传感器的分类(频率式和数字式)
传感器的分类_传感器的原理与分类_传感器的定义和分类
传感器的分类_传感器的原理与分类_传感器的定义和分类传感器的分类方法很多.主要有如下几种:(1)按被测量分类,可分为力学量、光学量、磁学量、几何学量、运动学量、流速与流量、液面、热学量、化学量、生物量传感器等。
这种分类有利于选择传感器、应用传感器(2)按照工作原理分类,可分为电阻式、电容式、电感式,光电式,光栅式、热电式、压电式、红外、光纤、超声波、激光传感器等。
这种分类有利于研究、设计传感器,有利于对传感器的工作原理进行阐述。
(3)按敏感材料不同分为半导体传感器、陶瓷传感器、石英传感器、光导纤推传感器、金属传感器、有机材料传感器、高分子材料传感器等。
这种分类法可分出很多种类。
(4)按照传感器输出量的性质分为摸拟传感器、数字传感器。
其中数字传感器便干与计算机联用,且坑干扰性较强,例如脉冲盘式角度数字传感器、光栅传感器等。
传感器数字化是今后的发展趋势。
(5)按应用场合不同分为工业用,农用、军用、医用、科研用、环保用和家电用传感器等。
若按具体便用场合,还可分为汽车用、船舰用、飞机用、宇宙飞船用、防灾用传感器等。
(6)根据使用目的的不同,又可分为计测用、监视用,位查用、诊断用,控制用和分析用传感器等。
主要特点传感器的特点包括:微型化、数字化、智能化、多功能化、系统化、网络化,它不仅促进了传统产业的改造和更新换代,而且还可能建立新型工业,从而成为21世纪新的经济增长点。
微型化是建立在微电子机械系统(MEMS)技术基础上的,已成功应用在硅器件上做成硅压力传感器。
主要功能常将传感器的功能与人类5大感觉器官相比拟:光敏传感器——视觉声敏传感器——听觉气敏传感器——嗅觉化学传感器——味觉压敏、温敏、传感器(图1)流体传感器——触觉敏感元件的分类:物理类,基于力、热、光、电、磁和声等物理效应。
化学类,基于化学反应的原理。
生物类,基于酶、抗体、和激素等分子识别功能。
通常据其基本感知功能可分为热敏元件、光敏元件、气敏元件、力敏元件、磁敏元件、湿敏元件、声敏元件、放射线敏感元件、色敏元件和味敏元件等十大类(还有人曾将敏感元件分46类)。
传感器的分类和原理
一传感器的分类1、按被测量(或传感器的用途)分类如被测量为温度、压力、流量、位移、速度等时,则感应的传感器分别称为温度传感器等…还有热量、比热容,压差、力、力矩、应力、质量、振幅、频率、加速度、噪声、浓度、粘度、密度、相对密度、酸碱度、颜色、透明度等等,其相应的传感器一般以被测量命名。
2、按工作原理分类传感器的工作原理主要是基于电磁原理和固体物理学理论。
可分为电阻式、电感式、电容式、电抗式、磁电式、热电式、压电式、光电式(包括红外线式和光导纤维式)、谐振式、霍尔式、超声式、同位素式、电话学式、微波式等。
3、按输出信号的性质分类可将其分为模拟传感器和数字传感器两大类前者输出模拟信号,如果要与计算机连接,则需要引入模/数转换环节,而后者则不需要。
数字传感器一般将被测量转换成脉冲、频率或二进制数码输出,抗干扰能力强。
二传感器原理及应用1、电阻式传感器:是一种能把非物理量(如位移、力、压力、加速度、扭矩等)转换成与之有确定对应关系的电阻值,再经过测量电桥转换成便于传送和记录的电压(电流)信号的一种装置。
它具有结构简单、输出精度高、线性和稳定性好等特点。
它种类较多,主要有变阻器式、电阻应变式和固态压阻式等三种。
前两种采用的敏感元件是弹性敏感元件,传感器元件分别是电位器和电阻应变片;而压阻式传感器的敏感元件和传感元件均为半导体(如硅)。
2、变阻器式传感器结构简单,输出信号功率大、被测量与转换量间容易实现线性或其他所需要的函数关系。
3、应变式传感器目前用于测量力、力矩、压力、加速度、质量等参数,是使用最广泛的传感器之一。
应变效应:金属导体或半导体在受到外力作用时,会产生相应的应变,其电阻也将随之发生变化,这种物理现象称为应变效应。
用来产生应变效应的细导体称为应变丝(敏感栅)应用在称重与测力领域,一是作为敏感元件,直接用于被测试件的应变测量;另一是作为转换元件,通过弹性元件构成传感器,用以对任何能转变成弹性元件应变的其他物理量作间接测量。
传感器的分类_传感器的原理与分类_传感器的定义和分类
传感器的分类_传感器的原理与分类_传感器的定义和分类传感器的分类方法很多.主要有如下几种:(1)按被测量分类,可分为力学量、光学量、磁学量、几何学量、运动学量、流速与流量、液面、热学量、化学量、生物量传感器等。
这种分类有利于选择传感器、应用传感器(2)按照工作原理分类,可分为电阻式、电容式、电感式,光电式,光栅式、热电式、压电式、红外、光纤、超声波、激光传感器等。
这种分类有利于研究、设计传感器,有利于对传感器的工作原理进行阐述。
(3)按敏感材料不同分为半导体传感器、陶瓷传感器、石英传感器、光导纤推传感器、金属传感器、有机材料传感器、高分子材料传感器等。
这种分类法可分出很多种类。
(4)按照传感器输出量的性质分为摸拟传感器、数字传感器。
其中数字传感器便干与计算机联用,且坑干扰性较强,例如脉冲盘式角度数字传感器、光栅传感器等。
传感器数字化是今后的发展趋势。
(5)按应用场合不同分为工业用,农用、军用、医用、科研用、环保用和家电用传感器等。
若按具体便用场合,还可分为汽车用、船舰用、飞机用、宇宙飞船用、防灾用传感器等。
(6)根据使用目的的不同,又可分为计测用、监视用,位查用、诊断用,控制用和分析用传感器等。
主要特点传感器的特点包括:微型化、数字化、智能化、多功能化、系统化、网络化,它不仅促进了传统产业的改造和更新换代,而且还可能建立新型工业,从而成为21世纪新的经济增长点。
微型化是建立在微电子机械系统(MEMS)技术基础上的,已成功应用在硅器件上做成硅压力传感器。
主要功能常将传感器的功能与人类5大感觉器官相比拟:光敏传感器——视觉声敏传感器——听觉气敏传感器——嗅觉化学传感器——味觉压敏、温敏、传感器(图1)流体传感器——触觉敏感元件的分类:物理类,基于力、热、光、电、磁和声等物理效应。
