SOR迭代法超松弛因子选取
数值分析大作业 超松弛迭代法如何选取最佳松弛因子
超松弛迭代法如何选取最佳松弛因子船建学院B1301095 wj一、课题背景逐次超松弛迭代法是Gauss-Seidel方法的一种加速方法,是解大型稀疏矩阵方程组的有效方法之一,它具有计算公式简单,程序设计容易,占用计算机内存较少等优点,但需要选择好的加速因子(即最佳松弛因子)。
最佳松弛因子ω的确定是数值代数中的一个理论难题,对于不同的矩阵,其最佳松弛因子往往相差很大,没有统一的计算公式来确定ω。
由于对称正定矩阵sor方法收敛的充分必要条件为w在0到2之间,故利用对称正定矩阵一定收敛的性质,本文提供一种针对于系数矩阵为对称正定矩阵时,如何选取合适的最佳松弛因子的方法。
二、课题研究流程图三、SOR迭代公式逐次超松弛(Successive Over Relaxation)迭代法,简称SOR迭代法,它是在GS法基础上为提高收敛速度,采用加权平均而得到的新算法,设解方程的GS法记为(1)再由与加权平均得这里ω>0称为松弛参数,将(1)式代入则得(2)称为SOR迭代法,[WTBX]ω>0称为松弛因子,当ω=1时(2)式即为GS法,将(2)式写成矩阵形式,则得即于是得SOR迭代的矩阵表示(3)四、Matlab程序%sor法确定对称正定矩阵的最佳松弛因子w%clc;clear;n=100;%矩阵的阶数%for num=1:100X=diag(rand(n,1));U=orth(rand(n,n)-0.5);a=U'*X*U;%以上是利用随机对角矩阵和随机正交矩阵,产生随机的对称正定矩阵,正交变化不改变特征值%L=zeros(n,n);U=zeros(n,n);%分配L和U的内存空间%step=0.02;%定义w的计算精度%for k=1:(2/step) %由于对称正定矩阵sor方法收敛的充分必要条件为w在0到2之间%w=(k-1)*step;for i=1:n %一个总的for循环给三个矩阵赋值D-L-U=A,%for j=1:i-1L(i,j)=-a(i,j);%L矩阵的赋值%endfor j=i+1:nU(i,j)=-a(i,j);%U矩阵的赋值%endD(i,i)=a(i,i);%D矩阵的赋值%endH=inv(D-w*L)*((1-w)*D+w*U);%sor方法的核心,H矩阵为迭代矩阵%p(k)=max(abs(eig(H)));%利用此函数求矩阵的谱半径%endk_min=find(p==min(p));%find函数寻找不同的w中谱半径的最小值,即寻找收敛最快的w%w_min(num)=(k_min-1)*step;%由最小值的序号得到最优的w%endhist(w_min,100)%对数量足够多的随机对称正定矩阵做频率统计,w划分100份,做出统计图%mean(w_min)%对不同矩阵的最小谱半径所对应的w对平均统计%五、结果对于不同阶数,计算得到的最佳收敛因子w不同,大致是随阶数增大而增大。
确定SOR最佳松弛因子的一个实用算法
。, , ) 与 上 述 分 块 相 对 应 的 J c b 迭 代 矩 。… A , ao i
阵 为
o J= — D 一 A — O .一 p O 0 … … B 1 p O
—
感 引。 因此 , 数 的选 取 是 S 参 OR 方 法 能 否 成 功
的 关 键 。 矩 阵 l 足 “ 一 ”次 序 ( 2 循 环 ) 当 满 红 黑 即 一
z‘ ’一 H ‘’+ C ( 一 0, , ) ( . 1 … 1 4)
2 3而 作 出 的 ;见 文 献 Nih l 和 F x 4, , c os o ] L
Gaa i , Ha j i s ln s d i mo ,No to 和 Tz u s 及 d us s o ma [
维普资讯
第1 卷 第3 9 期
2 002年 8月
计
算
力
学
学
报
V o .19。 o.3 1 N A u st 002 gu 2
Chi s ur l o ne e Jo na f Com put tona e a c ai lM ch ni s
关 键 词 : 性 方 程 组 ; O 迭 代 方 法 ; 弛 因 子 线 S R 松 A
功 能 的 自适 应 S R O
1 引 言
考 虑 线 性 方 程 组
Az — b ( .1) 1
L 一 ( 一 ) [ 1一 ) + dT ( . ) ( ] 1 5
L —一U
B 2 O 1
时 , 的最 优 值
解 决 , 时 此
已 由 Vag [ , u g。成 功 地 r a Yo n  ̄
