超松弛迭代法及其松弛因子的选取

合集下载

线性代数方程组的数值解法讨论

线性代数方程组的数值解法讨论

线性代数方程组的数值解法讨论解线性方程组的方法,主要分为直接方法和迭代方法两种。

直接法是在没有舍入误差的假设下能在预定的运算次数内求得精确解。

而实际上,原始数据的误差和运算的舍入误差是不可以避免的,实际上获得的也是近似解。

迭代法是构造一定的递推格式,产生逼近精确解的序列。

对于高阶方程组,如一些偏微分方程数值求解中出现的方程组,采用直接法计算代价比较高,迭代法则简单又实用,因此比较受工程人员青睐。

小组成员本着工程应用,讨论将学习的理论知识转变为matlab 代码。

讨论的成果也以各种代码的形式在下面展现。

1 Jacobi 迭代法使用Jacobi 迭代法,首先必须给定初始值,其计算过程可以用以下步骤描述: 步骤1 输入系数矩阵A ,常熟向量b ,初值(0)x ,误差限ε,正整数N ,令1k =.步骤2 (0)11ni i ij jj ii j i x b a x a =≠⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦∑,(0)j x 代表(0)x 的第j 个分量。

步骤3 计算11ni i ij j j ii j i y b a x a =≠⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦∑,判断1max i i i n x y ε≤≤-<,如果是,则结束迭代,转入步骤5;否则,转入步骤4。

步骤4 判断k N =?如果是,则输出失败标志;否则,置1k k =+,i i x y ⇐,1,2,,i n =,转入步骤2。

步骤5 输出12,,n y y y 。

雅可比迭代代码function [x,k]=Fjacobi(A,b,x0,tol)% jacobi 迭代法 计算线性方程组% tol 为输入误差容限,x0为迭代初值max1= 300; %默认最多迭代300,超过要300次给出警告 D=diag(diag(A)); L=-tril(A,-1);U=-triu(A,1); B=D\(L+U); f=D\b; x=B*x0+f;k=1; %迭代次数while norm(x-x0)>=tol x0=x;x=B*x0+f; k=k+1;if(k>=max1)disp('迭代超过300次,方程组可能不收敛'); return; end%[k x'] %显示每一步迭代的结果 End2 高斯赛德尔迭代由Jacobi 迭代法中,每一次的迭代只用到前一次的迭代值,若每一次迭代充分利用当前最新的迭代值,即在计算第i 个分量(1)k i x +时,用最新分量11()k x +,12()k x +…(1)1k i x +-代替旧分量)1(k x ', )2(k x …)3(k x 就得到高斯赛德尔迭代格式,其数学表达式为:1(1)(1)()111(1,2,,)i n k k k ii ij j ij j j j i ii xb a x a x i n a -++==+⎛⎫=--= ⎪⎝⎭∑∑具体形式如下:()()()(1)()()()11221331111(1)(1)()()22112332222(1)(1)(1)(1)(1)112233,11111k k k k n n k k k k n n k k k k k n n n n n n n n nnx a x a x a x b a x a x a x a x b a x a x a x a x a x b a ++++++++--=----+=----+⋯⋯⋯⋯⋯⋯=-----+矩阵形式表示为:()(1)1(1)()(0,1,2,,),k k k k n +-+=++=x D Lx Ux b将(1)(1)()(0,1,2,,)k k k k n ++=++=Dx Lx Ux b 移项整理得: (1)1()1()()(0,1,2,,))k k x D L Ux D L b k n +--=-+-=记11(),()--=-=-M D L U g D L b ,则(1)()k k x x +=+M g高斯塞德尔迭代function [x,k]=Fgseid(A,b,x0,tol)%高斯-塞德尔迭代法 计算线性方程组 % tol 为误差容限max1= 300; %默认最高迭代300次D=diag(diag(A)); L=-tril(A,-1); U=-triu(A,1); G=(D-L)\U; f=(D-L)\b; x=G*x0+f;k=1; while norm(x-x0)>=tol x0=x;x=G*x0+f; k=k+1;if(k>=max1)disp('迭代次数太多,可能不收敛'); return; end% [k,x'] %显示每一步迭代结果 End3 超松弛迭代法在工程中最常遇到的问题便是线性代数方程组的求解,而线性代数方程组的求解一般可以分为两类,一类是直接法(精确法),包括克莱姆法则方法、LD 分解法等,另一类是迭代法(近似法),包括雅克比迭代法、高斯迭代法、超松弛迭代法等。

