八年级数学3.6.圆锥的侧面积知识点分析(含答案)

合集下载

辅导讲义:弧长和扇形的面积、圆锥的侧面积和全面积

辅导讲义:弧长和扇形的面积、圆锥的侧面积和全面积

辅导:弧长和扇形的面积、圆锥的侧面积和全面积一、弧长和扇形的面积:『活动一』因为360°的圆心角所对弧长就是圆周长C =2πR ,所以1°的圆心角所对的弧长是 .这样,在半径为R 的圆中,n °的圆心角所对的弧长l = . 『活动二』类比弧长的计算公式可知:在半径为R 的圆中,圆心角为n °的扇形面积的计算公式为:S = . 『活动三』扇形面积的另一个计算公式比较扇形面积计算公式与弧长计算公式,可以发现:可以将扇形面积的计算公式:S =360nπR 2化为S =180R n ·21R ,从面可得扇形面积的另一计算公式:S = . 二、圆锥的侧面积和全面积:1.圆锥的基本概念: 的线段SA 、SA 1……叫做圆锥的母线,的线段叫做圆锥的高.2.圆锥中的各元素与它的侧面展开图——扇形的各元素之间的关系:将圆锥的侧面沿母线l 剪开,展开成平面图形,可以得到一个扇形,设圆锥的底面半径为r ,这个扇形的半径等于 ,扇形弧长等于 . 3.圆锥侧面积计算公式圆锥的母线即为扇形的半径,而圆锥底面的周长是扇形的弧长, 这样,S 圆锥侧=S 扇形=21·2πr · l = πrl 4.圆锥全面积计算公式S 圆锥全=S 圆锥侧+S 圆锥底面= πr l +πr 2=πr (l +r )三、例题讲解:例1、(2011•德州,11,4分)母线长为2,底面圆的半径为1的圆锥的侧面积为 . 例2、(2011年山东省东营市,21,9分)如图,已知点A 、B 、C 、D 均在已知圆上,AD ∥BC ,BD 平分∠ABC ,∠BAD =120°,四边形ABCD 的周长为15.A1(1)求此圆的半径;(2)求图中阴影部分的面积.例3、(2010广东,14,6分)如图,在平面直角坐标系中,点P 的坐标为(-4,0),⊙P 的半径为2,将⊙P 沿x 轴向右平移4个单位长度得⊙P 1. (1)画出⊙P 1,并直接判断⊙P 与⊙P 1的位置关系;(2)设⊙P 1与x 轴正半轴,y 轴正半轴的交点分别为A ,B ,求劣弧AB 与弦AB 围成的图形的面积(结果保留π).y x-3 O 12312 3 -3-2 -1-1 -2 -4 -5 -6A BCDEF(第3题)O四、同步练习:1、(2012北海,11,3分)如图,在边长为1的正方形组成的网格中,△ABC 的顶点都在格点上,将△ABC 绕点C 顺时针旋转60°,则顶点A 所经过的路径长为: ( )A .10πB .10C .10πD .π2、(2012北海,12,3分)如图,等边△ABC 的周长为6π,半径是1的⊙O 从与AB 相切于点D 的位置出发,在△ABC 外部按顺时针方向沿三角形滚动,又回到与AB 相切于点D 的位置,则⊙O 自转了:( )A .2周B .3周C .4周D .5周3、(2012湖北咸宁,7,3分)如图,⊙O 的外切正六边形ABCDEF 的边长为2,则图中阴影部分的面积为( ).A .-3π2B .-32π3C .-32π2D .-322π34、(2012四川内江,8,3分)如图2,AB 是⊙O 的直径,弦CD ⊥AB ,∠CDB =30°,CD =23,则阴影部分图形的面积为( )A .4πB .2πC .πD .2π35、(2012·湖南省张家界市·14题·3分)已知圆锥的底面直径和母线长都是10cm ,则圆锥的侧面积为________.6、(2012·哈尔滨,题号16分值 3)一个圆锥的母线长为4,侧面积为8π,则这个圆锥的底面圆的半径是 .ABD CO图2ABC 第1题图A OD第2题图 第9题第11题7、(2012江苏省淮安市,17,3分)若圆锥的底面半径为2cm ,母线长为5cm ,则此圆锥的侧面积为 cm 2.8、(2012四川达州,11,3分)已知圆锥的底面半径为4,母线长为6,则它的侧面积是 .(不取近似值)9、(2012年广西玉林市,16,3)如图,矩形OABC 内接于扇形MON ,当CN =CO 时,∠NMB10、(2012广安中考试题第15题,3分)如图6,Rt △ABC 的边BC 位于直线l 上,AC =3,∠ACB =90o,∠A =30o,若△RtABC 由现在的位置向右无滑动地翻转,当点A 第3次落在直线上l 时,点A 所经过的路线的长为________________(结果用含л的式子表示).11、(2011•丹东,14,3分)如图,将半径为3cm 的圆形纸片剪掉三分之一,余下部分围成一个圆锥的侧面,则这个圆锥的高是 .12、(2012贵州贵阳,23,10分)如图,在⊙O 中,直径AB =2,CA 切⊙O 于A ,BC 交⊙O 于D ,若∠C =45°,则(1)BD 的长是 ;(5分) (2)求阴影部分的面积. (5分)第12题图AC13、(2012浙江省义乌市,20,8分)如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,点E 在⊙O 外,∠EAC =∠D =60°. (1)求∠ABC 的度数; (2)求证:AE 是⊙O 的切线; (3)当BC =4时,求劣弧AC 的长.14、(2012年吉林省,第23题、7分.)如图,在扇形OAB 中,∠AOB =90°,半径OA =6.将扇形OAB 沿过点B 的直线折叠.点O 恰好落在弧AB 上点D 处,折痕交OA 于点C ,求整个阴影部分的周长和面积.O BCDE15、(2011甘肃兰州,25,9分)如图,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A、B、C.(1)请完成如下操作:①以点O为原点、竖直和水平方向所在的直线为坐标轴、网格边长为单位长,建立平面直角坐标系;②用直尺和圆规画出该圆弧所在圆的圆心D的位置(不用写作法,保留作图痕迹),并连结AD、CD.(2)请在(1)的基础上,完成下列问题:①写出点的坐标:C、D;②⊙D的半径= (结果保留根号);③若扇形ADC是一个圆锥的侧面展开图,则该圆锥的底面面积为(结果保留π);④若E(7,0),试判断直线EC与⊙D的位置关系并说明你的理由.参考答案例1、考点:圆锥的计算。

3.6圆锥的侧面积和全面积_学案

3.6圆锥的侧面积和全面积_学案

3.6《圆锥的侧面积和全面积》学案教学目标:1.通过实验知道圆锥的侧面积展开图是扇形,知道圆锥各部分的名称,2.能够计算圆锥的侧面积和全面积。

重点难点:圆锥的侧面展开图,计算圆锥的侧面积和全面积。

研讨过程:一、认识圆锥的侧面展开图和各个部分的名称把一个课前准备好的圆锥模型沿着母线剪开,让学生观察圆锥的侧面展开图,学生容易看出,圆锥的侧面展开图是一个扇形。

如图,我们把圆锥底面圆周上的任意一点与圆锥顶点的连线叫做圆锥的母线,连结顶点与底面圆心的线段叫做圆锥的高,如图中a 是圆锥的母,而h 就是圆锥的高。

问题:圆锥的母线有几条?二、圆锥的侧面积和全面积问题;1、沿着圆锥的母线,把一个圆锥的侧面展开,得到一个扇形,这个扇形的弧长与底面的周长有什么关系?2、圆锥侧面展开图是扇形,这个扇形的半径与圆锥中的哪一条线段相等?圆锥的底面周长就是其侧面展开图扇形的 ,圆锥的母线就是其侧面展开图扇形的 。

圆锥的侧面积就是弧长为圆锥底面 、半径为圆锥的一条 的长的扇形面积。

圆锥的全面积就是它的 与它的 的和。

三、例题讲解例1、一个圆锥形零件的母线长为a ,底面的半径为r ,求这个圆锥形零件的侧面积和全面积. 解:例2、已知:在Rt ABC 中,90C ∠=︒,13AB cm =,5BC cm =, 求以AB 为轴旋转一周所得到的几何体的全面积。

解:四、课堂练习:一、选择题1 .圆锥的母线长5cm,底面半径长3cm,那么它的侧面展开图的圆心角是( )A.180°B.200°C.225°D.216°2 .已知圆锥的底面半径为3,母线长为4,则它的侧面积是 ( ) A. π24 B. π12 C.π6 D. 123 .若圆锥的底面半径为3cm,母线为6cm,则圆锥的侧面积等于A.236π cmB.227π cmC.218π cmD.29π cm图23.3.6D C BA图23.3.64 .把一个半径为4cm 的半圆围成一个圆锥的侧面,则这个圆锥的高为( ) A.3cm; B.32cm; C.34cm; D.4cm二、解答题5.已知圆锥的底面直径为4cm,其母线长为3cm,求它的侧面积.6.如图,扇形纸片的半径为15cm,圆心角为120°,用它做成一个圆锥模型的侧面.求这个圆锥的高和侧面积(不计接缝处的损耗,结果保留根号).五、小结本节课我们认识了圆锥的侧面展开图,学会计算圆锥的侧面积和全面积,在认识圆锥的侧面积展开图时,应知道圆锥的底面周长就是其侧面展开图扇形的弧长。

浙教版数学九年级上册3.6《圆锥的侧面积和全面积》说课稿

浙教版数学九年级上册3.6《圆锥的侧面积和全面积》说课稿

浙教版数学九年级上册3.6《圆锥的侧面积和全面积》说课稿一. 教材分析《圆锥的侧面积和全面积》是浙教版数学九年级上册第三章第六节的内容。

本节内容是在学生已经掌握了圆锥的基本概念和性质的基础上进行教学的,旨在让学生通过探究圆锥的侧面积和全面积的计算方法,进一步理解和掌握圆锥的相关知识,提高学生的空间想象能力和数学思维能力。

二. 学情分析九年级的学生已经具备了一定的空间几何知识,对圆锥的基本概念和性质有了初步的了解。

但学生在计算圆锥的侧面积和全面积时,可能会对一些细节问题理解不透,因此在教学过程中,教师需要耐心引导学生,让学生充分理解圆锥侧面积和全面积的计算方法。

三. 说教学目标1.知识与技能目标:使学生理解和掌握圆锥的侧面积和全面积的计算方法,提高学生的空间想象能力和数学思维能力。

2.过程与方法目标:通过学生的自主探究和合作交流,培养学生解决问题的能力和团队协作精神。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的耐心和自信心。

四. 说教学重难点1.教学重点:圆锥侧面积和全面积的计算方法。

2.教学难点:对圆锥侧面积和全面积计算方法的深入理解。

五. 说教学方法与手段在本节课的教学过程中,我将采用讲授法、自主探究法、合作交流法和直观演示法等教学方法。

同时,利用多媒体课件和教具进行教学,以提高学生的学习兴趣和效果。

六. 说教学过程1.导入新课:通过复习圆锥的基本概念和性质,引导学生进入圆锥的侧面积和全面积的学习。

2.自主探究:让学生通过自主学习,理解圆锥侧面积和全面积的计算方法。

3.合作交流:学生分组讨论,分享各自的学习心得和解决问题的方法。

4.教师讲解:针对学生的讨论,教师进行讲解,解答学生的疑问。

5.巩固练习:让学生进行相关的练习,巩固所学知识。

6.课堂小结:教师引导学生总结本节课所学内容,加深学生对知识的理解。

七. 说板书设计板书设计如下:1.圆锥的侧面积= πrl2.圆锥的全面积= πr^2 + πrl八. 说教学评价本节课的教学评价主要通过学生的课堂表现、练习完成情况和课后作业来进行。

中考数学圆锥专题含答案

中考数学圆锥专题含答案

圆锥1、圆有关的计算: (1)弧长计算公式:180Rn l π=(R 为圆的半径,n 是弧所对的圆心角的度数,l 为弧长) (2)扇形面积:2360R n S π=扇形或lR S 21=扇形(R 为半径,n 是扇形所对的圆心角的度数,l 为扇形的弧长) (3) 圆锥:扇形到圆锥三个不变量侧面积计算公式:圆锥的母线即为扇形的半径,而圆锥底面的周长是扇形的弧长,这样,S 圆锥侧=S 扇形=21·2πr · l = πrl其中l 是圆锥的母线长,r 是圆锥的地面半径。

圆锥全面积计算公式S 圆锥全=S 圆锥侧+S 圆锥底面= πr l +πr 2=πr (l +r ) 圆锥的高:22r R h -=算弧长:【经典例题1】如图,在▱ABCD 中,AB 为⊙O 的直径,⊙O 与DC 相切于点E ,与AD 相交于点F ,已知AB =12,∠C =60°,则FE ︵的长为__π__.(可改面积)【解析】如图连接OE 、OF ,∵CD是⊙O的切线,∴OE⊥CD,∴∠OED=90∘,∵四边形ABCD是平行四边形,∠C=60∘,∴∠A=∠C=60∘,∠D=120∘,∵OA=OF,∴∠A=∠OFA=60∘,∴∠DFO=120∘,∴∠EOF=360∘−∠D−∠DFO−∠DEO=30∘,E^F的长=30⋅π⋅6180=π.故答案为:π.练习1-1(2020吉林)如图,在四边形ABCD中,AB=CB,AD=CD,我们把这种两组邻边分别相等的四边形叫做“筝形”.筝形ABCD的对角线AC,BD相交于点O.以点B为圆心,BO长为半径画弧,分别交AB,BC于点E,F.若∠ABD=∠ACD=30°,AD=1,则的长为(结果保留π).【解析】在△ABD与△CBD中,,∴△ABD≌△CBD(SSS),∴∠ABD =∠CBD =30°,∠ADB =∠CDB ,CD =AD =1, ∴∠ABC =60°,∵AD =CD ,∠ADB =∠CDB , ∴BD ⊥AC ,且AO =CO , ∴∠ACB =90°﹣30°=60°, ∴∠BCD =∠ACB +∠ACD =90°, 在Rt △BCD 中,∵∠CBD =30°, ∴BD =2CD =2, 在Rt △COD 中,∵∠ACD =30°, ∴OD =CD =, ∴OB =BD ﹣OD =2﹣=,∴的长为:=,故答案为.练习1-2(2020·南充)如图,AB 是O 的直径,CD 是弦,点,C D 在直径AB 的两侧.若::2:7:11AOC AOD DOB ∠∠∠=,4CD =,则CD 的长为( )A .2πB .4π C.2D【解析】D 运动路径长度【经典例题2】(2020四川南充)如图,四个三角形拼成一个风车图形,若AB =2,当风车转动90°,点B 运动路径的长度为( )ODCBAA .πB .2πC .3πD .4π 【解析】由题意可得:点B 运动路径的长度为=90×π×2180=π,故选:A .练习2-1如图,将边长为1 cm 的等边三角形ABC 沿直线l 向右翻动(不滑动),点B 从开始到结束,所经过路径的长度为( )A.23πcm B. (2+32π)cm C. 34πcm D. 3cm 【解析】∵△ABC 是等边三角形, ∴∠ACB=60∘, ∴∠AC(A)=120∘,点B 两次翻动划过的弧长相等,则点B 经过的路径长=2×1801120⨯π=34π.故选C.练习2-2如图,把Rt △ABC 的斜边AB 放在直线L 上,按顺时针方向在L 上转动两次使它转到△DEF 的位置,设BC=3,AC=1,则点A 运动到点D 的位置时,点A 经过的路线长是多少?点A经过的路线与直线L 所围成的面积是多少?【解析】∵BC=3,AC=1,∴tan ∠ABC=BC AC =31=33,AB=2)3(122=+, ∴∠ABC=30∘, ∴∠CBF=150∘, ∴点A 经过的路线长=1802150⨯π+180190⨯π=π613. ∴点A 经过的路线与直线L 所围成的面积=3604150⨯π+360190⨯π=π1223.练习2-3如图所示,将边长为8cm 的正方形ABCD 沿直线l 向右翻动(不滑动),当正方形连续翻动三次后,正方形ABCD 的中心经过的路线长是__________cm .lABCD(A)(D)…【解析】正方形的对角线长是82cm ,翻动一次中心经过的路线是半径是对角线的一半为半径,圆心角是90度的弧。

