2012考研数学证明题

合集下载

2012年考研数学二真题和答案

2012年考研数学二真题和答案

2012年全国硕士研究生入学统一考试数学二试题解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)曲线221x x y x +=-渐近线的条数为()(A )0 (B )1 (C )2 (D )3 【答案】:(C )【解析】:221lim 1x x xx →+=∞-,所以1x =为垂直渐近线 22lim 11x x xx →∞+=-,所以1y =为水平渐近线,没有斜渐近线,总共两条渐近线,选(C )。

(2)设函数2()(1)(2)()x x nx f x e e e n =--- ,其中n 为正整数,则'(0)f = (A )1(1)(1)!n n --- (B )(1)(1)!n n -- (C )1(1)!n n -- (D )(1)!n n -【答案】:(C ) 【解析】:''22()(2)()(1)(2)()xxnx x x nxf x e e e n e e e n ⎡⎤=--+---⎣⎦所以'(0)f =1(1)!n n --,故选(C )。

(3)设0,(1,2,...)n a n >=,1...n n s a a =++,则数列{}n s 有界是数列{}n a 收敛的 (A)充分必要条件.(B)充分非必要条件.(C )必要非充分条件. (D )即非充分地非必要条件.【答案】:(B)【解析】:由于0n a >,{}n s 是单调递增的,可知当数列{}n s 有界时,{}n s 收敛,也即lim nn s →∞是存在的,此时有()11lim lim lim lim 0n n n n n n n n n a s s s s --→∞→∞→∞→∞=-=-=,也即{}n a 收敛。

反之,{}n a 收敛,{}n s 却不一定有界,例如令1n a =,显然有{}n a 收敛,但n s n =是无界的。

2012年考研数学三真题及标准答案

2012年考研数学三真题及标准答案

2012年考研数学三真题一、选择题(1~8小题,每小题4分,共32分。

下列每题给出的四个选项中,只有一个选项是符合题目要求的。

)(1)曲线y=x 2+xx2−1渐近线的条数为(A)0 (B)1 (C)2 (D)3 【答案】C。

【解析】由limx→+∞y=limx→+∞x2+xx2−1=1=limx→−∞y=limx→−∞x2+xx2−1,得y=1是曲线的一条水平渐近线且曲线没有斜渐近线;由limx→1y=limx→1x2+xx−1=∞得x=1是曲线的一条垂直渐近线;由limx→−1y=limx→−1x2+xx−1=12得x=−1不是曲线的渐近线;综上所述,本题正确答案是C【考点】高等数学—一元函数微分学—函数图形的凹凸、拐点及渐近线(2)设函数f(x)=(e x−1)(e2x−2)⋯(e nx−n),其中n为正整数,则f′(0)=(A)(−1)n−1(n−1)! (B)(−1)n(n−1)!(C)(−1)n−1(n)! (D)(−1)n(n)!【答案】A【解析】【方法1】令g (x )=(e 2x −2)⋯(e nx −n),则f (x )=(e x −1)g (x )f ′(x)=e xg (x )+(e x −1)g′(x )f ′(0)=g (0)=(−1)(−2)⋯(−(n −1))=(−1)n−1(n −1)!故应选A.【方法2】由于f (0)=0,由导数定义知f ′(0)=lim x→0f(x)x =lim x→0(e x −1)(e 2x −2)⋯(e nx −n)x =lim x→0(e x −1)x ∙lim x→0(e 2x −2)⋯(e nx −n)=(−1)(−2)⋯(−(n −1))=(−1)n−1(n −1)!.【方法3】排除法,令n =2,则f (x )=(e x −1)(e 2x −2)f ′(x )=e x (e 2x −2)+2e 2x (e x −1)f ′(0)=1−2=−1则(B)(C)(D)均不正确综上所述,本题正确答案是(A )【考点】高等数学—一元函数微分学—导数和微分的概念(3)设函数f(t)连续,则二次积分∫dθπ20∫f(r 2)rdr 22cos θ= (A )∫dx 20∫√x 2+y 2f(x 2+y 2)dy √4−x 2√2x−x 2(B) ∫dx 20∫f(x 2+y 2)dy √4−x 2√2x−x 2。

2012考研数学真题+答案

2012考研数学真题+答案
2
x2 y 2 2
1 x x2 cos x 1 1 x 2
……10 分
的极值.

x2 y2 2
f y xye

x2 y2 2
, ……3 分

f x 0, 得驻点(1,0)和(-1,0). f 0 , y
2 x2 y2 2
x( x 3)e 记 A f xx
(C)
2
(D)
3Байду номын сангаас
(A)
n (D) ( 1) n !
(2) 设函数 f ( x) (e x 1)(e2 x 2) (en x n) ,其中 n 为正整数,则 f (0)
n 1 (A) ( 1) ( n 1)! n (B) ( 1) ( n 1)! n 1 (C) ( 1) n !
1 a 0 0
解: (I) A
0 1 a 0 0 0 1 a a 0 0 1
1 a4.
……3 分
(II)若方程组 Ax 有无穷多解,则 A 0. 由(I)可得 a 1 或 a 1 .
郝海龙:考研数学复习大全·配套光盘·2012 年数学试题答案和评分参考
1 x2 1 1 x ln , 又 S ( 0) 3 , 所以和函数 S ( x ) (1 x 2 ) 2 x 1 x 3,
(18)(本题满分 10 分) 已知曲线 L:
0 x 1,
(3) 如果函数 f ( x, y ) 在 (0, 0) 处连续,那么下列命题正确的是 (A) 若极限 lim
x 0 y 0
(B)
f ( x, y ) 存在,则 f ( x, y ) 在 (0, 0) 处可微 x y