9
( 1.3)
最优松弛因子的选择方法
SOR方法中最优松弛因子的几种选择方法学习了解线性方程组的SOR方法后,老师给我们强调了SOR方法中松弛因子的重要性,但却并没有明确告诉我们如何更好的选取最佳的松弛因子,我想这可能是暗示我们自己课下去查阅资料研究。
所以我这次选取了这一课题作为我的一次大作业。
通过学习我们知道了SOR方法中的松弛因子w的取值直接影响到算法的收敛性和收敛速度。
w选取得当,可以加快收敛速度,甚至可以使发散的迭代变成收敛。
因此,参数w的选取是SOR方法能否成功的关键。
为了保证迭代过程的收敛,必须要求0<w<2,而对超松弛法取1<w<2。
通过查阅资料,我找到了三种对超松弛因子的的选取的简单实用的方法,这些方法还能够运用到计算机算法中去,便于算法的实行。
一、松弛因子的选择方法1.二分比较法将松弛因子w的区间(1,2)进行二分,每个小区间的长度为1/2,w取区间中点值3/2,按照课本上(3.2.15)的公式迭代,求出迭代次数k。
如果k不超过指定的发散常数,则可确定w的值;否则将(1,2)区间四等分,每个小区间的长度为1/4,w取各分点的值继续迭代。
一般地,将区间(1,2)二分M次,每次二分步长为1/2^M,w依次取各二分点的值,同样按照课本中(3.2.15)的公式迭代,并求出迭代次数k值。
如果k值不超过指定的发散常数,则可确定w的值,这种方法总能找到一个不超过指定发散常数的w值。
用算法描述如下:第一步,给定发散常数RADIATION的值,令二分次数M的初始值为1;第二步,将区间(1,2)二分M次,每次二分的步长为1/2^M,w取各二分点的值;第三步,对每一个二分点按照课本中(3.2.15)中公式迭代求出迭代次数K;第四步,比较各二分点的K值找出最少迭代次数的Kmin值;第五步,判断若Kmin小于RADIATION,则结束;否则二分次数M++,跳至第二步继续二分。
2.逐步搜索法将w的取值区间(1,2)进行M等分,w分别取1+1/M,1+2/M,1+3/M,……,1+(M-1/M)。
超松弛迭代法求解两点边值问题(二)
超松弛迭代法求解两点边值问题(二)摘要本文是在matlab环境下熟悉的运用计算机编程语言并结合超松弛变量超松弛迭代法的理论基础对方程组求解。
首先,本文以微分方程边值问题为例,导出了离散化后线性方程组即稀疏线性方程组,转化对稀疏线性方程组求解问题。
其次,用超松弛( SOR) 迭代法编写matlab程序,对产生的稀疏线性方程组进行迭代法求解。
然后,分别改变松弛因子ω和分段数n的值,分析其收敛性和收敛速度,做出各个方面的分析和比较得到相关结论。
最后,将超松弛迭代算法在计算机上运用matlab语言实现, 得出了一组与精确解较接近的数值解,并画图比较,验证逐次超松弛( SOR) 迭代法的精确性。
关键词:稀疏线性方程组;逐次超松弛迭代法;松弛因子;matlab编程OVERRELAXATION ITERATIVE METHOD FORSOLVINGTWO-BOUNDARY VALUE PROBLEM(TWO)ABSTRACTThis is familiar with the use of computer programming in matlab language and overrelaxation variable overrelaxation iteration method of the theoretical basis of solving equations.First of all, as an example, based on differential equation boundary value problem is derived after discretization is sparse system of linear equations of linear equations, the transformation of sparse linear equations to solve the problem. Second, use write matlab program over relaxation (SOR) iteration method, the iteration method solving sparse linear equations. Then, change the values of relaxation factor and section number n