函数发生器实验报告

合集下载

【精品】电路实验报告 函数信号发生器

【精品】电路实验报告 函数信号发生器

【精品】电路实验报告函数信号发生器一、实验目的1.理解函数信号发生器的基本原理;2.掌握函数信号发生器的使用方法;二、实验仪器函数信号发生器、万用表、示波器、电阻箱等。

三、实验原理函数信号发生器是一种可以产生各种不同波形的电子仪器,它由信号源、调制放大器、波形出口、控制电路等几个部件组成。

在使用中可以通过调节控制电路中的各个参数来控制信号波形的频率、幅度、相位等参数。

四、实验内容1.使用函数信号发生器产生各种不同波形的信号,并记录下所产生的波形、频率、幅度等参数。

2.利用万用表对所产生的波形进行测量,并记录下相关参数。

3.使用示波器观察所产生的波形,并记录下所观察到的波形形态,判断所产生的波形是否符合要求。

4.使用电阻箱对信号幅度进行调整,调整后再次进行相应的测量、观察和记录。

五、实验步骤1.将函数信号发生器插入电源插座,并开启电源开关。

5.对信号幅度进行调整,如需调整信号幅度,可以使用电阻箱对信号幅度进行调整。

六、实验数据及处理下表列出了实验中所产生的部分波形及其相关参数。

| 波形形态 | 频率 | 幅度 ||----------------|---------|-----------|| 正弦波 | 1KHz | 1Vpp || 正弦波 | 5KHz | 500mVpp|| 方波 | 2KHz | 2Vpp || 三角波 | 1KHz | 1Vpp |七、实验结果分析根据实验数据分析,可以得出以下结论:2.在产生不同波形的信号时,需调节控制电路中的各个参数,如频率、幅度、相位等,才能产生相应的波形。

3.在调试波形时应注意信号幅度,如波形幅度过大或过小,都会影响到实验的结果。

八、实验注意事项1.实验中要注意安全,避免触电、短路等事故的发生。

3.在实验中应认真记录实验数据,为进一步分析和处理提供有力的数据支持。

电子技术课程设计实验报告--函数信号发生器

电子技术课程设计实验报告--函数信号发生器

电子技术课程设计实验报告--函数信号发生器函数信号发生器一般用于产生基本的常用信号,如正弦波、三角波、方波等,用于生物、医学、通信、音频和模拟电路调试和测量等。

本文介绍了函数信号发生器的结构和特性,以及利用函数信号发生器实验的操作步骤,对这一实验作了详细介绍。

一、结构和特点函数信号发生器是一款多用途的信号发生器,它是由数字电子芯片和模拟元件组成的,具有输出波形数量多、偏差小、功耗低等特点,它的性能特性好,能产生不同波形信号,灵活多变,具有稳定可靠的输出。

二、实验步骤1、打开万用表,将探头连接输出接口,将万用表切换到 AC 档,设置 200mV 档,同时将频率表中频率调节到 10kHz;2、连接信号发生器,打开电源开关,调节波形类型选择按钮使之处于正弦波,将频率表中频率调节到 10kHz;3、调节占空比调节按钮,可将其调节到饱和状态,观察波形并绘图;4、将频率表中频率再次调节到 10kHz,占空比按钮设置为50%,在衰减平调中调节输出信号,观察波形并绘图;5、按此类推,可实现其他波形的输出,可视性观察波形变化,以此可以了解整体系统性质。

三、实验结果实验中,我用函数信号发生器分别调节了正弦波和相应占空比的三角波和方波,用万用表观察波形的变化,为验证系统的性能,我用万用表测量各调试波形的参数,如电压大小、频率和占空比,结果如下:1、测试的正弦波的频率为:10kHz;占空比为:50%;电压大小为:150mV;在本次实验中,我们通过调节函数信号发生器,成功地验证函数信号发生器能够输出基本的常用信号,如正弦波、三角波、方波等,并通过万用表对其调节参数进行测试,得出的结果与理论设计的基本一致,可以表明函数信号发生器的稳定性、可靠性良好,这证实了函数信号发生器的功能设计正确性及其使用的可行性。

函数发生器实验报告

函数发生器实验报告

函数发生器实验报告3.元件参数C1:C1为滤波电容,其取值视8脚的波形而定,主要用来消除8脚的的寄生交流电压,若含高次谐波成分较多,则C1一般为几十皮法至0.1uF。

在这里我们选用0.1uF。

C2 、RA、RA、Rp2:电阻RA和RB及电容C2构成调频回路。

因为输出频率为100Hz-1KHz,1KHz-10KHz,所以取C2=4700pF,Rp2=1 KΩ,RA=RB=4.7KΩ。

RL:方波输出端为集电极开路形式,一般在正电源与9脚之间接一电阻,其值通常取RL=15KΩ。

Rp1及R1:电阻R1及电位器Rp1用来确定8脚的直流电位V8,通常取V8≥2/3VCC。

这里取R1=20KΩ, Rp1=10KΩ。

Rp3及Rp4:Rp3及Rp4用来用来改善正弦波的正负向失真及调节正弦波及三角波的幅度。

这里取Rp3=Rp4=100KΩ。

板子的制作1.对各元器件进行编辑参照所给出的电路原理图,选择所需要的元器件,将它们放置在图纸上;再连接线路。

2.焊接在电子制作过程中,焊接工作是必不可少的。

它不但要求将元件固定在电路板上,而且要求焊点必须牢固、圆滑,所以焊接技术的好坏直接影响到电子制作的成功与否。

焊接方法:元件必须清洁和镀锡,电子元件保存在空气中,由于氧化的作用,元件引脚上附有一层氧化膜,同时还有其它污垢,焊接前可用小刀刮掉氧化膜,并且立即涂上一层焊锡(俗称搪锡),然后再进行焊接。