超松弛迭代法中松弛因子ω的选取方法

超松弛迭代法中松弛因子ω的选取方法

超松弛迭代法中松弛因子ω的选取方法一、超松弛迭代算法基本概念超松弛迭代法简称为SOR(Successive Over -- Relaxation)法,是求解线性代数方程组的一种迭代加速方法,它是在高斯--塞德尔迭代法的基础上进行加速的,将前一步的结果x k i )(与高斯--塞德尔迭代方法的迭代值x k i )1(+适当的加权平均,期望获得更好的近似值x k i )1(+。

其迭代公式如下:x k i )1(+=(1--ω)x k i )(+a iiw (b i --x a k j i j ij )1(11+-=∑--x a j n i j ij (k)∑=) i =1,2,…,n;k =0,1,2,…(1.1)SOR 法中ω的取值对迭代公式的收敛速度影响很大,它的好坏直接影响到加速的快慢。

为了保证迭代过程的收敛,必须要求0<ω<2,超松弛法取1<ω<2。

但是在1和2之间仍然有很多的取值,究竟如何取值没有同意的规定。

经过多次的实验、分析与研究提出了ω选取的几种方法。

二、松弛因子ω的选取方法1、逐步实验法将ω的取值区间(1,2)进行M 等分,ω分别取1+1/M ,1+2/M ,……,1+(M--1)/M ,通过公式1.1依次对同一精度要求求出迭代次数k 的值,在求的同时比较出最少的迭代次数k ,并将此次ω的值保留,这样就得到了1+1/M ,1+2/M ,……,1+(M--1)/M 中最优的ω值,算法步骤如下:第一步:给定M 的值第二步:对于,ω分别取1+1/M ,1+2/M ,……,1+(M--1)/M 按照公式 x k i )1(+=(1--ω)x k i )(+a iiw (b i ---x a k j i j ij )1(11+-=∑---x a j n i j ij (k)∑=) i =1,2,…,n;k =0,1,2,…根据给定的精度要求迭代,求出迭代次数k 的值。

数值分析课程设计-- 松弛迭代法中松弛因子

数值分析课程设计-- 松弛迭代法中松弛因子

数值分析课程设计-- 松弛迭代法中松弛因子安徽建筑大学数值分析设计报告书题目松弛迭代法中松弛因子院系数理系专业信息与计算科学班级信息②班学号 12207210220 姓名穆海山时间 2013-12-10~2013-12-23指导教师刘华勇题目:选用Jacobi 迭代法、Gauss-Seidel 迭代法和超松弛迭代法求解下面的方程组(考虑n 等于150)123216186186186186186n n n x x x x x x --⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦=10.522.522.522.522.521⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦考虑初值的变化和松弛因子ω的变化收敛效果的影响;对上述方程组还可以采用哪些方法求解?选择其中一些方法编程上机求解上述方程组,说明最适合的是什么方法;将计算结果进行比较分析,谈谈你对这些方法的看法。

一、摘要本课程设计用matlab 就线性方程组数值方法,Jacobi 迭代法,Gauss-Seidel 迭代法,超松弛法对所设计的问题进行求解,并编写程序在Matlab 中实现,在文章中对各种迭代法进行了收敛性分析。