浙教版数学九年级上册3.6《圆锥的侧面积和全面积》教案

浙教版数学九年级上册3.6《圆锥的侧面积和全面积》教案

浙教版数学九年级上册3.6《圆锥的侧面积和全面积》教案一. 教材分析《圆锥的侧面积和全面积》是浙教版数学九年级上册第三章第六节的内容。

本节主要让学生掌握圆锥的侧面积和全面积的计算方法,理解圆锥侧面积和全面积的由来,为后续学习圆锥体积和表面积的应用打下基础。

二. 学情分析学生在学习本节内容前,已经掌握了圆的基本概念、性质和运算,具备一定的空间想象能力。

但部分学生对圆锥的侧面展开图的理解和应用还不够深入,因此,在教学过程中需要注重引导学生通过实物操作、直观演示等方式,加深对圆锥侧面积和全面积的理解。

三. 教学目标1.理解圆锥的侧面积和全面积的概念,掌握计算方法。

2.能够运用圆锥的侧面积和全面积解决实际问题。

3.培养学生的空间想象能力、动手操作能力和解决问题的能力。

四. 教学重难点1.圆锥的侧面展开图与圆锥侧面积的关系。

2.圆锥全面积的计算方法。

五. 教学方法1.实物操作法:通过让学生观察、触摸实物,加深对圆锥侧面积和全面积的理解。

2.直观演示法:利用多媒体课件,展示圆锥的侧面展开图,引导学生直观地理解圆锥侧面积和全面积的计算方法。

3.问题驱动法:设计一系列问题,引导学生思考、探讨,激发学生的学习兴趣。

4.合作学习法:学生进行小组讨论,培养学生的团队协作能力。

六. 教学准备1.准备一些圆锥实物,让学生观察、触摸。

2.制作多媒体课件,展示圆锥的侧面展开图。

3.设计相关问题,准备小组讨论的话题。

七. 教学过程1.导入(5分钟)利用多媒体课件展示各种圆锥实物,引导学生观察、触摸,让学生直观地感受圆锥的形状。

然后提问:“你们认为圆锥的侧面积和全面积应该如何计算呢?”2.呈现(10分钟)讲解圆锥的侧面积和全面积的概念,引导学生理解圆锥侧面积和全面积的由来。

通过多媒体课件展示圆锥的侧面展开图,让学生直观地了解圆锥侧面积和全面积的计算方法。

3.操练(10分钟)设计一些练习题,让学生运用圆锥的侧面积和全面积的计算方法进行解答。

初中数学案例圆锥的侧面积”实验教学案例分析

初中数学案例圆锥的侧面积”实验教学案例分析

我会制作,所以我已学会——“圆锥的侧面积”实验教学案例分析背景分析:素质教育的核心是培养学生的创新意识和实践能力,而主渠道是课堂教学。

数学教育兴起了以建构主义理论为指导的“建构性学习与教学模式”的课堂教学改革与探索活动,建构性学习与教学过程真正建立在学生自主活动、主动探索、合作交流、亲身体验的基础上来建构新知识,教师不是把新知识传授给学生,而是让学生去主动建构,真正体现了“以学生的发展为本”的宗旨。

“圆锥的侧面积”这节课在对课堂教学中怎样促进他们的主体精神、创新意识和实践能力做了努力探索。

下面是“圆锥的侧面积”这节课的教学片段和反思。

片段1 :上课了,教师头戴圣诞老人的帽子,表情夸张的进入教室。

“这是圣诞老人的帽子,漂亮吗?叫什么几何体?”学生很兴奋,课堂气氛一下活跃起来,“漂亮,是圆锥”。

同学们想知道如何做吗?你能用手上的长方形白纸折叠出圆锥形帽子吗?试一试!教师的鼓励让学生跃跃欲试,但是结果学生却发现用长方形的纸片制作不出圆锥的帽子。

点评:初步尝试、体验,产生悬念,造成认知冲突,激发学生的求知欲,让学生急于向知道如何正确制作,创设情境、提出问题,有利于增强学生“数学即生活、生活离不开数学”的认识,有利于培养学生“用数学的眼光去认识所生活的环境与社会”并学会“数学的提出、分析和解决问题的意识和能力。

片段2:教师提问:让我们先看看它的展开图的形状。

哪同学上来帮忙一下?学生上来把老师手上的圣诞老人帽子剪开,然而粘贴在黑板上,发现圆锥侧面展开图是扇形。

引导学生观察、分析、比较出展开扇形与圆锥的关系。

作几次演示,让学生有意识地观察。

怎样才能制作这种圆锥形的帽子?思考一下。

学生尝试后发现任意的扇形可以制作出扇形,但是做出的跟已给的圆锥只是形状的相似,很跟要制作这种圆锥形帽子需要知道扇形的半径和扇形的圆心角,关键是需要知道扇形的圆心角。

但是扇形的半径和扇形的圆心角跟已给的圆锥中的那些数据有关?学生猜测可能跟圆锥的母线、半径或者高有关。

中考数学复习---《有理数之绝对值》知识点总结与专项练习题(含答案)

中考数学复习---《有理数之绝对值》知识点总结与专项练习题(含答案)

中考数学复习---《有理数之绝对值》知识点总结与专项练习题(含答案) 知识点总结1. 圆锥的母线与高:连接圆锥顶点和底面圆周上任意一点的线段叫做圆锥的母线.连接顶点与底面圆心的线段叫圆锥的高。

2. 圆锥的侧面展开图:圆锥的侧面展开图是一个扇形。

扇形的半径等于原来圆锥的母线长,扇形的弧长等于原来圆锥的底面圆的周长。

3. 圆锥的侧面积计算:lr r l S ππ=⋅⋅=221侧(l 是圆锥的母线长,r 是圆锥底面圆半径) 4. 圆锥的全面积:2r lr S ππ+=全(l 是圆锥的母线长,r 是圆锥底面圆半径)5. 圆锥的体积:高底面积圆锥⨯⨯=31V6. 圆锥的母线长,高,底面圆半径的关系:构成勾股定理。

练习题1、(2022•东营)用一张半圆形铁皮,围成一个底面半径为4cm 的圆锥形工件的侧面(接缝忽略不计),则圆锥的母线长为( )A .4cmB .8cmC .12cmD .16cm【分析】求得半圆形铁皮的半径即可求得围成的圆锥的母线长.【解答】解:设半圆形铁皮的半径为rcm ,根据题意得:πr=2π×4,解得:r=8,所以围成的圆锥的母线长为8cm,故选:B.2、(2022•济宁)已知圆锥的母线长8cm,底面圆的直径6cm,则这个圆锥的侧面积是()A.96πcm2B.48πcm2C.33πcm2D.24πcm2【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式进行计算.【解答】解:∵底面圆的直径为6cm,∴底面圆的半径为3cm,∴圆锥的侧面积=×8×2π×3=24πcm2.故选:D.3、.(2022•牡丹江)圆锥的底面圆半径是1,母线长是3,它的侧面展开图的圆心角是()A.90°B.100°C.120°D.150°【分析】根据圆锥的底面周长等于圆锥的侧面展开图的弧长,首先求得展开图的弧长,然后根据弧长公式即可求解.【解答】解:圆锥侧面展开图的弧长是:2π×1=2π,设圆心角的度数是n度.则=2π,解得:n=120.故选:C.4、(2022•柳州)如图,圆锥底面圆的半径AB=4,母线长AC=12,则这个圆锥的侧面积为()A.16πB.24πC.48πD.96π【分析】先求出弧AA′的长,再根据扇形面积的计算公式进行计算即可.【解答】解:弧AA′的长,就是圆锥的底面周长,即2π×4=8π,所以扇形的面积为×8π×12=48π,即圆锥的侧面积为48π,故选:C.5、(2022•广安)蒙古包可以近似地看作由圆锥和圆柱组成.下图是一个蒙古包的示意图,底面圆半径DE=2m,圆锥的高AC=1.5m,圆柱的高CD=2.5m,则下列说法错误的是()A.圆柱的底面积为4πm2B.圆柱的侧面积为10πm2C.圆锥的母线AB长为2.25mD.圆锥的侧面积为5πm2【分析】利用圆的面积公式对A选项进行判断;利用圆柱的侧面积=底面圆的周长×高可对B选项进行判断;根据勾股定理可对C选项进行判断;由于圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长,则利用扇形的面积公式可对D选项进行判断.【解答】解:∵底面圆半径DE=2m,∴圆柱的底面积为4πm2,所以A选项不符合题意;∵圆柱的高CD=2.5m,∴圆柱的侧面积=2π×2×2.5=10π(m2),所以B选项不符合题意;∵底面圆半径DE=2m,即BC=2m,圆锥的高AC=1.5m,∴圆锥的母线长AB==2.5(m),所以C选项符合题意;∴圆锥的侧面积=×2π×2×2.5=5π(m2),所以D选项不符合题意.故选:C.6、(2022•大庆)已知圆锥的底面半径为5,高为12,则它的侧面展开图的面积是()A.60πB.65πC.90πD.120π【分析】先利用勾股定理求出圆锥侧面展开图扇形的半径,利用侧面展开图与底面圆的关系求出侧面展开图的弧长,再利用扇形面积公式即可求出圆锥侧面展开图的面积.【解答】解:圆锥侧面展开图扇形的半径为:=13,其弧长为:2×π×5=10π,∴圆锥侧面展开图的面积为:=65π.故选:B.7、(2022•赤峰)如图所示,圆锥形烟囱帽的底面半径为12cm,侧面展开图为半圆形,则它的母线长为()A.10cm B.20cm C.5cm D.24cm【分析】根据弧长公式列方程求解即可.【解答】解:设母线的长为R,由题意得,πR=2π×12,解得R=24,∴母线的长为24cm,故选:D.8、(2022•无锡)在Rt△ABC中,∠C=90°,AC=3,BC=4,以AC所在直线为轴,把△ABC旋转1周,得到圆锥,则该圆锥的侧面积为()A.12πB.15πC.20πD.24π【分析】运用公式s=πlr(其中勾股定理求解得到的母线长l为5)求解.【解答】解:在Rt△ABC中,∠C=90°,AC=3,BC=4,∴AB===5,由已知得,母线长l=5,半径r为4,∴圆锥的侧面积是s=πlr=5×4×π=20π.故选:C.6、(2022•西藏)已知Rt△ABC的两直角边AC=8,BC=6,将Rt△ABC绕AC所在的直线旋转一周形成的立体图形的侧面积为(结果保留π).【分析】利用勾股定理求得母线长,那么圆锥的侧面积=底面周长×母线长÷2.【解答】解:由勾股定理得AB=10,∵BC=6,∴圆锥的底面周长=12π,旋转体的侧面积=×12π×10=60π,故答案为:60π.7、(2022•郴州)如图,圆锥的母线长AB=12cm,底面圆的直径BC=10cm,则该圆锥的侧面积等于cm2.(结果用含π的式子表示)【分析】由于圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长,则根据扇形的面积公式可计算出该圆锥的侧面积.【解答】解:根据题意该圆锥的侧面积=×10π×12=60π(cm2).故答案为:60π.8、(2022•云南)某中学开展劳动实习,学生到教具加工厂制作圆锥.他们制作的圆锥,母线长为30cm,底面圆的半径为10cm,这种圆锥的侧面展开图的圆心角度数是.【分析】根据题意可知,圆锥的底面圆的周长=扇形的弧长,即可列出相应的方程,然后求解即可.【解答】解:设这种圆锥的侧面展开图的圆心角度数是n°,2π×10=,解得n=120,即这种圆锥的侧面展开图的圆心角度数是120°,故答案为:120°.。

圆锥的侧面积-2020-2021学年九年级数学上册同步课堂帮帮帮(苏科版)(解析版)

圆锥的侧面积-2020-2021学年九年级数学上册同步课堂帮帮帮(苏科版)(解析版)