化学类,基于化学反应的原理。
生物类,基于酶、抗体、和激素等分子识别功能。
通常据其基本感知功能可分为热敏元件、光敏元件、气敏元件、力敏元件、磁敏元件、湿敏元件、声敏元件、放射线敏感元件、色敏元件和味敏元件等十大类(还有人曾将敏感元件分46类)。
传感器教案中器件的分类
传感器教案中器件的分类引言本文将介绍传感器教案中常见的器件分类。
在传感器教学中,了解不同种类的器件及其特点对于学生研究和实际应用有着重要的意义。
分类一:模拟传感器模拟传感器是一类将物理量转换为模拟电信号输出的器件。
常见的模拟传感器包括温度传感器、压力传感器、光敏传感器等。
模拟传感器的输出信号是连续变化的,一般为电压或电流。
它们通常需要与模拟电路配合使用,以将模拟信号转换为数字信号进行处理或显示。
分类二:数字传感器数字传感器是一类将物理量转换为数字信号输出的器件。
与模拟传感器不同,数字传感器的输出信号是离散的数字值。
常见的数字传感器有温湿度传感器、气体传感器、陀螺仪等。
数字传感器通常具有较高的精确度和抗干扰能力,并且可以直接与数字电路进行连接,方便数字信号的处理和存储。
分类三:智能传感器智能传感器是集成了处理器和存储器的传感器。
它们具有自主处理和决策的能力,能够对采集到的数据进行实时分析和反馈。
智能传感器可以通过通信接口与其他设备或系统进行数据交换,实现更复杂的功能。
例如,智能温度传感器可通过网络上传温度数据到云平台,实现远程监测和控制。
分类四:功率传感器功率传感器是一类用于测量电力系统中功率参数的器件。
常见的功率传感器有电流传感器和电压传感器。
电流传感器用于测量电流大小,而电压传感器用于测量电压值。
功率传感器在电力系统的维护和管理中起着重要的作用,可以帮助提高能源利用效率和保障电力系统的安全运行。
结论通过对传感器教案中器件的分类介绍,我们可以更好地理解不同种类的传感器及其特点。
模拟传感器、数字传感器、智能传感器和功率传感器在实际应用中各具优势,适用于不同的场景和需求。
传感器原理与应用复习范围
绪论一、传感器:将各种非电量(包括物理量、化学量、生物量等),按照一定的规律转换成便于处理和传输的另一种物理量(一般为电量)的装置。
二、传感技术:是利用各种功能材料实现信息检测的一门应用技术,是检测(传感)原理、材料科学、工艺加工等三要素的最佳结合。
三、传感器的组成:传感器一般有敏感元件、转换原件和测量电路三部分组成,有事还需要加辅助电源。
四、传感器分类:1.按输入量分类如输入量分别为温度、压力、位移、速度、加速度、湿度等非电量时,则相应的传感器称为温度传感器、压力传感器、位移传感器、速度传感器、加速度传感器、湿度传感器等。
2.按测量原理分类现有传感器的测量原理主要是基于电磁原理和固体物理学理论。
如根据变电阻的原理,相应的有电位器式、应变式传感器;根据变磁阻的原理,相应的有电感式、差动变压器式、电涡流式传感器;根据半导体有关理论,则相应的有半导体力敏、热敏、光敏、气敏等固态传感器。
3.按结构型和物性型分类所谓结构型传感器,主要是通过机械结构的几何形状或尺寸的变化,将外界被测参数转换成相应的电阻、电感、电容等物理量的变化,从而检测出被测信号,这种传感器目前应用的最为普遍。
物性型传感器则是利用某些材料本身物理性质的变化而实现测量,它是以半导体、电介质、铁电体等作为敏感材料的固态器件。
五、传感器的发展趋向1.传感器的固态化,2、传感器的集成化和多功能化3.传感器的图像化4.传感器的智能化第1章传感器的一般特性§1-1 传感器的静态特性传感器在被测量的各个值处于稳定状态时,输出量和输入量之间的关系称为静态特性。
传感器静态特性的主要指标有以下几点:一、线性度(非线性误差)在规定条件下,传感器校准曲线与拟合直线间最大偏差与满量程(F·S)输出值的百分比称为线性度。
二、灵敏度传感器的灵敏度指到达稳定工作状态时输出变化量与引起此变化的输入变化量之比。
线性传感器校准曲线的斜率就是静态灵敏度K。
传感器分类
传感器分类传感器是一种能够感知和测量物理量并将其转化为电信号的设备。
它们在现代科技中扮演着重要的角色,广泛应用于工业、农业、医疗、交通等领域。
根据工作原理和应用范围的不同,传感器可以分为多个分类。
首先,按照测量的物理量可以将传感器分类为温度传感器、压力传感器、光传感器、湿度传感器、加速度传感器、陀螺仪传感器、磁力传感器、电流传感器、电压传感器、位移传感器等。
这些传感器能够感知和测量特定的物理量,并将其转化为电信号输出。
其次,按照工作原理的不同,传感器可以分为电阻式传感器、电容式传感器、电感式传感器、压阻式传感器、磁阻式传感器、霍尔传感器等。
这些传感器利用电阻、电容、电感、压阻、磁阻等原理实现对物理量的测量和感知。
再次,根据传感器的应用范围不同,可以将传感器分为工业传感器、农业传感器、医疗传感器、交通传感器等。
工业传感器用于工业生产中的自动化控制和检测;农业传感器主要用于农作物的生长环境监测和农业机械的智能化控制;医疗传感器用于医疗设备的监测和患者的生理参数测量;交通传感器用于交通管理和车辆控制中。
此外,根据传感器的工作方式不同,可以将传感器分为主动传感器和被动传感器。
主动传感器包括主动式红外传感器、主动式超声波传感器等,它们需要发射信号并接收返回的信号来达到测量的目的;被动传感器包括被动式红外传感器、光敏电阻等,它们只需接收环境中发出的信号进行测量。
另外,根据传感器的输出信号类型可以将传感器分为模拟传感器和数字传感器。
模拟传感器输出连续变化的模拟信号,常见的有电压信号和电流信号;数字传感器输出离散的数字信号,常见的有脉冲信号和串行数据信号。
综上所述,传感器根据测量的物理量、工作原理、应用范围、工作方式和输出信号类型的不同可以进行多种分类。
这些传感器在现代科技中发挥着重要的作用,为我们提供了丰富的数据和信息,推动着科技的迅猛发展。