接着用几种不同方法对线性方程组进行求解及结果分析,最后对此次课程设计进行了总结。

关键词:线性方程组,迭代,Matlab ,结果分析二、设计目的用熟悉的计算机语言编程上机求解线性方程组。

三、理论基础对方程组 Ax b = 做等价变换 x Gx g =+ 如:令 A M N =-,则11()Ax b M N x b Mx Nx b x M Nx M b --=⇒-=⇒=+⇒=+则,我们可以构造序列 (1)() k k x G x g +=+ 若 ()*k x x →* **x G x g Ax b ⇒=+⇒= 同时:(1)()()**(*)k k k x x Gx Gx G x x +-=-=-1(0)(*)k G x x +==-所以,序列收敛0k G ⇔→,与初值的选取无关1122(,,,)nn D diag a a a =设则转化为矩阵形式(1)()1()()k k k x x D b Ax +-=+-(1)()1()1k k k x x D Ax D b +--=-+(1)1()1()k k x D D A x D b +--=-+ (1)令2112000000n n a L a a ⎛⎫ ⎪- ⎪= ⎪⎪--⎝⎭1212000000n n a a a U --⎛⎫⎪- ⎪= ⎪ ⎪⎝⎭A D L U =-- 或者 D A L U -=+故迭代过程(1)化为(1)1()1()k k x D D A x D b +--=-+ (1)1()1()k k x D L U x D b +--=++ A D L U =-- 11(),,J B D L U f D b --=+=令于是D A L U -=+1111()() , J B D L U D D A I D A f D b----=+=-=-=或者:(1)()k k J x B x f+=+(2)(0,1,2,)k =等价线性方程组为J x B x f=+Ax b =称(2)式为解线性方程组(1)的Jacobi 迭代法(J 法)J B Jacobi 为迭代法的迭代矩阵迭代矩阵 考虑迭代式(2)(1)()k k J x B x f+=+ (0,1,2,)k =即(1)1()1()k k x D L U x D b +--=++ (1)()()k k k Dx Lx Ux b +=++(,)L 注意到的形式下三角不含对角线将上式改为 (1)(1)()k k k DxLx Ux b ++=++ (3) (1)()()k k D L x Ux b +-=+D L -当可逆时 (1)1()1()()k k xD L Ux D L b +--=-+- 11(),(),G G B D L U f D L b --=-=-设得(1)()k k G Gx B x f +=+(4)(0,1,2,)k =超松弛迭代记 ()(1)()k k k x xx +∆=-则 (1)()()k k k xx x +=+∆ 可以看作在前一步上加一个修正量。

