增大,压强变大,D正确.8.重庆出租车常以天然气作为燃料,加气站储气罐中天然气的温度随气温升高的过程中,若储气罐内气体体积及质量均不变,则罐内气体(可视为理想气体)( )A.压强增大,内能减小B.吸收热量,内能增大C.压强减小,分子平均动能增大D.对外做功,分子平均动能减小【答案】B【解析】质量一定的气体,由理想气体状态方程体积不变温度升高,则压强增大,内能增大,则A、C错误;体积不变气体不做功,内能增大则吸收热量,则B正确,D错误.9.如图所示,厚壁容器的一端通过胶塞插进一只灵敏温度计和一根气针,另一端有个用卡子卡住的可移动的胶塞.用打气筒慢慢向筒内打气,使容器内的压强增加到一定程度,这时读出温度计示数.打开卡子,胶塞冲出容器后( )A.温度计示数变大,实验表明气体对外界做功,内能减少B.温度计示数变大,实验表明外界对气体做功,内能增加C.温度计示数变小,实验表明气体对外界做功,内能减少D.温度计示数变小,实验表明外界对气体做功,内能增加【答案】C【解析】根据功是能量转化的量度,对外做了多少功,就意味着转化了多少能量.本实验中由于是厚壁容器,打开卡子后,气体迅速膨胀,这样的过程可以当作绝热过程,由此判断,转化的应是系统的内能,即气体对外做功,系统的内能减少,温度降低,C正确.10.如图所示,绝热容器中间用隔板隔开,左侧装有气体,右侧为真空.现将隔板抽掉,使左侧气体自由膨胀直至达到平衡,则在此过程中(不计气体的分子势能)( )A.气体对外界做功,温度降低,内能减少B.气体对外界做功,温度不变,内能不变C.气体不做功,温度不变,内能不变D.气体不做功,温度不变,内能减少【答案】C【解析】抽掉隔板后,气体膨胀,体积增大,但由于右侧为真空,所以气体自由膨胀不做功,因而内能不变,温度不变,故C正确.11.(多选)健身球是一个充满气体的大皮球,现把健身球放在水平地面上.若在人体压向健身球的过程中球内气体温度保持不变,则( ) A.气体分子的平均动能增大B.气体的密度增大C.气体的内能增大D.外界对气体做功【答案】BD【解析】在人压向健身球的过程中,外界对球做功,气体所占的体积减小,故气体的密度增大;气体温度不变,故气体分子的平均动能不变,故A、C错误,B、D正确.12.(多选)在实验室将一容积比较大的烧瓶放入冰箱冷冻室内,经过几小时后,将烧瓶从冰箱内迅速取出,并立即用小气球紧紧地套在烧瓶的瓶口,然后将烧瓶放入装有热水的烧杯中,如图所示,将烧瓶及气球内的气体看成是理想气体.下列说法正确的是( )A.经过一段时间后气球会膨胀起来B.气球的体积一直都不会发生变化C.烧瓶及气球内的气体内能增加D.烧瓶及气球内的气体的压强一定变大【答案】ACD【解析】由于热水的温度较高,将烧瓶放进盛满热水的烧杯里,烧瓶及气球内气体吸收了热水的热量,温度升高,内能增大,体积增大,故A、C正确,B错误;初始时烧瓶及气球内气体的压强等于大气压,吸收热量后,烧瓶及气球内气体的压强大于大气压,气球膨胀,故D正确.B组·能力提升13.如图所示,活塞将汽缸分成甲、乙两气室,汽缸、活塞(连同拉杆)是绝热的,且不漏气.用E甲、E乙分别表示甲、乙两气室中气体的内能,则在将拉杆缓慢向外拉的过程中的下列说法不正确的是( )A.E甲不变,E乙减小B.E甲不变,E乙增大C.E甲增大,E乙不变D.E甲增大,E乙减小【答案】D【解析】本题解题的关键是明确甲、乙两气室气体都经历绝热过程,内能的改变取决于做功的情况.对于甲室内的气体,在拉杆缓慢向外拉的过程中,活塞左移,压缩气体,外界对甲室气体做功,其内能应增大;对乙室内的气体,活塞左移,气体膨胀,气体对外界做功,内能应减小;所以选项D正确.14.如图所示,柱形容器内封有一定质量的空气,质量为m的光滑活塞与容器都用良好的隔热材料制成.另有质量为M的物体从活塞上方的A 点自由下落到活塞上,并随活塞一起到达最低点B而静止.在这一过程中,下述空气内能的改变量ΔU、外界对气体所做的功W与物体及活塞的重力势能的变化关系中正确的是( )A.Mgh+mgΔh=ΔU+WB.ΔU=W,W=Mgh+mgΔhC.ΔU=W,W<Mgh+mgΔhD.ΔU≠W,W=Mgh+mgΔh【答案】C【解析】物体与活塞碰撞时有机械能损失,因此物体和活塞重力势能的减少量大于气体内能的增加量;根据功与内能增加量的关系可知,外界对气体所做的功W与气体内能的变化量相等,因此ΔU=W,W<Mgh+mgΔh,C正确,A、B、D错误.15.(多选)如图所示,A、B两装置均由一端封闭、一端开口且带有玻璃泡的管状容器和水银槽组成,除玻璃泡在管上的位置不同外,其他条件都相同.将两管抽成真空后,开口向下竖直插入水银槽中(插入过程没有空气进入管内),水银柱上升至图示位置停止.假设这一过程水银与外界没有热交换,则下列说法正确的是( )A.A中水银的内能增量大于B中水银的内能增量B.A管内水银的重力势能大于B管的C.B中水银的内能增量大于A中水银的内能增量D.A和B中水银体积保持不变,故内能增量相同【答案】BC【解析】大气压对水银槽内的水银做相同的功,因为玻璃管内吸进的水银一样多,所以水银槽内的液面下降相同的高度,A管重心高于B管,A管内水银重力势能大于B管的,故A管内水银的内能增量小于B管的,B、C正确.16.有一个10 m 高的瀑布,水流在瀑布顶端时速度为2 m/s ,在瀑布底与岩石的撞击过程中,有10%的动能转化为水的内能,请问水的温度上升了多少摄氏度?已知水的比热容为 4.2×103 J/(kg·℃),g 取10 m/s 2.解:根据机械能守恒定律知,当水流到达瀑布底时的动能E k =12mv 2+mgh , 水吸收的热量Q 与温度变化Δt 满足关系Q =cmΔt,由题意知,有10%的动能转化为水的内能,所以有(12mv 2+mgh)×10%=cmΔt, 代入数据得Δt=2.4×10-3℃.。

高考物理一轮总复习第3章专题强化4传送带模型和“滑块_木板”模型提能训练(含答案)

高考物理一轮总复习第3章专题强化4传送带模型和“滑块_木板”模型提能训练(含答案)

高考物理一轮总复习提能训练:第三章 专题强化四基础过关练题组一 传送带模型1.(多选)为保障市民安全出行,有关部门规定:对乘坐轨道交通的乘客所携带的物品实施安全检查。

如图甲所示为乘客在进入地铁站乘车前,将携带的物品放到水平传送带上通过检测仪接受检查时的情景。

如图乙所示为水平传送带装置示意图。

紧绷的传送带ab 始终以1 m/s 的恒定速率运行,乘客将一质量为1 kg 的小包(可视为质点)无初速度地放在传送带左端的a 点,设行李与传送带之间的动摩擦因数为0.1,a 、b 间的距离为2 m ,g 取10 m/s 2。

下列速度—时间(v -t )图像和位移—时间(x -t )图像中,可能正确反映行李在a 、b 之间的运动情况的有(除C 中0~1 s 为曲线外,其余均为直线段)( AC )[解析] 行李放到传送带上,由μmg =ma 可得a =1 m/s 2,则由v =at ,得t =1 s ,可知行李在0~1 s 内做匀加速直线运动,与传送带共速后做匀速直线运动,故A 正确,B 错误;行李在t =1 s 时的位移x =12at 2=0.5 m ,行李在0~1 s 内做匀加速直线运动,x -t图像为抛物线,之后做匀速直线运动,x -t 图像为直线,故C 正确,D 错误。