2012考研数学二真题及参考答案

2012考研数学二真题及参考答案

2012考研数学二真题及参考答案一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)曲线221x x y x +=-渐近线的条数为()(A )0 (B )1 (C )2 (D )3 【答案】:C【解析】:221lim 1x x xx →+=∞-,所以1x =为垂直的 22lim 11x x xx →∞+=-,所以1y =为水平的,没有斜渐近线 故两条选C (2)设函数2()(1)(2)()xxnx f x e e e n =---,其中n 为正整数,则'(0)f =(A )1(1)(1)!n n ---(B )(1)(1)!nn -- (C )1(1)!n n --(D )(1)!nn - 【答案】:C 【解析】:'222()(2)()(1)(22)()(1)(2)()x x nx x x nx x x nx f x e e e n e e e n e e ne n =--+---+---所以'(0)f =1(1)!n n --(3)设a n >0(n =1,2,…),S n =a 1+a 2+…a n ,则数列(s n )有界是数列(a n )收敛的 (A)充分必要条件. (B)充分非必要条件.(C )必要非充分条件. (D )即非充分地非必要条件. 【答案】:(A)【解析】:由于0na >,则1n n a ∞=∑为正项级数,S n=a 1+a 2+…a n为正项级数1n n a ∞=∑的前n 项和。

正项级数前n 项和有界与正向级数1nn a∞=∑收敛是充要条件。

故选A(4)设2kx keI e=⎰sin x d x (k=1,2,3),则有D(A )I 1< I 2 <I 3. (B) I 2< I 2< I 3.(C) I 1< I 3 <I 1,(D) I 1< I 2< I 3. 【答案】:(D) 【解析】::2sin kx k eI e xdx=⎰看为以k为自变量的函数,则可知()2'sin 0,0,k k I e k k π=≥∈,即可知2sin k x k eI e xdx =⎰关于k 在()0,π上为单调增函数,又由于()1,2,30,π∈,则123I I I <<,故选D(5)设函数f (x,y ) 可微,且对任意x ,y 都 有(,)f x y x∂∂ >0,(,)f x y y ∂∂<0,f (x 1,y 1)<f(x 2,y 2)成立的一个充分条件是(A) x 1> x 2, y 1< y 2. (B) x 1> x 2, y 1>y 1.(C) x 1< x 2, y 1< y 2.(D) x 1< x 2, y 1> y 2.【答案】:(D) 【解析】:(,)0f x y x∂>∂,(,)0f x y y ∂<∂表示函数(,)f x y 关于变量x 是单调递增的,关于变量y 是单调递减的。

2012考研数一真题及解析

2012考研数一真题及解析

1
对于 1
0, 解 1E
B X
0 得对应的特征向量为:1
1
1
1
对于 2
2, 解 2 E
B
X
0 得对应的特征向量为:2
1
0
1
对于 3
6, 解 3 E
B
X
0 得对应的特征向量为:3
1
2
将1,2 ,3 单位化可得:
1
1
1
1
1 3
1
1
,2
1 2
1 0
,3
1 6
2
(17)
4n2 4n 3
lim lim lim 【解析】: R n
an
an1
n
an
an1
n
2n 1 4 n1 2 4 n1 3
2n 1 1
4n2 4n 3
2n 1 1
lim n
2n 1 4n 12 4n 1 3 1
S(x) 4n2 4n 3 x2n
n0 2n 1

Q1
AQ
1
1
0
P
1
AP
1
1
0
1
1
0
0 0 1
0 0 1 0 0 1
1
1
1
0
2 0 0 1
1
2
故选(B)。 (7) 【答案】:(A)
【解析】: X ,Y
的联合概率密度为
f
(x,
y)
ex4 y , x 0,其它
0,
y
0
则 PX Y
f (x, y)dxdy
cott
所以 C 0 .故函数 f (t) ln sect tan t sin t .

2012年考研数学二真题及答案

2012年考研数学二真题及答案

2012年全国硕士研究生入学统一考试数学二试题解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)曲线221x x y x +=-渐近线的条数为(当x=1时,y=无穷,为垂直渐近线。

当x=无穷时,y=1,为水平渐近线。

)(A )0 (B )1 (C )2 (D )3 【答案】:(C )【解析】:221lim 1x x x x →+=∞-,所以1x =为垂直渐近线22lim 11x x xx →∞+=-,所以1y =为水平渐近线,没有斜渐近线,总共两条渐近线,选(C )。

(2)设函数2()(1)(2)()xxnx f x e e e n =--- ,其中n 为正整数,则'(0)f =(A )1(1)(1)!n n --- (B )(1)(1)!n n -- (C )1(1)!n n -- (D )(1)!n n -【答案】:(C )【解析】:''22()(2)()(1)(2)()x x nx x x nxf x e e e n e e e n ⎡⎤=--+---⎣⎦所以'(0)f =1(1)!n n --,故选(C )。