随着科技的不断进步,传感器的应用领域将会更加广泛,功能和性能也将不断提升,为人们的生活带来更多的便利和创新。
传感器分类及常见传感器的应用
机电一体化技术常用传感器及其原理班级:机械设计制造及其自动化姓名:学号:一、传感器的分类传感器有许多分类方法,但常用的分类方法有两种,一种是按被测物理量来分;另一种是按传感器的工作原理来分。
按被测物理量划分的传感器,常见的有:温度传感器、湿度传感器、压力传感器、位移传感器、流量传感器、液位传感器、力传感器、加速度传感器、转矩传感器等。
按工作原理可划分为:1.电学式传感器电学式传感器是非电量电测技术中应用范围较广的一种传感器,常用的有电阻式传感器、电容式传感器、电感式传感器、磁电式传感器及电涡流式传感器等。
电阻式传感器是利用变阻器将被测非电量转换为电阻信号的原理制成。
电阻式传感器一般有电位器式、触点变阻式、电阻应变片式及压阻式传感器等。
电阻式传感器主要用于位移、压力、力、应变、力矩、气流流速、液位和液体流量等参数的测量。
电容式传感器是利用改变电容的几何尺寸或改变介质的性质和含量,从而使电容量发生变化的原理制成。
主要用于压力、位移、液位、厚度、水分含量等参数的测量。
电感式传感器是利用改变磁路几何尺寸、磁体位置来改变电感或互感的电感量或压磁效应原理制成的。
主要用于位移、压力、力、振动、加速度等参数的测量。
磁电式传感器是利用电磁感应原理,把被测非电量转换成电量制成。
主要用于流量、转速和位移等参数的测量。
电涡流式传感器是利用金屑在磁场中运动切割磁力线,在金属内形成涡流的原理制成。
主要用于位移及厚度等参数的测量。
2.磁学式传感器磁学式传感器是利用铁磁物质的一些物理效应而制成的,主要用于位移、转矩等参数的测量。
3.光电式传感器光电式传感器在非电量电测及自动控制技术中占有重要的地位。
它是利用光电器件的光电效应和光学原理制成的,主要用于光强、光通量、位移、浓度等参数的测量。
4.电势型传感器电势型传感器是利用热电效应、光电效应、霍尔效应等原理制成,主要用于温度、磁通、电流、速度、光强、热辐射等参数的测量。
5.电荷传感器电荷传感器是利用压电效应原理制成的,主要用于力及加速度的测量。
传感器的分类_传感器的原理与分类_传感器的定义和分类
传感器的分类_传感器的原理与分类_传感器的定义和分类传感器的分类_传感器的原理与分类_传感器的定义与分类传感器的分类⽅法很多.主要有如下⼏种:(1)按被测量分类,可分为⼒学量、光学量、磁学量、⼏何学量、运动学量、流速与流量、液⾯、热学量、化学量、⽣物量传感器等。
这种分类有利于选择传感器、应⽤传感器(2)按照⼯作原理分类,可分为电阻式、电容式、电感式,光电式,光栅式、热电式、压电式、红外、光纤、超声波、激光传感器等。
这种分类有利于研究、设计传感器,有利于对传感器的⼯作原理进⾏阐述。
(3)按敏感材料不同分为半导体传感器、陶瓷传感器、⽯英传感器、光导纤推传感器、⾦属传感器、有机材料传感器、⾼分⼦材料传感器等。
这种分类法可分出很多种类。
(4)按照传感器输出量的性质分为摸拟传感器、数字传感器。
其中数字传感器便⼲与计算机联⽤,且坑⼲扰性较强,例如脉冲盘式⾓度数字传感器、光栅传感器等。
传感器数字化就是今后的发展趋势。
(5)按应⽤场合不同分为⼯业⽤,农⽤、军⽤、医⽤、科研⽤、环保⽤与家电⽤传感器等。
若按具体便⽤场合,还可分为汽车⽤、船舰⽤、飞机⽤、宇宙飞船⽤、防灾⽤传感器等。
(6)根据使⽤⽬的的不同,⼜可分为计测⽤、监视⽤,位查⽤、诊断⽤,控制⽤与分析⽤传感器等。
主要特点传感器的特点包括:微型化、数字化、智能化、多功能化、系统化、⽹络化,它不仅促进了传统产业的改造与更新换代,⽽且还可能建⽴新型⼯业,从⽽成为21世纪新的经济增长点。
微型化就是建⽴在微电⼦机械系统(MEMS)技术基础上的,已成功应⽤在硅器件上做成硅压⼒传感器。
主要功能常将传感器的功能与⼈类5⼤感觉器官相⽐拟:光敏传感器——视觉声敏传感器——听觉⽓敏传感器——嗅觉化学传感器——味觉压敏、温敏、传感器(图1)流体传感器——触觉敏感元件的分类:物理类,基于⼒、热、光、电、磁与声等物理效应。
化学类,基于化学反应的原理。
⽣物类,基于酶、抗体、与激素等分⼦识别功能。
传感器的类别及应用场合
传感器的类别及应用场合传感器是一种可以感知和检测各种物理量、化学量和生物量的装置,能将被测量物理量转化为电信号或其他可感知的形式,从而实现监测、控制和反馈控制等功能。
传感器广泛应用于工业、农业、环境、医疗、交通、安防等各个领域。
以下是一些常见的传感器类别及其应用场合:温度传感器:用于测量和监控物体的温度变化,常见于家用电器、空调、热水器、冷冻冷藏设备等。
湿度传感器:测量和监测空气中的湿度,广泛应用于室内湿度监测、农业、仓储物流等领域。
压力传感器:用于测量和检测液体或气体的压力变化,常见于压力容器、自动化生产设备、汽车制造等。
光敏传感器:能感知光线的强弱和频率,常见于照明控制、相机曝光控制、光控开关、安防监控等领域。
声音传感器:用于检测和测量声音的强度、频率和波形,广泛应用于语音识别、安防监控、电子产品等。
位移传感器:测量物体位置的变化,常见于机械制造、工业自动化、机器人等领域。
加速度传感器:测量物体运动的加速度和振动状态,常见于运动传感、智能手机、汽车制造等。
角度传感器:用于测量物体的角度变化,常见于航空、航天、汽车制造、机械制造等。
电流传感器:测量和监测电流的变化,广泛应用于电力系统、电动机控制、电子设备等。
气体传感器:用于检测和测量气体浓度和组分,常见于环境监测、工业安全、燃气检测等。
化学传感器:检测和测量液体或气体中的化学量,广泛应用于环境监测、化学工艺、医疗诊断等领域。
生物传感器:用于检测和测量生物体的特定特征或生物过程,常见于医疗诊断、生物研究等领域。
流量传感器:测量和监测气体或液体的流体流量,常见于供水管网、石油化工、环境监测等领域。