2.如图所示,水平传送带A 、B 两端相距s =3.5 m ,工件与传送带间的动摩擦因数μ=0.1。

工件滑上A 端瞬时速度v A =4 m/s ,到达B 端的瞬时速度设为v B ,则下列说法不正确的是( D )A .若传送带不动,则vB =3 m/sB .若传送带以速度v =4 m/s 逆时针匀速转动,v B =3 m/sC .若传送带以速度v =2 m/s 顺时针匀速转动,v B =3 m/sD .若传送带以速度v =2 m/s 顺时针匀速转动,v B =2 m/s[解析] 若传动带不动或逆时针匀速转动,则工件水平方向受水平向左的滑动摩擦力作用,由牛顿第二定律,得μmg =ma ,由匀变速运动的规律可知v 2B -v 2A =-2as ,代入数据解得vB =3 m/s ,A 、B 正确;若传送带以速度v =2 m/s 顺时针匀速转动,假设工件在到达B 端前速度降至2 m/s ,则工件水平方向受水平向左的滑动摩擦力作用,设加速度大小为a ,由牛顿第二定律,得μmg =ma ,工件滑上传送带先做匀减速直线运动,当速度减小到2 m/s时所经过的位移x =v 2A -v22a =16-42m =6 m>3.5 m ,所以假设不成立,所以工件一直做匀减速运动,由匀变速运动的规律可知v 2B -v 2A =-2as ,代入数据解得vB =3 m/s ,D 错误,C 正确。

高中物理必修3物理 全册全单元精选试卷培优测试卷

高中物理必修3物理 全册全单元精选试卷培优测试卷
①模型Ⅰ、Ⅱ中系统的总动能分别用EkⅠ、EkⅡ表示,请推理分析,比较EkⅠ、EkⅡ的大小关系;
②模型Ⅰ、Ⅱ中核外电子做匀速圆周运动的周期分别用TⅠ、TⅡ表示,通常情况下氢原子的研究采用模型Ⅰ的方案,请从周期的角度分析这样简化处理的合理性.
【答案】(1) ① ② (2) ① ② ,因为M>>m,可得TⅠ≈TⅡ,所以采用模型Ⅰ更简单方便.
小球从开始下落运动到下极板的时间t=t1+t2
联立解得: .
5.如图,绝缘细杆AB倾角为α,在杆上B点处固定有一电荷量为Q的正电荷.现将带正电的小球由距B点竖直高度为H的A点处无初速释放,小球下滑过程中电荷量不变.己知小球的质量为m、电荷量为q.不计小球与细杆间的摩擦,整个装置处在真空中.静电力常量为k,重力加速度为g.求:
(1)正电荷Q在A处产生的场强大小;
(2)小球刚释放时的加速度大小;
(3)若A、B间的距离足够大,小球动能最大时球与B点间的距离.
【答案】(1) (2) (3)
【解析】
【详解】
(I)律
根据库仑定律
解得
(3)当小球受到的合力为零,即加速度为零时,动能最大
设此时小球与B点间的距离为R,则
等效重力加速度:
小球在库仑力作用下的振动周期:
4.如图所示,充电后的平行板电容器水平放置,电容为C,极板间距离为d,上极板正中有一小孔。质量为m、电荷量为+q的小球从小孔正上方高h处由静止开始下落,穿过小孔到达下极板处速度恰为零(不计空气阻力,极板间电场可视为匀强电场,重力加速度为g)。求:
(1)极板间电场强度大小和电容器所带电荷量;
解得
答案:(1) (2) (3)
(2)小球从开始下落运动到下极板的时间.

高中物理必修3物理 全册全单元精选试卷培优测试卷(1)

高中物理必修3物理 全册全单元精选试卷培优测试卷(1)

高中物理必修3物理 全册全单元精选试卷培优测试卷(1)一、必修第3册 静电场及其应用解答题易错题培优(难)1.如图所示,在竖直平面内有一固定的光滑绝缘轨道,圆心为O ,半径为r ,A 、B 、C 、D 分别是圆周上的点,其中A 、C 分别是最高点和最低点,BD 连线与水平方向夹角为37︒。

该区间存在与轨道平面平行的水平向左的匀强电场。

一质量为m 、带正电的小球在轨道内侧做完整的圆周运动(电荷量不变),经过D 点时速度最大,重力加速度为g (已知sin370.6︒=,cos370.8︒=),求:(1)小球所受的电场力大小;(2)小球经过A 点时对轨道的最小压力。