(3)设0,(1,2,...)n a n >=,1...n n s a a =++,则数列{}n s 有界是数列{}n a 收敛的 (A)充分必要条件.(B)充分非必要条件.(C )必要非充分条件. (D )即非充分地非必要条件.【答案】:(B)【解析】:由于0n a >,{}n s 是单调递增的,可知当数列{}n s 有界时,{}n s 收敛,也即lim nn s →∞是存在的,此时有()11lim lim lim lim 0n n n n n n n n n a s s s s --→∞→∞→∞→∞=-=-=,也即{}n a 收敛。

2012考研数二真题及解析

2012考研数二真题及解析

2012考研数二真题及解析考研数学二对于很多考生来说是具有一定挑战性的科目。

2012 年的考研数二真题也不例外,它全面考查了考生对数学知识的掌握和运用能力。

我们先来看看选择题部分。

比如,有一道关于函数极限的题目,要求判断某个函数在特定点的极限是否存在。

这就需要考生熟练掌握极限的定义和计算方法。

还有一道关于导数定义的题目,考查了考生对导数概念的深刻理解。

填空题中,涉及到了曲线的切线方程、定积分的计算等知识点。

像求曲线在某一点的切线方程,考生要先求出该点的导数,也就是切线的斜率,然后再利用点斜式方程求出切线方程。

接下来是解答题。

第一道通常是关于求函数的导数或者微分,这是基础知识的直接应用,但也需要考生细心计算,避免出错。

有一道关于二重积分的题目,需要考生正确选择积分顺序,并且准确计算出积分的结果。

这要求考生对二重积分的概念和计算方法有清晰的认识。

还有一道关于常微分方程的题目,考查了考生求解方程的能力。

在解题过程中,要根据方程的类型选择合适的解法。

在整个真题中,对于数学基础知识的考查非常扎实。

比如,函数的性质、导数的应用、积分的计算等,都是考试的重点。

对于这些真题,我们在复习的时候要有针对性地进行训练。

首先,要把教材中的基本概念、定理和公式理解透彻,牢记于心。

然后,通过大量的练习题来提高解题的速度和准确性。

对于做错的题目,一定要认真分析原因,总结经验教训。

是因为知识点掌握不牢固,还是因为解题方法不正确,或者是因为粗心大意。

只有找到问题所在,才能在下次遇到类似的题目时不再犯错。

在复习的过程中,还要注重知识的系统性和连贯性。

比如,函数、导数、积分这几部分的知识是相互关联的,要能够融会贯通。

另外,要培养自己的解题思维和技巧。

比如,在遇到难题时,要学会从已知条件出发,逐步推导,寻找解题的突破口。

总之,2012 年考研数二真题全面考查了考生的数学素养和解题能力。

通过对这些真题的认真分析和研究,考生可以更好地把握考试的重点和难点,为今后的复习提供有力的指导。

2012年考研数学二真题及答案解析

2012年考研数学二真题及答案解析

数学(二)试题 第 5 页 (共 11 页)
(23)(本题满分 11 分)已知
1)求 a 的(k=1,2,3),则有()
0
(A)I1< I2 <I3.
(B) I3< I2< I1.
(C) I2< I3 <I1,
(D) I2< I1< I3.
(5)设函数 f (x,y) 可微,且对任意 x,y 都 有 f (x, y) x
f (x, y) >0, y <0,f(x1,y1)<f
(A) (1)n1(n 1)!
(B) (1)n (n 1)!
(C) (1)n1n!
(D) (1)n n!
(3)设 an>0(n=1,2,…),Sn=a1+a2+…an,则数列(sn)有界是数列(an)收敛的
(A)充分必要条件.
(B)充分非必要条件.
(C)必要非充分条件.
(D)既非充分也非必要条件.
已知函数 f (x) 1 x 1 ,记 a lim f (x)
sin x x,
x0
(1)求 a 的值
(2)若当 x 0 时, f (x) a 是 xk 的同阶无穷小,求 k
(16)(本题满分 10 分)
( ) -x2+y2
求函数 f x, y = xe 2 的极值。
(17)(本题满分 10 分)
(2)记(1)中的实根为
xn
,证明
lim
n
xn
存在,并求此极限。
(22)(本题满分 11 分)
1 a 0 0
1

A


0
1
a

2012 考研数学 数二真题

2012 考研数学 数二真题
0 x
20.(本题满分 10 分).
证明 x ln
1 x x2 cos x 1 ( 1 x 1 ). 1 x 2
21.(本题满分 10 分).
1 (Ⅰ)证明方程 x n x n 1 x 1 ( n 1 的整数),在区间 ,1 内有且 2
( x, y ) ( x, y ) 0, 0 ,则 x y
为可微函数,且对任意的 x, y 都有 5. 设函数 f ( x, y)
使不等式 f ( x1 , y1 ) f ( x2 , y2 ) 成立的一个充分条件是(
).
(A) x1 x2 , y1 y2 (C) x1 x2 , y1 y2
6. 设区域 D 由曲线 y sin x , x
(B) x1 x2 , y1 y2 (D) x1 x2 , y1 y2