接近传感器:用于检测和测量物体与传感器之间的距离,常见于自动化生产、机器人、电梯控制等。
重力传感器:测量物体所受的重力加速度,广泛应用于智能手机、游戏设备、运动监测等。
震动传感器:测量和监测物体的震动状态和振动频率,常见于结构健康监测、工业设备状态检测等。
常见的25种传感器类型介绍
常见的25种传感器类型介绍“蓝⾊字”传感器的作⽤实际上是⼀种功能块,其作⽤是将来⾃外界的各种信号转换成电信号。
例如,⽇常⽣活中使⽤的话筒,⼿机中的麦克风,它将声⾳转换成电信号,然后放⼤到最佳范围。
然后,在扬声器的o / p处将电信号变成⾳频信号。
如今传感器所检测的信号近来显著地增加,因⽽其品种也极其繁多。
今天我们来看看传感器的种类吧:1.电阻式传感器电阻式传感器是将被测量,如位移、形变、⼒、加速度、湿度、温度等这些物理量转换式成电阻值这样的⼀种器件。
主要有电阻应变式、压阻式、热电阻、热敏、⽓敏、湿敏等电阻式传感器件。
2.变频功率传感器变频功率传感器通过对输⼊的电压、电流信号进⾏交流采样,再将采样值通过电缆、光纤等传输系统与数字量输⼊⼆次仪表相连,数字量输⼊⼆次仪表对电压、电流的采样值进⾏运算,可以获取电压有效值、电流有效值、基波电压、基波电流、谐波电压、谐波电流、有功功率、基波功率、谐波功率等参数。
3.称重传感器称重传感器是⼀种能够将重⼒转变为电信号的⼒→电转换装置,是电⼦衡器的⼀个关键部件。
能够实现⼒→电转换的传感器有多种,常见的有电阻应变式、电磁⼒式和电容式等。
电磁⼒式主要⽤于电⼦天平,电容式⽤于部分电⼦吊秤,⽽绝⼤多数衡器产品所⽤的还是电阻应变式称重传感器。
电阻应变式称重传感器结构较简单,准确度⾼,适⽤⾯⼴,且能够在相对⽐较差的环境下使⽤。
因此电阻应变式称重传感器在衡器中得到了⼴泛地运⽤。
4.电阻应变式传感器传感器中的电阻应变⽚具有⾦属的应变效应,即在外⼒作⽤下产⽣机械形变,从⽽使电阻值随之发⽣相应的变化。
电阻应变⽚主要有⾦属和半导体两类,⾦属应变⽚有⾦属丝式、箔式、薄膜式之分。
半导体应变⽚具有灵敏度⾼(通常是丝式、箔式的⼏⼗倍)、横向效应⼩等优点。
5.压阻式压阻式传感器是根据半导体材料的压阻效应在半导体材料的基⽚上经扩散电阻⽽制成的器件。
其基⽚可直接作为测量传感元件,扩散电阻在基⽚内接成电桥形式。
高二传感器知识点总结
高二传感器知识点总结一、传感器的基本概念传感器是一种能够感知周围环境并将感知到的信息转化为电信号或其他形式信号的器件。
传感器在工业自动化、智能家居、医疗设备、汽车工业等领域都有广泛的应用,对于提高生产效率、改善生活质量有着重要的作用。
二、传感器的分类1. 按照测量物理量分类传感器根据其测量的物理量不同可以分为温度传感器、压力传感器、光敏传感器、湿度传感器、力传感器、位移传感器等多种类型。
2. 按照传感原理分类传感器还可以按照其传感原理不同进行分类,常见的传感原理包括电阻传感器、电容传感器、电感传感器、霍尔传感器、红外线传感器、激光传感器等。
3. 按照传感器的工作原理分类按照传感器的工作原理可以分为接触式传感器和非接触式传感器两种。
接触式传感器需要直接接触被测物体,而非接触式传感器可以通过无线、光学或者声波等方式进行测量。
三、传感器的特点1. 灵敏度高传感器能够感知到微小的变化,具有高的灵敏度。
2. 可靠性高传感器具有良好的稳定性和可靠性,能够长时间稳定工作。
3. 多功能性强传感器可以感知多种物理量,具有多功能性。
4. 体积小、重量轻传感器通常体积小、重量轻,便于安装和携带。
5. 自动化程度高传感器可以实现自动检测和自动控制,有助于提高生产效率。
四、传感器的应用1. 工业自动化传感器在工业自动化领域有着广泛的应用,可以用于测量温度、压力、液位、流量等参数,实现设备的自动化控制。
2. 智能家居在智能家居领域,传感器可以应用于智能灯光控制、温湿度监测、门窗开关检测等方面,提高生活的便利性和舒适性。
3. 医疗设备在医疗设备领域,传感器可以用于心率监测、血压监测、血糖监测等,为医疗人员提供重要的生理参数。
4. 汽车工业在汽车工业中,传感器可以用于车速测量、车重检测、发动机温度检测等,提高车辆的性能和安全性。
五、传感器的未来发展趋势1. 多功能集成传感器未来发展趋势是实现多功能集成,将多种传感功能整合在一个器件中,提高传感器的智能化和多功能性。
sensor的分类
sensor的分类Sensor的分类在物联网和智能设备领域,传感器(sensor)是一种常见的装置,用于感知环境中的各种物理现象或状态,并将其转化为可供计算机处理的电信号。
根据其功能和应用领域的不同,传感器可以被分为以下几类:1. 按照测量物理量的特征分类•温度传感器:用于测量环境或物体的温度。
常见的温度传感器包括热敏电阻、热电偶和红外传感器等。
•湿度传感器:主要用于测量空气中的湿度。
电容式湿度传感器和电阻式湿度传感器是常见的湿度传感器类型。
•压力传感器:用于测量气体或液体中的压力。
压阻式传感器、电容式传感器和电感式传感器都可以用于测量压力。
•光照传感器:用于测量环境中的光照强度。
光敏电阻、光电二极管和光电二极管阵列是常见的光照传感器种类。
•加速度传感器:常用于测量物体的线性加速度。
压阻式加速度传感器和微机械加速度传感器是常见的加速度传感器类型。
•角度传感器:主要用于测量物体的旋转角度。
磁性角度传感器、电容式角度传感器和光电角度传感器是常见的角度传感器类型。
2. 按照传感器原理分类•电阻式传感器:利用材料电阻值随环境变化而变化的特性来检测物理量变化。
如热敏电阻、光敏电阻等。
•电容式传感器:利用电容值随环境变化而变化的特性来检测物理量变化。
如湿度传感器、接近传感器等。
•磁性传感器:利用磁场的变化来检测物理量变化。
如霍尔传感器、磁阻传感器等。
•光电传感器:利用光的传播和探测特性来检测物理量变化。
如光电二极管、光电开关等。
3. 按照传感器应用领域分类•环境传感器:用于检测和监测环境中的各种物理参数,如温度、湿度、光照等。