【答案】(1)43mg ;(2)2mg ,方向竖直向上. 【解析】 【详解】(1)由题意可知 :tan 37mgF︒= 所以:43F mg =(2)由题意分析可知,小球恰好能做完整的圆周运动时经过A 点对轨道的压力最小. 小球恰好做完整的圆周运动时,在B 点根据牛顿第二定律有:2sin 37B v mgm r︒= 小球由B 运动到A 的过程根据动能定理有:()22111sin 37cos3722B A mgr Fr mv mv ︒︒--+=-小球在A 点时根据牛顿第二定律有:2AN v F mg m r+=联立以上各式得:2N F mg =由牛顿第三定律可知,小球经过A 点时对轨道的最小压力大小为2mg ,方向竖直向上.2.如图所示,一个内壁光滑的绝缘细直管竖直放置.在管子的底部固定一电荷量为Q (Q >0)的点电荷.在距离底部点电荷为h 2的管口A 处,有一电荷量为q (q >0)、质量为m 的点电荷由静止释放,在距离底部点电荷为h 1的B 处速度恰好为零.现让一个电荷量为q 、质量为3m 的点电荷仍在A 处由静止释放,已知静电力常量为k ,重力加速度为g ,则该点电荷运动过程中:(1)定性分析点电荷做何运动?(从速度与加速度分析) (2)速度最大处与底部点电荷的距离 (3)运动到B 处的速度大小【答案】(1)先做加速度减小的加速,后做加速度增大的减速运动; (2)3KQqr mg=(3)2123()3B v g h h =-【解析】 【详解】(1)由题意知,小球应先做加速运动,再做减速运动,即开始时重力应大于库仑力;而在下落中,库仑力增大,故下落时加速度先减小,后增大;即小球先做加速度减小的加速,后做加速度增大的减速运动;(2)当重力等于库仑力时,合力为零,此时速度最大,23kQqF mg r 库==解得:3kQqr mg=(3)点电荷在下落中受重力和电库仑力,由动能定理可得:mgh +W E =0;即W E =-mgh ;当小球质量变为3m 时,库仑力不变,故库仑力做功不变,由动能定理可得:3mgh-mgh =123mv 2; 解得:2123()3B v g h h =- 点睛:本题综合考查动力学知识及库仑力公式的应用,解题的关键在于明确物体的运动过程;同时还应注意点电荷由静止开始运动,故开始时重力一定大于库仑力.3.如图所示,在竖直平面内有一质量m =0.5 kg 、电荷量q =+2×10-3 C 的带电小球,有一根长L =0.1 m 且不可伸长的绝缘轻细线系在一方向水平向右、分布的区域足够大的匀强电场中的O 点.已知A 、O 、C 点等高,且OA =OC =L ,若将带电小球从A 点无初速度释放,小球到达最低点B 时速度恰好为零,g 取10 m/s 2.(1)求匀强电场的电场强度E 的大小;(2)求小球从A 点由静止释放运动到B 点的过程中速度最大时细线的拉力大小; (3)若将带电小球从C 点无初速度释放,求小球到达B 点时细线张力大小. 【答案】(1)2.5×103 N/C (2)2-10) N (3)15N 【解析】 【详解】(1)小球到达最低点B 时速度为零,则0=mgL -EqL . E =2.5×103 N/C(2) 小球到达最低点B 时速度为零,根据对称性可知,达到最大速度的位置为AB 弧的中点,即当沿轨迹上某一点切线方向的合力为零时,小球的速度有最大值,由动能定理有12mv 2-0=mgL sin 45°-Eq (L -L cos 45°). m 2v L=F -2mg cos 45°. F =2-10) N.(3)小球从C 运动到B 点过程,由动能定理得2102mgL qEL mV +=-. 解得:24V =在B 点02(cos 45)V T mg mL-= 以上各式联立解得T =15N.4.竖直放置的平行金属板A 、B 带等量异种电荷(如图),两板之间形成的电场是匀强电场.板间用绝缘细线悬挂着的小球质量m=4.0×10-5kg ,带电荷量q=3.0×10-7C ,平衡时细线与竖直方向之间的夹角α=37°.求:(1)A 、B 之间匀强电场的场强多大?(2)若剪断细线,计算小球运动的加速度,小球在A 、B 板间将如何运动? 【答案】(1)E =1×103N/C (2) 12.5m/s 2 【解析】 【详解】(1)小球受到重力mg 、电场力F 和绳的拉力T 的作用,由共点力平衡条件有:F =qE =mg tan α解得:537tan 410100.75 1.010N/C 310mg E q α--⨯⨯⨯===⨯⨯ 匀强电场的电场强度的方向与电场力的方向相同,即水平向右;(2)剪断细线后,小球做偏离竖直方向,夹角为37°匀加速直线运动,设其加速度为a 由牛顿第二定律有:cos mgma θ= 解得:212.5m/s cos ga θ== 【点睛】本题是带电体在电场中平衡问题,分析受力情况是解题的关键,并能根据受力情况判断此后小球的运动情况.5.—个带正电的微粒,从A 点射入水平方向的匀强电场中,微粒沿直线AB 运动,如图所示,AB 与电场线夹角θ=53°,已知带电微粒的质量m =1.0×10-7kg ,电荷量q =1.0×10-10C ,A 、B 相距L =20cm .(取g =10m/s 2).求:(1)电场强度的大小和方向;(2)要使微粒从A 点运动到B 点,微粒射入电场时的最小速度是多少. 【答案】(1)7.5×10 3 V/m,方向水平向左 (2)5m/s 【解析】 【详解】(1)带电微粒做直线运动,所受的合力与速度在同一直线上,则带电微粒受力如图所示;由图可知,合力与速度方向相反;故粒子一定做匀减速直线运动; 由力的合成可知:mg =qE •tan θ可得:37.510V/m tan mgE q θ==⨯,方向水平向左. (2)微粒从A 到B 做匀减速直线运动,则当v B =0时,粒子进入电场速度v A 最小.由动能定理:21sin cos 02A mgL qEL mv θθ--=-代入数据得:v A 5m/s6.如图所示,将带正电的中心穿孔小球A 套在倾角为θ的固定光滑绝缘杆上某处,在小球A 的正下方固定着另外一只带电小球B ,此时小球A 恰好静止,且与绝缘杆无挤压.若A 的电荷量为q ,质量为m ;A 与B 的距离为h ;重力加速度为g ,静电力常量为k ;A 与B 均可视为质点.(1)试确定小球B 的带电性质; (2)求小球B 的电荷量;(3)若出于某种原因,小球B 在某时刻突然不带电,求小球A 下滑到与小球B 在同一水平线的杆上某处时,重力对小球做功的功率.【答案】(1)带正电 (2)2B mgh q kq= (3)sin 2P mg gh =【解析】 【分析】(1)由题意A 静止且与杆无摩擦,说明A 只受重力和库仑力,故AB 之相互排斥,A 的受力才能平衡,可知B 的电性(2)由库仑定律可得AB 间的库仑力,在对A 列平衡方程可得B 的电量(3)B 不带电后A 只受重力,故由机械能守恒,可得A 的速度,进而得到重力功率 【详解】(1)根据题意:小球A 受到B 的库仑力必与A 受到的重力平衡,即A 、B 之间相互排斥,所以B 带正电.(2)由库仑定律,B 对A 的库仑力为F =2Bkqq h, 由平衡条件有mg =2Bkqq h 解得q B =2mgh kq. (3)B 不带电后,小球A 受到重力、支持力作用沿杆向下做匀加速直线运动,设到达题中所述位置时速度为v ,由机械能守恒定律有mgh =12mv 2, 解得v 2gh所以重力的瞬时功率为P =mgv sin θ=mg sin 2gh二、必修第3册 静电场中的能量解答题易错题培优(难)7.如图所示,水平面上有相距02m L =的两物体A 和B ,滑块A 的质量为2m ,电荷量为+q ,B 是质量为m 的不带电的绝缘金属滑块.空间存在有水平向左的匀强电场,场强为0.4mgE q=.已知A 与水平面间的动摩擦因数10.1μ=,B 与水平面间的动摩擦因数20.4μ=,A与B的碰撞为弹性正碰,且总电荷量始终不变(g取10m/s2).试求:(1)A第一次与B碰前的速度v的大小;(2)A第二次与B碰前的速度大小;(3)A、B停止运动时,B的总位移x.【答案】(1)2m/s(2)2m/s3(3)2m【解析】【分析】【详解】(1)从A开始运动到与B碰撞过程,由动能定理:201001222EqL mgL mvμ-⋅=⋅解得:v0=2m/s(2)AB碰撞过程,由动量守恒和能量守恒可得:01222mv mv mv=+22201211122222mv mv mv⋅=⋅+解得:12m/s3v=28m/s3v=(另一组解舍掉)两物体碰撞后电量均分,均为q/2,则B的加速度:222122m/s2BE q mg qEa gm mμμ⋅-==-=-,A的加速度:11122024AE q mg qEa gm mμμ⋅-⋅==-=即B做匀减速运动,A做匀速运动;A第二次与B碰前的速度大小为12m/s3v=;(3)B做减速运动直到停止的位移:221216m23Bvxa==AB第二次碰撞时:1122222mv mv mv =+2221122211122222mv mv mv ⋅=⋅+ 解得:12112m/s 39v v == ,2212488m/s=m/s 393v v ==B 再次停止时的位移2222416m 23B v x a == 同理可得,第三次碰撞时,12132322mv mv mv =+22212132311122222mv mv mv ⋅=⋅+ 可得131212m/s 327v v ==,23123488m/s m/s 3273v v === B 第3次停止时的位移2223616m 23B v x a == 同理推理可得,第n 次碰撞,碰撞AB 的速度分别为:11n-112m/s 33n n v v ==(),2n 1n-1)48m/s 33nv v ==( B 第n 次停止时的位移:22n 216m 23n n B v x a ==则A 、B 停止运动时,B 的总位移12324622++16161616m m+m+m 33331=2(1-)m3nn n x x x x x =+⋅⋅⋅+=+⋅⋅⋅+当n 取无穷大时, A 、B 停止运动时,B 的总位移2m x =.8.如图甲所示,倾角为θ=30°绝缘斜面被垂直斜面直线MN 分为左右两部分,左侧部分光滑,范围足够大,上方存在大小为E =1 000 N/C ,方向沿斜面向上的匀强电场,右侧部分粗糙,范围足够大,一质量为m =1 kg ,长为L =0.8 m 的绝缘体制成的均匀带正电直棒AB 置于斜面上,A 端距MN 的距离为d ,现给棒一个沿斜面向下的初速度v 0,并以此时作为计时的起点,棒在最初0.8 s 的运动图像如图乙所示,已知0.8 s 末棒的B 端刚好进入电场,取重力加速度g =10 m/s 2,求:(1)直棒AB 开始运动时A 端距MN 的距离为d ; (2)直棒AB 的带电量q ;(3)直棒AB 最终停止时,直棒B 端到MN 的距离. 【答案】(1)20 m (2)7.5×10-3 C (3)125 m 【解析】 【分析】根据v-t 图像确定出直棒AB 匀减速直线运动的位移,结合棒的长度,得出直棒AB 开始运动时A 端距MN 的距离为d ;根据图线得出直棒AB 匀减速直线运动的加速度大小,根据加速度,结合牛顿第二定律求出带电量的大小;根据动能定理得出,物体在电场中运动的距离. 【详解】(1)由v-t 图像可知直棒AB 匀减速直线运动.0~0.8s 内棒运动的位移为:0120.8m 2tv v x t +== .A 端距离MN 的距离为:120.80.820m d x L m =-=-=. (2)棒的加速度为:2Δva==2.5m/s Δt.对直棒AB 进行受力分析,越过MN 后受到重力、斜面支持力和电场力,合力为sin F Eq mg θ=-.根据牛顿第二定律,:sin Eq mg ma θ-= ,代入数据解得:37.510C q -=⨯ .(3)根据动能定律,物体从B 端到达MN 至最终停止的过程,满足:2221sin 02mgx Eqx mv θ-=-.带入数据解得,x 2 =125 m故B 端在MN 右边且距MN 为125 m . 【点睛】本题考查了牛顿第二定律、动能定理和运动学公式的综合运用,通过v-t 图像,确定出物体运动的加速度不变,得出物体做匀变速直线运动是解决本题的关键.9.如图甲所示,极板A 、B 间电压为U 0,极板C 、D 间距为d ,荧光屏到C 、D 板右端的距离等于C 、D 板的板长.A 板O 处的放射源连续无初速地释放质量为m 、电荷量为+q 的粒子,经电场加速后,沿极板C 、D 的中心线射向荧光屏(荧光屏足够大且与中心线垂直),当C 、D 板间未加电压时,粒子通过两板间的时间为t 0;当C 、D 板间加上图乙所示电压(图中电压U 1已知)时,粒子均能从C 、D 两板间飞出,不计粒子的重力及相互间的作用.求:(1)C 、D 板的长度L ;(2)粒子从C 、D 板间飞出时垂直于极板方向偏移的最大距离; (3)粒子打在荧光屏上区域的长度. 【答案】(1)02qU L t m =2)2102qU t y md =(3)21032qU t s s md∆== 【解析】试题分析:(1)粒子在A 、B 板间有20012qU mv = 在C 、D 板间有00L v t = 解得:02qU L t m=(2)粒子从nt 0(n=0、2、4……)时刻进入C 、D 间,偏移距离最大 粒子做类平抛运动 偏移距离2012y at = 加速度1qU a md=得:2102qU t y md=(3)粒子在C 、D 间偏转距离最大时打在荧光屏上距中心线最远ZXXK] 出C 、D 板偏转角0tan y v v θ=0y v at =打在荧光屏上距中心线最远距离tan s y L θ=+荧光屏上区域长度21032qU t s s md∆==考点:带电粒子在匀强电场中的运动【名师点睛】此题是带电粒子在匀强电场中的运动问题;关键是知道粒子在水平及竖直方向的运动规律和特点,结合平抛运动的规律解答.10.如图所示,在水平方向的匀强电场中有一表面光滑、与水平面成θ角的绝缘直杆AC ,其下端(C 端)距地面高度为h .有一质量m =0.5kg 的带电小环套在直杆上,正以某一速度 0v沿杆匀速下滑,小环离杆后正好通过C 端的正下方P 点处.(g 取10m/s 2)(1)若θ=45°,试判断小环的电性,并求出小环受到的电场力大小;(2)若θ=45°,h =0.8m ,求小环在直杆上匀速运动的速度大小0v ;(3)若保持h 不变,改变θ角(0<θ<90°)及小环的电荷量,使小环仍能匀速下滑,离杆后正好通过C 端的正下方P 点处,试推出初速度0v 与θ角间的定量关系式.【答案】(1) 负电 5N (2)2m/s (3)02gh v θ=【解析】【详解】(1)小环沿杆匀速下滑,合力为零,小环所受的电场力水平向右,则小球带负电。