圆锥的侧面积知识点一、圆锥的侧面展开图1.母线:连接圆锥顶点和底面圆上任意一点的线段叫做圆锥的母线;2.把一个圆锥的侧面展开会得到一个扇形,这个扇形的弧长等于圆锥底面的周长,而扇形的半径等于圆锥的母线长.如图所示,若圆锥的母线长为l,底面圆的半径为r,则这个扇形的半径为l,扇形的弧长为.圆锥的底面半径r,高h,母线长l之间可构成一个直角三角形,所以满足.例:如图所示,有一块半径为1m,圆心角为90°的扇形铁皮,要将它做成一个圆锥形容器(接缝忽略不计),那么这个圆锥形容器的高为()A. B. C. D.【解答】C【解析】设底面半径为,则,解得,∴高 C.知识点二、圆锥的侧面积若圆锥的底面半径为r,母线长为l,则圆锥的侧面积公式为.圆锥的侧面积与底面积之和称为圆锥的全面积,.例:1.已知圆柱的底面半径为3cm,母线长为6cm,则圆柱的侧面积是()A.36cm2B.36πcm2C.18cm2D.18πcm2【解答】B【解析】根据侧面积公式可得π×2×3×6=36πcm2,故选B.巩固练习一.选择题1.如图,正方形ABCD的边长为3cm,以直线AB为轴,将正方形旋转一周,所得几何体的主视图的面积是()A.9cm2B.9πcm2C.18πcm2D.18cm2【解答】D【解析】所得几何体的主视图的面积是2×3×3=18cm2.故选D.2.已知圆锥的底面半径为4cm,母线长为5cm,则圆锥的侧面积是()A.20cm2B.20πcm2C.10cm2D.10πcm2【解答】B×2π×4×5=20π(cm2).【解析】这个圆锥的侧面积=12故选B.3.用面积为12π,半径为6的扇形围成一个圆锥的侧面,则圆锥的底面半径是()A.2√10B.4√2C.2√2D.2【解答】D【解析】∵用面积为12π,半径为6的扇形围成一个圆锥的侧面,=4π,∴围成的圆锥底面圆的周长为:12π×26设围成的圆锥底面圆的半径为r,则2πr=4π,解得,r=2,∴圆锥的底面半径是2.故选D.4.用半径为6的半圆围成一个圆锥的侧面,则圆锥的底面半径等于()A .3B .2.5C .2D .1.5【解答】A 【解析】半圆的周长=12×2π×6=6π,∴圆锥的底面周长=6π,∴圆锥的底面半径=6π2π=3,故选A .5.若一个圆锥的侧面展开图是半径为10cm ,圆心角为120°的扇形,则该圆锥的底面半径是( )A .310cmB .103cmC .203cmD .320cm 【解答】B【解析】圆锥的侧面展开图是扇形,扇形的弧长=120π×10180=20π3, 则圆锥的底面半径=20π3÷2π=103(cm ),故选B .6.圆锥的母线长为9cm ,底面圆的直径为10cm ,那么这个圆锥的侧面展开图的圆心角度数是( )A .150°B .200°C .180°D .240° 【解答】B【解析】设这个圆锥的侧面展开图的圆心角为n °,根据题意得10π=n⋅π⋅9180,解得n =200,即这个圆锥的侧面展开图的圆心角度数为200°.故选B .7.如图所示的扇形是一个圆锥的侧面展开图,若∠AOB =120°,弧AB 的长为12πcm ,则该圆锥的侧面积为( )A .12πB .56πC .108πD .144π【解答】C 【解析】设AO =BO =R ,∵∠AOB =120°,弧AB 的长为12πcm ,∴120πR 180=12π,解得:R =18,∴圆锥的侧面积为12lR =12×12π×18=108π, 故选C .8.小明用图中所示的扇形纸片作一个圆锥的侧面.已知扇形的半径为5cm ,弧长是8πcm ,那么这个圆锥的高是( )A .8cmB .6cmC .3cmD .4cm【解答】C【解析】设圆锥底面圆的半径为r ,根据题意得2πr =8π,解得r =4,所以这个的圆锥的高=√52−42=3(cm ).故选C .9.用一张扇形的纸片卷成一个如图所示的圆锥模型,要求圆锥的母线长为6cm ,底面圆的直径为8cm ,那么这张扇形纸片的圆心角度数是( )A .150°B .180°C .200°D .240°【解答】D【解析】∵底面圆的直径为8cm ,∴圆锥的底面周长为8πcm,设圆锥的侧面展开图的圆心角为n°,=8π,∴nπ×6180解得:n=240°,故选D.10.已知圆锥的底面面积为9πcm2,母线长为6cm,则该圆锥的侧面积是()A.18cm2B.27cm2C.18πcm2D.27πcm2【解答】C【解析】∵圆锥的底面积为9πcm2,∴圆锥的底面半径为3cm,∵母线长为6cm,∴侧面积为3×6π=18πcm2,故选C.11.如图,圆锥的母线长AB=10cm,高AO=6cm,则圆锥面积为()A.144πcm2B.640πcm2C.320πcm2D.80πcm2【解答】A【解析】∵圆锥的母线长AB=10cm,高AO=6cm,∴圆锥的底面半径OB=√AB2−AO2=8cm,∴该圆锥的侧面积=πrl=π×8×10=80π(cm2),底面积=πr2=π×82=64π(cm2),∴该圆锥的面积=80π+64π=144π(cm2).故选A.12.如图,用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽,则这个纸帽的高是()A.√2cm B.3√2cm C.4√2cm D.4 cm【解答】C【解析】∵圆心角为120°,半径为6cm 的扇形的弧长=120⋅π⋅6180=4π,∴圆锥的底面圆的周长为4π,∴圆锥的底面圆的半径为2,∴这个纸帽的高=√62−22=4 √2(cm ).故选C .13.如图,是一个圆锥的主视图,则这个圆锥的全面积是( )A .12πB .15πC .21πD .24π【解答】D【解析】∵圆锥的底面半径为6÷2=3,高为4,∴圆锥的母线长为5,∴圆锥的全面积=π×3×5+π×32=24π,故选D .14.如图,圆锥的侧面展开图是半径为3,圆心角为90°的扇形,则该圆锥的底面圆的半径为()A .34πB .32πC .34D .32【解答】C【解析】设该圆锥的底面圆的半径为r ,根据题意得2πr =90⋅π⋅3180,解得r =34,所以该圆锥的底面圆的半径为34.故选C .15.如图,圆锥的侧面积为8πcm 2,母线与底面夹角为60°,则此圆锥的高为( )A.4cm B.8cm C.2√3cm D.6cm【解答】C【解析】设圆锥的底面圆的半径为r,∵母线与底面夹角为60°,∴圆锥的母线长为2r,•2r•2π•r=8π,解得r=2,∴12∴圆锥的高=√3r=2√3(cm).故选C.二.填空题16.已知圆锥的高h=2√3cm,底面半径r=2cm,则圆锥的全面积是.【解答】12πcm2【解析】∵圆锥的高为2√3cm,底面半径为2cm,∴圆锥的母线长为:√22+(2√3)2=4(cm),底面周长是:2×2π=4π(cm),×4π×4=8π(cm2),则侧面积是:12底面积是:π×22=4π(cm2),则全面积是:8π+4π=12π(cm2)故答案为12πcm2.17.若圆锥的侧面积是24πcm2,母线长是8cm,则该圆锥底面圆的半径是cm.【解答】3【解析】设圆锥底面圆的半径是rcm.×8×2πr=24π,由题意,12解得,r=3,故答案为3.18.直角三角形的两直角边长分别为4cm,3cm,以其中长直角边所在直线为轴旋转一周,得到的几何体的侧面积是 cm 2.【解答】15π【解析】∵直角三角形的两直角边长分别为4cm ,3cm ,∴由勾股定理得斜边为5,以4cm 边所在的直线为轴,将直角三角形旋转一周,则所得到的几何体的底面周长=6πcm ,侧面面积=12×6π×5=15π(cm 2). 故答案为15π.19.一个圆锥的表面积为40πcm 2,底面圆的半径是4cm ,则圆锥侧面展开图的圆心角是 度.【解答】240【解析】∵底面圆的半径为4cm ,∴底面周长为8π,底面圆的面积为:16π,∴侧面积为40π﹣16π=24π,设圆锥的母线长为l ,则12×8πl =24π, ∴母线长l =6cm ,设扇形的圆心角为n °,∴nπ×62360=24π,解得:n =240,故答案为240.20.如图所示,圆锥的母线长为10cm ,其侧面展开图是圆心角为216°的扇形,则该圆锥的高为 .【解答】8cm【解析】设圆锥的底面圆的半径为r ,根据题意得2πr=216⋅π⋅10,解得r=6,180所以圆锥的高=√102−62=8(cm).故答案为8cm.21.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2,扇形的圆心角θ=120°,则该圆锥的高h为.【解答】4√2,解得R=6,【解析】根据题意得 2π×2=120⋅π⋅R180所以该圆锥的高h=√62−22=4√2.故答案为4√2.22.把一个半径为12,圆心角为150°的扇形围成一个圆锥(按缝处不重叠),那么这个圆锥的高是.【解答】√119【解析】设这个圆锥的底面圆的半径为r,,解得r=5,根据题意得2πr=150⋅π⋅12180所以圆锥的高=√122−52=√119.故答案为√119.23.用半径为3cm,圆心角是120°的扇形围成一个圆锥的侧面,则这个圆锥的底面半径等于cm.【解答】1【解析】设此圆锥的底面半径为r,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得,,2πr=120π×3180解得:r=1cm.故答案为1.24.如图,圆锥的高为2√3cm,∠α=30°,则圆锥的侧面积为cm2.【解答】8π【解析】如图,∠α=30°,AO=2√3,,在Rt△ABO中,∵tan∠BAO=BOAO∴BO=2√3tan30°=2,即圆锥的底面圆的半径为2,∴AB=4,即圆锥的母线长为4,∴圆锥的侧面积=1•2π•2•4=8π.2故答案为8π.三.解答题25.圆锥母线长6cm,底面圆半径为3cm,求它的侧面展开图的圆心角度数.【解答】180°【解析】设圆锥侧面展开图的圆心角的度数为n°,根据题意得2π•3=n⋅π⋅6,180解得n=180°,即圆锥侧面展开图的圆心角的度数为180°.26.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.(1)以直线BC为轴,把△ABC旋转一周,求所得圆锥的底面圆周长.(2)以直线AC为轴,把△ABC旋转一周,求所得圆锥的侧面积;【解答】(1)12π;(2)80π【解析】(1)2π×6=12π.(2)∵∠C =90°,AC =6,BC =8,∴AB =√AC 2+BC 2=10,所以以直线AC 为轴,把△ABC 旋转一周,得到的圆锥的侧面积=12×10×2π×8=80π;27.已知Rt △ABC 的斜边AB =13cm ,一条直角边AC =5cm ,以直线AB 为轴旋转一周得一个几何体.求这个几何体的表面积.【解答】102013π(cm 2) 【解析】∵Rt △ABC 的斜边AB =13cm ,直角边AC =5cm ,∴另一直角边BC =12cm ,以斜边AB 为轴旋转一周,得到由两个圆锥组成的几何体,直角三角形的斜边上的高OC =5×1213=6013cm , 则以6013cm 为半径的圆的周长=12013πcm , 几何体的表面积=12×12013π×(5+12)=102013π(cm 2). 28.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r =2cm ,扇形的圆心角θ=120°.(1)求该圆锥的母线长l ;(2)求该圆锥的侧面积.【解答】(1)6cm ;(2)12πcm 2【解析】(1)由题意,得2πr =120πl 180. ∴l =3r =6(cm ).(2)S 侧=120π×62360=12π(cm 2). 29.如图,在梯形ABCD 中,AD ∥BC ,∠C =90°,∠BAD =120°,AB =AD =4,BC =6,以点A 为圆心在这个梯形内画出一个最大的扇形(图中阴影部分).(1)求这个扇形的面积;(2)若将这个扇形围成圆锥,求这个圆锥的底面积.【解答】(1)4π;(2)43π 【解析】(1)过点A 作AE ⊥BC 于E ,则AE =AB sin B =4×√32=2√3,∵AD ∥BC ,∠BAD =120°,∴扇形的面积为120π×(2√3)2360=4π,(2)设圆锥的底面半径为r ,则2πr =120π×2√3180, 解得:r =2√33若将这个扇形围成圆锥,这个圆锥的底面积4π.3。

圆锥的侧面积(巩固篇)(专项练习)

圆锥的侧面积(巩固篇)(专项练习)