2
, y 1 围成,则 ( x 5 y 1)dxdy (
D
).
(A)
(B) 2
(C) 2
(D)
0 0 1 1 ,其中 c , c , c , c 为任意常数, 7. 设 1 0 , 2 1 , 3 1 , 4 1 2 3 4 1 c c c c 3 4 1 2

x 0
.
.
1 z z 11. 设 z f ln x ,其中函数 f (u ) 可微,则 x y 2 y x y 12. 微分方程 ydx ( x 3 y 2 )dy 0 满足条件 y 13. 曲线 y x 2 x ( x 0 )上曲率为
2012 年全国硕士研究生入学统一考试

2012年考研数学二试题及答案

2012年考研数学二试题及答案

2012年全国硕士研究生入学统一考试数学二试题一、选择题:18小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1) 曲线221x x y x +=-渐近线的条数 ( )(A) 0 (B) 1 (C) 2 (D) 3 【答案】C【考点】函数图形的渐近线 【难易度】★★【详解】本题涉及到的主要知识点:(i )当曲线上一点M 沿曲线无限远离原点时,如果M 到一条直线的距离无限趋近于零,那么这条直线称为这条曲线的渐近线。

(ii )渐近线分为水平渐近线(lim ()x f x b →∞=,b 为常数)、垂直渐近线(0lim ()x x f x →=∞)和斜渐近线(lim[()()]0x f x ax b →∞-+=,,a b 为常数)。

(iii )注意:如果(1)()limx f x x→∞不存在;(2)()lim x f x a x→∞=,但lim[()]x f x ax →∞-不存在,可断定()f x 不存在斜渐近线。