高中物理必修3物理 全册全单元精选试卷培优测试卷

高中物理必修3物理 全册全单元精选试卷培优测试卷

高中物理必修3物理全册全单元精选试卷培优测试卷一、必修第3册静电场及其应用解答题易错题培优(难)1.在如图所示的竖直平面内,物体A和带正电的物体B用跨过定滑轮的绝缘轻绳连接,分别静止于倾角θ=37°的光滑斜面上的M点和粗糙绝缘水平面上,轻绳与对应平面平行.劲度系数k=5 N/m的轻弹簧一端固定在O点,一端用另一轻绳穿过固定的光滑小环D与A相连,弹簧处于原长,轻绳恰好拉直,DM垂直于斜面.水平面处于场强E=5×104N/C、方向水平向右的匀强电场中.已知A、B的质量分别为m A=0.1 kg和m B=0.2 kg,B所带电荷量q=+4×10-6 C.设两物体均视为质点,不计滑轮质量和摩擦,绳不可伸长,弹簧始终在弹性限度内,B电荷量不变.取g=10 m/s2,sin 37°=0.6,cos 37°=0.8.(1)求B所受静摩擦力的大小;(2)现对A施加沿斜面向下的拉力F,使A以加速度a=0.6 m/s2开始做匀加速直线运动.A 从M到N的过程中,B的电势能增加了ΔE p=0.06 J.已知DN沿竖直方向,B与水平面间的动摩擦因数μ=0.4.求A到达N点时拉力F的瞬时功率.【答案】(1)f=0.4N (2)2.1336W【解析】试题分析:(1)根据题意,静止时,对两物体受力分析如图所示:由平衡条件所得:对A有:m A gsin θ=F T①对B有:qE+f0=F T②代入数据得f0=0.4 N ③(2)根据题意,A到N点时,对两物体受力分析如图所示:由牛顿第二定律得:对A有:F+m A gsin θ-F′T-F k sin θ=m A a ④对B有:F′T-qE-f=m B a ⑤其中f=μm B g ⑥F k =kx ⑦由电场力做功与电势能的关系得ΔE p =qEd ⑧ 由几何关系得x =-⑨A 由M 到N ,由v -v =2ax 得A 运动到N 的速度v =⑩拉力F 在N 点的瞬时功率P =Fv ⑪ 由以上各式,代入数据P =0.528 W ⑫考点:受力平衡 、牛顿第二定律、能量转化与守恒定律、功率【名师点睛】静止时,两物体受力平衡,列方程求解.A 从M 到N 的过程中做匀加速直线运动,根据牛顿第二定律,可列出力的关系方程.根据能量转化与守恒定律可列出电场力做功与电势能变化的关系方程.根据匀加速直线运动速度位移公式,求出运动到N 的速度,最后由功率公式求出功率.2.如图所示,在沿水平方向的匀强电场中,有一长度l =0. 5m 的绝缘轻绳上端固定在O点,下端系一质量21010m .-=⨯kg 、带电量82.010q -=⨯C 的小球(小球的大小可以忽略)在位置B 点处于静止状态,此时轻绳与竖直方向的夹角α=37°,空气阻力不计,sin37°=0. 6,cos37°=0. 8,g =10m/s 2. (1)求该电场场强大小;(2)在始终垂直于轻绳的外力作用下将小球从B 位置缓慢拉动到细绳竖直位置的A 点,求外力对带电小球做的功;(3)过B 点做一等势面交电场线于C 点(C 点未画出),使轻绳与竖直方向的夹角增大少许(不超过5°),再由静止释放,求小球从C 点第一次运动到B 点的时间,并写出分析求解过程.【答案】(1) 63.7510E =⨯N/C (2)21.2510F W J -=⨯ (3)0.31t s =【解析】 【详解】(1)带电小球静止,受到合力等于零,电场力与重力的关系是:tan Eq mg α=,即tan mgE qα=代入数值计算得电场场强大小:63.7510/E N C =⨯(2)小球在外力作用下从B 位置缓慢移动到A 位置过程中,根据动能定理有:sin (cos )0F W Eql mg l l αα-+-=所以sin tan (cos )F mgW q mg l l qααα=-- 代入数值解得电场场强大小:21.2510F W J -=⨯(3)分析受力可知:小球在运动过程中,重力和电场力的合力为恒力,大小为5cos 4mg F mg α== 类比研究单摆的方法可知,小球的运动与单摆类似,回复力由上述合力沿圆周切向的分力提供。