专题2.13 圆锥的侧面积(巩固篇)(专项练习)一、单选题1.如图,圆锥的底面圆半径r 为5cm ,高h 为12cm ,则圆锥的侧面积为( )A .65πcm 2B .60πcm 2C .100πcm 2D .130πcm 22.从半径为8cm 的圆形纸片剪去圆周14的一个扇形,将剩下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为( )A .10cmB .C .8cmD .6cm3.如图,O 是ABC 的外接圆,22.5,8ABO ACO BC ∠=∠=︒=,若扇形OBC (图中阴影部分)正好是一个圆锥的侧面展开图,则该圆锥的高为( )AB .CD 4.已知圆锥底面半径为1,母线长为4,地面圆周上有一点A ,一只蚂蚁从点A 出发沿圆锥侧面运动一周后到达母线P A 中点B ,则蚂蚁爬行的最短路程为( )A .πB C .D .2π5.如图所示,矩形纸片ABCD 中,6cm AD =,把它分割成正方形纸片ABFE 和矩形纸片EFCD 后,分别裁出扇形ABF 和半径最大的圆,恰好能作为一个圆锥的底面和侧面,则圆锥的表面积为( )A .24πcmB .25πcmC .26πcmD .28πcm6.已知圆锥的母线长为2,底面圆的半径为1,如果一只蚂蚁从圆锥的点B 出发,沿表面爬到AC 的中点D 处,则最短路线长为( )AB C .D .27.如图,圆柱的底面周长为12cm ,AB 是底面圆的直径,在圆柱表面的高BC 上有一点D ,且10cm BC =,2cm DC =.一只蚂蚁从点A 出发,沿着圆柱体的表面爬行到点D 的最短路程是( )cm .A .14B .12C .10D .88.如图,从一张腰长为90cm ,顶角为120°的等腰三角形铁皮OAB 中剪出一个最大的扇形OCD ,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的底面圆的半径为( )cm .A .15B .30C .45D .30π9.斐波那契螺旋线也称“黄金螺旋线”,是根据斐波那契数列1,1,2,3,5,…画出来的螺旋曲线.如图,在每个边长为1的小正方形组成的网格中,阴影部分是依次在以1,1,2,3,5的一个四分之一圆做圆锥的侧面,则该圆锥的底面半径为()A.54B.2C.52D.410.如图,正六边形ABCDEF的边长为6,以顶点A为圆心,AB的长为半径画圆,用图中阴影部分围成一个圆锥的侧面(接缝忽略不计),则该圆锥的高为()A.4B.C.D.二、填空题11.如果圆锥底面圆的半径为3cm,它的侧面积为12 cm2,则这个圆锥的母线长为_____cm.12.如图,圆锥的母线长l为10cm,侧面积为50πcm2,则圆锥的底面圆半径r=___cm.13.如图,菱形ABCD,∠A=135°,以点C为圆心的弧EF分别与AB、AD相切于点G、H,与BC、CD分别相交于点E、F,用扇形CEF做成圆锥的侧面,则这个圆锥的高是_____.(结果保留根号)14.一个母线长为6cm ,底面半径为3cm 的圆锥展开后得到的侧面展开图扇形的圆心角是___度.15.用一个圆心角为120°,半径为4的扇形作一个圆锥的侧面,则这个圆锥底面圆的周长为_____.16.如图,已知圆锥的母线AB 长为40 cm ,底面半径OB 长为10 cm ,若将绳子一端固定在点B ,绕圆锥侧面一周,另一端与点B 重合,则这根绳子的最短长度是______________.17.如图所示是一个几何体的三视图,如果一只蚂蚁从这个几何体的点B 出发,沿表面爬到AC 的中点D 处,则最短路线长为__________.18.如图,从一块半径为1m 的圆形铁皮上剪出一个圆周角为120°的扇形ABC ,如果剪下来的扇形围成一个圆锥,则该圆锥的底面圆的周长为______m .三、解答题19.一块四边形ABCD 余料如图所示,已知AD BC ∥,2AD =米,AB =点A为圆心,AD为半径的圆与BC相切于点E,交AB于点F,用扇形AFD围成一个圆锥的侧面,求这个圆锥底面圆的半径.20.如图,已知一个圆锥的侧面展开图是一个半径为9cm,圆心角为120°的扇形.求:(1)圆锥的底面半径;(2)圆锥的全面积.21.如图,在单位长度为1的正方形网格中建立直角坐标系,一条圆弧恰好经过网格点A、B、C,请在网格图中进行下列操作(以下结果保留根号):(1) 利用网格找出该圆弧所在圆的圆心D点的位置,则D点的坐标为_______;(2) 连接AD、CD,若扇形DAC是一个圆锥的侧面展开图,则该圆锥底面半径为_______;(3) 连接AB,将线段AB绕点D旋转一周,求线段AB扫过的面积.22.如图,已知扇形AOB的圆心角为120°,半径OA为9cm.(1) 求扇形AOB的弧长和扇形面积;(2) 若把扇形纸片AOB卷成一个圆锥形无底纸帽,求这个纸帽的高OH.23.如图,已知圆锥的底面半径r为10cm,母线长为40cm.求它的侧面展开扇形的圆心角的度数和它的全面积.24.已知圆锥的底面半径为r=20cm,高h=,现在有一只蚂蚁从底边上一点A 出发.在侧面上爬行一周又回到A点,求蚂蚁爬行的最短距离.参考答案1.A【分析】根据圆锥的侧面积公式:S =πrl ,直接代入数据求出即可. 解:由圆锥底面半径r =5cm ,高h =12cm ,根据勾股定理得到母线长l (cm ), πrl =π×5×13=65π(cm 2), 故选:A .【点拨】此题主要考查了圆锥侧面积公式,熟练地应用圆锥侧面积公式求出是解决问题的关键.2.B【分析】先求得扇形的弧长,即圆锥的底面周长,则底面半径即可求得,然后利用勾股定理即可求得圆锥的高.解:圆心角是:1704360(1)2,︒⨯-=︒则弧长是:270812(cm),180ππ⨯= 设圆锥的底面半径是r ,则212r ππ=, 解得:r =6, 则圆锥的高是:=故选:B.【点拨】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.3.D【分析】根据圆的性质,勾股定理求出圆的半径OB ,再根据扇形的弧长公式即可求解;解:根据圆的性质,2BOC A ∠=∠180180A ABO OBC ACO OCB OBC BOC OCB ∠+∠+∠+∠+∠=︒∠+∠+∠=︒∵, A ABO ACO BOC ∠+∠+∠=∠∴∵2BOC A ∠=∠,22.5ABO ACO ∠=∠=︒90BOC ∴∠=︒∵8OB OC BC ==,∴OB OC =∴124BC π=⋅⋅=∴圆锥底面圆的半径为:2r π==∴圆锥的高h =故选:D【点拨】本题主要考查圆的性质、勾股定理、弧长公式的应用,掌握相关知识并灵活应用是解题的关键.4.C【分析】要求蚂蚁爬行的最短距离,需将圆锥的侧面展开,连接AB ,根据展开所得扇形的弧长等于圆锥底面圆的周长求得扇形的圆心角,进而解三角形即可求解.解:根据题意,将该圆锥展开如下图所示的扇形,则线段AB 就是蚂蚁爬行的最短距离.∵点B 是母线P A 的中点,4PA =, ∴2PB =,∵圆锥的底面圆的周长=扇形的弧长, 又∵圆锥底面半径为1,∴扇形的弧长=圆锥底面周长,即22l r ππ==,扇形的半径=圆锥的母线=P A =4, 由弧长公式可得:42180180n R n l πππ⨯=== ∴扇形的圆心角90n =︒,在Rt △APB 中,由勾股定理可得:AB =所以蚂蚁爬行的最短路程为故选:C.【点拨】.本题考查平面展开--最短路径问题、圆的周长计算公式、弧长计算公式,勾股定理等知识,解题的关键是“化曲为直”,将立体图形转化为平面图形.5.B【分析】设圆锥的底面的半径为rcm,则DE=2rcm,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长得到()9062180rπ⨯-=2πr,解方程求出r,然后求得直径即可.解:设圆锥的底面的半径为rcm,则AE=BF=6-2r根据题意得()9062180rπ⨯-=2 πr,解得r=1,侧面积=1·2?442rππ=,底面积=2rππ=所以圆锥的表面积=25πcm,故选:B.【点拨】本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.6.A【分析】把圆锥的侧面展开,易得展开图是一个半圆,在平面内求出线段BD的长,则此时便是最短路线长,这只要在直角三角形中应用勾股定理解决即可.解:∵圆锥的底面周长为2π∴圆锥的侧面展开后的扇形的圆心角为21801802nππ⨯︒==︒,如图∴∠BAD=90゜∵D为AC的中点∴112122AD AC==⨯=在Rt△BAD中,由勾股定理得BD故选:A【点拨】本题考查了圆锥的侧面展开图,勾股定理,扇形弧长公式,本题体现了空间问题平面化,这是一种重要的数学思想方法.7.C【分析】首先画出圆柱的侧面展开图,根据底面周长12cm,求出AB的值,由BC=10cm,DC=2cm,求出DB的值,再在Rt△ABD 中,根据勾股定理求出AD 的长,即可得答案.解:圆柱侧面展开图如下图所示,∵圆柱的底面周长为12cm,∴AB =6cm,∵BC=10cm,DC=2cm,∴DB=8,在Rt△ABD 中,10AD=( cm ),即蚂蚁从A点出发沿着圆柱体的表面爬行到点D 的最短距离是10cm,故选:C .【点拨】此题主要考查了圆柱的平面展开图,以及勾股定理的应用,解题的关键是画出圆柱的侧面展开图.8.A【分析】作出等腰三角形底边上的高线OE,首先根据直角三角形30°所对的直角边等于斜边的一半求出等腰三角形底边上的高线OE的长度,即得到扇形OCD所在的圆的半径R,然后根据弧长公式求出CD的长度,CD的长度即为圆锥底面圆的周长,最后根据周长求出半径即可.解:如图,过点O作OE⊥AB,垂足为E,∵△OAB为顶角为120°的等腰三角形,∴A ∠=30°,1452OE OA ==cm , ∴12024530360CD ππ=⨯⨯=cm , 设圆锥的底面圆半径为r cm ,根据题意得,230r ππ=,解得15r =,所以该圆锥的底面圆的半径为15cm ,故选A .【点拨】本题考查了直角三角形30°所对的直角边等于斜边的一半、扇形的弧长公式、圆的周长公式,准确将扇形的弧长转化为底面圆的周长是解决本题的关键. 9.A【分析】根据斐波那契数的规律,求出下一个圆弧的底面半径和弧长,结合圆锥的侧面积性质进行求解即可.解:有根据斐波那契数的规律可知,从第三项起,每一个数都是前面两个数之和,即半径为5的扇形对应的弧长152542l ππ=⨯⨯= 设圆锥底面半径为r ,则522r ππ= 54r ∴= 故选:A .【点拨】本题考查圆锥侧面积的计算,结合斐波那契数的规律,及扇形的弧长公式进行转化是解题关键.10.C【分析】先计算出扇形的弧长,即圆锥的底面周长,从而得到圆锥的底面半径,然后利用勾股定理求出圆锥的高.解:正六边形的外角和为360︒,∴正六边形的每个外角的度数为360660,∴正六边形的每个内角的度数为18060120︒-︒=︒,设该圆锥的底面半径为r , 则120226360r ππ=⨯⨯, 解得2r =,∴=故选:C .【点拨】本题考查了正多边形与圆及圆锥的相关计算,以及勾股定理的应用,熟练掌握扇形与扇形所围圆锥侧面之间的等量关系是解题的关键.11.4【分析】设圆锥的母线长为l cm ,根据圆锥的侧面展开图为扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式得到123122l ππ⨯⨯⨯=,然后解方程即可. 解:由扇形面积公式2360n S r π=⨯和弧长公式2360n l r π=⨯可得12扇形S lr , 设圆锥的母线长为l cm ,根据题意知侧面展开扇形的弧长为23π⨯,从而得到123122l ππ⨯⨯⨯=, 解得l =4,即圆锥的母线长为4cm ,故答案为:4.【点拨】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.12.5【分析】根据圆锥的侧面积和圆锥的母线长求得圆锥的弧长,利用圆锥的侧面展开扇形的弧长等于圆锥的底面周长求得圆锥的底面半径即可.解:∵圆锥的母线长是10cm ,侧面积是50πcm 2,∴圆锥的侧面展开扇形的弧长为:l 210010s r π===10π(cm ), ∵圆锥的侧面展开扇形的弧长等于圆锥的底面周长,∴r 1022l πππ===5(cm ), 故答案为:5.【点拨】本题考查了圆锥的计算,解题的关键是正确地进行圆锥与扇形的转化.13 【分析】先连接CG ,设CG R =,由三角函数定义求得扇形的半径即圆锥的母线长,根据弧长公式180n R l π=,再由2180n R r ππ=,求出底面半径r ,最后根据勾股定理即可求得圆锥的高. 解:如图: 连接CG ,135C ∠=︒,45B ∴∠=︒,AB 与EF 相切,CG AB ∴⊥,在直角CBG ∆中,sin 451CG BC =⋅︒==,即圆锥的母线长是1, 设圆锥底面的半径为r ,则:13512180r ππ⨯=, 38r ∴=.则圆锥的高h ==.【点拨】本题考查的是圆锥的计算, 先利用直角三角形求出扇形的半径, 运用弧长公式计算出弧长, 然后根据底面圆的周长等于扇形的弧长求出底面圆的半径 .14.180【分析】先计算出展开的扇形的弧长,再计算出以母线为半径的圆的周长,再根据圆心角公式即可得到答案.解:∵母线长为6l =cm ,底面半径为3r =cm ,∴展开的扇形的弧长为26r ππ=,以母线为半径的圆的周长为212l ππ=,∴侧面展开图扇形的圆心角=636018012ππ︒⨯=︒, 故答案为:180︒.【点拨】本题考查圆锥的性质,解题的关键是熟练掌握圆锥的相关知识. 15.83π【分析】由圆锥底面的周长=扇形的弧长,利用弧长公式解题.解:圆锥底面的周长=扇形的弧长120481801803n r l πππ⨯=== 故答案为:83π. 【点拨】本题考查扇形的弧长等知识,是基础考点,掌握相关知识是解题关键. 16.【分析】根据底面圆的周长等于扇形的弧长求解扇形的圆心角90,BAB '∠=︒ 再利用勾股定理求解即可.解:圆锥的侧面展开图如图所示:设圆锥侧面展开图的圆心角为n °, 圆锥底面圆周长为210=20,40=20,180n BB 则n =90, ∵40,AB AB 224040402,BB即这根绳子的最短长度是,故答案为:【点拨】本题考查的是圆锥的侧面展开图,弧长的计算,掌握“圆锥的底面圆的周长等于展开图的弧长求解圆心角”是解本题的关键.17.【分析】将圆锥的侧面展开,设顶点为B',连接BB',AE .线段AC 与BB'的交点为F ,线段BF 是最短路程.解:如图将圆锥侧面展开,得到扇形ABB′,则线段BF 为所求的最短路程.设∠BAB′=n°.∵6180n π⋅=4π, ∴n =120即∠BAB′=120°.∵E 为弧BB′中点,∴∠AFB =90°,∠BAF =60°,∴BF =AB•sin ∠BAF =∴最短路线长为故答案为:【点拨】本题考查了平面展开−最短路径问题,解题时注意把立体图形转化为平面图形的思维.18.23π 【分析】连接OA ,OB ,OC ,证明AOB 是等边三角形,从而求得AB 的长,然后利用弧长公式计算出BOC 的长度,即是该圆锥底面圆的周长.解:如图,连接OA ,OB ,OC ,∵OB OC =,∴OB OC =, ∴1602BAO CAO BAC ∠=∠=∠=︒, ∴AOB 是等边三角形,∴1AB OA ==,∵120BAC ∠=︒,∴BOC 的长为:12021803AB ππ⋅⋅= , 即该圆锥的底面圆的周长为23π . 故答案为:23π. 【点拨】本题主要考查了弧长公式以及扇形弧长与底面圆周长相等的知识点,解题的关键要掌握扇形弧长与底面圆周长相等.19.34r = 【分析】连接AE ,利用勾股定理得AE =BE ,由此即可求出∠ABE 的度数,再先求出扇形的圆心角∠DAB 的度数,再由弧长公式求出弧长,此弧长就是所得圆锥的底面圆的周长,由圆的周长公式即可求得所得圆锥的底面半径.解:如图,连接AE ,∵AD 为半径的圆与BC 相切于点E ,∴AE ⊥BC ,AE =AD =2.在Rt △AEB 中,∵AB =AE =2,∴AE =BE =2,∴∠ABE =45°.∴ABE △是等腰直角三角形,45BAE ∠=︒,设圆锥底面半径为r , 由题意得135222360r ππ⨯⨯=, 解得34r =. 【点拨】本题考查了切线的性质、平行线的性质、圆锥的计算,解题的关键是掌握所涉及的知识要点,并能够灵活运用.20.(1)圆锥的底面半径为3cm ;(2)圆锥的全面积236cm S π=【分析】(1)扇形的弧长公式l =180n r π,利用展开后扇形的弧长即为展开前圆锥底面圆的周长求出半径;(2)S 圆锥= S 侧+S 底,S 侧面=12lR ,S 底=2r π,(R =扇形半径即圆锥母线长,r =底面圆半径)将已知条件代入即可.解:(1)设圆锥的底面半径为cm r . 扇形的弧长为12096180l ππ⨯==, ∴26r ππ=,解得3r =,∴圆锥的底面半径为3cm . (2)圆锥的侧面积:S 侧面=12lR =()216927cm 2ππ⨯⨯=. 园锥的底面积:S 底=239(cm)ππ⨯=.∴圆锥的全面积S 全=S 侧+S 底=()227936cm πππ+=.【点拨】本题考查圆锥相关的计算,要求掌握圆锥侧面积与底面积的计算公式,侧面展开图扇形相关的面积和弧长的求算,注意求圆锥面积时母线与底面圆半径的区分.21.(1)(2,0)(3)4π 【分析】(1)线段AB 与BC 的垂直平分线的交点为D ;(2)连接AC ,先判断∠ADC =90°,则可求AC 的弧长,该弧长即为圆锥底面圆的周长,由此可求底面圆的半径;(3)设AB 的中点为E ,线段AB 的运动轨迹是以D 为圆心DA 、DE 分别为半径的圆环面积.(1)解:过点(2,0)作x 轴垂线,过点(5,3)作与BC 垂直的线,两线的交点即为D 点坐标,∴D (2,0),故答案为:(2,0);(2)解:连接AC ,∵A (0,4),B (4,4),C (6,2),∴AD =CD =AC =∵AC 2=AD 2+CD 2,∴∠ADC =90°,∴AC 的长124π=⨯⨯, ∵扇形DAC 是一个圆锥的侧面展开图,2r π=,∴r =,; (3)解:设AB 的中点为E ,∴E (2,4),∴DE =4,∴S =π×(AD 2﹣DE 2)=4π,∴线段AB 扫过的面积是4π.,【点拨】本题考查圆锥的展开图,垂径定理,能够由三点确定圆的圆心位置,理解圆锥展开图与圆锥各部位的对应关系是解题的关键.22.(1)6cm π,227cm π(2)【分析】(1)根据弧长公式和扇形面积公式求解即可;(2)先求出底面圆的半径,然后利用勾股定理求解即可.(1)解:由题意得扇形AOB 的弧长12096cm 180ππ⨯⨯==,221209==27cm 360AOB S ππ⨯⨯扇形; (2)解:如图所示,AH 为底面圆的半径,OA 为母线长,由题意可得=9cm OA ,63cm 2AH ππ==,∴OH ==.【点拨】本题主要考查了求扇形面积,求弧长,求圆锥的高,勾股定理等等,解题的关键在于能够熟练掌握弧长公式和扇形面积公式.23.90°,500π【分析】根据由圆锥的底面圆的周长等于侧面展开扇形的弧长可求.解:由圆锥的底面圆的周长等于侧面展开扇形的弧长可知:π402π10180n ⨯⨯⨯=,90n =︒, ∴侧面展开扇形的圆心角的度数是90°.全面积=底面积+展开侧面积, 全面积为:2290π40π10500π360⨯⨯⨯+=. 【点拨】本题考查了圆锥全面积和展开图圆心角的度数,解题关键是明确圆锥的底面圆的周长等于侧面展开扇形的弧长,根据题意列方程求解.24.【分析】蚂蚁爬行的最短距离是圆锥的展开图的扇形中AA′的长度.根据勾股定理求得母线长后,利用弧长等于底面周长求得扇形的圆心角的度数为90度,再由等腰直角三角形的性质求解.解:设扇形的圆心角为n ,圆锥的在Rt △AOS 中,∵r=20cm ,h=,∴由勾股定理可得母线,而圆锥侧面展开后的扇形的弧长为2×20π=18080n π⨯. ∴n=90°即△SAA′是等腰直角三角形,∴由勾股定理得:.∴蚂蚁爬行的最短距离为.【点拨】本题利用了勾股定理,弧长公式,圆的周长公式,等腰直角三角形的性质求解.。