经过上述处理后元件容易焊牢,不容易出现虚焊现象。

焊接的温度和焊接的时间:焊接时应使电烙铁的温度高于焊锡的温度,但也不能太高,以烙铁头接触松香刚刚冒烟为好。

焊接时间太短,焊点的温度过低,焊点融化不充分,焊点粗糙容易造成虚焊,反之焊接时间过长,焊锡容易流淌,并且容易使元件过热损坏元件。

焊接点的上锡数量:焊接点上的焊锡数量不能太少,太少了焊接不牢,机械强度也太差。

而太多容易造成外观一大堆而内部未接通。

焊锡应该刚好将焊接点上的元件引脚全部浸没,轮廓隐约可见为好。

电路实验报告 函数信号发生器

电路实验报告 函数信号发生器

电子电路综合设计实验实验一函数信号发生器的设计与调测班级: 2009211108**: ***学号: ********小班序号: 26课题名称函数信号发生器的设计与实现一、摘要函数信号发生器是一种为电子测量提供符合一定要求的电信号的仪器, 可产生不同波形、频率和幅度的信号。

在测试、研究或调整电子电路及设备时, 为测定电路的一些电参量,用信号发生器来模拟在实际工作中使用的待测设备的激励信号。

信号发生器可按照产生信号产生的波形特征来划分:音频信号源、函数信号源、功率函数发生器、脉冲信号源、任意函数发生器、任意波形发生器。

信号发生器用途广泛, 有多种测试和校准功能。

本实验设计的函数信号发生器可产生方波、三角波和正弦波这三种波形, 其输出频率可在1KHz至10KHz范围内连续可调。

三种波形的幅值及方波的占空比均在一定范围内可调。

报告将详细介绍设计思路和与所选用元件的参数的设计依据和方法。

二、关键词函数信号发生器迟滞电压比较器积分器差分放大电路波形变换三、设计任务要求:1、(1)基本要求:2、设计一个可输出正弦波、三角波和方波信号的函数信号发生器。

3、输出频率能在1-10KHZ范围内连续可调, 无明显是真;4、方波输出电压Uopp≥12V, 上升, 下降沿小于10us, 占空比可调范围30%-70%;5、三角波输出电压Uopp≥8V;6、正弦波输出电压Uopp≥1V;设计该电源的电源电路(不要求实际搭建), 用PROTEL软件绘制完整的电路原理图(SCH)。

(2)提高要求:1.三种输出波形的峰峰值Uopp均在1V-10V范围内连续可调。

2.三种输出波形的输出阻抗小于100Ω。

3.用PROTEL软件绘制完整的印制电路板图(PCB)。

(3)探究环节:1.显示出当前输入信号的种类、大小和频率(实验演示或详细设计方案)。

2.提供其他函数信号发生器的设计方案(通过仿真或实验结果加以证明)。

四、设计思路和总体结构框图(1)原理电路的选择及总体思路:根据本实验的要求, 用两大模块实现发生器的设计。

北邮-函数信号发生器

北邮-函数信号发生器

北京邮电大学电子电路综合实验报告课题名称:函数信号发生器的设计学院:信息与通信工程学院班级:姓名:学号:班内序号:2015年4月26日课题名称:函数信号发生器的设计摘要:方波-三角波产生电路采用了运放组成的积分电路,可得到比较理想的方波和三角波。

根据所需振荡频率的高低和对方波前后沿陡度的要求以及对所需方波、三角波的幅度可以确定合适的运放以及稳压管的型号、所需电阻的大小和电容的值。

三角波-正弦波的转换是利用差分放大器来完成的,选取合适的滑动变阻器来调节三角波的幅度以及电路的对称性。

同时利用隔直电容、滤波电容来改善输出正弦波的波形。

最后利用反馈电阻Ro大小变化来控制方波和三角波的幅值,利用旁路电容C4来控制正弦波的幅值,将R2换成顶调电位器和二极管来控制方波占空比。

关键词:方波三角波正弦波频率可调幅值可调一、设计任务要求1. 基本要求:(1)输出频率能在1-10KHz范围内连续可调,无明显失真;(2)方波输出电压Uopp=12V(误差小于20%),上升、下降沿小于10us;(3)三角波Uopp=8V(误差小于20%);(4)正弦波Uopp错误!未找到引用源。

1V,无明显失真。

2. 提高要求:(1)将输出方波改为占空比可调的矩形波,占空比可调范围为30%—70%;(2)三种输出波形的峰峰值Uopp均可在1V-10V内连续可调。

二、设计思路实验设计函数发生器实现方波、三角波和正弦波的输出,其可采用电路图有多种。

此次实验采用迟滞比较器生成方波,RC积分器生成三角波,差分放大器生成正弦波。

除保证良好波形输出外,还须实现频率、幅度、占空比的调节,即须在基本电路基础上进行改良。

由比较器与积分器组成的方波三角波发生器,比较器输出的方波信号经积分器生成三角波,再经由差分放大器生成正弦波信号。

其中方波三角波生成电路为基本电路,添加电位器调节使其频率幅度改变;正弦波生成电路采用差分放大器,由于差分放大电路具有工作点稳定、输入阻抗高、抗干扰能力较强等优点,特别是作为直流放大器时,可以有效地抑制零点漂移,因此可将频率很低的三角波变换成正弦波。

函数发生器课程设计实验报告

函数发生器课程设计实验报告

函数发生器课程设计实验报告实验名称:函数发生器课程设计实验目的:1.掌握函数发生器的基本原理和特性;2.熟悉常见函数发生器的操作方法;3.学会使用函数发生器进行实际测量与实验。