常见的应用包括智能家居、气象监测等。
•生物传感器:主要用于检测和监测生物体内的各种生理参数,如心率、体温、血压等。
常见的应用包括医疗诊断、健康监测等。
•运动传感器:用于检测和监测物体的运动状态和动作。
常见的应用包括运动追踪、姿势识别等。
•停车传感器:主要用于检测和监测汽车停车场的车位状态。
传感器的基本知识
压力传感器的基本知识2019-03-18 13:48 一、传感器的定义国家标准GB7665-87 对传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。
传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。
它是实现自动检测和自动控制的首要环节。
二、传感器的分类目前对传感器尚无一个统一的分类方法,但比较常用的有如下三种:1、按传感器的物理量分类,可分为位移、力、速度、温度、流量、气体成份等传感器2、按传感器工作原理分类,可分为电阻、电容、电感、电压、霍尔、光电、光栅、热电偶等传感器。
3、按传感器输出信号的性质分类,可分为:输出为幵关量(“1”和"0”或“幵”和“关”)的幵关型传感器;输出为模拟型传感器;输出为脉冲或代码的数字型传感器。
关于传感器的分类:1.按被测物理量分:如:力,压力,位移,温度,角度传感器等;2.按照传感器的工作原理分:如:应变式传感器、压电式传感器、压阻式传感器、电感式传感器、电容式传感器、光电式传感器等;3.按照传感器转换能量的方式分:( 1)能量转换型:如:压电式、热电偶、光电式传感器等;(2)能量控制型:如:电阻式、电感式、霍尔式等传感器以及热敏电阻、光敏电阻、湿敏电阻等;4.按照传感器工作机理分:( 1)结构型:如:电感式、电容式传感器等;( 2)物性型:如:压电式、光电式、各种半导体式传感器等;5.按照传感器输出信号的形式分:( 1)模拟式:传感器输出为模拟电压量;(2)数字式:传感器输出为数字量,如:编码器式传感器。
三、传感器的静态特性传感器的静态特性是指对静态的输入信号,传感器的输出量与输入量之间所具有相互关系。
因为这时输入量和输出量都和时间无关,所以它们之间的关系,即传感器的静态特性可用一个不含时间变量的代数方程,或以输入量作横坐标,把与其对应的输出量作纵坐标而画出的特性曲线来描述。
传感器与检测技术课后题答案
(1)开展基础理论研究(2)传感器的集成化(3)传感器的智能化(4)传感器的网络化
(5)传感器的微型化
1.6改善传感器性能的技术途径有哪些?
(1)差动技术(2)平均技术(3)补偿与修正技术(4)屏蔽、隔离与干扰抑制
(5)稳定性处理
第2章传感器的基本特性
2.1什么是传感器的静态特性?描述传感器静态特性的主要指标有哪些?
常用的线性化方法是:切线或割线拟合,过零旋转拟合,端点平移来近似,多数情况下用最小二乘法来求出拟合直线。
2.3利用压力传感器所得测试数据如下表所示,计算其非线性误差、迟滞和重复性误差。设压力为0MPa时输出为0mV ,压力为0.12MPa时输出最大且为16.50mV.
非线性误差略
正反行程最大偏差 ,所以
3.3引起电阻应变片温度误差的原因是什么?电阻应变片的温度补偿方法是什么?
一是电阻温度系数,二是线膨胀系数不同。
单丝自补偿应变片,双丝组合式自补偿应变片,补偿电路
3.4试分析差动测量电路在应变式传感器中的好处。
重复性最大偏差为 ,所以
2.4什么是传感器的动态特性?如何分析传感器的动态特性?
传感器的动态特性是指传感器对动态激励(输入)的响应(输出)特性,即输出对随时间变化的输入量的响应特性。
传感器的动态特性可以从时域和频域两个方面分别采用瞬态响应法和频率响应法来分析。瞬态响应常采用阶跃信号作为输入,频率响应常采用正弦函数作为输入。
=1s ;
2.10某传感器为一阶系统,当受阶跃函数作用时,在t=0时,输出为10mV,在t=5s时,输出为50mV;在 时,输出为100mV。试求该传感器的时间常数。
=8.5s
2.11某一质量-弹簧-阻尼系统在阶跃输入激励下,出现的超调量大约是最终稳态值的40%。如果从阶跃输入开始至超调量出现所需的时间为0.8s,试估算阻尼比和固有角频率的大小。
传感器分类(最全总结)
繁杂,分类方法也很多。
现将常采用的分类方法归纳如下:1、按输入量即测量对象的不同分:如输入量分别为:温度、压力、位移、速度、湿度、光线、气体等非电量时,则相应的传感器称为温度传感器、压力传感器、称重传感器等。
这种分类方法明确地说明了传感器的用途,给使用者提供了方便,容易根据测量对象来选择所需要的传感器,缺点是这种分类方法是将原理互不相同的传感器归为一类,很难找出每种传感器在转换机理上有何共性和差异,因此,对掌握传感器的一些基本原理及分析方法是不利的。
因为同一种型式的传感器,如压电式传感器,它可以用来测量机械振动中的加速度、速度和振幅等,也可以用来测量冲击和力,但其工作原理是一样的。
这种分类方法把种类最多的物理量分为:基本量和派生量两大类.例如力可视为基本物理量,从力可派生出压力、重量,应力、力矩等派生物理量.当我们需要测量上述物理量时,只要采用力传感器就可以了。
所以了解基本物理量和派生物理量的关系,对于系统使用何种传感器是很有帮助的。
2、按工作(检测)原理分类检测原理指传感器工作时所依据的物理效应、化学效应和生物效应等机理。
有电阻式、电容式、电感式、压电式、电磁式、磁阻式、光电式、压阻式、热电式、核辐射式、半导体式传感器等。
如根据变电阻原理,相应的有电位器式、应变片式、压阻式等传感器;如根据电磁感应原理,相应的有电感式、差压变送器、电涡流式、电磁式、磁阻式等传感器;如根据半导体有关理论,则相应的有半导体力敏、热敏、光敏、气敏、磁敏等固态传感器。
这种分类方法的优点是便于传感器专业工作者从原理与设计上作归纳性的分析研究,避免了传感器的名目过于繁多,故最常采用。
缺点是用户选用传感器时会感到不够方便。