高中物理必修3物理 全册全单元精选试卷培优测试卷

高中物理必修3物理 全册全单元精选试卷培优测试卷

高中物理必修3物理 全册全单元精选试卷培优测试卷一、必修第3册 静电场及其应用解答题易错题培优(难)1.如图所示,真空中有两个点电荷A 、B ,它们固定在一条直线上相距L =0.3m 的两点,它们的电荷量分别为Q A =16×10-12C ,Q B =4.0×10-12C ,现引入第三个同种点电荷C ,(1)若要使C 处于平衡状态,试求C 电荷的电量和放置的位置?(2)若点电荷A 、B 不固定,而使三个点电荷在库仑力作用下都能处于平衡状态,试求C 电荷的电量和放置的位置? 【答案】(1)见解析(2)1216109C -⨯ ,为负电荷 【解析】 【分析】 【详解】(1)由分析可知,由于A 和B 为同种电荷,要使C 处于平衡状态,C 必须放在A 、B 之间某位置,可为正电荷,也可为负电荷.设电荷C 放在距A 右侧x 处,电荷量为Q 3 ∵ AC BC F F = ∴ 132322()Q Q Q Q kk x L x =- ∴1222()Q Q x L x =- ∴ 4(L -x)2=x 2 ∴ x =0.2m即点电荷C 放在距A 右侧0.2m 处,可为正电荷,也可为负电荷.(2)首先分析点电荷C 可能放置的位置,三个点电荷都处于平衡,彼此之间作用力必须在一条直线上,C 只能在AB 决定的直线上,不能在直线之外.而可能的区域有3个, ① AB 连线上,A 与B 带同种电荷互相排斥,C 电荷必须与A 、B 均产生吸引力,C 为负电荷时可满足;② 在AB 连线的延长线A 的左侧,C 带正电时对A 产生排斥力与B 对A 作用力方向相反可能A 处于平衡;C 对B 的作用力为推斥力与A 对B 作用力方向相同,不可能使B 平衡;C 带负电时对A 产生吸引力与B 对A 作用力方向相同,不可能使A 处于平衡;C 对B 的作用力为吸引力与A 对B 作用力方向相反,可能使B 平衡,但离A 近,A 带电荷又多,不能同时使A 、B 处于平衡.③ 放B 的右侧,C 对B 的作用力为推斥力与A 对B 作用力方向相同,不可能使B 平衡; 由分析可知,由于A 和B 为同种电荷,要使三个电荷都处于平衡状态,C 必须放在A 、B 之间某位置,且为负电荷.设电荷C 放在距A 右侧x 处,电荷量为Q 3对C:132322(0.3)Q Q Q Q kk x x =- ∴ x =0.2m 对B :321222()Q Q Q Q k k L L x =- ∴ 12316109Q C -=⨯,为负电荷. 【点睛】此题是库仑定律与力学问题的结合题;要知道如果只是让电荷C 处于平衡,只需在这点的场强为零即可,电性不限;三个电荷的平衡问题,遵循:“两同加一异”、“两大加一小”的原则.2.如图所示,在光滑绝缘水平面上,质量为m 的均匀绝缘棒AB 长为L 、带有正电,电量为Q 且均匀分布.在水平面上O 点右侧有匀强电场,场强大小为E ,其方向为水平向左,BO 距离为x 0,若棒在水平向右的大小为QE/4的恒力作用下由静止开始运动.求:(1)棒的B 端进入电场L /8时的加速度大小和方向; (2)棒在运动过程中的最大动能.(3)棒的最大电势能.(设O 点处电势为零) 【答案】(1)/8qE m ,向右(2)0()48qE Lx + (3)0(2)6qE x L + 【解析】 【分析】 【详解】(1)根据牛顿第二定律,得48QE L QE ma L -⋅=解得 8QE a m=,方向向右. (2)设当棒进入电场x 时,其动能达到最大,则此时棒受力平衡,有4QE QEx L ⋅= 解得14x L = 由动能定理得:()00044()()42442448K o QE QELQEQE L QE L E W x x x x x ====+⨯∑+-+-+⨯(3)棒减速到零时,棒可能全部进入电场,也可能不能全部进入电场,设恰能全部进入电场, 则有:()0042QE QExL L +-=, 得 x 0=L ;()42QE QELL L ε+== 当x 0<L ,棒不能全部进入电场,设进入电场x根据动能定理得()00 0042xQEQE L x x x ++--= 解之得:208L L Lx x ++=则2008 ()4F L L Lx QE W x ε+++==当x 0>L ,棒能全部进入电场,设进入电场x ()()0042QE QEx x L QE x L +---= 得:023x Lx += 则()()000242 4436QE x L x L QE QE x x ε+++⋅===3.如图所示,长l =1m 的轻质细绳上端固定,下端连接一个可视为质点的带电小球,小球静止在水平向右的匀强电场中,绳与竖直方向的夹角θ=37°.已知小球所带电荷量q =1.0×10-6C ,匀强电场的场强E =3.0×103N/C ,取重力加速度g =10m/s 2,sin 37°=0.6,cos 37°=0.8.求:(1)小球所受电场力F 的大小; (2)小球的质量m ;(3)将电场撤去,小球回到最低点时速度v 的大小. 【答案】(1)F =3.0×10-3N (2)m =4.0×10-4kg (3)v =2.0m/s 【解析】 【分析】 【详解】(1)根据电场力的计算公式可得电场力6331.010 3.010N 3.010N F qE --==⨯⨯⨯=⨯;(2)小球受力情况如图所示:根据几何关系可得tan qEmg θ=,所以34310kg 410kg tan 10tan 37qE m g θ--⨯===⨯⨯︒; (3)电场撤去后小球运动过程中机械能守恒,则21(1cos37)2mgl mv -︒=,解得v =2m/s .4.如右图所示,在方向竖直向下的匀强电场中,一个质量为m 、带负电的小球从斜直轨道上的A 点由静止滑下,小球通过半径为R 的圆轨道顶端的B 点时恰好不落下来.若轨道是光滑绝缘的,小球的重力是它所受的电场力2倍,试求:⑴A 点在斜轨道上的高度h ;⑵小球运动到最低点C 时,圆轨道对小球的支持力. 【答案】(1)52R (2) 3mg 【解析】试题分析:由题意得:mg=2Eq设小球到B 点的最小速度为V B ,则由牛顿第二定律可得:mg-Eq=m 2Bv R;对AB 过程由动能定理可得: mg (h-2R )-Eq (h-2R )=12mV B 2; 联立解得:h=52R ; (2)对AC 过程由动能定理可得:mgh-Eqh=12mv c 2; 由牛顿第二定律可得:F+Eq-mg=m 2Cv R联立解得:F=3mg ;由牛顿第三定律可得小球对轨道最低点的压力为3mg . 考点:牛顿定律及动能定理.5.如图所示,充电后的平行板电容器水平放置,电容为C ,极板间距离为d ,上极板正中有一小孔。

高中物理必修3物理 全册全单元精选试卷培优测试卷

高中物理必修3物理 全册全单元精选试卷培优测试卷

高中物理必修3物理 全册全单元精选试卷培优测试卷一、必修第3册 静电场及其应用解答题易错题培优(难)1.有三根长度皆为l =0.3 m 的不可伸长的绝缘轻线,其中两根的一端固定在天花板的O 点,另一端分别栓有质量皆为m =1.0×10﹣2kg 的带电小球A 和B ,它们的电荷量分别为﹣q 和+q ,q =1.0×10﹣6C .A 、B 之间用第三根线连接起来,空间中存在大小为E =2.0×105N/C 的匀强电场,电场强度的方向水平向右.平衡时A 、B 球的位置如图所示.已知静电力常量k =9×109N•m 2/C 2重力加速度g =10m/s 2.求:(1)A 、B 间的库仑力的大小 (2)连接A 、B 的轻线的拉力大小. 【答案】(1)F=0.1N (2)10.042T N = 【解析】试题分析:(1)以B 球为研究对象,B 球受到重力mg ,电场力Eq ,静电力F ,AB 间绳子的拉力1T 和OB 绳子的拉力2T ,共5个力的作用,处于平衡状态,A 、B 间的静电力22q F k l=,代入数据可得F=0.1N(2)在竖直方向上有:2sin 60T mg ︒=,在水平方向上有:12cos 60qE F T T =++︒ 代入数据可得10.042T N = 考点:考查了共点力平衡条件的应用【名师点睛】注意成立的条件,掌握力的平行四边形定则的应用,理解三角知识运用,注意平衡条件的方程的建立.2.一带正电的 A 点电荷在电场中某点的电场强度为 4.0×104N/C ,电荷量为+5.0×10-8 C 的 B 点电荷放在该点,求:(1)点电荷在该点受到的电场力?(2)若在该点放上一个电荷量为-2.0×10-8 C 的 C 点电荷,则该点的电场强度? 【答案】(1)3210N -⨯,方向由A 指向B (2)4410/N C ⨯,方向由A 指向B 【解析】 【分析】 【详解】 (1)方向:由A 指向B(2)若在该点放上一个电荷量为-2.0×10-8 C 的 C 点电荷,则该点的场强不变,仍为方向:由A 指向B3.如图所示,质量为m 的小球A 穿在绝缘细杆上,杆的倾角为α,小球A 带正电,电量为q 。