实验原理:函数发生器是一种可以产生不同频率和波形的电子仪器,常用于科学研究、电子工程实验和生产测试等。

函数发生器可以通过调节工作模式、频率、幅度和偏移量等参数来产生不同的电信号。

常见的波形包括正弦波、方波、锯齿波和三角波等。

实验器材与仪器:1.函数发生器2.示波器3.电源实验步骤:1.连接函数发生器、示波器和电源,确保电路连接正确并稳定。

2.打开函数发生器,并将频率设置为100Hz,幅度设置为5V。

3.在示波器上观察输出波形,并记录实际测量值。

4.将函数发生器的频率和幅度分别调节为500Hz和10V,重复步骤3。

5.将函数发生器的工作模式切换为方波,重复步骤3。

6.将函数发生器的工作模式切换为锯齿波,重复步骤3。

7.将函数发生器的工作模式切换为三角波,重复步骤3。

实验结果与数据分析:经过实验测量得到的数据如下:1.正弦波频率为100Hz,峰峰值为4.88V。

2.正弦波频率为500Hz,峰峰值为9.79V。

3.方波频率为100Hz,峰峰值为4.88V。

4.锯齿波频率为100Hz,峰峰值为4.88V。

5.三角波频率为100Hz,峰峰值为4.88V。

由实验数据可知,函数发生器能够按照设定参数的要求产生不同频率和波形的电信号。

通过调节频率和幅度等参数,可以控制输出信号的特性,满足实际需求。

同时,通过示波器对输出信号进行测量和观察,可以验证函数发生器的工作状态和输出波形的准确性。

实验总结:本次实验通过对函数发生器的使用,熟悉了其基本原理和操作方法,并能够进行实际测量与实验。

函数发生器作为一种常用的仪器设备,广泛应用于各个领域的科学研究和工程实践中。

掌握函数发生器的使用方法对于今后的学习和工作具有重要的意义。

在实验过程中,需要注意正确连接电路和设备,并确保信号的稳定性和准确性。

函数信号发生器实验报告.

函数信号发生器实验报告.

函数信号发生器实验报告.一、实验目的本实验的主要目的是学习如何使用函数信号发生器和使用示波器观察信号波形,了解不同的信号波形及其特性,并探究不同信号波形在电路中的应用。

二、实验原理函数信号发生器是一种可以产生各种不同频率、不同幅度、不同波形的信号的仪器。

在实验中,我们将使用 Agilent 33220A 函数信号发生器,它可以产生多种基本波形,如正弦波、方波、三角波、锯齿波等。

函数信号发生器具有很高的稳定性和精确性,可根据需要输出不同范围的信号。

示波器是一种常用的检测和观测电路中信号波形的仪器,被广泛应用于电子学、通信、计算机和电力等行业。

在实验中,我们将使用 Tektronix TDS2002C 示波器,它可以显示多通道、多频道、高频率的波形,并提供多种触发方式,可用于观测电路中的信号波形。

三、实验过程1. 准备工作(1)开启函数信号发生器和示波器,并进行必要的预热。

等待信号稳定后,将函数信号发生器和示波器的输出连接线分别连接到实验电路对应的输入端口上。

(2)将实验电路按照实验要求搭建、联接好。

(3)调节示波器的电压、触发和标尺等参数,以方便观测信号波形。

(4)在函数信号发生器上选择需要输出的信号波形,设置频率、幅度等参数,并调节输出电平,以符合实验要求。

2. 实验操作本实验中我们将根据实验要求进行多种不同信号波形的输出和观测,具体实验步骤如下:(1)正弦波信号发生器实验a) 在函数信号发生器上选择正弦波信号波形,并设置频率为 5kHz,幅度为 5V。

b) 将输出信号连接到电路输入端口上,并将示波器调节到 AC 界面,调节触发方式为边沿触发,并设置触发电压符合需要观测的信号波形。

c) 观测信号波形,并记录波形主要特征。

4. 结果分析通过观测示波器中显示的正弦波形,我们可以看出正弦波具有周期性好、连续性强、波形圆润等特点。

因此,正弦波信号被广泛应用于各种电子电路中,如音频放大、翻译、计算机图像显示、调制解调等方面。

实验1 示波器函数信号发生器的原理及使用(实验报告)

实验1 示波器函数信号发生器的原理及使用(实验报告)

实验1 示波器、函数信号发生器的原理及使用【实验目的】1. 了解示波器、函数信号发生器的工作原理。

2. 学习调节函数信号发生器产生波形及正确设置参数的方法。

3. 学习用示波器观察测量信号波形的电压参数和时间参数。

4. 通过李萨如图形学习用示波器观察两个信号之间的关系。

【实验仪器】1. 示波器DS5042型,1台。

2. 函数信号发生器DG1022型,1台。

3. 电缆线(BNC型插头),2条。

【实验内容与步骤】1. 利用示波器观测信号的电压和频率(1)参照“实验1 示波器函数信号发生器的原理及使用(实验指导书)”相关内容,产生如图1-1所示的正余弦波形,显示在示波屏上。

图1-1 函数信号发生器生成的正、余弦信号的波形(2)用示波器对图1-1中所示的正余弦波形进行测量并填写下表表1-1 正余弦信号的电压和时间参数的测量电压参数(V)时间参数峰峰值最大值最小值频率(Hz)周期(ms)正弦信号3sin(200πt)余弦信号3cos(200πt)2. 用示波器观测函数信号发生器产生的正余弦信号的李萨如图形(1)参照“实验1 示波器函数信号发生器的原理及使用(实验指导书)”相关内容,产生如图1-2所示的正余弦波形的李萨如图形,调节并正确显示在示波屏上。

图1-2 正弦信号3sin(200πt)和余弦信号3cos(200πt)的李萨如图形(3)实验指导教师检查并签字。

指导教师签字:3. 观测相同幅值、相同频率、不同相位差条件下的两正弦信号的李萨如图形(1)在函数信号发生器CH1通道产生的正弦信号3sin(200πt)保持不变的情况下,调节函数信号发生器CH2通道产生正弦信号3sin(200πt+45º),观测并记录两正弦信号的李萨如图形于图1-3中。

(2)在函数信号发生器CH1通道产生的正弦信号3sin(200πt)保持不变的情况下,调节函数信号发生器CH2通道产生正弦信号3sin(200πt+135º),观测并记录两正弦信号的李萨如图形于图1-3中。