圆锥的侧面积

圆锥的侧面积
表 底
例4、根据圆锥的下面条件,求它的侧面积和表面积
(1)r=12cm, l=20cm (2)h=12cm, r=5cm
解:由s rl 2 20 240 (cm2 ) s表 s s底 rl r 240 144
2
解:由l 2 h 2 r 2得 l 122 52 13 s rl 5 13 65 (cm 2 ) s表 s s底 65 25 90 (cm 2 )
例6、如图,圆锥的底面半径为1,母线长为3,一只蚂 蚁要从底面圆周上一点B出发,沿圆锥侧面爬到过母线 AB的轴截面上另一母线AC上,问它爬行的最短路线 是多少?
将圆锥沿AB展开成扇形ABB’ A , 解 : 将圆锥沿 将圆锥沿 AB 展开成扇形 AB 则点 CB 是 解: 将圆锥沿AB展开成扇形ABB ,解 则点 C是BB 的中点 ,:过点 B 作 BD AC ,是 解 将圆锥沿 展开成 B : AB 展开成扇形 AB B ,AB 则点 C , :: 将圆锥沿 AB 展开成扇形 AB B C是 , 则点 解 将圆锥沿 AB 展开成扇形 AB B 则点 , 则点 C 解 :B 将圆锥沿 AB 展开成扇形 AB B C B 的中点 , 垂足为 D . 垂足为 D .是 垂足为 D .BD 成扇形 AB B B 的中点,解 过点 B 作 AC , 垂足为 D . , 则点C是 垂足为 DD .r 垂足为 .r 垂足为 D . r r BA B 360 360 120 BA B 120 BAB 360 120 BAB 360 120 l r r BAB l r l 360 120 l C B BA B 360 120 中, BAD 60, A BAB 360 BAD 120 60 BAD 60 . 在 Rt ABC . 在 Rt ABC 中 , 60 BAD Rt 60 ABC , AB l BAD . 在 l l BAD 60.在RtABC中, BAD 60, AB 3. BAD 60 ., 在 Rt ABC 中 ,, BAD 60 ,A 3 3 BAD 60 . 在 Rt ABC 中 BAD 60 3 BAD 60 . 在 Rt ABC 中 BAD 60 , AB 3 . BD BD 3 3 C中, BAD 60, AB 3. 3 BD 3 2 2 3 BD 3 2 33 3 BD 2 BD 3 BD 2 3 33 答 : 它爬行的最短路线是 3.3. 它爬行的最短路线是 2 2 答 : 它爬行的最短路线 3 2 32 答: 它爬行的最短路线是 3. 答: 它爬行的最短路线是 3 33. 3 答: 它爬行的最短路线是 3. 答: 它爬行的最短路线是 3. 2 2 线是 3. 2 2 2

初中数学 圆的弧长及扇形面积公式 (含答案)

初中数学 圆的弧长及扇形面积公式 (含答案)

弧长及扇形面积第一部分 知识梳理(一)、圆的弧长及扇形面积公式在半径为R 的圆中,n °的圆心角所对的弧长为C 1,以n °为圆心角的扇形面积为S 1弧长公式 : 弧长C 1=180n R π 扇形面积公式: S 1=2360n R π=12C 1R注意:计算不规则图形的面积时,要转化成规则图形的面积进行计算。