有时也常把用途和原理结合起来命名,如电感式位移传感器,压电式力传感器等,以避免传感器名目过于繁多.3、按照传感器的结构参数在信号变换过程中是否发生变化可分为:a、物性型传感器:在实现信号的变换过程中,结构参数基本不变,而是利用某些物质材料(敏感元件)本身的物理或化学性质的变化而实现信号变换的。
传感器类型及原理
传感器类型及原理传感器是一种可以感知、检测和测量某种特定物理量或物理现象的装置或设备。
根据测量的物理量不同,传感器可分为多种类型,并采用不同的原理来实现测量和检测。
1. 温度传感器:温度传感器用于测量物体或环境的温度。
常见的温度传感器有热敏电阻、热电偶和热电阻三种类型。
热敏电阻的原理是根据材料的阻值随温度变化而变化;热电偶则是利用不同金属之间的热电效应来测量温度差异;而热电阻则是根据电阻值与温度的线性关系进行测量。
2. 湿度传感器:湿度传感器用于测量空气中的湿度,即空气中的水分含量。
常见的湿度传感器有电容式湿度传感器和电阻式湿度传感器。
电容式湿度传感器利用材料的介电常数随湿度变化而变化进行测量;电阻式湿度传感器则是利用材料的阻值随湿度变化而变化进行测量。
3. 压力传感器:压力传感器用于测量气体或液体中的压力。
常见的压力传感器有压阻式压力传感器、电容式压力传感器和电感式压力传感器。
压阻式压力传感器利用材料的电阻随受力变化而变化进行测量;电容式压力传感器则是利用介质的介电常数随压力变化而变化进行测量;电感式压力传感器则是利用感应线圈的电感随压力变化而变化进行测量。
4. 光传感器:光传感器用于测量光线的强度、频率、波长等参数。
常见的光传感器有光敏电阻、光电二极管和光电三极管三种类型。
光敏电阻的原理是利用半导体材料的电阻随光照强度变化而变化进行测量;光电二极管则是利用半导体材料的PN 结在光照下产生的电流进行测量;光电三极管则是在光电二极管的基础上增加了一个能够放大电流的晶体管。
5. 加速度传感器:加速度传感器用于测量物体的加速度和震动。
常见的加速度传感器有压阻式加速度传感器、电容式加速度传感器和压电加速度传感器三种类型。
压阻式加速度传感器利用材料的电阻随受力变化而变化进行测量;电容式加速度传感器则是利用材料的介电常数随加速度变化而变化进行测量;压电加速度传感器利用压电材料的形变产生的电荷信号进行测量。
传感器的种类及选用原则
传感器的种类及选用原则一、传感器的种类国家标准GB/T 7665-2005对传感器的定义为“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成。
”它是一种检测装置,能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的输出,满足信息的传输、存储、显示、记录和控制要求。
常用传感器的分类有以下4种:1.按传感器的物理量分类按传感器的物理量可分为位移、力、速度、温度、流量和气体成分等传感器。
2.按传感器工作原理分类按传感器工作原理可分为电阻、电容、电感、电压、霍尔、光电、光栅和热电偶等传感器。
3.按传感器输出信号的性质分类按传感器输出信号的性质可分为:输出为开关量(“1”和“0”)的开关型传感器;输出为模拟量的模拟型传感器;输出为脉冲或代码的数字型传感器。
4.按其用途分类1)压力检测。
压力传感器、触力传感器、微压传感器、压差传感器等。
2)温度检测。
热电阻温度传感器、热电偶温度传感器等。
3)液位检测。
光电式液位传感器、机械浮子液位传感器、伸缩液位传感器等。
4)电流检测。
电磁式电流传感器、霍尔磁平衡式电流传感器等。
5)速度检测。
脉冲编码速度传感器、永磁发电速度传感器等。
6)位置检测。
电位计位置传感器、编码器位置传感器等。
二、传感器选用的一般原则现代传感器在原理和结构上千差万别,如何根据具体的测量对象、测量目的以及测量环境合理地选用传感器。
1.根据测量对象与测量环境确定传感器类型即使是测量同一物理量,也有多种原理的传感器可供选用。
哪一种原理的传感器更为合适,则需要根据被测量的特点和传感器的使用条件加以考虑。
2.灵敏度的选择通常,在传感器的线性范围内,希望传感器的灵敏度越高越好。
因为只有灵敏度高时,与被测量变化对应的输出信号的值才比较大,有利于信号处理。
但要注意的是,传感器的灵敏度高,与被测量无关的外界噪声就容易混入,也会被传感器放大,影响测量精度。
因此,要求传感器本身应具有较高的信噪比,尽量减少从外界引入干扰信号。
传感器性能指标
一、测量仪表的根本性能1、准确度(1)精细度δ它明确仪表指示值的分散性,即对某一稳定的被测量,由同一个测量者,用同一个仪表,在相当短的时间内,连续重复测量屡次,其测量结果〔指示值〕的分散程度。
δ愈小,说明测量愈精细。
例如,某温度仪表的精细度δ℃℃。
精细度是随机误差大小的标志,精细度高,意味着随机误差小。
但是必须注意,精细度与准确度是两个概念,精细度高不一定准确。
(2)准确度ε它明确仪表指示值与真值的偏离程度。
例如,某流量表的准确度ε33/s。
准确度是系统误差大小的标志,准确度高,意味着系统误差小。
同样,准确度高不一定精细。
(3)准确度τ它是精细度与准确度的综合反映,准确度高,表示精细度和准确度都比拟高。
在最简单的情况下,可取两者的代数和,即τ=δ+ε。
准确度常以测量误差的相对值表示。
2、稳定性〔1〕稳定度指在规定时间内,测量条件不变的情况下,由于仪表自身随机性变动、周期性变动、漂移等引起指示值的变化。
一般以仪表精细度数值和时间长短一起表示。
例如,某仪表电压指示值每小时变化1.3V,如此稳定性可表示为1.3mV/h。
〔2〕影响量测量仪表由外界环境变化引起指示值变化的量,称为影响量。
它是由温度、湿度、气压、振动、电源电压与电源频率等一些外界环境影响所引起的。
说明影响量时,必须将影响因素与指示值偏差同时表示。
±10%。