函数发生器实验报告

函数发生器实验报告

函数发生器实验报告函数发生器实验报告引言:函数发生器是一种用于产生各种波形信号的实验仪器。

它在科学研究、电子工程、通信技术等领域中有着广泛的应用。

本次实验旨在通过搭建函数发生器电路并进行一系列实验,探究函数发生器的工作原理和性能特点。

实验目的:1. 了解函数发生器的基本原理和组成结构;2. 掌握函数发生器的使用方法和参数调节技巧;3. 研究函数发生器在不同频率、幅度和波形下的输出特性。

实验仪器和材料:1. 函数发生器主机;2. 示波器;3. 电缆和连接线;4. 电阻、电容等元件。

实验步骤:1. 搭建函数发生器电路:根据实验要求,连接函数发生器主机和示波器,并确保电路连接正确稳定。

2. 调节函数发生器参数:通过函数发生器主机上的旋钮和按钮,调节频率、幅度、波形等参数,观察示波器上的波形变化。

3. 测量输出信号的频率和幅度:利用示波器上的测量功能,测量函数发生器输出信号的频率和幅度,并记录数据。

4. 观察不同波形下的输出特性:通过调节函数发生器主机上的波形选择按钮,观察并记录正弦波、方波、三角波等不同波形下的输出特性。

5. 研究函数发生器的调制功能:尝试使用函数发生器的调制功能,如调幅、调频、调相等,观察输出信号的变化,并记录实验结果。

实验结果与分析:1. 频率和幅度调节:通过调节函数发生器主机上的旋钮,我们成功地改变了输出信号的频率和幅度。

频率的变化范围从几赫兹到数百千赫兹,幅度的变化范围从几毫伏到数十伏特。

这些调节功能使得函数发生器在实际应用中具有较大的灵活性。

2. 波形输出特性:我们观察到函数发生器能够产生多种波形,如正弦波、方波、三角波等。

通过调节函数发生器主机上的波形选择按钮,我们可以轻松地切换不同的波形。

这为不同实验需求提供了便利。

3. 调制功能实验:通过使用函数发生器的调制功能,我们实现了信号的调幅、调频、调相等操作。

这些操作使得输出信号具有了更多的变化特性,扩展了函数发生器的应用范围。

函数发生器课程设计实验报告

函数发生器课程设计实验报告

函数发生器课程设计实验报告函数生成器课程设计实验报告引言函数生成器是计算机科学中常用的一种工具,它可以帮助我们生成特定规律的函数。

在本次课程设计实验中,我们使用函数生成器来实现一些常见的函数生成任务。

本报告将详细介绍实验的目标、方法、结果和分析。

一、实验目标本次实验的目标是设计和实现一个函数生成器,能够生成满足特定条件的函数。

具体来说,我们将实现以下几个功能:1. 生成等差数列函数;2. 生成等比数列函数;3. 生成斐波那契数列函数;4. 生成阶乘函数;5. 生成幂函数。

二、实验方法为了实现上述目标,我们采用了以下步骤:1. 设计函数生成器的接口,包括输入参数和返回值类型;2. 实现等差数列函数生成器,通过输入起始值、公差和长度来生成等差数列函数;3. 实现等比数列函数生成器,通过输入起始值、公比和长度来生成等比数列函数;4. 实现斐波那契数列函数生成器,通过输入长度来生成斐波那契数列函数;5. 实现阶乘函数生成器,通过输入数字来生成阶乘函数;6. 实现幂函数生成器,通过输入底数和指数来生成幂函数。

三、实验结果经过实验,我们成功实现了上述功能,并得到了以下结果:1. 等差数列函数生成器可以根据输入的起始值、公差和长度生成相应的等差数列函数;2. 等比数列函数生成器可以根据输入的起始值、公比和长度生成相应的等比数列函数;3. 斐波那契数列函数生成器可以根据输入的长度生成相应的斐波那契数列函数;4. 阶乘函数生成器可以根据输入的数字生成相应的阶乘函数;5. 幂函数生成器可以根据输入的底数和指数生成相应的幂函数。

四、实验分析通过本次实验,我们可以得出以下几点分析:1. 函数生成器是一种非常有用的工具,可以帮助我们快速生成特定规律的函数;2. 等差数列函数生成器和等比数列函数生成器可以帮助我们生成常见的数列函数,对数学问题的解决有很大帮助;3. 斐波那契数列函数生成器可以帮助我们生成斐波那契数列,这在算法设计和动态规划等领域有广泛应用;4. 阶乘函数生成器可以帮助我们生成阶乘函数,这在数学计算和组合问题等领域有重要作用;5. 幂函数生成器可以帮助我们生成幂函数,这在数学建模和函数拟合等领域有实际应用。

函数信号发生器实验报告

函数信号发生器实验报告

北京邮电大学电子电路实验报告实验一:函数信号发生器的设计与调测院系:信息与通信工程学院班级:2012211112姓名:卢跃凯班内序号:13学号:2012210344指导教师:廖老师课题名称:函数信号发生器的设计与调试摘要实验电路主要由两部分组成,方波—三角波发生电路和三角波—正弦波变换电路。

方波由运算放大器加稳压管产生,后经积分电路形成三角波,最后通过差分放大电路,利用其传输特性曲线的非线性实现三角波——正弦波的转换。

实验电路的频率,幅度可通过电位器调节,增加两个二极管,可以改变方波占空比,完成提高要求。

关键词方波三角波正弦波幅频可调设计任务要求1、基本要求:a)设计制作一个可输出正弦波、三角波和方波信号的函数信号发生器。

1)输出频率能在1-10KHz范围内连续可调,无明显失真;2)方波输出电压Uopp=12V,上升、下降沿小于10us;三角波Uopp=8V;3)正弦波Uopp>1V。

b)设计该电路的电源电路(不要求实际搭建),用PROTEL软件绘制完整的电路原理图(SCH)2、提高要求:a)三种输出波形的峰峰值Uopp均可在1V-10V范围内连续可调。

b)要求方波占空比在30%——70%连续可调。

设计思路,总体结构框图1、设计思路:用运算放大器加反馈构成电压比较器来产生方波;方波经积分电路形成三角波;三角波输入到差分放大电路,利用其传输特性曲线的非线性输出正弦波,完成要求。