(二)、圆锥的侧面积:注意:圆锥的侧面展开图是一个扇形 其中:(1)h 是圆锥的高,r 是底面半径;(2)l 是圆锥的母线,其长为侧面展开后所得扇形的半径R ;(3)圆锥的侧面展开图是半径等于 l ,弧长等于圆锥底面 周长C 的扇形.即: ①l =R ②180n Rπ=2πr ③h 2+r 2=l 2圆锥的侧面积 S 侧面积= πrl圆锥的全面积 S 全面积= πrl +πr 2第二部分 中考链接一、有关弧长计算 (一)、选择题1、(2018•淄博)如图,⊙O 的直径AB=6,若∠BAC=50°,则劣弧AC 的长为( )A 、2π B. 83π C 34π D. 43π1题图2题图 3题图 4题图 5题图2、(2018•黄石)如图,AB 是⊙O 的直径,点D 为⊙O 上一点,且∠ABD=30°,BO=4,则的长为( )A .23πB .43πC .2πD .83π3、(2018•沈阳)如图,正方形ABCD 内接于O ,AB=2,则的长是( )A .πB .πC .2πD .π4、(2018•陵城区二模)一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),那么B 点从开始至结束所走过的路径长度为( )A .B .C .4D .2+5、(2018•明光市二模)如图,AB 与⊙O 相切于点B ,OA=2,∠OAB=30°,弦BC ∥OA ,则劣弧的长是( )A .B .C .D .6、(2019青岛)如图,线段AB经过⊙O的圆心,AC,BD分别与⊙O相切于点C,D.若AC=BD=4,∠A=45°,则的长度为()A.π B.2π C.2π D.4π6题图 7题图 8题图7、(2019烟台)如图,AB是⊙O的直径,直线DE与⊙O相切于点C,过A,B分别作AD⊥DE,BE⊥DE,垂足为点D,E,连接AC,BC,若AD=,CE=3,则的长为()A.B.πC.πD.π8、(2019泰安)如图,将⊙O沿弦AB折叠,恰好经过圆心O,若⊙O的半径为3,则的长为()A.πB.πC.2πD.3π(二)、填空题1、(2018•潍坊)如图,点A1的坐标为(2,0),过点A1作x轴的垂线交直线l:y=x于点B1,以原点O为圆心,OB1的长为半径画弧交x轴正半轴于点A2;再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,以OB2的长为半径画弧交x轴正半轴于点A3;….按此作法进行下去,则的长是..1题图 3题图 4题图5题图8题图2、(2018•连云港)一个扇形的圆心角是120°.它的半径是3cm.则扇形的弧长为cm.3、(2018•永州)如图,在平面直角坐标系中,已知点A(1,1),以点O为旋转中心,将点A逆时针旋转到点B的位置,则的长为.4、(2018•盐城)如图,图1是由若干个相同的图形(图2)组成的美丽图案的一部分,图2中,图形的相关数据:半径OA=2cm,∠AOB=120°.则图2的周长为cm(结果保留π).5、(2018常州)如图,△ABC是⊙O的内接三角形,∠BAC=60°,的长是,则⊙O的半径是.6、(2018•温州)已知扇形的弧长为2π,圆心角为60°,则它的半径为..7、(2018•白银)如图,分别以等边三角形的每个顶点为圆心、以边长为半径,在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为a,则勒洛三角形的周长为.8.(2019泰州)如图,分别以正三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若正三角形边长为6cm,则该莱洛三角形的周长为cm.(三)、解答题1.(2018•湖州)如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连结BC.(1)求证:AE=ED;(2)若AB=10,∠CBD=36°,求的长.二、、有关扇形面积计算(一)、选择题1、(2018•德州)如图,从一块直径为2m的圆形铁皮上剪出一个圆心角为90°的扇形,则此扇形的面积为()A.2B.C.πm2 D.2πm21题图2题图 3题图4题图2、(2018•广安)如图,已知⊙O的半径是2,点A、B、C在⊙O上,若四边形OABC为菱形,则图中阴影部分面积为()A.π﹣2B.π﹣C.π﹣2D.π﹣3、(2018•成都)如图,在▱ABCD中,∠B=60°,⊙C的半径为3,则图中阴影部分的面积是()A.πB.2πC.3πD.6π4、(2018•绵阳)如图,蒙古包可近似地看作由圆锥和圆柱组成,若用毛毡搭建一个底面圆面积为25πm2,圆柱高为3m,圆锥高为2m的蒙古包,则需要毛毡的面积是()A.(30+5)πm2B.40πm2C.(30+5)πm2D.55πm25.(2018•十堰)如图,扇形OAB中,∠AOB=100°,OA=12,C是OB的中点,CD⊥OB交于点D,以OC为半径的交OA于点E,则图中阴影部分的面积是()A.12π+18B.12π+36C.6D.66、(2018•山西)如图,正方形ABCD内接于⊙O,⊙O的半径为2,以点A为圆心,以AC长为半径画弧交AB的延长线于点E,交AD的延长线于点F,则图中阴影部分的面积为()A.4π﹣4 B.4π﹣8 C.8π﹣4 D.8π﹣85题图6题图7题图8题图7、(2018•广西)如图,分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为()A.B.C.2 D.28、(2018•威海)如图,在正方形ABCD中,AB=12,点E为BC的中点,以CD为直径作半圆CFD,点F为半圆的中点,连接AF,EF,图中阴影部分的面积是()A.18+36πB.24+18πC.18+18πD.12+18π9题图10题图11题图12题图13题图9、(2019枣庄)如图,在边长为4的正方形ABCD中,以点B为圆心,AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是(结果保留π)()A.8﹣πB.16﹣2πC.8﹣2πD.8﹣12π10、(2019临沂)如图,⊙O中,=,∠ACB=75°,BC=2,则阴影部分的面积是()A.2+πB.2++πC.4+πD.2+π11、(2019宿迁)如图,正六边形的边长为2,分别以正六边形的六条边为直径向外作半圆,与正六边形的外接圆围成的6个月牙形的面积之和(阴影部分面积)是()A.63﹣πB.63﹣2πC.63+πD.63+2π12. (2019四川南充)如图,在半径为6的⊙O中,点A,B,C都在⊙O上,四边形OABC是平行四边形,则图中阴影部分的面积为()A. 6π B. 33π C. 23π D. 2π13.(2019四川资阳)如图,直径为2cm的圆在直线l上滚动一周,则圆所扫过的图形面积为()A. 5πB. 6πC. 20πD. 24π(二)、填空题1、(2018青岛)如图,Rt△ABC,∠B=90°,∠C=30°,O为AC上一点,OA=2,以O为圆心,以OA为半径的圆与CB相切于点E,与AB相交于点F,连接OE、OF,则图中阴影部分的面积是.1题图2题图3题图4题图2、(2018•安顺)如图,C为半圆内一点,O为圆心,直径AB长为2cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为cm2.3、(2018•荆门)如图,在平行四边形ABCD中,AB<AD,∠D=30°,CD=4,以AB为直径的⊙O 交BC于点E,则阴影部分的面积为.4、(2018•重庆)如图,在边长为4的正方形ABCD中,以点B为圆心,以AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是(结果保留π)5、(2018•重庆)如图,在矩形ABCD中,AB=3,AD=2,以点A为圆心,AD长为半径画弧,交AB于点E,图中阴影部分的面积是(结果保留π).5题图6题图8题图9题图10题图6.(2018•香坊区)如图,点A、B、C是⊙O上的点,且∠ACB=40°,阴影部分的面积为2π,则此扇形的半径为.7、(2018•哈尔滨)一个扇形的圆心角为135°,弧长为3πcm,则此扇形的面积是cm2.8、(2019日照)如图,已知动点A 在函数4(0y x x=>)的图象上,AB ⊥x 轴于点B ,AC ⊥y 轴于点C ,延长CA 交以A 为圆心AB 长为半径的圆弧于点E ,延长BA 交以A 为圆心AC 长为半径的圆弧于点F ,直线EF 分别交x 轴、y 轴于点M 、N ,当NF =4EM 时,图中阴影部分的面积等于 .9、(2019泰安)如图,∠AOB =90°,∠B =30°,以点O 为圆心,OA 为半径作弧交AB 于点A 、点C ,交OB于点D ,若OA =3,则阴影都分的面积为 .10、(2019德州)如图,O 为Rt △ABC 直角边AC 上一点,以OC 为半径的⊙O 与斜边AB 相切于点D ,交OA 于点E ,已知BC =,AC =3.则图中阴影部分的面积是 .11、(2019无锡市)如图,在△ABC 中,AC :BC :AB =5:12:13,⊙O 在△ABC 内自由移动,若⊙O 的半径为1,且圆心O 在△ABC 内所能到达的区域的面积为103,则△ABC 的周长为 . A BABCOOCOOI HF GED11题图 12题图 12、(2019四川内江)如图,在平行四边形ABCD 中,AB <AD ,∠A =150°,CD =4,以CD 为直径的⊙O 交AD 于点E ,则图中阴影部分的面积为 . (三)、解答题1、(2019东营)如图,AB 是⊙O 的直径,点D 是AB 延长线上的一点,点C 在⊙O 上,且AC =CD ,∠ACD =120°.(1)求证:CD 是⊙O 的切线,(2)若⊙O 的半径为3,求图中阴影部分的面积.2、(2019无锡市)一次函数b kx y +=的图像与x 轴的负半轴相交于点A ,与y 轴的正半轴相交于点B ,且sin ∠ABO 3OAB 的外接圆的圆心M 的横坐标为﹣3. (1)求一次函数的解析式; (2)求图中阴影部分的面积.xy M BAO3.(2019·武汉)已知AB 是⊙O 的直径,AM 和BN 是⊙O 的两条切线,DC 与⊙O 相切于点E ,分别交AM 、BN于D 、C 两点(1) 如图1,求证:AB 2=4AD ·BC(2) 如图2,连接OE 并延长交AM 于点F ,连接CF .若∠ADE =2∠OFC ,AD =1,求图中阴影部分的面积ODEMF EMO图1 图2 4.(2019·衡阳)如图,点A 、B 、C 在半径为8的⊙O 上,过点B 作BD ∥AC ,交OA 延长线于点D ,连接BC ,且∠BCA =∠OAC =30°.(1)求证:BD 是⊙O 的切线;(2)求图中阴影部分的面积.DAOCB三、圆锥(一)、选择题2、(2018•自贡)已知圆锥的侧面积是8πcm 2,若圆锥底面半径为R (cm ),母线长为l (cm ),则R 关于l 的函数图象大致是( )A .B .C .D .3、(2018•遵义)若要用一个底面直径为10,高为12的实心圆柱体,制作一个底面和高分别与圆柱底面半径和高相同的圆锥,则该圆锥的侧面积为( )A.60πB.65πC.78πD.120π4、(2018•遂宁)已知圆锥的母线长为6,将其侧面沿着一条母线展开后所得扇形的圆心角为120°,则该扇形的面积是()A.4πB.8πC.12πD.16π5、(2018•东阳市模拟)已知一个圆锥的底面半径为3cm,母线长为10cm,则这个圆锥的侧面积为()A.30πcm2B.50πcm2C.60πcm2D.3πcm26、(2019东营)如图所示是一个几何体的三视图,如果一只蚂蚁从这个几何体的点B出发,沿表面爬到AC的中点D处,则最短路线长为()A.3B.C.3 D.3(二)、填空题1、(2018烟台)如图,点O为正六边形ABCDEF的中心,点M为AF中点,以点O为圆心,以OM的长为半径画弧得到扇形MON,点N在BC上;以点E为圆心,以DE的长为半径画弧得到扇形DEF,把扇形MON 的两条半径OM,ON重合,围成圆锥,将此圆锥的底面半径记为r1;将扇形DEF以同样方法围成的圆锥的底面半径记为r2,则r1:r2=.1题图2题图3题图7题图8题图2、(2018徐州)如图,扇形的半径为6,圆心角θ为120°,用这个扇形围成一个圆锥的侧面,所得圆锥的底面半径为.3、(2018•郴州)如图,圆锥的母线长为10cm,高为8cm,则该圆锥的侧面展开图(扇形)的弧长为cm.(结果用π表示)4、(2018•聊城)用一块圆心角为216°的扇形铁皮,做一个高为40cm的圆锥形工件(接缝忽略不计),那么这个扇形铁皮的半径是cm.5、(2018•黑龙江)用一块半径为4,圆心角为90°的扇形纸片围成一个圆锥的侧面,则此圆锥的高为.6、(2018•扬州)用半径为10cm ,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为cm.7、(2018•苏州)如图,8×8的正方形网格纸上有扇形OAB和扇形OCD,点O,A,B,C,D 均在格点上.若用扇形OAB围成一个圆锥的侧面,记这个圆锥的底面半径为r1;若用扇形OCD围成另个圆锥的侧面,记这个圆锥的底面半径为r2,则12rr的值为8、(2019聊城)如图是一个圆锥的主视图,根据图中标出的数据(单位:cm),计算这个圆锥侧面展开图圆心角的度数为.9.(2019无锡市)已知圆锥的母线成为5cm,侧面积为15πcm 2,则这个圆锥的底面圆半径为cm .答案与提示:一、弧长计算(一)、选择题1、D2、D3、A4、B5、B6、B7、D8、C1、解:如图,连接CO,∵∠BAC=50°,AO=CO=3,∴∠ACO=50°,∴∠AOC=80°,∴劣弧AC的长为=,故选:D.1题图2题图3题图6题图8题图2、解:连接OD,∵∠ABD=30°,∴∠AOD=2∠ABD=60°,∴∠BOD=120°,∴的长==,故选:D.3、解:连接OA、OB,∵正方形ABCD内接于O,∴AB=BC=DC=AD,∴===,∴∠AOB=×360°=90°,在Rt△AOB中,由勾股定理得:2AO2=(2)2,解得:AO=2,∴的长为=π,故选:A.4、BC=AB=AC=1,∠BCB′=120°,∴B点从开始至结束所走过的路径长度为2×弧BB′=2×12014=1803ππ⨯故选B.5、连接OB,OC,∵AB为圆O的切线,∴∠ABO=90°,在Rt△ABO中,OA=2,∠OAB=30°,∴OB=1,∠AOB=60°,∵BC∥OA,∴∠OBC=∠AOB=60°,又OB=OC,∴△BOC为等边三角形,∴∠BOC=60°,则劣弧长为6011= 1803ππ⨯.6、解:连接OC、OD,∵AC,BD分别与⊙O相切于点C,D.∴OC⊥AC,OD⊥BD,∵∠A=45°,∴∠AOC=45°,∴AC=OC=4,∵AC=BD=4,OC=OD=4,∴OD=BD,∴∠BOD=45°,∴∠COD=180°﹣45°﹣45°=90°,∴的长度为:=2π,故选:B.7、解:连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACD+∠BCE=90°,∵AD⊥DE,BE⊥DE,∴∠DAC+∠ACD=90°,∴∠DAC=∠ECB,∵∠ADC=∠CEB=90°,∴△ADC∽△CEB,∴=,即=,∵tan∠ABC==,∴∠ABC=30°,∴AB=2AC,∠AOC=60°,∵直线DE与⊙O相切于点C,∴∠ACD=∠ABC=30°∴AC=2AD=2,∴AB=4,∴⊙O的半径为2,∴的长为:=π,故选:D.8、解:连接OA.OB,作OC⊥AB于C,由题意得,OC=OA,∴∠OAC=30°,∵OA=OB,∴∠OBA=∠OAC=30°,∴∠AOB=120°,∴的长==2π,故选:C.(二)、填空题1、201923π2、2π3、24π4、83π5、26、67、πa8、6π1、解:直线y=x,点A1坐标为(2,0),过点A1作x轴的垂线交直线于点B1可知B1点的坐标为(2,2),以原O为圆心,OB1长为半径画弧x轴于点A2,OA2=OB1,OA2==4,点A2的坐标为(4,0),这种方法可求得B2的坐标为(4,4),故点A3的坐标为(8,0),B3(8,8)以此类推便可求出点A2019的坐标为(22019,0),则的长是=.故答案为:.2、1203=2 180ππ⨯3、解:∵点A(1,1),∴OA==,点A在第一象限的角平分线上,∵以点O为旋转中心,将点A逆时针旋转到点B的位置,∴∠AOB=45°,∴的长为=.故答案为.4、解:由图1得:的长+的长=的长 ∵半径OA=2cm ,∠AOB=120°则图2的周长为:=故答案为:.5、连接OB.OC ,由∠BAC=60°得∠BOC=120°,1204=1803r ππ⨯ 得:r=26、解:设半径为r ,60=2180rππ⨯,解得:r=6,故答案为:6 7、解:如图.∵△ABC 是等边三角形,∴∠A=∠B=∠C=60°,AB=BC=CA=a , ∴的长=的长=的长==,∴勒洛三角形的周长为×3=πa .故答案为πa .(三)、解答题1、证明:(1)∵AB 是⊙O 的直径,∴∠ADB=90°, ∵OC ∥BD ,∴∠AEO=∠ADB=90°,即OC ⊥AD ,∴AE=ED ; (2)∵OC ⊥AD ,∴,∴∠ABC=∠CBD=36°,∴∠AOC=2∠ABC=2×36°=72°,∴.二、有关扇形面积计算1、A2、C3、C4、A5、C6、A7、D8、C9、C 10、A 11、A 12、A 13、A 1、解:连接AC ,∵从一块直径为2m 的圆形铁皮上剪出一个圆心角为90°的扇形,即∠ABC=90°, ∴AC 为直径,即AC=2m ,AB=BC ,∵AB 2+BC 2=22,∴AB=BC=m ,∴阴影部分的面积是=(m 2),故选:A .2、解:连接OB 和AC 交于点D ,如图所示:∵圆的半径为2,∴OB=OA=OC=2,又四边形OABC 是菱形,∴OB ⊥AC ,OD=OB=1, 在Rt △COD 中利用勾股定理可知:CD==,AC=2CD=2,∵sin ∠COD==,∴∠COD=60°,∠AOC=2∠COD=120°,∴S 菱形ABCO =OB ×AC=×2×2=2,S 扇形AOC ==,则图中阴影部分面积为S 菱形ABCO ﹣S 扇形AOC =π﹣2,故选:C .1题图 2题图 5题图 7题图 8题图3、解:∵在□ABCD 中,∠B=60°,⊙C 的半径为3,∴∠C=120°, ∴图中阴影部分的面积是:=3π,故选:C .4、解:设底面圆的半径为R ,则πR 2=25π,解得R=5, 圆锥的母线长==,所以圆锥的侧面积=•2π•5•=5π;圆柱的侧面积=2π•5•3=30π,所以需要毛毡的面积=(30π+5π)m 2.故选:A .5、解:如图,连接OD ,AD ,∵点C 为OA 的中点,∴OC=OA=OD , ∵CD ⊥OA ,∴∠CDO=30°,∠DOC=60°,∴△ADO 为等边三角形,OD=OA=12,OC=CA=6,∴CD=,6,∴S 扇形AOD ==24π,∴S 阴影=S 扇形AOB ﹣S 扇形COE ﹣(S 扇形AOD ﹣S △COD )=﹣﹣(24π﹣×6×6)=18+6π.故选:C .6、解:利用对称性可知:阴影部分的面积=扇形AEF 的面积﹣△ABD 的面积=﹣×4×2=4π﹣4,故选:A . 7、解:过A 作AD ⊥BC 于D ,∵△ABC 是等边三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°, ∵AD ⊥BC ,∴BD=CD=1,AD=BD=, ∴△ABC 的面积为=,S 扇形BAC ==π,∴莱洛三角形的面积S=3×π﹣2×=2π﹣2,故选:D .8、解:作FH ⊥BC 于H ,连接FH ,如图,∵点E 为BC 的中点,点F 为半圆的中点,∴BE=CE=CH=FH=6, 226+125Rt △ABE ≌△EHF ,∴∠AEB=∠EFH , 而∠EFH+∠FEH=90°,∴∠AEB+∠FEH=90°,∴∠AEF=90°,∴图中阴影部分的面积=S正方形ABCD +S半圆﹣S△ABE﹣S△AEF=12×12+12•π•62﹣12×12×6﹣12•65×65 =18+18π.故选:C.9、解:S阴=S△ABD﹣S扇形BAE=×4×4﹣=8﹣2π,故选:C.10、解:∵=,∴AB=AC,∵∠ACB=75°,∴∠ABC=∠ACB=75°,∴∠BAC=30°,∴∠BOC=60°,∵OB=OC,∴△BOC是等边三角形,∴OA=OB=OC=BC=2,作AD⊥BC,∵AB=AC,∴BD=CD,∴AD经过圆心O,∴OD=OB=,∴AD=2+,∴S△ABC=BC•AD=2+,S△BOC=BC•OD=,∴S阴影=S△ABC+S扇形BOC﹣S△BOC=2++﹣=2+π,故选:A.12.连接OA、OB,则S阴=S扇形OAB=2606360π⨯=6π故选A13、圆所扫过的图形面积=长方形的面积+圆的面积=2π×2+π=5π二、填空题1、734-23π2、4π3、40π4、14π5、43π﹣36、8﹣2π7、6﹣π8、3 9、6π10、2.5π 11、34π 12、 13、25 14、233π+解:∵∠B=90°,∠C=30°,∴∠A=60°,∵OA=OF,∴△AOF是等边三角形,∴∠COF=120°,∵OA=2,∴扇形OGF的面积为:=∵OA为半径的圆与CB相切于点E,∴∠OEC=90°,∴OC=2OE=4,∴AC=OC+OA=6,∴AB=AC=3,∴由勾股定理可知:BC=3∴△ABC的面积为:×3×3=∵△OAF的面积为:×2×=,∴阴影部分面积为:﹣﹣π=﹣π故答案为:﹣π1题图 3题图 8题图2、解:∵∠BOC=60°,△B′OC′是△BOC 绕圆心O 逆时针旋转得到的,∴∠B′OC′=60°,△BCO=△B′C′O ,∴∠B′OC=60°,∠C′B′O=30°,∴∠B′OB=120°, ∵AB=2cm ,∴OB=1cm ,OC′=,∴B′C′=,∴S 扇形B′OB ==π,S 扇形C′OC ==,∴阴影部分面积=S 扇形B′OB +S △B′C′O ﹣S △BCO ﹣S 扇形C′OC =S 扇形B′OB ﹣S 扇形C′OC =π﹣=π;3、解:连接OE 、AE ,∵AB 是⊙O 的直径,∴∠AEB=90°,∵四边形ABCD 是平行四边形,∴AB=CD=4,∠B=∠D=30°,∴AE=AB=2,BE==2,∵OA=OB=OE ,∴∠B=∠OEB=30°,∴∠BOE=120°,∴S 阴影=S 扇形OBE ﹣S △BOE ,=﹣×,=﹣,=﹣,4、解:S 阴=S △ABD ﹣S 扇形BAE =×4×4﹣=8﹣2π,故答案为8﹣2π.5、解:∵矩形ABCD ,∴AD=2,∴S 阴影=S 矩形﹣S 四分之一圆=2×3﹣π×22=6﹣π,6、解:∵在⊙O 上,∠ACB=40°,∴∠AOB=2∠ACB=80°, ∴此扇形的半径为:=3.故答案为:3.7、解:设扇形的半径为Rcm ,∵扇形的圆心角为135°,弧长为3πcm , ∴=3π,解得:R=4,所以此扇形的面积为=6π(cm 2),故答案为:6π.8.解:作DF ⊥y 轴于点D ,EG ⊥x 轴于G ,∴△GEM ∽△DNF ,∵NF =4EM ,∴==4,设GM =t ,则DF =4t ,∴A (4t ,),由AC =AF ,AE =AB ,∴AF =4t ,AE =,EG =, ∵△AEF ∽△GME ,∴AF :EG =AE :GM ,即4t :=:t ,即4t 2=,∴t 2=,图中阴影部分的面积=+=2π+π=2.5π,11、解:连接OC ,作CH ⊥OB 于H ,∵∠AOB =90°,∠B =30°,∴∠OAB =60°,AB =2OA =6, 由勾股定理得,OB ==3,∵OA =OC ,∠OAB =60°,∴△AOC 为等边三角形,∴∠AOC =60°,∴∠COB =30°, ∴CO =CB ,CH =OC =, ∴阴影都分的面积=﹣×3×3×+×3×﹣=π,故答案为:π.11题图12题图 13题图解:在Rt △ABC 中,∵BC =,AC =3.∴AB ==2,∵BC ⊥OC ,∴BC 是圆的切线,∵⊙O 与斜边AB 相切于点D ,∴BD =BC ,∴AD =AB ﹣BD =2﹣=,在Rt △ABC 中,∵sinA ===,∴∠A =30°,∵⊙O 与斜边AB 相切于点D ,∴OD ⊥AB ,∴∠AOD =90°﹣∠A =60°, ∵=tanA =tan30°,∴=,∴OD =1,∴S 阴影==.故答案是:.13、如图,圆心O 在△ABC 内所能到达的区域是△O 1O 2O 3,∵△O 1O 2O 3三边向外扩大1得到△ACB ,∴它的三边之比也是5∶12∶13, ∵△O 1O 2O 3的面积=103,∴O 1O 2=53,O 2O 3=4,O 1O 3=133,连接AO 1 与CO 2,并延长相交于I ,过I 作ID ⊥AC 于D ,交O 1O 2于E ,过I 作IG ⊥BC 于G 交O 3O 2于F ,则I 是Rt △ABC 与Rt△O 1O 2O 3的公共内心,四边形IEO 2F 四边形IDCG 都是正方形,∴IE =IF = 1223122313O O O O O O O O O O ⨯++ =23,ED =1,∴ID =IE +ED =53,设△ACB 的三边分别为5m 、12m 、13m ,则有ID =AC BC AC BC AB ⨯++=2m =53,解得m =56,△ABC 的周长=30m =25.14、连接OE,则S 阴=S 扇形OEC +S △OED =260212123336023ππ⨯+⨯⨯=(三)、解答题 1、(1)证明:连接OC .∵AC =CD ,∠ACD =120°∴∠A =∠D =30°.∵OA =OC ,∴∠ACO =∠A =30°.∴∠OCD =∠ACD ﹣∠ACO =90°.即OC ⊥CD ,∴CD 是⊙O 的切线. (2)解:∵∠A =30°,∴∠COB =2∠A =60°.∴S 扇形BOC =,在Rt △OCD 中,CD =OC ,∴,∴,∴图中阴影部分的面积为.2、作MN ⊥OB,垂足为N,连接OM,则MN=12OA=3,OA=6 ,A(-6,0)由sin ∠ABO 3则∠A=60°tan ∠BAO=OBOA∴3 ∴B (0,3)设直线AB:y=kx+b,将A,B 点的坐标代入得:3,b=3∴3x+3 S 阴=S 扇形MAO -S △MAO 2120(23)1634332ππ⨯-⨯-3、证明:(1)如图1,连接OD ,OC ,OE .∵AD ,BC ,CD 是⊙O 的切线, ∴OA ⊥AD ,OB ⊥BC ,OE ⊥CD ,AD =ED ,BC =EC ,∠ODE =12∠ADC ,∠OCE =12∠BCD ∴AD //BC ,∴∠ODE +∠OCE =12(∠ADC +∠BCD )=90°, ∵∠ODE +∠DOE =90°,∴∠DOE =∠OCE . 又∵∠OED =∠CEO =90°,∴△ODE ∽△COE .∴OE ECED OE=,OE 2=ED ·EC ∴4OE 2=4AD ·BC ,∴AB 2=4AD ·BC (2)解:如图2,由(1)知∠ADE =∠BOE ,∵∠ADE =2∠OFC ,∠BOE =∠2COF ,∴∠COF =∠OFC ,∴△COF 等腰三角形。