超松弛迭代法课程设计

超松弛迭代法课程设计

超松弛迭代法课程设计一、课程目标知识目标:1. 学生能理解超松弛迭代法的概念,掌握其基本原理和应用场景。

2. 学生能够运用超松弛迭代法解决线性方程组问题,并理解其收敛性。

3. 学生能了解超松弛迭代法在工程和科学计算中的重要性。

技能目标:1. 学生能够独立进行超松弛迭代法的计算步骤,包括设定松弛因子、构造迭代矩阵等。

2. 学生能够运用数学软件(如MATLAB)实现超松弛迭代法的算法,并进行简单的程序调试。

3. 学生通过实际案例分析,培养运用超松弛迭代法解决实际问题的能力。

情感态度价值观目标:1. 学生通过学习超松弛迭代法,培养对科学计算和数学建模的兴趣,增强对数学学科的学习信心。

2. 学生在小组讨论和合作中,学会尊重他人意见,培养团队协作精神。

3. 学生能够认识到超松弛迭代法在科技发展中的重要作用,增强科技创新意识和社会责任感。

课程性质:本课程为高中数学选修课,以培养学生解决实际问题能力和数学思维能力为目标。

学生特点:学生具备一定的线性代数基础,具有较强的逻辑思维能力和动手操作能力。

教学要求:教师应注重理论与实践相结合,引导学生通过实际案例掌握超松弛迭代法的应用。

同时,注重培养学生的团队协作能力和创新意识。

在教学过程中,关注学生的学习进度,及时调整教学策略,确保课程目标的实现。

通过课堂讲解、上机实践和小组讨论等多种教学方式,提高学生的学习效果。

二、教学内容1. 引言:介绍超松弛迭代法的背景和在实际问题中的应用,激发学生学习兴趣。

相关教材章节:第二章第四节“迭代法及其应用”。

2. 基本概念:讲解超松弛迭代法的基本原理,包括迭代格式、松弛因子选取等。

相关教材章节:第二章第四节“超松弛迭代法”。

3. 算法实现:详细讲解超松弛迭代法的计算步骤,并通过实例进行演示。

相关教材章节:第二章第四节“超松弛迭代法的计算步骤”。

4. 实践应用:分析实际案例,让学生动手实践,运用超松弛迭代法解决线性方程组问题。

相关教材章节:第二章第五节“迭代法解决实际问题”。

SOR迭代法超松弛因子选取

SOR迭代法超松弛因子选取

《计算方法》实验报告(二)实验名称:SOR迭代法松弛因子的选取班级:数学1402班姓名:高艺萌学号:14404210一、实验目的通过本实验学习线性方程组的SOR迭代解法以及SOR迭代法的编程与应用。

对比分析不同条件下的超松弛因子的取值大小会对方程组的解造成影响,通过这个实验我们可以了解的不同取值会对方程组的解产生的影响。

培养编程与上机调试能力。

二、实验题目用逐次超松弛(SOR)迭代法求解方程组,其中(1)给定迭代误差,选取不同的超松弛因子进行计算,观察得到的近似解向量并分析计算结果,给出你的结论;(2)给定迭代误差,选取不同的超松弛因子进行计算,观察得到的近似解向量并分析计算结果,给出你的结论;三、实验原理1.逐次超松弛迭代法可以看作Gauss-Seidel迭代法的加速,2.SOR迭代计算格式其中,w叫松弛因子,当w>1时叫超松弛,0<w<1时叫低松弛,w=1时就是Gauss-Seidel迭代法。

3.利用SOR迭代算法进行求解。

4.算法原理:SOR迭代法%masor.mfunction x=masor(A,b,omega,x0,ep,N)n=length(b);if nargin<6,N=500;endif nargin<5,ep=1e-6;endif nargin<4,x0=zeros(n,1);endif nargin<3,omega=1.5;endx=zeros(n,1);k=0;while k<Nfor i=1:nif i==1 x1(1)=(b(1)-A(1,2:n)*x0(2:n))/A(1,1);else if i==n x1(n)=(b(n)-A(n,1:n-1)*x(n:n-1)/A(n,n);else x1(i)=(b(i)-A(i,1;i-1)*x(1:i-1)-A(i,i+1:n)*x0(i+1:n))/A(i,i); endendx(i)=(1-omega)*x0(i)+omega*x1(i); endif norm(x0-x,inf)<ep,break;endk=k+1;x0=x; endif k==N Warning; enddisp([’k=’,num2str(k)])运行程序四、实验内容根据实验题目,分别对问题一,问题二进行求解。

数值分析大作业超松弛迭代法如何选取最佳松弛因子

数值分析大作业超松弛迭代法如何选取最佳松弛因子

数值分析⼤作业超松弛迭代法如何选取最佳松弛因⼦超松弛迭代法如何选取最佳松弛因⼦船建学院B1301095 wj⼀、课题背景逐次超松弛迭代法是Gauss-Seidel⽅法的⼀种加速⽅法,是解⼤型稀疏矩阵⽅程组的有效⽅法之⼀,它具有计算公式简单,程序设计容易,占⽤计算机内存较少等优点,但需要选择好的加速因⼦(即最佳松弛因⼦)。