2、原理框图:3、系统的组成框图:分块电路和总体电路的设计:(1)方波-三角波产生电路:方波输出幅度由稳压管的稳压值决定,限制在±(UZ+UD)之间。

考虑到基本要求中的,方波的峰峰值为12V,故选用稳压值为6V的稳压管2DW232。

方波经积分得到三角波,幅度为,幅值由R1和Rf的比值及稳压管的稳压值决定,因为基本要求中三角波的峰峰值为8V,因此,R1与Rf的比值为2:3。

在实际电路中,我采用的R1为20kΩ,Rf为30kΩ。

函数信号发生器实验报告

函数信号发生器实验报告

函数信号发生器实验报告函数信号发生器实验报告引言函数信号发生器是一种广泛应用于电子实验室中的仪器设备,用于产生各种形式的电信号。

本实验旨在通过对函数信号发生器的使用和实验验证,进一步了解信号发生器的原理和应用。

一、实验目的本实验的主要目的是:1. 熟悉函数信号发生器的基本操作;2. 掌握函数信号发生器产生不同形式信号的方法;3. 通过实验验证信号发生器的输出特性。

二、实验原理函数信号发生器是一种能够产生各种形式信号的仪器,其基本原理是通过内部电路将直流电压转换为不同形式的交流信号。

常见的信号形式包括正弦波、方波、三角波等。

三、实验步骤1. 打开函数信号发生器的电源,并将输出连接到示波器的输入端。

2. 调节函数信号发生器的频率、幅度和偏置等参数,观察示波器上的波形变化。

3. 逐步调节函数信号发生器的参数,产生不同形式的信号,并记录下相应的参数设置和观察结果。

4. 将函数信号发生器的输出连接到其他电路中,观察信号在不同电路中的响应情况。

四、实验结果与分析在实验过程中,我们通过调节函数信号发生器的频率、幅度和偏置等参数,成功产生了正弦波、方波和三角波等不同形式的信号。

通过示波器观察到的波形,我们可以看出不同形式的信号在频率和振幅上的差异。

在进一步的实验中,我们将函数信号发生器的输出连接到其他电路中,例如放大电路和滤波电路。

观察到信号在不同电路中的响应情况,我们可以了解到信号发生器在实际应用中的作用和效果。

五、实验总结通过本次实验,我们对函数信号发生器的基本操作和原理有了更深入的了解。

我们学会了如何通过调节函数信号发生器的参数来产生不同形式的信号,并通过连接到其他电路中观察信号的响应情况。

在实验过程中,我们也遇到了一些问题和困难,例如在调节参数时需要注意避免过大的幅度和频率,以免对电路和仪器造成损坏。

此外,我们还需要注意信号发生器的精度和稳定性,以保证实验结果的准确性。

通过本次实验,我们进一步认识到函数信号发生器在电子实验中的重要性和广泛应用。

函数信号发生器实验报告

函数信号发生器实验报告

函数发生器设计(1)一、设计任务和指标要求1、可调频率范围为10Hz~100Hz 。

2、可输出三角波、方波、正弦波。

、可输出三角波、方波、正弦波。

3、三角波、方波、正弦波信号输出的峰-峰值0~5V 可调。

可调。

4、三角波、方波、正弦波信号输出的直流电平-3V~3V 可调。

可调。

5、输出阻抗约600Ω。

二、电路构成及元件参数的选择 1、振荡器、振荡器由于指标要求的振荡频率不高,由于指标要求的振荡频率不高,对波形非线性无特殊要求。

对波形非线性无特殊要求。

对波形非线性无特殊要求。

采用图采用图1所示的电路。

所示的电路。

同时同时产生三角波和方波。

产生三角波和方波。

图1 振荡电路振荡电路振荡电路根据输出口的信号幅度要求,可得最大的信号幅度输出为:根据输出口的信号幅度要求,可得最大的信号幅度输出为:V M =5/2+3=5.5V 采用对称双电源工作(±V CC ),电源电压选择为:,电源电压选择为: V CC ≥V M +2V=7.5V 取V CC =9V选取3.3V 的稳压二极管,工作电流取5mA ,则:,则: V Z =V DZ +V D =3.3+0.7=4V 为方波输出的峰值电压。

为方波输出的峰值电压。

OM Z CC Z 3Z Z V -V V -1.5V -V 9-1.5-4R ==700ΩI I 5»=()1AR4R2R1R3DZ DZRW2AR5R7CVozVosR6Vi+取680680ΩΩ。

取8.2K 8.2KΩΩ。

R 1=R 2/3=8.2/1.5=5.47(K Ω)取5.1K Ω。

三角波输出的电压峰值为:三角波输出的电压峰值为:V OSM =V Z R 1/R 2=4×5.1/8.2=2.489(V ) R 4=R 1∥R 2=3.14 K Ω取3K Ω。

Z Z V 4RW=8K 0.1~0.2I 0.15==W ´()()取10K Ω。

R 6=RW/9=10/9=1.11(K Ω)取1K Ω。

电子技术实验报告

电子技术实验报告

实验一常用电子仪器的使用一、实验目的(1)通过阅读仪器说明书(使用手册),了解仪器的主要技术性能指标,初步掌握常用电子仪器的使用方法。

(2)掌握函数信号发生器和交流电压表(毫伏表)的使用方法。

(3)掌握双踪示波器的基本操作方法,掌握使用示波器测量电信号的基本参数:幅度(有效值、峰值或峰峰值)、周期(频率)和相位的方法。

二、实验设备及材料函数信号发生器(DF1641B1型)、双踪示波器(MOS-620/640型)、交流毫伏表(MVT171或D-171型)、直流稳压电源、万用表等。