弧长与扇形面积圆锥侧面积

弧长与扇形面积圆锥侧面积

弧长与扇形面积、圆锥侧面积【知识详解】知识点1、弧长公式因为360°的圆心角所对的弧长就是圆周长C=2R,所以1°的圆心角所对的弧长是,于是可得半径为R的圆中,n°的圆心角所对的弧长l的计算公式:,说明:(1)在弧长公式中,n表示1°的圆心角的倍数,n和180都不带单位“度”,例如,圆的半径R=10,计算20°的圆心角所对的弧长l时,不要错写成。

(2)在弧长公式中,已知l,n,R中的任意两个量,都可以求出第三个量。

知识点2、扇形的面积如图所示,阴影部分的面积就是半径为R,圆心角为n°的扇形面积,显然扇形的面积是它所在圆的面积的一部分,因为圆心角是360°的扇形面积等于圆面积,所以圆心角为1°的扇形面积是,由此得圆心角为n°的扇形面积的计算公式是。

又因为扇形的弧长,扇形面积,所以又得到扇形面积的另一个计算公式:。

知识点3、圆锥的侧面积圆锥的侧面展开图是一个扇形,如图所示,设圆锥的母线长为l,底面圆的半径为r,那么这个扇形的半径为l,扇形的弧长为2,圆锥的侧面积,圆锥的全面积说明:(1)圆锥的侧面积与底面积之和称为圆锥的全面积。

(2)研究有关圆锥的侧面积和全面积的计算问题,关键是理解圆锥的侧面积公式,并明确圆锥全面积与侧面积之间的关系。

知识点4、圆柱的侧面积圆柱的侧面积展开图是矩形,如图所示,其两邻边分别为圆柱的高和圆柱底面圆的周长,若圆柱的底面半径为r ,高为h ,则圆柱的侧面积,圆柱的全面积圆锥与圆柱的比较名称圆锥 圆柱图形图形的形成过程由一个直角三角形旋转得到的,如Rt △SOA 绕直线SO 旋转一周。

由一个矩形旋转得到的,如矩形ABCD 绕直线AB 旋转一周。

图形的组成 一个底面和一个侧面 两个底面和一个侧面 侧面展开图的特征扇形 矩形面积计算方法补充:知识点5、弓形的面积(1)弓形的定义:由弦及其所对的弧(包括劣弧、优弧、半圆)组成的图形叫做弓形。

中考数学专题复习:圆锥的侧面积

中考数学专题复习:圆锥的侧面积

中考数学专题复习:圆锥的侧面积一、单选题1.已知圆锥的高为4 cm,底面半径为3 cm,那么,这个圆锥的侧面展开图扇形的圆心角的度数为();A.180°B.200°C.216°D.225°2.若将半径为12cm的半圆形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径是()A.2cm B.3cm C.4cm D.6cm3.如图,有一圆心角为120°、半径长为6cm的扇形,若将OA、OB重合后围成一圆锥侧面,那么圆锥的高是()A.B C.D.4.如图所示,圆锥底面的半径为5,母线长为20,一只蜘蛛从底面圆周上一点A出发沿圆锥的侧面爬行一周后回到点A的最短路程是( )A.8B.C.D.5.如图,从一圆形纸片上剪出一个半径为R、圆心角为90°的扇形;和一半径为r的圆,使之恰好围成如图所示的圆锥,则R与r的关系为()A .R=2rB .R=4rC .D .R=6r6.如图,如果从半径为3cm 的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为( )A .2cmBC .4cm D7.如图,圆锥的底面半径为2,母线长为6,则侧面积为( )A .4πB .6πC .12πD .16π8.如图物体由两个圆锥组成,其主视图中,90,105A ABC ︒︒∠=∠=.若上面圆锥的侧面积为1,则下面圆锥的侧面积为( )A .2B C .32 D 二、填空题 9.一个圆锥的体积是6立方分米,高3分米,底面积是________.10.圆锥的底面半径为1cm ,母线长为3cm ,则它的侧面展开图的圆心角的度数等于________; 11.如图所示,把半径为4 cm 的半圆围成一个圆锥的侧面,使半圆圆心为圆锥的顶点,那么这个圆锥的高是________cm .(结果保留根号)12.如图,扇形的半径为3,圆心角θ为120°,用这个扇形围成一个圆锥的侧面,所得圆锥的底面半径为________.13.如图,从一块半径为1m的圆形铁皮上剪出一个圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为________m.14.如图所示,该圆锥的左视图是边长为2 cm的等边三角形,则此圆锥的侧面积为________ 2.cm15.如图,有一圆锥形粮堆,其主视图是边长为6m的正三角形ABC,母线AC的中点处有一老鼠正在偷吃粮食,小猫从B处沿圆锥表面去偷袭老鼠,则小猫经过的最短路程是________m(结果保留根号)16.如图,圆锥的轴截面是边长为6cm的正三角形ABC,P是母线AC的中点.则在圆锥的侧面上从B点到P点的最短路线的长为_____.三、解答题17.已知圆锥的底面半径为r =20cm ,高h =,现在有一只蚂蚁从底边上一点A 出发.在侧面上爬行一周又回到A 点,求蚂蚁爬行的最短距离.18.如图,已知在ABC 中,4,30,090AB AC B C ︒︒︒==∠=<∠<.(1)求点A 到直线BC 的距离以及BC 的长度.(2)将ABC 绕线段BC 所在的直线旋转一周,求所得几何体的表面积.19.把一个圆锥截成圆台,已知圆台的上、下底面半径的比是1∶4,母线长10cm.求:圆锥的母长.20.有一圆锥形塔尖,它的侧面积是14.13 m2,底面圆的半径等于1.5 m,求这个塔尖的高(精确到0.1 m).21.如图所示是一个几何体的三视图.(1)写出这个几何体的名称;(2)根据图中数据计算这个几何体的表面积;(3)如果一只蚂蚁要从这个几何体上的点B出发,沿表面爬到AC的中点D,请你求出这条路线的最短路程.22.小明打算用一张半圆形的纸(如图)做一个圆锥.在制作过程中,他先将半圆剪成面积比为1∶2的两个扇形.(1)请你在图中画出他的裁剪痕迹(要求尺规作图,不写作法,保留作图痕迹);(2)若半圆半径是3,小明用裁出的大扇形作为圆锥的侧面,请你求出小明所做的圆锥的高.23.有一个直径为1m的圆形铁皮,要从中剪出一个最大的圆心角为90°的扇形ABC,如图所示.(1)求被剪掉阴影部分的面积:(2)用所留的扇形铁皮围成一个圆锥,该圆锥的底面圆的半径是多少?24.如图,在正方形网格图中建立一直角坐标系,一条圆弧经过网格点A、B、C,请在网格中进行下列操作:(1)请在图中确定该圆弧所在圆心D点的位置,D点坐标为;(2)连接AD、CD,则∶D的半径为;扇形DAC的圆心角度数为;(3)若扇形DAC是某一个圆锥的侧面展开图,求该圆锥的底面半径.参考答案1.C5,=则:π5 2π3,180n⨯⨯=解得216.n=故选:C.2.D【解析】解:圆锥的侧面展开图的弧长为2π×12÷2=12π(cm),∶圆锥的底面半径为12π÷2π=6(cm),故选D.3.A【解析】解:由圆心角为120°,半径长为6cm,可知扇形的弧长为:12064180ππ⋅⨯=cm,即圆锥的底面圆周长为4πcm,可得底面圆半径为2cm,=.故选A.4.D【解析】圆锥的底面周长=2π×5=10π,设侧面展开图的圆心角的度数为n.∶n20 10180ππ⋅=,解得n=90,圆锥的侧面展开图,如图所示:∶故选D .5.B 【解析】扇形的弧长是:90180R π⋅=2R π, 圆的半径为r ,则底面圆的周长是2r π,∶恰好围成如图所示的圆锥, ∶2Rπ=2r π,∶R=4r ,故选:B .6.B【解析】解:∶从半径为3cm 的圆形纸片剪去13圆周的一个扇形, ∶剩下的扇形的角度=360°×23=240°, ∶留下的扇形的弧长=2403180π⨯=4π, ∶圆锥的底面半径r =42ππ=2cm ,∶.故选:B .7.C【解析】根据圆锥的侧面积公式:πrl=π×2×6=12π,故选C .8.D【解析】∶∶A =90°,AB =AD ,∶∶ABD 为等腰直角三角形,∶∶ABD =45°,BD ,∶∶ABC =105°,∶∶CBD =60°,而CB =CD ,∶∶CBD 为等边三角形,∶BC=BD,∶上面圆锥与下面圆锥的底面相同,∶上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,∶=故选D.9.6平方分米.【解析】解:6336⨯÷=(平方分米).故答案为:6平方分米.10.120°【解析】设圆心角为n,底面半径是1,则底面周长π3 2π180n⨯==,∶120.n=故答案为:120.11.【解析】∶半径为4cm的半圆围成一个圆锥的侧面,∶圆锥的侧面展开图的弧长为4πcm,∶圆锥的底面周长为4πcm,∶圆锥底面的半径为4π÷2π=2cm,∶圆锥的高为=.12.1【解析】扇形的弧长=1203180π⨯=2π,∶圆锥的底面半径为2π÷2π=1.故答案为1.13.1 3【解析】连接OA,OB,则∶BAO=12∶BAC=11202⨯︒=60°,又∶OA=OB ,∶∶AOB 是等边三角形,∶AB=OA=1,∶∶BAC=120°,∶O B C 的长为:120AB 21803ππ=, 设圆锥底面圆的半径为r 223r ππ= 13r = 故答案为13.14.2π【解析】根据题意,圆锥的侧面积=12×2×2π=2π(cm 2). 故答案为:2π15.【解析】根据圆锥的侧面积等于展开扇形的面积得:2πrl π3618πm =⨯⨯=,设圆锥侧面展开图圆心角为n ,则n π36360⨯=18π,解得n=180︒,展开的半个侧面的圆心角是90︒(如图),因为两点之间线段最短,则根据勾股定理得(m).16.【解析】解:圆锥底面是以BC 为直径的圆,圆的周长是BC π=6π,以AB 为一边,将圆锥展开,就得到一个以A 为圆心,以AB 为半径的扇形,弧长是l =6π, 设展开后的圆心角是n °,则66180n ππ⨯=, 解得:n =180,即展开后∶BAC =12×180°=90°, AP =12AC =3,AB =6, 则在圆锥的侧面上从B 点到P 点的最短路线的长就是展开后线段BP 的长,由勾股定理得:BP ==故答案为:.17.【解析】解:设扇形的圆心角为n ,圆锥的在Rt∶AOS 中,∶r=20cm ,h=,∶由勾股定理可得母线,而圆锥侧面展开后的扇形的弧长为2×20π=18080n π⨯. ∶n=90°即∶SAA′是等腰直角三角形,∶由勾股定理得:.∶蚂蚁爬行的最短距离为.18.(1)A 到BC 的距离为2,BC 的长度为2;(2)(8π+【解析】(1)如图,过点A 作AD BC ⊥于点D .在Rt △ABD 中,30,B ∠=︒12,2AD AB BD ∴===== ∶点A 到直线BC 的距离为2在Rt ACD △中,2CD ==,2BC BD CD ∴=+=.(2)将ABC 绕线段BC 所在直线旋转一周,所得几何体的表面积为 AD AB AD AC ππ⋅⋅+⋅⋅2428(8ππππ=⨯⨯+⨯⨯=+=+ 19.圆锥的母线长为403cm. 【解析】设圆锥的母线长为l ,圆台上、下底半径为r R ,.()101014403l r l Rl l l cm -=-∴=∴= 答:圆锥的母线长为403cm. 20.约2.6 m.【解析】如图:1.5m,OB =则圆锥的底面周长为:2π 1.53π,⨯=圆锥的侧面积=13π14.13,2AB ⨯⨯= 3,AB m ≈则这个塔尖的高 2.6OA m ==≈答:这个塔尖的高约2.6 m.21.(1)圆锥;(2)16π;(3)【解析】解:(1)由该几何体的三视图可知:这个几何体是圆锥;(2)由图中数据可知:这个圆锥的底面半径为2,母线长为6,∶S 表=S 侧+S 底=π r l +π r 2=12π+4π=16π(cm 2);(3)如下图所示,将圆锥侧面沿AB 展开,则图中线段BD′为所求最短路程. 设∶BAB′的度数为n ,则由24BB r ππ=='可得:64180n ππ⨯=,解得:120n =, ∶点C′为'BB 的中点,∶∶BAC′=60°,又∶AB=AC′,∶∶ABC′是等边三角形,又∶D′是AC′的中点,∶∶AD′B=90°, ∶sin∶BAD′=BD AB',∶BD′=AB·sin60°=6×2=cm ),∶蚂蚁爬行的最短路程是22.(1)见解析【解析】解:(1)如答图所示;(2)∶半圆的半径为3,∶半圆的弧长为3π,∶剪成面积比为1∶2的两个扇形.∶大扇形的弧长为2π,设围成的圆锥的底面半径为r ,则2πr =2π,解得r =1,∶圆锥的高为=2.23.(1)8平方米;(2 【解析】(1)∶∶BAC=90°∶弦BC 为直径∶AB=AC∶AB=AC=BC·sin45°=∶S 阴影=S ∶O -S 扇形ABC =()2-;(2)设圆锥底面圆的半径为r,而弧BC的长即为圆锥底面的周长,由题意得902180π,解得r=8m答:(1)被剪掉的阴影部分的面积为;(2)该圆锥的底面圆半径是. 24.(1)(2,0);(2);(3【解析】(1)如图,分别作AB、BC的垂直平分线,两线交于点D,∶D点的坐标为(2,0).(2)连接DA、DC,如图,则即∶D的半径为∶OD=CE,OA=DE=4,∶AOD=∶CEO=90°,∶∶AOD∶∶DEC,∶∶OAD=∶CDE,∶∶ADO+∶CDE=∶ADO+∶OAD=90°,∶∶ADC=90°,即扇形DAC的圆心角度数为90°.(3)设圆锥的底面半径是r,则902180ππ⨯=r∶r =,.。

圆锥的侧面积和全面积教学设计与评析

圆锥的侧面积和全面积教学设计与评析

圆锥的侧面积和全面积教学设计与评析邓其有效的数学学习活动离不开学生主动参与,缺乏学生参与的教学,实际上是低效甚至无效的教学。

但是,教学活动一定要结合学生生活数学实际,只有具体、直观、生动、实践性的教学活动才能激发学生主动参与的兴趣,才能给学生直接的体验、直观的感受,留给学生“形象”的记忆,帮助学生跨过数学抽象、难以接受、难以理解、难以运用的门坎。