最佳松弛因⼦ω的确定是数值代数中的⼀个理论难题,对于不同的矩阵,其最佳松弛因⼦往往相差很⼤,没有统⼀的计算公式来确定ω。

由于对称正定矩阵sor⽅法收敛的充分必要条件为w在0到2之间,故利⽤对称正定矩阵⼀定收敛的性质,本⽂提供⼀种针对于系数矩阵为对称正定矩阵时,如何选取合适的最佳松弛因⼦的⽅法。

⼆、课题研究流程图三、SOR迭代公式逐次超松弛(Successive Over Relaxation)迭代法,简称SOR迭代法,它是在GS法基础上为提⾼收敛速度,采⽤加权平均⽽得到的新算法,设解⽅程的GS法记为(1)再由与加权平均得这⾥ω>0称为松弛参数,将(1)式代⼊则得(2)称为SOR迭代法,[WTBX]ω>0称为松弛因⼦,当ω=1时(2)式即为GS法,将(2)式写成矩阵形式,则得即于是得SOR迭代的矩阵表⽰(3)四、Matlab程序%sor法确定对称正定矩阵的最佳松弛因⼦w%clc;clear;n=100;%矩阵的阶数%for num=1:100X=diag(rand(n,1));U=orth(rand(n,n)-0.5);a=U'*X*U;%以上是利⽤随机对⾓矩阵和随机正交矩阵,产⽣随机的对称正定矩阵,正交变化不改变特征值%L=zeros(n,n);U=zeros(n,n);%分配L和U的内存空间%step=0.02;%定义w的计算精度%for k=1:(2/step) %由于对称正定矩阵sor⽅法收敛的充分必要条件为w在0到2之间%w=(k-1)*step;for i=1:n %⼀个总的for循环给三个矩阵赋值D-L-U=A,%for j=1:i-1L(i,j)=-a(i,j);%L矩阵的赋值%endfor j=i+1:nU(i,j)=-a(i,j);%U矩阵的赋值%endD(i,i)=a(i,i);%D矩阵的赋值%endH=inv(D-w*L)*((1-w)*D+w*U);%sor⽅法的核⼼,H矩阵为迭代矩阵%p(k)=max(abs(eig(H)));%利⽤此函数求矩阵的谱半径%endk_min=find(p==min(p));%find函数寻找不同的w中谱半径的最⼩值,即寻找收敛最快的w%w_min(num)=(k_min-1)*step;%由最⼩值的序号得到最优的w%endhist(w_min,100)%对数量⾜够多的随机对称正定矩阵做频率统计,w划分100份,做出统计图%mean(w_min)%对不同矩阵的最⼩谱半径所对应的w对平均统计%五、结果对于不同阶数,计算得到的最佳收敛因⼦w不同,⼤致是随阶数增⼤⽽增⼤。

超松弛迭代法(SOR方法)

超松弛迭代法(SOR方法)

解:SOR迭代公式
x1( k
1)
(1 )x1(k )
4
(10 2x2(k )
4x3(k ) )
x
(k 2
1)
(1 )x2(k )
17
(3
2
x1(
k
1)
10x3(k ) )
x3( k
1)
(1 )x3(k )
9
(7 4x1(k 1)
10
x
(k 2
1)
)
初值 x (0) (0,0,0)T k = 0,1,2,…,
例该4方.4程用组S的OR精法确求解解线x (性*) 方 程(2组,1,1)T
如值只果需x(0取)迭ω取代(0=,04ω21,00x(=42)即1次T1xx,要11.高4便26达x斯11,可207到—xx要达22同4塞求到x样319德精0x精x3尔度130度迭要x,(3k7代求需1) 法要x)迭(和k) 代同1一1100初6次
数值计算方法
超松弛迭代法(SOR方法) 使用迭代法的困难在于难以估计其计算
量。有时迭代过程虽然收敛,但由于收敛速 度缓慢,使计算量变得很大而失去使用价值 。因此,迭代过程的加速具有重要意义。逐 次超松弛迭代(Successive Over relaxatic Method,简称SOR方法)法,可以看作是带参 数的高斯—塞德尔迭代法,实质上是高斯-塞 德尔迭代的一种加速方法。
或 Dx(k1) (1)Dx(k) (b Lx(k1) Ux(k) )
故 (D L)x(k1) (1)D Ux(k) b
显然对任何一个ω值,(D+ωL)非奇异,(因为假设 aii 0,i 1,2,, n )于是超松弛迭代公式为
x(k1) (D L)1 (1)D U x(k) (D L)1b