omega, analyzes its convergence and convergence speed, all aspects to make the analysis and comparison of related conclusions. Finally, the over-relaxation iteration algorithm is implemented on a computer using matlab language and obtained a set of numerical solution with exact solution is close to, and draw the comparison, verification of successive overrelaxation (SOR) the accuracy of iterative method.Key words: Sparse linear system of equations;Successive over relaxation iteration method; Relaxation factor;Matlab programming目录1 绪论 (1)1.1 课题研究 (1)2课题研究方法 (2)2.1 超松弛法产生的背景 (2)2.2 超松弛迭代法理论基础 (2)3 实验过程和运行结果 (5)4 结论 (9)参考文献 (10)附录 (11)1 绪论1.1 课题研究考虑两点边值问题容易知道它的精确解为为了把微分方程离散,把区间等分,令,,得到差分方程简化为从而离散后得到的线性方程组的系数矩阵为对,,,分别用、和的超松弛迭代法求解线性方程组,然后比较与精确解的误差;探讨使超松弛迭代法收敛较快的取值,对结果进行分析;探讨在迭代过程中取4位有效数字和7位有效数字有什么不同;谈谈你的体会。
(完整版)6.4超松弛迭代法
0.75 x2( ( k 1)
6 0.25x3(k
)
7.5
x (k 1) 3
0.25x2(k1)
6
②取ω=1.25 ,即SOR迭代法:
xx21((kk11))
0.25x1(k) 0.9375x2(k) 7.5 0.9375x1(k1) 0.25x2(k) 0.3125x3(k)
-5.0183105
3.1333027
4.0402646
-5.0966863
4
3.0549316
3.9542236
-5.0114410
2.9570512
4.0074838
-4.9734897
5
3.0343323
3.9713898
-5.0071526
3.0037211
4.0029250
-5.0057135
6
3.0214577
3.9821186
-5.0044703
2.9963276
4.0009262
-4.9982822
7 3.0134110
3.9888241
-5.0027940
3.0000498
4.0002586
-5.0003486
迭代法若要精确到七位小数, Gauss-Seidel迭代法需要34次迭代; 而用SOR迭代法(ω=1.25),只需要14次迭代。
因子ω。
返回引用
opt
(1
2
1 [(BJ )]2 )
(4)
这时,有ρ(Bopt
)=
ω
opt
-
1。
SOR法分类与现状
通常,
(1)当ω>1 时,称为超松弛算法; (2)当ω<1 时,称为亚松弛算法。
sor方法
sor方法
SOR方法是一种迭代数值解法,主要被用于求解线性系统Ax=b,其中A是系数矩阵,b是右端向量。
SOR方法的全称为"Successive Over-Relaxation Method",意为迭代超松弛法。
在使用SOR方法求解线性方程组时,首先需要将系数矩阵A分解为L、D和U 三个部分,其中L是A的严格下三角矩阵,D是A的对角线矩阵,U是A的严格上三角矩阵。
同时,SOR方法还需要一个松弛因子w。
SOR方法的迭代公式为:
x(k+1) = (1-w)x(k) + w(D-wL)^(-1)(b-Ux(k))
其中x(k)表示第k次迭代求得的解向量,x(k+1)表示x(k)的下一次迭代,^(−1)表示逆矩阵。
可以发现,SOR方法是基于Gauss-Seidel方法的改进,它在每一次迭代中添加了一个松弛因子w,从而使得解向量的迭代更快、更稳定。
在实际应用中,我们需要选择一个合适的松弛因子w,以使得SOR方法能够收敛并且收敛速度较快。
一般来说,选择一个小于1的w能够保证SOR方法的收敛性,而选择一个大于1的w能够加快SOR方法的收敛速度。