高中物理必修3物理 全册全单元精选试卷培优测试卷

高中物理必修3物理 全册全单元精选试卷培优测试卷

高中物理必修3物理 全册全单元精选试卷培优测试卷一、必修第3册 静电场及其应用解答题易错题培优(难)1.我们可以借鉴研究静电场的方法来研究地球周围空间的引力场,如用“引力场强度”、“引力势”的概念描述引力场。

已知地球质量为M ,半径为R ,万有引力常量为G ,将地球视为均质球体,且忽略自转。

(1)类比电场强度的定义方法,写出地球引力场的“引力场强度E ”的定义式,并结合万有引力定律,推导距离地心为r (r >R )处的引力场强度的表达式2=GM E r 引; (2)设地面处和距离地面高为h 处的引力场强度分别为E 引和'E 引,如果它们满足'0.02E E E -≤引引引,则该空间就可以近似为匀强场,也就是我们常说的重力场。

请估算地球重力场可视为匀强场的高度h (取地球半径R =6400km );(3)某同学查阅资料知道:地球引力场的“引力势”的表达式为=-G Mrϕ引(以无穷远处引力势为0)。

请你设定物理情景,简要叙述推导该表达式的主要步骤。

【答案】(1)引力场强度定义式FE m=引,推导见解析;(2)h =64976m ;(3)推导见解析. 【解析】 【分析】 【详解】(1)引力场强度定义式F E m=引 2MmF Gr = 联立得2M E Gr =引 (2)根据题意2M E GR =引 '2M E G r=引 '0.02E E E -=引引引h r R R =-=解得h =64976m(3)定义式引力势=p E mϕ引,式中p E 为某位置的引力势能把某物体从无穷远移动到某点引力做的功=0-=-p p W E E 引即=-p E W 引则当质量为m 的物体自无穷远处移动到距离地球r 处时,引力做功为W 引 通过计算得0MmW Gr =引> 所以=-p MmE Gr =-M Grϕ引2.如图所示,固定于同一条竖直线上的A 、B 是两个带等量异种电荷的点电荷,电荷量分别为+Q 和-Q ,A 、B 相距为2d 。

高中物理必修3物理 全册全单元精选测试卷培优测试卷

高中物理必修3物理 全册全单元精选测试卷培优测试卷

高中物理必修3物理 全册全单元精选测试卷培优测试卷一、必修第3册 静电场及其应用解答题易错题培优(难)1.如图所示,在竖直平面内有一固定的光滑绝缘轨道,圆心为O ,半径为r ,A 、B 、C 、D 分别是圆周上的点,其中A 、C 分别是最高点和最低点,BD 连线与水平方向夹角为37︒。

该区间存在与轨道平面平行的水平向左的匀强电场。

一质量为m 、带正电的小球在轨道内侧做完整的圆周运动(电荷量不变),经过D 点时速度最大,重力加速度为g (已知sin370.6︒=,cos370.8︒=),求:(1)小球所受的电场力大小;(2)小球经过A 点时对轨道的最小压力。

【答案】(1)43mg ;(2)2mg ,方向竖直向上. 【解析】 【详解】(1)由题意可知 :tan 37mgF︒= 所以:43F mg =(2)由题意分析可知,小球恰好能做完整的圆周运动时经过A 点对轨道的压力最小. 小球恰好做完整的圆周运动时,在B 点根据牛顿第二定律有:2sin 37B v mgm r︒= 小球由B 运动到A 的过程根据动能定理有:()22111sin 37cos3722B A mgr Fr mv mv ︒︒--+=-小球在A 点时根据牛顿第二定律有:2AN v F mg m r+=联立以上各式得:2N F mg =由牛顿第三定律可知,小球经过A点时对轨道的最小压力大小为2mg ,方向竖直向上.2.A 、B 是两个电荷量都是Q 的点电荷,相距l ,AB 连线中点为O 。

现将另一个电荷量为q 的点电荷放置在AB 连线的中垂线上,距O 为x 的C 处(图甲)。

(1)若此时q 所受的静电力为F 1,试求F 1的大小。

(2)若A 的电荷量变为﹣Q ,其他条件都不变(图乙),此时q 所受的静电力大小为F 2,求F 2的大小。

(3)为使F 2大于F 1,l 和x 的大小应满足什么关系?【答案】(1) 223(())2l x +(2) 223(())2l x +(3) 2l x > 【解析】 【详解】(1)设q 为正电荷,在C 点,A 、B 两电荷对q 产生的电场力大小相同,为:22)4(A B kQqF F l x ==+ 方向分别为由A 指向C 和由B 指向C ,如图:故C 处的电场力大小为:F 1=2F A sinθ方向由O指向C 。

【单元练】江西师范大学附属中学高中物理选修3第三章【热力学定律】经典习题(培优提高)

【单元练】江西师范大学附属中学高中物理选修3第三章【热力学定律】经典习题(培优提高)

一、选择题1.关于热现象和热学规律,下列说法正确的是( )A .只要知道气体的摩尔体积和阿伏加德罗常数,就可以算出每个气体分子的体积B .一定质量的理想气体温度升高,产生的压强一定增大C .温度一定时,悬浮在液体中的固体颗粒越大,布朗运动越明显D .第二类永动机不可能制成是因为它违反了热力学第二定律D解析:DA .只要知道气体的摩尔体积和阿伏加德罗常数,就可以算出气体的分子所占据的空间大小,不能算出气体分子体积,A 错误;B .根据理想气体状态方程pVC T=可知温度升高,压强不一定增大,B 错误; C .温度一定时,悬浮在液体中的固体颗粒越小,同一时刻撞击颗粒的液体分子数越少,冲力越不平衡,布朗运动越明显,C 错误;D .第二类永动机不可能制成的原因是因为其违背了热力学第二定律,D 正确。

故选D 。

2.如图所示为一定质量的氦气(可视为理想气体)状态变化的V T -图像。

已知该氦气所含的氦分子总数为N ,氦气的摩尔质量为M ,在状态A 时的压强为0p 。

已知阿伏加德罗常数为A N ,下列说法正确的是( )A .氦气分子的质量为M NB .B 状态时氦气的压强为02pC .B→C 过程中氦气向外界放热D .C 状态时氦气分子间的平均距离03AV d N =解析:CA .氦气分子的质量 AM m N =故A 错误;B .由图示图象可知,A 到B 过程气体体积不变,由查理定律得 A B A B p p T T = 即0002B p p T T = 解得00.5B p p =故B 错误;C .由图示图象可知,B →C 过程中氦气温度不变而体积减小,气体内能不变,外界对气体做功,即△U =0,W >0由热力学第一定律△U =W +Q 可知0Q U W W =∆-=-<氦气向外界放出热量,故C 正确;D .由图示图象可知,在状态C 氦气的体积为V 0,气体分子间距离远大于分子直径,可以把一个分子占据的空间看做正方体,设分子间的平均距离为d ,则30Nd V =解得03V d N=故D 错误。

高中物理必修3物理 全册全单元精选测试卷培优测试卷

高中物理必修3物理 全册全单元精选测试卷培优测试卷

高中物理必修3物理 全册全单元精选测试卷培优测试卷一、必修第3册 静电场及其应用解答题易错题培优(难)1.如图所示,在竖直平面内有一固定的光滑绝缘轨道,圆心为O ,半径为r ,A 、B 、C 、D 分别是圆周上的点,其中A 、C 分别是最高点和最低点,BD 连线与水平方向夹角为37︒。