松弛因子与迭代次数的关系

松弛因子与迭代次数的关系

松弛因子与迭代次数的关系介绍:松弛因子是迭代法中的一个重要参数,用来控制每次迭代的步长。

迭代法是解决线性方程组的常见方法之一,在实际应用中,通过调整松弛因子可以使得迭代更快收敛或更稳定。

本文将探讨松弛因子与迭代次数的关系,并分析不同松弛因子对迭代法收敛速度的影响。

一、松弛因子的定义和作用松弛因子(relaxation factor)是在迭代法中用来调整每次迭代的步长的参数,通常用符号ω表示。

对于迭代法求解线性方程组Ax=b,其中A是系数矩阵,b是常数向量,松弛因子ω用于计算每次迭代的解向量x:x(k+1) = (1-ω)x(k) + ωD^(-1)(b - Rx(k))其中x(k)是第k次迭代的解向量,D是系数矩阵A的对角矩阵,R是A的严格下三角矩阵或严格上三角矩阵。

通过调整松弛因子的取值,可以控制每次迭代解向量的更新幅度,从而影响迭代的收敛性和速度。

二、松弛因子与迭代次数的关系1. 松弛因子小于1的情况当松弛因子ω小于1时,迭代法称为欠松弛法(under-relaxation method)。

此时,每次迭代的解向量更新比较小,迭代过程较为稳定。

在数值计算中,欠松弛法常用于处理病态问题和不可收敛问题,能够提高迭代法的稳定性和收敛性。

然而,欠松弛法由于每次迭代步长较小,收敛速度相对较慢。

因此,在求解较大规模的线性方程组时,需要进行很多次迭代才能达到收敛要求。

2. 松弛因子等于1的情况当松弛因子ω等于1时,迭代法称为正常迭代法(Gauss-Seidel method)。

此时,每次迭代的解向量更新完全由当前迭代的解向量决定,即x(k+1) = x(k)。

正常迭代法是一种简单的迭代方法,容易实现。

然而,在某些情况下,正常迭代法可能会发散或收敛速度较慢,特别是对于病态问题。

3. 松弛因子大于1的情况当松弛因子ω大于1时,迭代法称为超松弛法(over-relaxation method),也称为逐次上松法(successive overrelaxation method,SOR)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

( k 1)

i 1 n 1 (bi aij x j ( k 1) aij x j ( k ) ), i 1, 2,, n aii j 1 j i 1 (1)
与 xi
( k 1)
加权平均得
( k 1)
xi ( k 1) (1 ) xi ( k ) x
较复杂,通常都不用此结论,而直接根据方程组的系数矩阵 A 判断 SOR 迭代收敛性,下面 先给出收敛必要条件.
定理 1
[4]
设 A (aij ) R
nn
, aii 0(i 1, 2,..., n)