在本题中,函数221x x y x +=-的间断点只有1x =±.由于1lim x y →=∞,故1x =是垂直渐近线.(而11(1)1lim lim(1)(1)2x x x x y x x →-→-+==+-,故1x =-不是渐近线).又211lim lim111x x x y x→∞→∞+==-,故1y =是水平渐近线.(无斜渐近线) 综上可知,渐近线的条数是2.故选C. (2) 设函数2()(1)(2)()xxnx f x e ee n =---,其中n 为正整数,则(0)f '= ( )(A) 1(1)(1)!n n --- (B) (1)(1)!n n -- (C) 1(1)!n n -- (D) (1)!n n -【答案】A【考点】导数的概念 【难易度】★★【详解一】本题涉及到的主要知识点:00000()()()limlimx x f x x f x yf x x x→→+-'==. 在本题中,按定义200()(0)(1)(2)()(0)lim lim0x x nx x x f x f e e e n f x x →→----'==-1(1)(2)[(1)](1)(1)!n n n -=-⨯-⨯⨯--=--.故选A.【详解二】本题涉及到的主要知识点:()[()()]()()()()f x u x v x u x v x u x v x ''''==+.在本题中,用乘积求导公式.含因子1xe -项在0x =为0,故只留下一项.于是20(0)[(2)()]x x nx x f e e e n ='=--1(1)(2)[(1)](1)(1)!n n n -=-⨯-⨯⨯--=--故选(A ).(3) 设0(1,2,)n a n >=,123n n S a a a a =++++,则数列{}n S 有界是数列{}n a 收敛的( )(A )充分必要条件 (B )充分非必要条件(C )必要非充分条件 (D )既非充分也非必要条件 【答案】B【考点】数列极限 【难易度】★★★【详解】因0(1,2,)n a n >=,所以123n n S a a a a =++++单调上升.若数列{}n S 有界,则lim n n S →∞存在,于是11lim lim()lim lim 0n n n n n n n n n a S S S S --→∞→∞→∞→∞=-=-=反之,若数列{}n a 收敛,则数列{}n S 不一定有界.例如,取1n a =(1,2,)n =,则n S n =是无界的.因此,数列{}n S 有界是数列{}n a 收敛的充分非必要条件.故选(B ). (4)设20sin (1,2,3)k x K e xdx k π==⎰I 则有 ( )(A)123I I I << (B) 321I I I << (C) 231I I I << (D)213I I I << 【答案】D【考点】定积分的基本性质 【难易度】★★★【详解】本题涉及到的主要知识点: 设a c b <<,则()()()bc baacf x dx f x dx f x dx =+⎰⎰⎰.在本题中,210sin x I e xdx π=⎰,2220sin x I e xdx π=⎰,2330sin x I e xdx π=⎰222121sin 0x I I e xdx I I ππ-=<⇒<⎰,2332322sin 0x I I e xdx I I ππ-=>⇒>⎰,222323312sin sin sin x x x I I e xdx e xdx e xdx ππππππ-==+⎰⎰⎰2233()22sin()sin t x e t dt e xdx ππππππ-=-+⎰⎰223()312[]sin 0x x e e xdx I I πππ-=->⇒>⎰因此213I I I <<.故选D.(5)设函数(,)f x y 可微,且对任意的,x y 都有(,)0f x y x∂>∂,(,)0f x y y ∂<∂,则使不等式1122(,)(,)f x y f x y <成立的一个充分条件是( )(A )12x x >,12y y < (B )12x x >,12y y > (C )12x x <,12y y < (D )12x x <,12y y > 【答案】D【考点】多元函数的偏导数;函数单调性的判别 【难易度】★★★【详解】本题涉及到的主要知识点:函数单调性的判定法 设函数()y f x =在[,]a b 上连续,在(,)a b 内可导. ①如果在(,)a b 内()0f x '>,那么函数()y f x =在[,]a b 上单调增加; ②如果在(,)a b 内()0f x '<,那么函数()y f x =在[,]a b 上单调减少. 在本题中,因(,)0f x y x∂>∂,当y 固定时对x 单调上升,故当12x x <时1121(,)(,)f x y f x y < 又因(,)0f x y y∂<∂,当x 固定时对y 单调下降,故当12y y >时2122(,)(,)f x y f x y < 因此,当12x x <,12y y >时112122(,)(,)(,)f x y f x y f x y << 故选D.(6)设区域D 由曲线sin y x =,2x π=±,1y =围成,则5(1)Dx y dxdy -=⎰⎰( )(A )π(B )2(C )-2(D )π-【答案】D【考点】二重积分的计算 【难易度】★★★【详解】本题涉及到的主要知识点:10,(,)(,)2(,),(,)DD f x y x y f x y dxdy f x y dxdy f x y x y ⎧⎪=⎨⎪⎩⎰⎰⎰⎰对或为奇函数,对或为偶函数在本题中,11555222sin sin 221(1)(1)()2x x Dx y dxdy dx x y dy x y y dx ππππ---=-=-⎰⎰⎰⎰⎰5222221(1sin )(1sin )2x x dx x dx πππππ--=---=-⎰⎰ 其中521(1sin )2x x -,sin x 均为奇函数,所以 52221(1sin )02x x dx ππ--=⎰,22sin 0xdx ππ-=⎰故选(D )(7)设1100c α⎛⎫ ⎪= ⎪ ⎪⎝⎭,2201c α⎛⎫⎪= ⎪ ⎪⎝⎭,3311c α⎛⎫ ⎪=- ⎪ ⎪⎝⎭ ,4411c α-⎛⎫ ⎪= ⎪ ⎪⎝⎭ ,其中1234,,,c c c c 为任意常数,则下列向量组线性相关的为( )(A)123,,ααα (B) 124,,ααα (C)134,,ααα (D)234,,ααα 【答案】C【考点】向量组的线性相关与线性无关 【难易度】★★【详解】本题涉及到的主要知识点:n 个n 维向量相关12,,,0n ααα⇔=在本题中,显然134123011,,0110c c c ααα-=-=, 所以134,,ααα必线性相关.故选C.(8) 设A 为3阶矩阵,P 为3阶可逆矩阵,且1100010002p AP -⎛⎫ ⎪= ⎪ ⎪⎝⎭.若P=(123,,ααα),1223(,,)ααααα=+,则1Q AQ -= ( )(A) 100020001⎛⎫ ⎪ ⎪ ⎪⎝⎭ (B) 100010002⎛⎫ ⎪ ⎪ ⎪⎝⎭ (C) 200010002⎛⎫ ⎪ ⎪ ⎪⎝⎭ (D)200020001⎛⎫⎪ ⎪ ⎪⎝⎭【答案】B【考点】矩阵的初等变换;初等矩阵 【难易度】★★★【详解】本题涉及到的主要知识点: 设A 是一个m n ⨯矩阵,对A 施行一次初等行变换,相当于在A 的左边乘以相应的m 阶初等矩阵;对A 施行一次初等列变换,相当于在A 的右边乘以相应的n 阶初等矩阵. 在本题中,由于P 经列变换为Q ,有12100110(1)001Q P PE ⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦,那么111112121212[(1)][(1)](1)()(1)Q AQ PE A PE E P AP E ----==100110011101110100120012⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦故选B.二、填空题:914小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9)设()y y x =是由方程21yx y e -+=所确定的隐函数,则22x d ydx== .【答案】1【考点】隐函数的微分 【难易度】★★【详解】本题涉及到的主要知识点: 隐函数求导的常用方法有:1. 利用复合函数求导法,将每个方程两边对指定的自变量求偏导数(或导数),此时一定要注意谁是自变量,谁是因变量,对中间变量的求导不要漏项。

2012年考研数学(二)真题

2012年考研数学(二)真题

lim
x
【解析】
x2 x x2 1
lim
1
1 x
x
1
1 x2
1 ,可得有一条水平渐近线 y 1 ;
lim
x1
x2 x2
x 1
lim
x1
2 x2
1
,可得有一条铅直渐近线
x
1;
lim
x1
x2 x2
x 1
lim
x1
(x
x(x 1) 1)(x 1)
lim
x 1
x
x 1
1 2
,可得
x
1 不是铅直渐近线。
0 1
1 0
1
a
3 阶矩阵
0
a
1 , AT 为 矩 阵 A 的 转 置 , 已 知 R( AT A) = 2 , 且 二 次 型
f = xT AT Ax 。 (1)求实数 a 的值。
(2)求利用正交变换 x Qy 将 f 化为规范形。
2012 年全国硕士研究生招生考试数学(二)答案及解析
一、选择题 1. 【答案】C
xn
,证明
lim
n
xn
存在,并求此极限。
22.(本题满分 11 分)。
1 a 0 0
1
A
0 0
1 0
a 1
0 a
,
1 0
设 a 0 0 1
0 。
(1)计算行列式 A 。
(2)当实数 a 为何值时,方程组 Ax 有无穷多解,并求其通解。
23.(本题满分 11 分)。
1 0 1
A
(2)求曲线
0
的拐点。
20.(本题满分 10 分)。
x ln 1 x cos x 1 证明: 1 x