该区间存在与轨道平面平行的水平向左的匀强电场。

一质量为m 、带正电的小球在轨道内侧做完整的圆周运动(电荷量不变),经过D 点时速度最大,重力加速度为g (已知sin370.6︒=,cos370.8︒=),求:(1)小球所受的电场力大小;(2)小球经过A 点时对轨道的最小压力。

【答案】(1)43mg ;(2)2mg ,方向竖直向上. 【解析】 【详解】(1)由题意可知 :tan 37mgF︒= 所以:43F mg =(2)由题意分析可知,小球恰好能做完整的圆周运动时经过A 点对轨道的压力最小. 小球恰好做完整的圆周运动时,在B 点根据牛顿第二定律有:2sin 37B v mgm r︒= 小球由B 运动到A 的过程根据动能定理有:()22111sin 37cos3722B A mgr Fr mv mv ︒︒--+=-小球在A 点时根据牛顿第二定律有:2AN v F mg m r+=联立以上各式得:2N F mg =由牛顿第三定律可知,小球经过A 点时对轨道的最小压力大小为2mg ,方向竖直向上.2.如图所示,在光滑绝缘水平面上B 点的正上方O 处固定一个质点,在水平面上的A 点放另一个质点,两个质点的质量均为m ,带电量均为+Q 。

C 为AB 直线上的另一点(O 、A 、B 、C 位于同一竖直平面上),AO 间的距离为L ,AB 和BC 间的距离均为2L,在空间加一个水平方向的匀强电场后A 处的质点处于静止。

试问: (1)该匀强电场的场强多大?其方向如何?(2)给A 处的质点一个指向C 点的初速度,该质点到达B 点时所受的电场力多大? (3)若初速度大小为v 0,质点到达C 点时的加速度和速度分别多大?【答案】(1)22kQ L ,方向由A 指向C ;273kQ ;(3)22kQ mL 220kQ v mL+【解析】 【分析】(1)在空间加一个水平方向的匀强电场后A 处的质点处于静止,对A 进行受力分析,根据平衡条件求解。

高中物理必修3物理 全册全单元精选试卷培优测试卷

高中物理必修3物理 全册全单元精选试卷培优测试卷

高中物理必修3物理全册全单元精选试卷培优测试卷一、必修第3册静电场及其应用解答题易错题培优(难)1.如图所示,在光滑绝缘水平面上,质量为m的均匀绝缘棒AB长为L、带有正电,电量为Q且均匀分布.在水平面上O点右侧有匀强电场,场强大小为E,其方向为水平向左,BO距离为x0,若棒在水平向右的大小为QE/4的恒力作用下由静止开始运动.求:(1)棒的B端进入电场L/8时的加速度大小和方向;(2)棒在运动过程中的最大动能.(3)棒的最大电势能.(设O点处电势为零)【答案】(1)/8qE m ,向右(2)()48qE Lx+(3)0(2)6qE x L+【解析】【分析】【详解】(1)根据牛顿第二定律,得48QE L QEmaL-⋅=解得8QEam=,方向向右.(2)设当棒进入电场x时,其动能达到最大,则此时棒受力平衡,有4QE QExL⋅=解得14x L=由动能定理得:()0044()()42442448 K oQE QELQE QE L QE LE W x x x x x====+⨯∑+-+-+⨯(3)棒减速到零时,棒可能全部进入电场,也可能不能全部进入电场,设恰能全部进入电场,则有:()42QE QEx L L+-=,得 x0=L;()42QE QELL Lε+==当x0<L,棒不能全部进入电场,设进入电场x根据动能定理得()0042xQEQE Lx x x++--=解之得:208L L Lx x ++=则2008 ()4F L L Lx QE W x ε+++==当x 0>L ,棒能全部进入电场,设进入电场x ()()0042QE QEx x L QE x L +---= 得:023x Lx += 则()()000242 4436QE x L x L QE QE x x ε+++⋅===2.如图所示,在竖直平面内有一质量m =0.5 kg 、电荷量q =+2×10-3 C 的带电小球,有一根长L =0.1 m 且不可伸长的绝缘轻细线系在一方向水平向右、分布的区域足够大的匀强电场中的O 点.已知A 、O 、C 点等高,且OA =OC =L ,若将带电小球从A 点无初速度释放,小球到达最低点B 时速度恰好为零,g 取10 m/s 2.(1)求匀强电场的电场强度E 的大小;(2)求小球从A 点由静止释放运动到B 点的过程中速度最大时细线的拉力大小; (3)若将带电小球从C 点无初速度释放,求小球到达B 点时细线张力大小. 【答案】(1)2.5×103 N/C (2)2-10) N (3)15N 【解析】 【详解】(1)小球到达最低点B 时速度为零,则0=mgL -EqL . E =2.5×103 N/C(2) 小球到达最低点B 时速度为零,根据对称性可知,达到最大速度的位置为AB 弧的中点,即当沿轨迹上某一点切线方向的合力为零时,小球的速度有最大值,由动能定理有12mv 2-0=mgL sin 45°-Eq (L -L cos 45°). m 2v L=F -2mg cos 45°. F =2-10) N.(3)小球从C 运动到B 点过程,由动能定理得212mgL qEL mV+=-.解得:24V=在B点02(cos45)VT mg mL-=以上各式联立解得T=15N.3.如图所示,在绝缘的水平面上,相隔2L的,A、B两点固定有两个电量均为Q的正点电荷,C、O、D是AB连线上的三个点,O为连线的中点,CO=OD=L/2。一质量为m、电量为q的带电物块以初速度v0从c点出发沿AB连线向B运动,运动过程中物块受到大小恒定的阻力作用。当物块运动到O点时,物块的动能为初动能的n倍,到达D点刚好速度为零,然后返回做往复运动,直至最后静止在O点。已知静电力恒量为k,求:(1)AB两处的点电荷在c点产生的电场强度的大小;(2)物块在运动中受到的阻力的大小;(3)带电物块在电场中运动的总路程。【答案】(1)(2)(3)【解析】【分析】【详解】(1)设两个正点电荷在电场中C点的场强分别为E1和E2,在C点的合场强为E C;则12()2kQEL=;223()2kQEL=则E C=E1-E2解得:E C=2329kQL.(2)带电物块从C点运动到D点的过程中,先加速后减速.AB连线上对称点φC=φD,电场力对带电物块做功为零.设物块受到的阻力为f,由动能定理有:−fL=0−12mv02解得:2012f mv L=(3)设带电物块从C 到O 点电场力做功为W 电,根据动能定理得:220011222L W f n mv mv 电=-⋅⋅-解得:()201214W n mv -电=设带电物块在电场中运动的总路程为S ,由动能定理有:W 电−fs =0−12mv 02 解得:s=(n+0.5)L 【点睛】本题考查了动能定理的应用,分析清楚电荷的运动过程,应用动能定理、点电荷的场强公式与场的叠加原理即可正确解题.4.一个质量m =30g ,带电量为-1.7×10-8C 的半径极小的小球,用丝线悬挂在某匀强的电场中,电场线水平.当小球静止时,测得悬线与竖直方向成30o ,求该电场的电场强的大小和方向?【答案】7110/E N C =⨯,水平向右 【解析】 【分析】 【详解】小球在电场中受重力、电场力、拉力三个力,合力为零,则知电场力的方向水平向左,而小球带负电,电场强度的方向与负电荷所受电场力方向相反,所以匀强电场场强方向水平向右.由图,根据平衡条件得tan30qE mg =︒得tan 30mg E q︒=代入解得7110/E N C =⨯5.如图所示,两异种点电荷的电荷量均为Q ,绝缘竖直平面过两点电荷连线的中点O 且与连线垂直,平面上A 、O 、B 三点位于同一竖直线上,AO BO L ==,点电荷到O 点的距离也为L 。

高中物理必修3物理 全册全单元精选测试卷培优测试卷

高中物理必修3物理 全册全单元精选测试卷培优测试卷

高中物理必修3物理 全册全单元精选测试卷培优测试卷一、必修第3册 静电场及其应用解答题易错题培优(难)1.我们可以借鉴研究静电场的方法来研究地球周围空间的引力场,如用“引力场强度”、“引力势”的概念描述引力场。