二、传感器的分类和性能指标1、传感器的分类表1 传感器的分类表2 根本物理量与派生物理量表3 局部按工作原理分类的传感器3、传感器的性能指标(1)量程和X围量程是指测量上限和下限的代数差;X围是指仪表能按规定准确度进展测量的上限和下限的区间。
例如一个位移传感器的测量下限是-5mm,测量上限是+5mm,如此这个传感器的量程为5-〔-5〕=10mm,测量X围是-5mm~5mm。
(2)线性度传感器的输入-输出关系曲线与其选定的拟合直线之间的偏差。
(3)重复性传感器在同一工作条件下,输入量按同一方向作全量程连续屡次测量时,所得特性曲线间的一致程度。
传感器种类
传感器种类感知世界的神奇工具——传感器,是现代科技中不可或缺的一部分。
传感器以其敏锐的感知能力,广泛应用于各个领域,包括工业、医疗、汽车、环境监测等。
传感器的种类繁多,根据其工作原理和应用领域的不同,可以分为多种类型。
光学传感器光学传感器是利用光学原理和材料进行测量和控制的一类传感器。
包括光电传感器、光纤传感器、激光传感器等。
光学传感器适用于光学领域和精密测量领域,广泛应用于照明、图像识别、光学通信等方面。
声学传感器声学传感器是通过感知声波信号来进行测量和控制的传感器。
常见的声学传感器有麦克风、声纳、超声波传感器等。
声学传感器被广泛运用于音频采集、声音控制、超声波成像等领域。
温度传感器温度传感器是测量温度值的传感器,根据测量原理可以分为接触式和非接触式温度传感器。
常见的温度传感器有热电偶、热敏电阻、红外线温度传感器等。
温度传感器在工业控制、农业、医疗等领域有着重要的应用。
加速度传感器加速度传感器是用来测量物体运动加速度的传感器,常用于惯性导航、结构健康监测、智能手机陀螺仪等领域。
加速度传感器可以分为压阻式、电容式和压电式等多种类型。
湿度传感器湿度传感器是测量大气湿度水平的传感器,用来确定空气湿度,广泛应用于气象观测、温室控制、空气质量监测等领域。
常见的湿度传感器有电容式湿度传感器、电阻式湿度传感器等。
传感器种类繁多且不断发展,随着科技的进步和创新,传感器在未来将会有更广泛的应用领域和更高的精确度要求。
传感器的发展不仅推动着科技的进步,也改变着我们的生活方式,让我们可以更加便捷、智能地感知和控制周围的世界。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第5章 频率式和数字式传感器 5.2.2
1. 接触式码盘
图5-3(a)为一个四位接触式码盘。 涂黑部分为导电区, 输出为“1”,空白部分为不导电区,输出为“0”。 所有导电部 分连在一起,接高电位。 图示码盘共有四圈码道,在每圈码道 上都有一个电刷,电刷经电阻接地。 当码盘与被测物转轴一起 转动时,电刷上出现的电位对应一定的数码。若有n条码道, 则角度分辨率为
第5章 频率式和数字式传感器
第5章 频率式和数字式传感器
5.1 振弦式频率传感器 5.2 数字编码器 5.3 感应同步器 5.4 磁栅传感器 5.5 光栅传感器 5.6 容栅传感器 5.7 球同步器(球栅)
第5章 频率式和数字式传感器
5.1 振弦式频率传感器
5.1.1 振弦式频率传感器的结构原理
振弦式传感器是以被拉紧了的细弦作为敏感元件, 其结构
节距为W(标准为2 mm), 机械位移x
2 x, 其总感应电动势e与两尺的相对位移x关系为
W
e
kU
m
sin(t
)
kU
m
sin(t
2π W
x)
(5-3)
第5章 频率式和数字式传感器 2. 鉴幅型 如果给滑尺的正、余弦绕组以同频、 同相但不等幅的电
压激磁时, 则可根据感应电势的幅值来鉴别位移量,称为鉴 幅型。 正、余弦同时激磁时的总感应电势为
360 Q 2n
(5-2)
第5章 频率式和数字式传感器
图5-3 码盘式转角(a) 接触式8421码盘; (b) 接触式格雷码盘;(c) 光电式角编码器
第5章 频率式和数字式传感器 2. 光电式码盘
光电式码盘亦称脉冲式角度—数字编码器, 其结构示意图 如图5-3(c)所示。 在一个圆盘上按码道开有相等角距的缝 隙, 在码道上分为透明区和不透明区 , 分别代表“1”和 “0”, 相当于接触式码盘的导电区和不导电区。 在开缝圆盘 两边分别安装光源及光敏元件, 相当于接触式码盘的电源和 电刷。 其测量方法与接触式码盘相似。
余弦绕组单独励磁时, 定尺感应电动势变化如曲线2所示。 定
尺上产生的总的感应电动势是正弦、 余弦绕组分别励磁时产生
的感应电动势之和。
第5章 频率式和数字式传感器 图5-6 感应电动势与两相绕组相对位置的关系
第5章 频率式和数字式传感器
5.3.3 感应同步器的信号处理方式
1. 鉴相型
给滑尺的S和C绕组以等频、 等幅、 相位差为90°的电压 分别激磁,就可根据感应电势的相位来鉴别位移量。 若定尺
如图5-1所示。 当一根工作长度为l, 工作段质量为m的细弦,
一端固定,另一端施加一个初始张力F时, 弦的横向振动的固
有频率f可由下式计算: f 1 F 2 ml
(5-1)
式(5-1)说明,当m、l不变,张力F变化ΔF时,弦的自振频 率也有一个变化Δf。这里的ΔF是由压力p经膜盒产生的,测出 这个频率变化,便可得压力p。根据力与应力、应变的关系, 通过测量弦的自振频率也可以测量应力与应变。
(4) 三重型: 在一根定尺上有粗、 中、 精三种绕组, 以便构成绝对坐标系统。
第5章 频率式和数字式传感器
5.3.2 感应同步器的工作原理
感应同步器利用定尺和滑尺的两个平面印刷电路绕组的互 感随其相对位置变化的原理, 将位移转换为电信号。 感应同 步器工作时, 定尺和滑尺相互平行、 相对放置, 它们之间保 持一定的气隙(0.25±0.005)mm, 定尺固定, 滑尺可动。 当 滑尺的S和C绕组分别通过一定的正、 余弦电压激励时, 定尺 绕组中就会有感应电势产生, 其值是定、 滑尺相对位置的函 数。
第5章 频率式和数字式传感器
5.5 光 栅 传 感 器
5.5.1 光栅的类型与结构