三、实验原理(一)函数信号发生器函数信号发生器是在电子电路实验中最常用的电子仪器之一,用来产生各种波形的信号(正弦波、三角波、方波等)。

函数信号发生器所产生的各种信号的参数(如电压幅度、频率等),一般都可以通过仪器面板上设置的开关和旋钮加以调节。

本实验中介绍的DF1641B1型函数信号发生器,是一多功能函数信号发生器。

它可以输出正弦波、三角波和方波,频率范围为0.3 Hz ~3 MHz。

其最大输出电压幅度>20V 峰峰值(对正弦波,最大输出有效值>7 V),可作为一般振荡器给放大器提供信号。

该函数信号发生器与其他设备配合,还可以用作扫频信号发生器,这里仅介绍作为振荡器的使用方法。

1、DF1641B1型函数发生器面板中各旋钮介绍。

如图1-1所示。

图1-1 DF1641B1型函数发生器面板图1—电源开关;2—频率范围选择(向上);3—频率范围选择(向下);4—波形选择开关;5—直流偏置开关;6—直流偏置调节;7—扫频方式选择;8—扫描速率;9—输出衰减选择;10—电压输出;11—TTL输出;12—输出幅度微调;13—计数器输入;14—内接/外测选择;15—扫频宽度;16—对称度调节;17—输出信号幅度显示;18—对称度控制开关;19—频率微调;20—频率显示5..2、操作步骤(1)打开电源开关○1后,按下波形选择开关○4以选择信号类型,例如,正弦波。

北邮模电实验报告函数发生器

北邮模电实验报告函数发生器

北京邮电大学课程头验报告课杲程名称:电子测量与电子电路设计题目:函数信号发生器院系: 电子工程学院电子科学与技术专业班级2013211209学生姓名:刘博闻学号2013211049指导教师:咼惠平摘要函数信号发生器广泛地应用于各大院校和科研场所。

随着科技的进步,社会的发展,单一的函数信号发生器已经不能满足人们的需求,本实验设计的正是多种波形发生器。

本实验由两个电路组成,方波—三角波发生电路和三角波—正弦波变换电路。

方波一三角波发生电路由自激的单线比较器产生方波,通过RC积分电路产生三角波,在经过差分电路可实现三角波—正弦波的变换。

本电路振荡频率和幅度用电位器调节,输出方波幅度的大小由稳压管的稳压值决定;而正弦波幅度和电路的对称性也分别由两个电位器调节,以实现良好的正弦波输出图形。

它的制作成本不高,电路简单,使用方便,有效的节省了人力,物力资源,具有实际的应用价值。

关键词:三角波方波正弦波幅度调节频率调节设计要求 (1)1 •前言 (1)2. 方波、三角波、正弦波发生器方案 (1)2.1原理框图 (1)2.2系统组成框图 (2)3. 各组成部分的工作原理 (2)3.1方波-三角波产生电路的工作原理 (2)3.2三角波-正弦波转换电路的工作原理 (4)3.3总电路图 (6)4. 用Mutisim电路仿真 (7)4.1方波一三角波电路的仿真 (7)4.2方波一正弦波电路的仿真 (8)5电路的实验结果及分析 (9)5.1方波波形产生电路的实验结果 (9)5.2方波---三角波转换电路的实验结果 (10)5.3正弦波发生电路的实验结果 (11)5.4实验结果分析 (12)6. 实验总结 (12)7. 仪器仪表清单 (13)7.1所用仪器及元器件: (13)7.2仪器清单表 (13)8. 参考文献 (16)9. 致谢 (166)方波一三角波一正弦波函数信号发生器设计要求1. 设计制作一个可输出方波、三角波、正弦波信号的函数信号发生器。

函数信号发生器实验报告

函数信号发生器实验报告

青海师范大学课程设计报告课程设计名称:函数信号发生器专业班级:电子信息工程学生姓名:***学号:***********同组人员:郭延森安福成涂秋雨指导教师:***课程设计时间:2015年12月目录1 设计任务、要求以及文献综述2 原理综述和设计方案2.1 系统设计思路2.2设计方案及可行性2.3 系统功能块的划分2.4 总体工作过程3 单元电路设计3.1 安装前的准备工作3.2 万用表的安装过程4 结束语1设计任务、要求在现代电子学的各个领域,常常需要高精度且频率可方便调节的信号发生器。

能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路称为函数信号发生器,又名信号源或振荡器。

函数信号发生器与正弦波信号发生器相比具有体积小、功耗少、价格低等优点, 最主要的是函数信号发生器的输出波形较为灵活, 有三种波形(方波、三角波和正弦波)可供选择,在生产实践,电路实验,设备检测和科技领域中有着广泛的应用。

该函数信号发生器可产生三种波形,方波,三角波,正弦波,具有数字显示输出信号频率和电压幅值功能,其产生频率信号范围1HZ~100kHZ,输出信号幅值范围0~10V,信号产生电路由比较器,积分器,差动放大器构成,频率计部分由时基电路、计数显示电路等构成。

幅值输出部分由峰值检测电路和芯片7107等构成。

技术要求:1. 信号频率范围 1Hz~100kHz;2. 输出波形应有:方波、三角波、正弦波;3. 输出信号幅值范围0~10V;4. 具有数字显示输出信号频率和电压幅值功能。

2原理叙述和设计方案2.1 系统设计思路函数信号发生器根据用途不同,有产生三种或多种波形的函数发生器,其电路中使用的器件可以是分离器件(如低频信号函数发生器S101全部采用晶体管),也可以是集成器件(如单片集成电路函数信号发生器ICL8038)。

产生方波、正弦波、三角波的方案也有多种,如先产生方波,再根据积分器转换为三角波,最后通过差分放大电路转换为正弦波。

函数信号发生器的实验报告

函数信号发生器的实验报告

函数信号发生器的实验报告函数信号发生器的实验报告一、引言函数信号发生器是电子实验中常用的仪器,它可以产生各种不同形式的信号,如正弦波、方波、三角波等。

本次实验旨在通过实际操作和测量,了解函数信号发生器的工作原理和应用。

二、实验目的1. 理解函数信号发生器的基本原理;2. 掌握函数信号发生器的使用方法;3. 学会使用函数信号发生器产生不同形式的信号;4. 熟悉函数信号发生器的操作界面和参数设置。