已知地球质量为M ,半径为R ,万有引力常量为G ,将地球视为均质球体,且忽略自转。

(1)类比电场强度的定义方法,写出地球引力场的“引力场强度E ”的定义式,并结合万有引力定律,推导距离地心为r (r >R )处的引力场强度的表达式2=GM E r 引; (2)设地面处和距离地面高为h 处的引力场强度分别为E 引和'E 引,如果它们满足'0.02E E E -≤引引引,则该空间就可以近似为匀强场,也就是我们常说的重力场。

请估算地球重力场可视为匀强场的高度h (取地球半径R =6400km );(3)某同学查阅资料知道:地球引力场的“引力势”的表达式为=-G Mrϕ引(以无穷远处引力势为0)。

请你设定物理情景,简要叙述推导该表达式的主要步骤。

【答案】(1)引力场强度定义式FE m=引,推导见解析;(2)h =64976m ;(3)推导见解析. 【解析】 【分析】 【详解】(1)引力场强度定义式F E m=引 2MmF Gr = 联立得2M E Gr =引 (2)根据题意2M E GR =引 '2M E G r=引 '0.02E E E -=引引引h r R R =-=解得h =64976m(3)定义式引力势=p E mϕ引,式中p E 为某位置的引力势能把某物体从无穷远移动到某点引力做的功=0-=-p p W E E 引即=-p E W 引则当质量为m 的物体自无穷远处移动到距离地球r 处时,引力做功为W 引 通过计算得0MmW Gr =引> 所以=-p MmE Gr =-M Grϕ引2.如图,在足够大的平行金属板间的水平匀强电场中,有一长为L 的轻质绝缘棒OA ,一端可绕O 点在竖直平面内自由转动,另一端A 处有一带负电、电量为q 、质量为m 的小球,当变阻器滑片在P 点处时,棒静止在与竖直方向成30°角的位置,如图所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.(多选)(2020·全国卷Ⅲ)在图4(a)所示的交流电路中,电源电压的有效值
为220 V,理想变压器原、副线圈的匝数比为10∶1,R1、R2、R3均为固 定电阻,R2=10 Ω,R3=20 Ω,各电表均为理想电表.已知电阻R2中电流 i2随时间t变化的正弦曲线如图(b)所示.下列说法正确的是
√A.所用交流电的频率为50 Hz
选项B错误;
题图乙中t=0.5×10-2 s时,感应电动势最大,则此时穿过题图甲中线圈 的磁通量最小,且为零,选项C正确; 题图乙中t=1.0×10-2 s时,感应电动势为零,则此时穿过题图甲中线圈
的磁通量最大,选项D错误.
1 2 3 4 5 6 7 8 9 10 11 12
2.(2019·濮阳市期末)电流为3 A的直流电通过电阻R时,t时间内产生的热
第三章 交变电流
一、选择题
1.(2019·重庆市普通高等学校4月调研)如图1甲为小型发电机的结构简图,
通过线圈在两磁极间转动给小灯泡供电,已知小灯泡获得的交变电压如
图乙所示.电压表、电流表均为理想电表,则下列说法正确的是
A.图甲中电压表的示数为6 2 V
B.图乙中的0时刻就是图甲所示时刻
√C.图乙中t=0.5×10-2 s时,穿过图甲
100 kW,发电机的电压U1=250 V,经变压器升压后向远处输电,输电 线总电阻R线=8 Ω,在用户端用降压变压器把电压降为U4=220 V.已知输 电线上损失的功率P线=5 kW,假设两个变压器均是理想变压器,下列 说法正确的是
A.发电机输出的电流I1=40 A
B.输电线上的电流I线=625 A
B.电压表的示数为100 V
C.电流表的示数为1.0 A
√D.变压器传输的电功率为15.0 W
图4
1 2 3 4 5 6 7 8 9 10 11 12
解析 根据 i2-t 图像可知 T=0.02 s,则所用交流电的频率 f=T1=50 Hz, 故 A 正确; 副线圈两端电压 U2=I2R2= 22×10 V=10 V, 由nn12=UU12得原线圈两端电压 U1=100 V,
同的小灯泡,在原线圈所在电路的A、B端输入的交流电的电压如图乙所
示,四只灯泡均正常发光.下列说法正确的是
A.原、副线圈的匝数比为4∶1
√B.灯泡的额定电压为55 V
C.原线圈两端的电压为220 V
√D.若副线圈再并联一规格相同的
图3
灯泡,灯泡L1有可能被烧坏
1 2 3 4 5 6 7 8 9 10 11 12
中线圈的磁通量最小
图1
D.图乙中t=1.0×10-2 s时,穿过图甲中线圈的磁通量最小
1 2 3 4 5 6 7 8 9 10 11 12
解析 题图甲中电压表的示数为小灯泡获得的交流电的有效值,U 有效=
6
2 2
V=6 V,选项 A 错误;
题图乙中的0时刻感应电动势为零,而
题图甲所示时刻,感应电动势最大,
√B.线圈消耗的电功率为4 W
C.线圈中感应电流的有效值为2 A
√D.任意时刻线圈中的感应电动势为e=4cos 100πt (V)
图2
1 2 3 4 5 6 7 8 9 10 11 12
解析 一个周期内电流的方向改变两次,故选项A错误; 任意时刻线圈中的感应电动势为 e=Emcos 2Tπt, 线圈转过 60°时,经过了16个周期. 线圈转过 60°时感应电动势的瞬时值为 e=Emcos 2Tπ·T6=E2m, 由题意可知线圈转过60°时的感应电动势瞬时值为e=Ir=2 V, 解得Em=4 V, 则任意时刻线圈中的感应电动势为 e=Emcos 2Tπt=4cos 100πt (V),故选 项 D 正确;
电压表的示数U=220 V-100 V=120 V,故B错误; 电流表的示数 I=UR32=2100 A=0.5 A,故 C 错误; 变压器传输的电功率P=I22R2+I2R3=15.0 W,故D正确.
1 2 3 4 5 6 7 8 9 10 11 12
6.(2020·浙江7月选考)如图5所示,某小型水电站发电机的输出功率P=
量为Q.现让一正弦交流电通过电阻R,若2t时间内产生的热量为Q,则该
正弦交流电的有效值和最大值分别为
√A.322 A,3 A
B.3 A,3 2 A
C. 3 A, 6 A
D.3 2 A,6 A
1 2 3 4示,矩形线圈在匀强磁场中匀速转动的周期为0.02 s, 转轴O1O2垂直于磁场方向,线圈电阻为2 Ω.从线圈平面与磁场方向平 行时开始计时,线圈转过60°时的感应电流为1 A.下列说法正确的是 A.一个周期内电流的方向改变50次
解析 设每只灯泡的额定电流为I,额定电压为U,因并联在副线圈两端 的三只灯泡均正常发光, 所以副线圈中的总电流为3I,原、副线圈电流之比为1∶3,则原、副线 圈的匝数之比为3∶1,原线圈两端的电压为3U,且L1两端的电压为U, 所以电源的电压为4U=220 V,可得副线圈两端的电压U=55 V,原线圈 两端的电压3U=165 V,故A、C错误,B正确;
1 2 3 4 5 6 7 8 9 10 11 12
若副线圈再并联一规格相同的灯泡,则有220I-2·RI1·R=nn12=31,4II12=nn21=13, 解得灯泡L1两端电压为UL=I1R≈67.7 V>55 V,灯泡L1有可能被烧坏, 故D正确.
1 2 3 4 5 6 7 8 9 10 11 12
√C.降压变压器的匝数比n3∶n4=190∶11
图5
D.用户得到的电流I4=455 A
1 2 3 4 5 6 7 8 9 10 11 12
解析 发电机输出电流 I1=UP1=1002×50103 A=400 A,故 A 错误; 输电线上损失的功率P线=I线2R线=5 kW,
1 2 3 4 5 6 7 8 9 10 11 12
线圈中感应电动势的有效值为 E=Em2=2 2 V. 线圈中感应电流的有效值为 I=Er = 2 A,故选项 C 错误; 线圈消耗的电功率为P=EI=4 W,故选项B正确.
1 2 3 4 5 6 7 8 9 10 11 12
4.(多选)如图3甲所示,理想变压器的原、副线圈共接有四只规格完全相
相关文档
最新文档