在此,我仅以“圆锥的侧面积和全面积”教学设计来呈现具体、直观、生动、实践性的教学活动。

教学目标:1、了解圆锥得结构,会计算圆锥的侧面积和全面积,并会解决实际问题。

2、增强学生用数学知识解决实际问题的能力,引导学生对圆锥展开图的认识,培养学生空间观念,激发学生的好奇心和求知欲,并在运用数学知识解答实际问题的活动中获取成功的体验,建立学习的自信心。

教学重点:圆锥的侧面积和全面积的计算。

教学难点1、明确扇形中各元素与圆锥各个元素之间的关系。

2、难点突破对策:自制教具,展开圆锥的侧面,呈现具体、直观、生动的生活数学。

教学过程:一、创设情景,引入课题引导学生复习弧长公式和扇形面积公式。

展现用纸片制作的圆锥,让学生观察,生活中见过圆锥吗?如何计算制作圆锥的这张纸的面积呢?【评析】复习已学知识点,为探究新知识做好准备,通过展现圆锥模型,获取生活数学,提出问题,引出课题,激发学生的好奇心和求知欲。

符合“数学来源于生活实际”的理念。

二、引导观察,探究新知1、认识圆锥引导学生观察圆锥,看到圆锥那些部分,再引导学生用尺规作图法做出立体图形(如图1)。

请观察图1,圆锥可以由什么图形旋转二而得?引导学生旋转手中的三角尺(以个边所在的直线为旋转轴)……【评析】提高学生观察能力、动手能力,培养学生空间观念。

将生活问题数学化,让学生从一些简单的实例中,不断体会从现实世界中寻找数学模型、建立数学关系的方法。

2、圆锥的三个元素及其关系圆锥的母线(l):圆锥底面圆上任意一点与圆锥顶点的连线段。

八年级数学圆锥的侧面积

八年级数学圆锥的侧面积

八年级数学圆锥的侧面积
3.8 圆锥的侧面积
教学目标
(一)教学知识点
1.经历探索圆锥侧面积计算公式的过程.
2.了解圆锥的侧面积计算公式,并会应用公式解决问题.
(二)能力训练要求
1.经历探索圆锥侧面积计算公式的过程,发展学生的实践探索能力.2.了解圆锥的侧面积计算公式后,能用公式进行计算,训练学生的数学应用能力.
(三)情感与价值观要求
1.让学生先观察实物,再想象结果,最后经过实践得出结论,通过这一系列活动,培养学生的观察、想象、实践能力,同时训练他们的语言表达能力,使他们获得学习数学的经验,感受成功的体验.
2.通过运用公式解决实际问题,让学生懂得数学与人类生活的密切联系,激发他们学习数学的兴趣,克服困难的决心,更好地服务于实际.
教学重点
1.经历探索圆锥侧面积计算公式的过程.
2.了解圆锥的侧面积计算公式,并会应用公式解决问题.
教学难点
经历探索圆锥侧面积计算公式.
教学方法
观察--想象--实践--总结法。

圆锥知识点六年级

圆锥知识点六年级

圆锥知识点六年级圆锥是几何图形中的重要一员,它是由一个平面围绕着一个点旋转形成的。

在六年级的数学学习中,我们需要了解一些关于圆锥的基本知识点。

下面将就圆锥的定义、性质以及相关公式做一简单介绍。

一、圆锥的定义圆锥是由一个顶点和一个底面组成的几何图形。

底面是一个封闭的平面曲线,可以是一个圆或者任意不规则的封闭曲线。

顶点是一个点,它与底面上的每一个点的连线都通过这个点。

这个连线被称为母线。

圆锥的实际应用非常广泛,例如喷泉、冰淇淋蛋筒等。

二、圆锥的性质1. 母线:连接圆锥顶点和底面上的任意一点的线段称为圆锥的母线。

所有的母线都通过圆锥顶点。

2. 直母线:连接圆锥顶点和底面圆心的母线称为直母线。

直母线与底面垂直相交,且通过圆锥的中心。

3. 斜母线:连接圆锥顶点和底面上除圆心以外的其他点的母线称为斜母线。

斜母线与底面不垂直相交。

三、圆锥的体积和表面积公式1. 圆锥体积公式:圆锥的体积等于底面积乘以高再除以3,即 V = 1/3 * 底面积* 高。

其中,底面积指的是底面上的封闭曲线的面积。

2. 圆锥表面积公式:圆锥的表面积等于底面积加上底面到顶点的侧面的面积,即S = 底面积 + 侧面积。

其中,底面积在前面已经提到了,侧面积指的是圆锥的侧面展开后形成的曲边梯形的面积。

四、圆锥的例题解析1. 例题一:已知一个圆锥的底面半径为5厘米,高为8厘米,求该圆锥的体积和表面积。

解答:根据公式,圆锥的体积为V = 1/3 * π * r^2 * h = 1/3 * 3.14 * 5^2 * 8 ≈ 209.33立方厘米。

圆锥的表面积为S = π * r^2 + π * r * l = 3.14 * 5^2 + 3.14 * 5 * 9.43 ≈ 282.51平方厘米。

2. 例题二:一个底半径为6米,侧面切角为60°的圆锥,求其高和体积。

解答:根据已知信息,底面圆的半径为6米,即 r = 6。

又因为侧面与底面的夹角为60°,所以底面半径、母线和侧面之间构成一个等边三角形,高等于底面半径乘以根号3,即h = 6 * √3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.6圆锥的侧面积一、选择题:1. 小明在一次登山活动中捡到一块矿石,回家后,他使用一把刻度尺,一只圆柱形的玻璃杯和足量的水,就测量出这块矿石的体积.如果他量出玻璃杯的内直径d ,把矿石完全浸没在水中,测出杯中水面上升了高度h ,则小明的这块矿石体积是( ) A.24d h π B.22d h πC.2d h π D.24d h π 2. 若圆锥的侧面展开图是半径为3cm 的半圆,则此圆锥的底面半径是( )A.1.5cmB.2cmC.2.5cmD.3cm3. 若圆锥的母线长为13cm ,底面半径为5cm ,则此圆锥的高为( )A.6cmB.8cmC.10cmD.12cm4. 已知圆锥的侧面展形图的面积是215cm π,若母线长是5cm ,则圆锥的底面半径为() A.3cm 2B.3cmC.4cmD.6cm4. 如图1,将半径为2的圆形纸片,沿半径OA ,OB 将其截成面积为1:3两部分,将所得的扇形围成圆锥的侧面,则圆锥的底面半径为( )A.12B.1 C.1或3 D.12或32图1 图2 图35. 如图2,在△ABC 中,90C ∠=,AC BC >,若以AC 为底面圆半径、BC 为高的圆锥的侧面积为1S ,以BC 为底面圆半径、AC 为高的圆锥的侧面积为2S ,则( ) A.12S S =B.12S S >C.12S S <D.1S ,2S 有大小关系不确定6. 如图3,分别以等腰直角三角板的直角边、斜边为旋转轴旋转,所形成的旋转体的全面积依次记为12S S 、,则12S S 与的大小关系为( )(A)12S S >(B)12S S < (C)12S S =(D)无法判断二、填空题:1. 圆锥的轴截面是一个等边三角形,则这个圆锥的底面积、侧面积、表面积的比是 .2. 如图4,圆锥的母线6AB =,底面半径2CB =,则其侧面展开图扇形的圆心角α=.图4 图5 3. 如图5,圆锥的底面半径5cm OA =,高12cm SO =,则它的全面积为2cm .4. 一个圆锥形烟囱帽的底面直径是80cm ,母线长是50cm ,这个烟囱帽的侧面展开图的面积是2cm .5. 用一直径为10cm 的玻璃球和一个圆锥形的牛皮纸纸帽可以制成一个不倒翁玩具,不倒翁的轴剖面图如右图所示,圆锥的母线AB 与O 相切于点B ,不倒翁的顶点A 到桌面L 的最大距离是18cm .若将圆锥形纸帽的表面全涂上颜色,则需要涂色部分的面积约为 cm 2(精确到 三、解答题:1. 圆锥形的烟囱帽的底面直径为80cm ,母线长为50cm ,求这个烟囱帽的侧面展开图的面积是多少?SOαA CBL2. 如图所示,直角梯形ABCD 中,AB DC ∥,7cm AB =,4cm BC CD ==,以AB 所在直线为轴旋转一周,得到一个几何体,求它的表面积.3. 一个圆锥形零件的母线长为a ,底面的半径为r ,求这个圆锥形零件的侧面积和全面积.4. 已知:一个圆锥的侧面展开图是圆心角为36的扇形,扇形面积为10cm 2.求这个圆锥的表面积.5. 把一个半径为8cm 的圆片,剪去一个圆心角为90的扇形后,用剩下的部分做成一圆锥的侧面,求这个圆锥的高.6. 已知:一个圆锥的侧面展开图是半径为20cm ,圆心角为120的扇形,求这圆锥的底面圆的半径和高.A ODCB7. 已知:在△ABC 中,90C ∠=,20AC =cm ,15BC =cm .以直线AB 为轴把这个直角三角形旋转一周.求所得的旋转体的表面积.8. 已知母线长为10cm 的圆锥的侧面展开是一个圆心角为90的扇形,求这个圆锥的底面半径.9. 如图,某厂有一圆锥形的烟囱帽,其底面半径和高的比为4:3,求它的侧面展开图的圆心角的度数.10. 如图所示,△ABC 中,90C ∠=,30B ∠=,10cm AC =,过点C 作直线l AB ∥,以直线l 为轴,将△ABC 旋转一周,求所得旋转体的表面积.2O 1O30参考答案一、选择题:1. 小明在一次登山活动中捡到一块矿石,回家后,他使用一把刻度尺,一只圆柱形的玻璃杯和足量的水,就测量出这块矿石的体积.如果他量出玻璃杯的内直径d ,把矿石完全浸没在水中,测出杯中水面上升了高度h ,则小明的这块矿石体积是( ) A.24d h π B.22d h πC.2d h π D.24d h π 答案:A2. 若圆锥的侧面展开图是半径为3cm 的半圆,则此圆锥的底面半径是( )A.1.5cm B.2cmC.2.5cm D.3cm答案:A3. 若圆锥的母线长为13cm ,底面半径为5cm ,则此圆锥的高为( )A.6cm B.8cmC.10cm D.12cm答案:D4. 已知圆锥的侧面展形图的面积是215cm π,若母线长是5cm ,则圆锥的底面半径为() A.3cm 2B.3cmC.4cmD.6cm答案:B4. 如图,将半径为2的圆形纸片,沿半径OA ,OB 将其截成面积为1:3两部分,将所得的扇形围成圆锥的侧面,则圆锥的底面半径为( )A.12B.1 C.1或3 D.12或32答案:D5. 如图,在△ABC 中,90C ∠=,AC BC >,若以AC 为底面圆半径、BC 为高的圆锥的侧面积为1S ,以BC 为底面圆半径、AC 为高的圆锥的侧面积为2S ,则( )A.12S S = B.12S S >C.12S S < D.1S ,2S 有大小关系不确定答案:B6. 如图,分别以等腰直角三角板的直角边、斜边为旋转轴旋转,所形成的旋转体的全面积依次记为12S S 、,则12S S 与的大小关系为((A)12S S > (B)12S S < (C)12S S =(D)无法判断答案:A二、填空题:1. 圆锥的轴截面是一个等边三角形,则这个圆锥的底面积、侧面积、表面积的比是.答案:1:2:32. 如图,圆锥的母线6AB =,底面半径2CB =,则其侧面展开图扇形的圆心角α=.答案:1203. 如图,圆锥的底面半径5cm OA =,高12cm SO =,则它的全面积为2cm .答案:90π4. 一个圆锥形烟囱帽的底面直径是80cm ,母线长是50cm ,这个烟囱帽的侧面展开图的面积是2cm .答案:2000π5. 用一直径为10cm 的玻璃球和一个圆锥形的牛皮纸纸帽可以制成一个不倒翁玩具,不倒翁的轴剖面图如右图所示,圆锥的母线AB 与O 相切于点B ,不倒翁的顶点A 到桌面LSOαA CB的最大距离是18cm .若将圆锥形纸帽的表面全涂上颜色,则需要涂色部分的面积约为 cm 2(精确到答案:174三、解答题:1. 圆锥形的烟囱帽的底面直径为80cm ,母线长为50cm ,求这个烟囱帽的侧面展开图的面积是多少? 答案:211250240cm 22S l r =π=⨯⨯⨯π=2000π()侧. 2. 如图所示,直角梯形ABCD 中,AB DC ∥,7cm AB =,4cm BC CD ==,以AB所在直线为轴旋转一周,得到一个几何体,求它的表面积.答案:四边形BCDO 为矩形,3cm OA AB OB =-=.在Rt △ADO 中,5cm AD ==.21(2)45cm 2S OD AD =π=⨯π=20π()圆锥侧,2(2)2cm S BC CD =π=⨯π⨯4⨯4=32π()圆柱侧,2216cm S BC =π=π()底, 220cm S =π+32π+16π=68π()表.3. 一个圆锥形零件的母线长为a ,底面的半径为r ,求这个圆锥形零件的侧面积和全面积. 答案:侧面积为ra π,全面积为2ra r ππ+4. 已知:一个圆锥的侧面展开图是圆心角为36的扇形,扇形面积为10cm 2.求这个圆锥的表面积. 答案:11cm 25. 把一个半径为8cm 的圆片,剪去一个圆心角为90的扇形后,用剩下的部分做成一圆锥的侧面,求这个圆锥的高. 答案:A ODCB L6. 已知:一个圆锥的侧面展开图是半径为20cm ,圆心角为120的扇形,求这圆锥的底面圆的半径和高. 答案:底面圆的半径203cm7. 已知:在△ABC 中,90C ∠=,20AC =cm ,15BC =cm .以直线AB 为轴把这个直角三角形旋转一周.求所得的旋转体的表面积. 答案:420πcm 2.8. 已知母线长为10cm 的圆锥的侧面展开是一个圆心角为90的扇形,求这个圆锥的底面半径.答案:由已知可得扇形弧长为90105180π⨯=π,由25r π=π,得52r =, 即这个圆锥的底面半径为2.5cm .9. 如图,某厂有一圆锥形的烟囱帽,其底面半径和高的比为4:3,求它的侧面展开图的圆心角的度数.答案:设底面半径为4x ,则高为3x ,5x =, 设圆心角为n , 则2180nx x π5=π4,288n =, 即圆心角为288.10. 如图所示,△ABC 中,90C ∠=,30B ∠=,10cm AC =,过点C 作直线l AB ∥,以直线l 为轴,将△ABC 旋转一周,求所得旋转体的表面积.答案:作1AO l ⊥,垂足为1O ,作2BO l ⊥,垂足为2O ,设所求的旋转体表面积为S ,以AC ,BC ,AB为母线的两个圆锥及圆柱的侧面积分2O 1O30别为AC S ,BC S ,AB S ,则AC BC AB S S S S =++.在Rt △ABC 中,30B ∠=,220AB AC ==,1tan 30BC AC==.AB l ∥,230BCO ∴∠=,21sin 30102O B BC ===12O A O B ==2150cm AC S O A AC =π=),22150(cm BC S O B BC =π=π),212cm AB S O A AB =π=),2150)cm S ∴=π().。

相关文档
最新文档