三、实验器材和仪器1. 函数信号发生器;2. 示波器;3. 电缆和连接线。

四、实验步骤1. 连接函数信号发生器和示波器。

将函数信号发生器的输出端口与示波器的输入端口通过电缆连接。

2. 打开函数信号发生器,调整参数。

根据实验要求,设置信号的频率、幅度和波形类型。

3. 使用示波器观察信号波形。

通过示波器的屏幕,我们可以清晰地看到函数信号发生器产生的信号波形。

4. 测量信号参数。

利用示波器的测量功能,我们可以准确地测量信号的频率、幅度和相位等参数。

五、实验结果与分析1. 正弦波信号产生:设置函数信号发生器的频率为1000Hz,幅度为5V,观察示波器上的波形。

通过测量,得到信号的频率为1000Hz,幅度为5V,与设置值相符。

2. 方波信号产生:设置函数信号发生器的频率为2000Hz,幅度为3V,观察示波器上的波形。

通过测量,得到信号的频率为2000Hz,幅度为3V,与设置值相符。

3. 三角波信号产生:设置函数信号发生器的频率为500Hz,幅度为4V,观察示波器上的波形。

通过测量,得到信号的频率为500Hz,幅度为4V,与设置值相符。

根据实验结果,我们可以看到函数信号发生器能够准确地产生不同形式的信号,并且信号参数与设置值相符。

这验证了函数信号发生器的工作原理和稳定性。

六、实验总结通过本次实验,我们深入了解了函数信号发生器的工作原理和使用方法。

函数信号发生器是电子实验中不可或缺的仪器,它能够产生各种形式的信号,为实验提供了便利。

函数发生器实验原理

函数发生器实验原理

函数发生器实验原理
函数发生器是利用计算机编程语言,通过一系列的计算步骤,生成特定函数的工具。

它主要包括输入、计算和输出三个步骤。

首先,输入是函数发生器的第一步。

用户需要指定要生成的函数的特征和参数。

这些参数可以包括函数类型(线性函数、指数函数、对数函数等)、函数的定义域和值域范围以及其他特定要求。

接下来,计算是函数发生器的核心步骤。

根据用户输入的函数特征和参数,程序会利用数学算法和计算机编程语言的功能,进行相应的计算。

例如,对于线性函数,程序可以根据输入的斜率和截距,计算出函数的表达式和相应的数据点。

最后,输出是函数发生器的最后一步。

生成的函数可以以多种形式输出,例如以图形、表格或文字的形式展示。

用户可以根据自己的需要选择合适的输出方式,并进行调整和编辑。

总的来说,函数发生器利用计算机编程语言的功能和数学算法,根据用户输入的函数特征和参数,生成相应的函数。

它可以帮助用户快速、准确地生成各种类型的函数,并提供灵活的输出方式,方便用户进一步分析和应用生成的函数。

函数发生器课程设计实验报告

函数发生器课程设计实验报告

函数发生器课程设计实验报告一、引言函数发生器是计算机科学中的一个重要概念,它可以生成一个序列,而不需要事先计算出所有的值。

本实验旨在通过设计一个函数发生器,来加深对函数发生器的理解,并探索其在实际应用中的作用。

二、实验目的1. 理解函数发生器的基本概念和原理;2. 学会使用Python语言实现一个简单的函数发生器;3. 探索函数发生器在实际应用中的可能性。

三、实验步骤与结果1. 设计函数发生器的算法在设计函数发生器的算法时,我们需要考虑以下几个方面:a. 序列的起始值和结束值:确定函数发生器生成序列的起始值和结束值;b. 序列的递增或递减方式:确定序列是按照递增还是递减的方式生成;c. 序列的步长:确定每一步的增量或减量大小;d. 序列的生成方式:确定序列是按照固定步长生成还是按照自定义函数生成。

2. 编写函数发生器的代码根据设计的算法,我们可以使用Python语言来实现一个简单的函数发生器。

以下是一个示例代码:```pythondef sequence_generator(start, end, step):sequence = []if start < end:while start <= end:sequence.append(start)start += stepelse:while start >= end:sequence.append(start)start -= stepreturn sequence# 测试代码start_value = 1end_value = 10step_size = 2result = sequence_generator(start_value, end_value, step_size) print(result)```3. 运行函数发生器的代码编写好函数发生器的代码后,我们可以运行代码来生成序列。

根据上述示例代码,我们可以得到从1开始,以步长为2递增的序列[1, 3, 5, 7, 9]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电子线路测试实验报告
院系:电子信息与通信学院
班级:电信1401班
姓名:xxx
学号:XXXXXX
指导老师:
实验三:方波—三角波函数发生器设计
一、实验目的
1.掌握方波-三角波函数发生器的设计方法与测试技术。

二、实验仪器
COSS5020示波器、DF1731SD 直流电源、 NE5532型运算放大器(如右图)
三、实验原理
1、下图是产生方波—三角波的电路图,图中虚线右边是积分器,左边是同相输入的迟滞比
较器。

若a 点断开,比较器的反相端接基准电压,即V —=0,同相端接输入电压v ia ;比较器输出v o1 的高电平V OH 接近于正电源电压+V CC ,低电平V OL 接近于负电源电压—V EE 。

通常将比较器的输出电压v o1 从一个电平跳变到另一个电平时相应输入电压的
大小称为门限电压。

将比较器翻转时对应的条件V + =V —=0代入得到
o11
32
ia V RP R R V +-=。

设V o1=V OH =+V CC ,代入得到一个较小值,即比较器翻转的
下门限电平CC 1
32
T V RP R R V +-=
-,设V o1=V OL =—V CC ,代入得到一个较大值,即
比较器翻转的上门限电平CC 1
32
T V RP R R V +=
+。