2012考研数学二真题及参考答案

2012考研数学二真题及参考答案

2012考研数学二真题及参考答案一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)曲线221x x y x +=-渐近线的条数为()(A )0 (B )1 (C )2 (D )3 【答案】:C【解析】:221lim 1x x xx →+=∞-,所以1x =为垂直的 22lim 11x x xx →∞+=-,所以1y =为水平的,没有斜渐近线 故两条选C (2)设函数2()(1)(2)()xxnx f x e e e n =---,其中n 为正整数,则'(0)f =(A )1(1)(1)!n n ---(B )(1)(1)!nn -- (C )1(1)!n n --(D )(1)!nn - 【答案】:C 【解析】:'222()(2)()(1)(22)()(1)(2)()x x nx x x nx x x nx f x e e e n e e e n e e ne n =--+---+---所以'(0)f =1(1)!n n --(3)设a n >0(n =1,2,…),S n =a 1+a 2+…a n ,则数列(s n )有界是数列(a n )收敛的 (A)充分必要条件. (B)充分非必要条件.(C )必要非充分条件. (D )即非充分地非必要条件. 【答案】:(A)【解析】:由于0na >,则1n n a ∞=∑为正项级数,S n=a 1+a 2+…a n为正项级数1n n a ∞=∑的前n 项和。

正项级数前n 项和有界与正向级数1nn a∞=∑收敛是充要条件。

故选A(4)设2kx keI e=⎰sin x d x (k=1,2,3),则有D(A )I 1< I 2 <I 3. (B) I 2< I 2< I 3.(C) I 1< I 3 <I 1,(D) I 1< I 2< I 3. 【答案】:(D) 【解析】::2sin kx k eI e xdx=⎰看为以k为自变量的函数,则可知()2'sin 0,0,k k I e k k π=≥∈,即可知2sin k x k eI e xdx =⎰关于k 在()0,π上为单调增函数,又由于()1,2,30,π∈,则123I I I <<,故选D(5)设函数f (x,y ) 可微,且对任意x ,y 都 有(,)f x y x∂∂ >0,(,)f x y y ∂∂<0,f (x 1,y 1)<f(x 2,y 2)成立的一个充分条件是(A) x 1> x 2, y 1< y 2. (B) x 1> x 2, y 1>y 1.(C) x 1< x 2, y 1< y 2.(D) x 1< x 2, y 1> y 2.【答案】:(D) 【解析】:(,)0f x y x∂>∂,(,)0f x y y ∂<∂表示函数(,)f x y 关于变量x 是单调递增的,关于变量y 是单调递减的。

2012年考研数学一真题解析

2012年考研数学一真题解析

2012年全国硕士研究生入学统一考试数学(一)试卷一、选择题(1-8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1) 曲线221x xy x +=-渐进线的条数(A )0 (B)1 (C)2 (D)3【考点分析】:曲线的渐近线条数。

【求解过程】:C⏹ 方法一:利用函数图像的平移,将已知的函数的渐近线条数转化为简单的基本函数的渐进线条数。

由于22(1)111(1)(1)11x x x x x y x x x x x ++====+--+--, 可知,221x x y x +=- 的图像是由1y x=的图像向由右平移一个单位,再向上平移一个单位所得。

由于图像平移并不改变其渐进线的条数。

1y x=有两条渐进线,其中一条为水平渐近线0y =,一条为垂直渐近线0x =。

所以221x xy x +=-也有两条渐近线,选择C 。

【相关补充】:函数平移口诀:上加下减,左加右减。

例如,把函数()y f x =依次做以下四次的平移:(1)向上平移1个单位,(2)向下平移2个单位(3)向左平移1个单位(4)向右平移2个单位。

则新函数的解析式为(12)12(1)1y f x f x =+-+-=--。

⏹ 方法二:直接求解函数的渐近线。

因为 22lim 1,1x x xx →∞+=- 所以1y = 为水平渐进线。

又由于有水平渐进线,所以一定不存在同一趋向下的斜渐进线。

又因为221lim ,1x x xx →+=∞-所以1x =为垂直渐进线。

综上所述,221x xy x +=-也有两条渐近线,选择C 。

【相关补充】:斜渐进线的求解步骤:1) 考察是否有lim ()x f x →±∞=∞?若是,则转2)2) 考察是否有()limx f x a x→±∞=(常数)?,若是,则转3) 3) 是否有lim[()]x f x ax b →±∞-=存在?若是,则()y f x =有斜渐进线y ax b =+,上述任何一个步骤中,若否,则无斜渐进线。

2012年考研数学真题及参考答案(数学二)

2012年考研数学真题及参考答案(数学二)