需要注意的是,SOR方法只能够求解特定条件下的线性方程组,如系数矩阵为对称正定矩阵、对角占优矩阵等。
当系数矩阵不满足这些条件时,SOR方法可能出现发散的情况。
总的来说,SOR方法是一种简单而有效的数值解法,被广泛应用于工程计算等领域。
在使用时,需要根据具体问题选择合适的松弛因子w,并且注意其收敛性和收敛速度。
超松弛迭代法中松弛因子ω的选取方法
超松弛迭代法中松弛因子ω的选取方法一、超松弛迭代算法基本概念超松弛迭代法简称为SOR(Successive Over -- Relaxation)法,是求解线性代数方程组的一种迭代加速方法,它是在高斯--塞德尔迭代法的基础上进行加速的,将前一步的结果x k i )(与高斯--塞德尔迭代方法的迭代值x k i )1(+适当的加权平均,期望获得更好的近似值x k i )1(+。
其迭代公式如下:x k i )1(+=(1--ω)x k i )(+a iiw (b i --x a k j i j ij )1(11+-=∑--x a j n i j ij (k)∑=) i =1,2,…,n;k =0,1,2,…(1.1)SOR 法中ω的取值对迭代公式的收敛速度影响很大,它的好坏直接影响到加速的快慢。
为了保证迭代过程的收敛,必须要求0<ω<2,超松弛法取1<ω<2。
但是在1和2之间仍然有很多的取值,究竟如何取值没有同意的规定。
经过多次的实验、分析与研究提出了ω选取的几种方法。
二、松弛因子ω的选取方法1、逐步实验法将ω的取值区间(1,2)进行M 等分,ω分别取1+1/M ,1+2/M ,……,1+(M--1)/M ,通过公式1.1依次对同一精度要求求出迭代次数k 的值,在求的同时比较出最少的迭代次数k ,并将此次ω的值保留,这样就得到了1+1/M ,1+2/M ,……,1+(M--1)/M 中最优的ω值,算法步骤如下:第一步:给定M 的值第二步:对于,ω分别取1+1/M ,1+2/M ,……,1+(M--1)/M 按照公式 x k i )1(+=(1--ω)x k i )(+a iiw (b i ---x a k j i j ij )1(11+-=∑---x a j n i j ij (k)∑=) i =1,2,…,n;k =0,1,2,…根据给定的精度要求迭代,求出迭代次数k 的值。
SOR迭代法超松弛因子选取
《计算方法》实验报告(二)实验名称:SOR迭代法松弛因子的选取班级:数学1402班姓名:高艺萌学号:14404210一、实验目的通过本实验学习线性方程组的SOR迭代解法以及SOR迭代法的编程与应用。
对比分析不同条件下的超松弛因子的取值大小会对方程组的解造成影响,通过这个实验我们可以了解的不同取值会对方程组的解产生的影响。
培养编程与上机调试能力。
二、实验题目用逐次超松弛(SOR)迭代法求解方程组,其中(1)给定迭代误差,选取不同的超松弛因子进行计算,观察得到的近似解向量并分析计算结果,给出你的结论;(2)给定迭代误差,选取不同的超松弛因子进行计算,观察得到的近似解向量并分析计算结果,给出你的结论;三、实验原理1.逐次超松弛迭代法可以看作Gauss-Seidel迭代法的加速,2.SOR迭代计算格式其中,w叫松弛因子,当w>1时叫超松弛,0<w<1时叫低松弛,w=1时就是Gauss-Seidel迭代法。
3.利用SOR迭代算法进行求解。
4.算法原理:SOR迭代法%masor.mfunction x=masor(A,b,omega,x0,ep,N)n=length(b);if nargin<6,N=500;endif nargin<5,ep=1e-6;endif nargin<4,x0=zeros(n,1);endif nargin<3,omega=1.5;endx=zeros(n,1);k=0;while k<Nfor i=1:nif i==1 x1(1)=(b(1)-A(1,2:n)*x0(2:n))/A(1,1);else if i==n x1(n)=(b(n)-A(n,1:n-1)*x(n:n-1)/A(n,n);else x1(i)=(b(i)-A(i,1;i-1)*x(1:i-1)-A(i,i+1:n)*x0(i+1:n))/A(i,i); endendx(i)=(1-omega)*x0(i)+omega*x1(i); endif norm(x0-x,inf)<ep,break;endk=k+1;x0=x; endif k==N Warning; enddisp([’k=’,num2str(k)])运行程序四、实验内容根据实验题目,分别对问题一,问题二进行求解。