综上可知比较器的门限宽度为CC 1
32
T T T 2 V RP R R V V V +⋅=-=∆-+。

(b )比较器的电压传输特性(c )方波—三角波
a 点断开后组成反相积分器,它的输入信号为方波v o1 ,输出电压等于电容两端 的电压,即:
当积分器输入为方波时,输出时一个下降速率与上升速率相等的三角波,其形状如图(c )所示。

a 点闭合,形成闭环电路,则自动产生方波—三角波。

输出V o1为高电平+V CC ,比较器门限电压为V T —。

这时积分器开始反向积分,三角波V o2线性下降。

当下降到V T —时,比较器翻转,输出V o1由高电平跳到低电平,门限电压为V T+。

这时积分器又开始正向积分,V o2线性增加。

如此反复,就可自动产生方波-三角波。

如图(c )所示,输出三角波的峰峰值就是比较器的门限宽度,即
电路的振荡周期为1
32242)(4RP R C RP R R T ++=
,频率为21
3224)(41R RP R C RP R f +⋅+=
我们可以得到以下结论
①方波的幅度由+V CC 和 –V EE 决定;
②三角波幅度可由R p1进行调节,但会影响频率;
③调节R p2,可调节频率,且不会影响三角波幅度,可用R p2实现频率微调,用C 2改变频率范围。

四、设计任务
2
o2pp T CC
31
2RP R V V V R =∆=
+
)
()( )(d )(10C2224CC
0C22
41o 2o2
1
0t v t C RP R V t v t RP R v C v t t ++±=++-=⎰
频率范围: 100 Hz~1 kHz ,1 kHz~10 kHz ;
输出电压: 方波V p-p ≤24V ,三角波V p-p=6V ;
波形特性:方波t r <30μs(1kHz ,最大输出时)三角波γ△<2%
五、参数设计
选用运放NE5532。

元件参数计算如下: 由CC 1
32o2m V RP R R V +=
得:
4
1
1232132===+CC m o V V RP R R
取R 2=10k Ω,R 3=20k Ω,RP 1=47k Ω 则平衡电阻
Ω≈+=k 10)//(1321RP R R R
由输出频率2
1
3
224)(41R RP R C RP R f +⋅+=得f
C R RP RP R 221
3244R +=+
当kHz
f Hz 1100≤≤时,取C 2=0.1uF ,R 4=5.1k Ω.RP 2=100k Ω 当kHz
f kHz 101
≤≤时,取C 2=0.01uF 以实现频率波段的转换,R 4
及RP 2的取值不变,取平衡电阻R 5=10k Ω。

六、电路的安装与调试
由于比较器A 1与积分器A 2组成正反馈闭环电路,同时输出方波与三角波,故这两个单元电路需同时安装。

需要注意的是在安装电位器R p1与R p2之前,先将其调整到设计值,否则电路可能会不起振。

如果电路接线正确,则在接通电源后,A 1的输出V o1为方波,A 2的输出V o2为三角波。

在频率较低时,微调RP1,使三角波输出幅度满足设计指标要求。

再调节R p2,则输出频率连续可变。

七、主要技术指标的测量
当f=100Hz 时的








当f=1kHz时的波形如下图所示:
换挡后,当f=1kHz时的波形如下图所示:
当f=10kHz时的波形如下图所示:
八、误差分析
当C2等于0.1uf时:
1、RP 1=19.6k Ω, RP 2=94.6kΩ, f 1实=99.97Hz
3114222112019.699.24()4(5.194.6)0.110R RP k k f Hz R RP C R k k uf k
++=
⋅=⨯=++
相对误差:1-f 99.2-99.97
|
|100%||100%0.77%f 99.97
f r =⨯=⨯= 2 RP 1=19.6k Ω, RP 2=15.4k Ω, f 2实=499.20Hz
31
24222112019.6482.94()4(5.115.4)0.110R RP k k f Hz R RP C R k k uf k
++=
⋅=⨯=++
相对误差:2-f 482.9-499.2
|
|100%||100% 3.26%f 499.2
f r =⨯=⨯= 3 RP 1=19.6k Ω, RP 2=4.5k Ω, f 3实=1.001kHz
31
34222112019.6 1.0314()4(5.1 4.5)0.110R RP k k f kHz R RP C R k k uf k
++=
⋅=⨯=++
相对误差:3-f 1.001-1.031
||100%||100% 2.9%f 1.031
f r =⨯=⨯= 当C 2等于0.01uf 时:
1、RP 1=19.6k Ω, RP 2=96.2k Ω, f 4实=1.001kHz
31
44222112019.6977.34()4(5.196.2)0.0110R RP k k f Hz R RP C R k k uf k
++=
⋅=⨯=++
相对误差:4-f 1001-977.3
|
|100%||100% 2.43%f 977.3
f r =⨯=⨯= 2、RP 1=19.6k Ω, RP 2=14.0k Ω, f 5实=5.014kHz
31
54222112019.6 5.1834()4(5.114.0)0.0110R RP k k f kHz
R RP C R k k uf k
++=
⋅=⨯=++ 相对误差:5-f 5.014-5.183
|
|100%||100% 3.26%f 5.183
f r =⨯=⨯=
3、RP 1=19.6k Ω, RP 2=4.4k Ω, f 5实=10.21kHz
3164222112019.610.424()4(5.1 4.4)0.0110R RP k k f kHz R RP C R k k uf k
++=
⋅=⨯=++
相对误差:6-f 10.21-10.42
|
|100%||100% 2.02%f 10.42
f r =⨯=⨯=
分析:方波V PP 为22.2V<24V 满足要求。

三角波为5.94V γ=1%<2%满足要求。

方波上升时间均小于30us,满足要求。

由上分析可知:在误差允许范围内,各项指标符合设计要求
八、实验小结
(1)通过这次实验,我了解了方波—三角波的产生电路,对函数发生器的原理有了一定的了解。

(2)这次试验让我对信号发生器的内部原理有了一定的了解,这对于今后使用函数发生器以及处理实验中遇到的一些问题都有很大的帮助。

(3)实验前要做好充分的预习和准备工作,掌握实验原理,理论知识的掌握非常重要,只有掌握了实验原理才有可能解决试验中遇到的问题,实验时要保持冷静,遇到问题细心分析,逐步排查找出问题所在。

(4)面包板的布局要合理,这对实验的能否成功和波形的效果都有很大的影响。

相关文档
最新文档