(B) I2< I2< I3.
(C) I1< I3 <I1,
(D) I1< I2< I3.
【答案】:(D)
∫ 【 解 析 】::
Ik =
k ex2 sin xdx
e
看为以
k
为自变量的函数,则可知
∫ Ik ' = ek2 sin k ≥ 0, k ∈(0,π ) ,即可知 Ik =
k ex2 sin xdx 关于 k 在(0,π ) 上为单调增
=
(
y3
+
C
)
1 y
又因为 y = 1时 x = 1,解得 C = 0 ,故 x = y2 .
(13)曲线 y = x2 + x(x < 0) 上曲率为
2
的点的坐标是________。
2
您所下载的资料来源于 考研资料下载中心
获取更多考研资料,请访问
又因为,当 x → 0 时, x − sin x 与 1 x3 等价,故 f (x) − a ~ 1 x ,即 k = 1
6
6
(16)(本题满分 10 分)
求 f ( x, y) = xe − x2 + y2 的极值。
2
【解析】: f ( x, y) = xe − x2 + y2 ,
2
您所下载的资料来源于 考研资料下载中心 获取更多考研资料,请访问
(C) x1< x2, y1< y2.
(D) x1< x2, y1> y2.
【答案】:(D)
【解析】: ∂f (x, y) > 0 , ∂f (x, y) < 0 表示函数 f (x, y) 关于变量 x 是单调递增的,关于变

2012年考研数学三真题及答案

2012年考研数学三真题及答案

2012年考研數學三真題一、選擇題(18小題,每小題4分,共32分。

下列每題給出の四個選項中,只有一個選項是符合題目要求の。

)(1)曲線漸近線の條數為(A)0 (B)1(C)2 (D)3【答案】C。

【解析】由,得是曲線の一條水準漸近線且曲線沒有斜漸近線;由∞得是曲線の一條垂直漸近線;由得不是曲線の漸近線;綜上所述,本題正確答案是C【考點】高等數學—一元函數微分學—函數圖形の凹凸、拐點及漸近線(2)設函數,其中為正整數,則(A) (B)(C) (D)【答案】A【解析】【方法1】令,則故應選A.【方法2】由於,由導數定義知.【方法3】排除法,令,則則(B)(C)(D)均不正確綜上所述,本題正確答案是(A)【考點】高等數學—一元函數微分學—導數和微分の概念(3)設函數連續,則二次積分(A)(B)(C)(D)【答案】B。

【解析】令,則所對應の直角坐標方程為,所對應の直角坐標方程為。

由の積分區域得在直角坐標下の表示為所以綜上所述,本題正確答案是(B)。

【考點】高等數學—多元函數微積分學—二重積分の概念、基本性質和計算(4)已知級數絕對收斂,級數條件收斂,則(A) (B)(C) (D)【答案】D。

【解析】由級數絕對收斂,且當∞時,故,即由級數條件收斂,知綜上所述,本題正確答案是(D)【考點】高等數學—無窮級數—數項級數斂散性の判定(5)設,其中為任意常數,則下列向量組線性相關の為(A) (B)(C) (D)【答案】C。

【解析】個維向量相關顯然所以必線性相關綜上所述,本題正確答案是(C)。

【考點】線性代數—向量—向量組の線性相關和線性無關(6)設為3階矩陣,為3階可逆矩陣,且.若,則(A) (B)(C) (D)【答案】B。

【解析】由於經列變換(把第2列加至第1列)為,有那麼=綜上所述,本題正確答案是(B)。

【考點】線性代數—矩陣—矩陣運算、初等變換(7)設隨機變數相互獨立,且都服從區間上の均勻分佈,則(A) (B)(C) (D)【答案】D。

2012考研数学(一二三)真题(含答案)

2012考研数学(一二三)真题(含答案)

f x
,
f y
,
f z

.
12、已知曲面 {(x, y, z) | x y z 1, x 0, y 0, z 0},则 y2dS

【答案】 3 12
【解析】由曲面可得 z 1 x y zx ' zy ' 1,
向 xOy 面投影 Dxy {( x, y) | x y 1, x 0, y 0},
P

3
阶可逆矩阵,且
P1
AP



1


P

1,
2
,3


2
Q 1 2,2,3 则 Q1AQ ( )
1

(A)


2

1
【答案】(B)
1

(B)


1

2
2

(C)


1

2
2

(D)


2
ex2
sin
xdx

0

I2

I1 ;
又 I3 I1
3 ex2 sin xdx

2 ex2 sin xdx

3 ex2 sin xdx ,
2
其中
3
ex2
sin
t x
xdx
2 e(t )2 sin(t )d (t ) 2 e(t )2 sin tdt 2 e(x )2 sin xdx
x y ( x, y)(0,0) 2