则解方程 Ax b 的 SOR 迭代法收敛的
必要条件是 0<ω<2.
5
定理 2 收敛.
xi ( k 1) (1 ) xi ( k )
称为 SOR 迭代法,ω>0 称为松弛因子,当ω=1 时(2)即为 Gauss-Seidel 法,将(2)写成矩阵 形式,则得
Dx ( k 1) (1 )Dx ( k ) (b Lx ( k 1) Ux ( k ) )
的求解一直是我们共同关心的课题.随着计算机技术及数学编程软件的发展,我们有了在计 算机上解线性方程组的条件.最初遇到的方程数和未知数比较少的方程组我们就是利用线性 代数知识直接解出来.直接解法只能适用于经过有限步运算能求得解的方程组.后来遇到的方 程数和未知数都比较多的方程组, 特别是经常会遇到的大型的方程组, 直接解法工作量太大, 花费时间太多,因此迭代法发展了起来.从最初的Jacobi迭代法到Gauss-Seidel迭代法,很多 学者一直在研究找到一种迭代法能更加快速,简单的解决线性方程组.通过不断的实验和计 算,在Gauss-Seidel迭代法基础上,人们发现通过迭代-松弛—再迭代的方法,能更加减少计 算步骤,极大的缩短计算时间,在此基础上,超松弛迭代法被学者们研究出来.通过比较三 种迭代方法, 我们得到超松弛迭代的收敛速度是最快的, 而且超松弛迭代法具有计算公式简 单,编制程序容易等突出优点.在求解大型稀疏线性方程组中超松弛迭代法得到广泛应用.而 SOR迭代方法中松弛因子 的取值直接影响到算法的收敛性及收敛速度,是应用超松弛迭 代法的关键.选择得当,可以加快收敛速度,甚至可以使发散的迭代变成收敛.因此, 超松弛因 子的选取是学者们又一个研究目标.通过一些被验证的定理,我们知道为了保证迭代过程的 收敛,必须要求1< <2,而且松弛因子和迭代矩阵谱半径之间有着密切的联系,现今学者们 已经研究出部分特殊矩阵的最优松弛因子的计算公式.对于一般的矩阵,我们也可以从松弛 因子和谱半径的关系着手研究最优松弛因子的选取, 这就为本篇论文的形成提供了行文思路. 本文给出了求超松弛迭代最优松弛因子的两种方法.
Step 2: 分别取 p2 与 p3 作为松弛因子代入迭代程序, 比较出最少的迭代次数, 如果对 p2 应
的迭代次数少,则选取 ( p1 , p 3 ) 作为收敛区间,如果是对应的 p3 迭代次数少,则选取
( p 2 , p 4 ) 作为收敛区间.
Step 3: 在所选取的收敛区间里循环进行上述的两个步骤, 直到选取出满足精度要求且 p2 ,
(Gb ) min (G )
0b 2
6
图1
2 松弛因子选取方法
方法思想
[8]