实际应用的光栅有透射光栅和反射光栅, 按其工作原理可 分为黑白光栅(幅射光栅)和相位光栅(炫耀光栅); 按其用 途可分为直线光栅和圆光栅。
第5章 频率式和数字式传感器
图5-1 (a) 自激式; (b) 他激式; (c) 激励与输出波形
第5章 频率式和数字式传感器 5.1.2 频率测量方案
1. 激励方式 1) 振弦的间歇激励有自激式和他激式两种方式。 (1) 图5-1(a)为自激式: 在弦的两侧放一永久磁铁, 工作时, 弦中通以脉冲电流, 脉冲电流受磁场作用使弦起振。 起振后, 弦作为导体在磁场中运动, 感应出交变电动势, 通 过测量感应电动势的频率, 即为振弦的自由振动频率。
第5章 频率式和数字式传感器
如图5-6所示, 先考虑对S绕组单独励磁,
A
点的位置时, 滑尺S绕组与定尺某一绕组重合, 定尺感应电动
势值最大;
W/4距离到达B点的位置时, 定
尺感应电动势为零; 当滑尺移过W/2至C点位置时, 定尺感应
电动势为负的最大值; 当移过3W/4至D 点的位置时, 定尺感
应电动势又为零, 其感应电动势如图5-6中曲线1所示。 同理,
第5章 频率式和数字式传感器
5.3 感 应 同 步 器
5.3.1 感应同步器的结构和种类
1. 直线式感应同步器的结构
直线式感应同步器的定尺和滑尺, 都由图中的基板、 绝缘 层和绕组构成, 绕组的外面包有一层与绕组绝缘的接地屏蔽层, 如图5-4所示。 定尺安装在静止的机械设备上,与导轨母线平行; 滑尺安装在活动的机械部件上,与定尺之间保持均匀的狭小气 隙。 滑尺相对定尺而移动。
光电式码盘的优点是无触点磨损, 因而允许高转速; 每 条缝隙宽度可做得很小, 所以度和分辨率很高, 单个码盘 可做到18位,组合码盘达22位。 其缺点是结构复杂、 价格昂 贵、 光源寿命短。
第5章 频率式和数字式传感器
3. 电磁式码盘
它是在导磁体(软铁)圆盘上用腐蚀的方法做成一定的编 码图形, 把码道分为导磁区和非导磁区, 再用一个很小的 马蹄形磁芯作磁头, 上面绕两组绕组, 一次绕组用正弦电 流激励, 二次绕组产生感应电动势。 显然各磁头感应电动 势与被测物体转动的角度相对应。
第5章 频率式和数字式传感器
2. 增量式编码器
增量式编码器测量输出的是当前状态与前一状态的差值, 即增量值。 它通常是以脉冲数字形式输出, 然后用计数器计 取脉冲数。 因此它需要规定一个脉冲当量, 即一个脉冲所代 表的被测物理量的值, 同时它还要确定一个零位标志, 即测 量的起始点标志。 这样, 被测量就等于当量值乘以自零位标 志开始的计数值, 其分辨力即为脉冲当量值。 例如, 用增量 式光电编码器或光栅测量直线位移, 若当量值为0.01 mm, 计 数值为200时, 则位移为2.00 mm, 分辨力为0.01 mm。 增量式 测量的缺点是: 一旦中途断电, 将无法得知运动部件的绝对 位置。
第5章 频率式和数字式传感器 图5-4 直线式感应同步器外形
第5章 频率式和数字式传感器
直线式感应同步器定尺和滑尺的基板采用铸铁或其他钢材 做成。 这些钢材的线膨胀系数应与安装感应同步器的床身的 线膨胀系数相近, 以减小温度误差。
在定尺和滑尺上腐蚀成印制电路绕组, 绕组的材料为铜。 考虑到接长的要求和安装的方便, 将定尺绕组做成连续式, 由一连串线圈串联而成; 而将滑尺绕组做成分段式, 并分别 为正弦绕组(S绕组)和余弦绕组(C绕组), 它们在空间位 置上错开而形成90°相位差, 如图5-5所示。
(2) 窄型: 窄型直线同步感应器中定尺、 滑尺长度与 标准型相同, 仅是定尺宽度为标准型的一半。 用于安装尺寸 受限制的设备, 精度稍低于标准型。
第5章 频率式和数字式传感器
(3) 带型: 定尺的基板改用钢带, 滑尺做成滑标式, 直接套在定尺上。 安装表面不用加工。 使用时只需将钢带两 头固定即可。
第5章 频率式和数字式传感器
(2) 图5-1(b)为他激式: 在弦的两侧分别放一个激 励线圈和测量线圈。激励线圈绕在软磁铁上,测量线圈绕在永 久磁铁上, 弦上固定一个软铁块。 给激励线圈通以脉冲电流, 振弦便被吸放一次,开始起振。 振弦在振动中引起测量线圈 磁路的交替变化,线圈中便感应出交变电动势,感应电动势的 频率就等于振弦的自由振动频率。若振弦为铁磁材料,则可省 去软铁块。
对于深井井下压力的测量, 一般采用间歇振荡电路, 可 使连线最少。如图5-1(c)所示, 其输出波形是一个衰减振荡, 但频率不变,因此可通过频率测量得到被测非电量的数值。
第5章 频率式和数字式传感器
2)
如图5-2所示, 振弦接在放大器的正反馈回路中, 起着选 频元件的作用。 因振弦在其固有频率下具有尖锐的阻抗特性, 所以电路只能在振弦的固有频率上才能满足振荡条件。电阻 R1、R2和场效应管VD1组成负反馈电路, 自动控制起振条件 和振幅, 而由R4、R5及VD2和C组成的电路控制场效应管的栅 极电压, 自动稳定输出信号幅度, 并为起振创造条件。 当电 路不振荡时,输出信号为零, 场效应管处于偏压状态,漏源 间电阻较小,负反馈较弱,有利于起振。 振荡时,输出信号 经VD2整流,电容C滤波,R4、R5分压,得到一个与输出信号 幅度成正比的负电压,使场效应管漏源间电阻增大, 负反馈 加强。 输出信号越大,负反馈越强, 更能达到稳定输出信号 幅度的作用。
e kUm sin t cos( ) (5-4)
式中, φ为给定电角度;位移 x ; 感应电势的幅值为
2π
kωUmcos(φ-θ),即幅值与x
第5章 频率式和数字式传感器
5.4 磁 栅 传 感 器
5.4.1 磁栅的结构
磁栅传感器由磁栅(简称磁尺)、 磁头和检测电路组成。 磁尺是用非导磁性材料做尺基, 在尺基的上面镀一层均匀的磁 性薄膜, 然后录上一定波长的磁信号而制成的。 磁信号的波 长(周期)又称节距, 用W表示。 磁信号的极性是首尾相接, 在N、 N重叠处为正的最强, 在S、S重叠处为负的最强。 磁尺 的断面和磁化图形如图5-7所示。