2012考研试题及评分标准

2012考研试题及评分标准

(D) (−1)n n!
(3) 如果函数 f (x, y) 在 (0, 0) 处连续,那么下列命题正确的是
(A) 若极限 lim f (x, y) 存在,则 f (x, y) 在 (0, 0) 处可微
x→0 y→0
x+
y
(B)
若极限 lim f (x, y)
x→0 y→0
x2
+
y2
存在,则 f (x, y) 在 (0, 0) 处可微
(1)
曲线 y
=
x2 + x x2 −1
的渐近线的条数为
(A) 0
(B) 1
(C) 2
(D) 3
(2) 设函数 f (x) = (ex −1)(e2x − 2)L(en x − n) ,其中 n 为正整数,则 f ′(0) =
(A) (−1)n−1(n −1)!
(B) (−1)n (n −1)!
(C) (−1)n−1n!
n=0 2n +1
(18)(本题满分
10
分)已知曲线
L
:

x y
= =
f (t cos
) t
(0 ≤ t
< π ) ,其中 2
f (t) 具有连续导数,且
f (0) = 0 , f ′(t) > 0 (0 < t < π ) ,若曲线 L 的切线与 x 轴的交点到切点的距离恒为 1, 2
求函数 f (t) 的表达式,并求以曲线 L 及 x 轴和 y 轴为边界的区域的面积.
2012 年全国硕士研究生入学统一考试 数学(一) 试 卷
考生注意:(1)本试卷共三大题,23 小题,满分 150 分. (2)本试卷考试时间为 180 分钟.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012考研数学证明题
2012考研数学证明题据参加考研数学考试的的学生普遍反映今年的考研数学难度较大,跨考教育数学教研室老师第一时间统计如下:1、试题综合性较强,要求考生全面掌握所学知识,并能综合运用各个学科基本理论分析问题、解决问题。

2、试题以考察考生计算能力为主,但证明题比重有所上升。

3、出题角度比较新颖,以考查考生能力为主,反猜题、押题。

4、虽然题目总体难度有所上升,但题型万变不离其中、重视基础知识仍是王道。

总之,2012年考研数学试题与2011年相比有一定提升,希望参加2013年考研数学的同学引起重视
翻阅近十年的数学真题,同学可以发现:几乎每一年的试题中都会有一道证明题,而且基本上都可以用中值定理来解决,重点考察同学的逻辑推理分析能力,但是参加研究生数学考试的同学所学专业要么是理工要么是经管,同学们在大学学习数学的时候对于逻辑推理方面的训练大多是不够的,这就导致你们数学考试中遇到证明推理题就发怵,根本不想去想,以致简单的证明题得分率却极低。

下面给同学们总结了一些方法步骤或思路,以后在遇到证明题时不妨试一试。

第一步:首先要记住零点存在定理,介值定理,中值定理、极限存在的两个准则等基本原理,包括条件及结论,中值定理最好能记住他们的推到过程,有时可以借助几何意义去记忆。

因为知道基本原理是证
明的基础,知道的程度(即就是对定理理解的深入程度)不同会导致不同的推理能力。

如2006年数学一真题第16题(1)是证明极限的存在性并求极限。

只要证明了极限存在,求值是很容易的,但是如果没有证明第一步,即使求出了极限值也是不能得分的。

因为数学推理是环环相扣的,如果第一步未得到结论,那么第二步就是空中楼阁。

这个题目非常简单,只用了极限存在的两个准则之一:单调有界数列必有极限。

只要知道这个准则,该问题就能轻松解决,因为对于该题中的数列来说,“单调性”与“有界性”都是很好验证的。

再比如2009年直接让考生证明拉格朗日中值定理;但是像这样直接可以利用基本原理的证明题在考研真题中并不是很多见,更多的是要用到第二步。

第二步:可以试着借助几何意义寻求证明思路,以构造出所需要的辅助函数。

一个证明题,大多时候是能用其几何意义来正确解释的,当然最为基础的是要正确理解题目文字的含义。

如2007年数学一第19题是一个关于中值定理的证明题,可以在直角坐标系中画出满足题设条件的函数草图,再联系结论能够发现:两个函数除两个端点外还有一个函数值相等的点,那就是两个函数分别取最大值的点(正确审题:两个函数取得最大值的点不一定是同一个点)之间的一个点。

这样很容易想到辅助函数F(x)=f(x)-g(x)有三个零点,两次应用罗尔中值定理就能得到所证结论。

再如2005年数学一第18题(1)是关于零点存在定理的证明题,只要在直角坐标系中结合所给条件作出函数y=f(x)及y=1-x在[0,1]上的图形就立刻能看到两个函数图形有交点,这就是所证结论,重要的是写出推理过程。

从图形也应该看到两函数
在两个端点处大小关系恰好相反,也就是差函数在两个端点的值是异号的,零点存在定理保证了区间内有零点,这就证得所需结果。

如果第二步实在无法完满解决问题的话,转第三步。

第三步:从要证的结论出发,去寻求我们所需要的构造辅助函数,我们称之为“逆推”。

如2004年第15题是不等式证明题,该题只要应用不等式证明的一般步骤就能解决问题:即从结论出发构造函数,利用函数的单调性推出结论。

在判定函数的单调性时需借助导数符号与单调性之间的关系,正常情况只需一阶导的符号就可判断函数的单调性,非正常情况却出现的更多(这里所举出的例子就属非正常情况),这时需先用二阶导数的符号判定一阶导数的单调性,再用一阶导的符号判定原来函数的单调性,从而得所要证的结果。

来源网络搜集整理,仅作为学习参考,请按实际情况需要自行编辑。

相关文档
最新文档