(1)给出 的范围,当取不同的 值时,进行迭代,在符合同一个精度要求下依次求出谱半 径的值,比较出最小的谱半径,那么这个最小的谱半径所对应的的 ,即为所求最佳松弛因 子. (2)给出 的范围,当取不同的 值时,进行迭代,看它们在相同精度范围内的迭代次数, 找到迭代次数最少的那一个,其所对应的 即为最佳松弛因子.” 2.1 逐步搜索法 算法: Step 1:读入线性方程组的系数矩阵,常数向量,初值,精度,给出 的取值范围,以及其变 化步长; Step 2:按照如下公式迭代
[9]
,因此,我们可以把黄金分割法应用在求最优
7
松弛因子上,其算法与主要思想是: Step 1: 利 用 优 选 法 思 想 , 在
(1,2)
之 间 选 取 四 个 点 ,
p1 1, p2 p4 0.618( p4 p1 ), p3 p1 0.618( p4 p1 ), p4 2
于是得 SOR 迭代的矩阵表示
[3]
xi ( k 1) G x( k ) f
其中
(3)
G ( D L)1[(1 ) D U ] f ( D L) 1 b
1.2 收敛性判别条件 根据迭代法收敛性定理
[2]
,SOR 法收敛的充分必要条件为 (G ) 1 ,但要计算 (G ) 比
4
1.超松弛迭代基本知识
1.1 超松弛迭代法定义
[1]
超松弛(Successive Over Relaxation) 迭代法,简称 SOR 迭代法,它是在 Gauss-Seidel 法基础 上为提高收敛速度,采用加权平均而得到的新算法.设解方程组的 Gauss-Seidel 法记为
xi
再由 xi
(k )
解法 1:黄金分割法 令 0.05 ,程序结果如下:
8
由上可以看出我们只需作几次 0.618 法就可以找到最优松弛因子,本例中最优松弛因子
1.0901 ,迭代次数为 8 次.
解法 2:逐步搜索法,步长为 0.1, 1 2 程序结果如下:
图3 图 3 中,其横坐标表示松弛因子,纵坐标表示谱半径.
关键词
线性方程组;超松弛迭代;Matlab 程序;松弛因子
2
Abstract
This paper firstly introduces the basic concept of the super relaxation iteration method for solving linear equations, introduced on some criterion theorem Overrelaxation iterative convergence, gives a simple Matlab program super relaxation iteration (Appendix 1). Then Overrelaxation iterative convergence speed and relaxation factor is selected based on the close relation is proposed in this paper, the rapid and accurate method of determining the optimal relaxation factor of the direct search method and the golden section method, and write the Matlab program (Appendix 2), finally the method is accurate, rapid.
论文使用授权说明
本人完全了解长治学院有关保留、使用学位论文的规定,即:学 校有权保留送交论文的复印件,允许论文被查阅和借阅;学校可以公 布论文的全部或部分内容,可以采用影印、缩印或其他复制手段保存 论文. 签名: 日期:
指导教师声明书
本人声明:该学位论文是本人指导学生完成的研究成果,已经审 阅过论文的全部内容,并能够保证题目、关键词、摘要部分中英文内 容的一致性和准确性. 指导教师签名:
Key word: Linear equations; Successive Over Relaxation; Matlab program; relaxation factor
3
超松弛迭代法及其松弛因子的选取
09404307 程启远 信息与计算科学 崔艳星 指导教师
引言
在科学计算和工程设计中,经常会遇到求解线性代数方程组的问题,而怎样Байду номын сангаас速
xi ( k 1) G x( k ) f
找出符合精度要求 的迭代次数及谱半径; Step 3:循环迭代,最后找到最优松弛因子 Step 4: 改变 的取值范围,重新设定变化步长,重复 Step2. 2.2 黄金分割法 从定理 4 我们可以看到, 最优松弛因子对应的谱半径最小, 而黄金分割法对于数值求解单调 函数的极小和极大值是非常方便和有效的
2013 届 学 士 学 位 毕 业 论 文
超松弛迭代法及其松弛因子的选取
学 姓 班
号: 名: 级:
09404307 程启远 信息 0901 崔艳星 信息与计算科学 数 学 系
指导教师: 专 系 业: 别:
完成时间:2013 年 5 月
学生诚信承诺书
本人郑重声明:所呈交的论文《超松弛迭代中松弛因子的选取方 法》 是我个人在导师崔艳星指导下进行的研究工作及取得的研究成果. 尽我所知,除了文中特别加以标注和致谢的地方外,论文中不包含其 他人已经发表或撰写的研究成果, 也不包含为获得长治学院或其他教 育机构的学位或证书所使用过的材料.所有合作者对本研究所做的任 何贡献均已在论文中作了明确的说明并表示了谢意. 签名: 日期:
p3 所对应的迭代次数差不超过某个数 时选 p3 为最优松弛因子.
3 数值算例
例 1: 矩阵
3 1 0 1 1 3 0 0 A 0 0 3 1 1 0 1 3 b (1, 2, 2, 1) T ,精度为 x k x k 1 1.0*106
nn
,如果存在排列矩阵 P,使
PAPT
D1 M2
M1 D2
其中, D1 , D2 为对角矩阵,则称 A 是 2-循环的.此外,若当 0 时,矩阵
D 1 L 1 D-1 U
相关文档
最新文档