超松弛迭代法(SOR方法)
解:SOR迭代公式
x1( k
1)
(1 )x1(k )
4
(10 2x2(k )
4x3(k ) )
x
(k 2
1)
(1 )x2(k )
17
(3
2
x1(
k
1)
10x3(k ) )
x3( k
1)
(1 )x3(k )
9
(7 4x1(k 1)
10
x
(k 2
1)
)
初值 x (0) (0,0,0)T k = 0,1,2,…,
例该4方.4程用组S的OR精法确求解解线x (性*) 方 程(2组,1,1)T
如值只果需x(0取)迭ω取代(0=,04ω21,00x(=42)即1次T1xx,要11.高4便26达x斯11,可207到—xx要达22同4塞求到x样319德精0x精x3尔度130度迭要x,(3k7代求需1) 法要x)迭(和k) 代同1一1100初6次
数值计算方法
超松弛迭代法(SOR方法) 使用迭代法的困难在于难以估计其计算
量。有时迭代过程虽然收敛,但由于收敛速 度缓慢,使计算量变得很大而失去使用价值 。因此,迭代过程的加速具有重要意义。逐 次超松弛迭代(Successive Over relaxatic Method,简称SOR方法)法,可以看作是带参 数的高斯—塞德尔迭代法,实质上是高斯-塞 德尔迭代的一种加速方法。
或 Dx(k1) (1)Dx(k) (b Lx(k1) Ux(k) )
故 (D L)x(k1) (1)D Ux(k) b
显然对任何一个ω值,(D+ωL)非奇异,(因为假设 aii 0,i 1,2,, n )于是超松弛迭代公式为
x(k1) (D L)1 (1)D U x(k) (D L)1b
关于逐次超松弛迭代法(SOR方法)的教学
关于“逐次超松弛迭代法(SOR 方法)”的教学一、SOR 迭代公式逐次超松弛(Successive Over Relaxation)迭代法,简称SOR 方法,它是在GS 法基础上为提高收敛速度,采用加权平均而得到的新算法,设求解线性代数方程组b Ax =的GS 法记为(1)再由与加权平均得这里ω>0称为松弛参数,将(1)代入则得(2)称为SOR 迭代法,ω>0称为松弛因子,当ω=1时,(2)即为GS 法,将(2)写成矩阵形式则得即,于是得SOR 迭代的矩阵表示(3)其中(4)亦可作矩阵分解ωωN M A -=,其中有.从而SOR 迭代矩阵 ωωωN M G 1-=. 例1 给定方程组精确解,用SOR法求解,分别取ω=1及ω=125.解用SOR迭代公式(2)可得取,迭代7次后分别为若要精确到小数后7位,对ω=1(即GS法)需迭代34次,而对ω=1.25的SOR法,只需迭代14次.它表明松弛因子ω选择的好坏,对收敛速度影响很大。
二、SOR迭代法收敛性根据迭代法收敛性定理,SOR法收敛的充分必要条件为,收敛的充分条件为,但要计算比较复杂,通常都不用此结论,而直接根据方程组的系数矩阵A 判断SOR迭代收敛性,下面先给出收敛必要条件定理1设,则解方程的SOR迭代法收敛的必要条件是0<ω<2.证明因为SOR迭代矩阵为,于是另一方面,设的特征值为,由特征根性质,有若SOR法收敛,则,由,则得0<ω<2.定理2若对称正定,且0<ω<2,则解Ax=b的SOR迭代法(3)对迭代收敛。
证明设的特征值为(可能是复数),对应特征向量x≠0, 由(4)得因为实对称矩阵,故, 上式两边与x作内积,得(5)因A正定,故D也正定,记.又记,,由内积性质得于是由(5)有由于A正定及0<ω<2,故,于是。
注一:当ω=1时SOR法即为GS法,故GS法也收敛,此即为GS法的收敛定理结论。
对于SOR迭代法,松弛因子的选择对收敛速度影响较大,关于最优松弛因子研究较为复杂,且已有不少理论结果。
松弛因子与迭代次数的关系
松弛因子与迭代次数的关系介绍:松弛因子是迭代法中的一个重要参数,用来控制每次迭代的步长。
迭代法是解决线性方程组的常见方法之一,在实际应用中,通过调整松弛因子可以使得迭代更快收敛或更稳定。
本文将探讨松弛因子与迭代次数的关系,并分析不同松弛因子对迭代法收敛速度的影响。
一、松弛因子的定义和作用松弛因子(relaxation factor)是在迭代法中用来调整每次迭代的步长的参数,通常用符号ω表示。
对于迭代法求解线性方程组Ax=b,其中A是系数矩阵,b是常数向量,松弛因子ω用于计算每次迭代的解向量x:x(k+1) = (1-ω)x(k) + ωD^(-1)(b - Rx(k))其中x(k)是第k次迭代的解向量,D是系数矩阵A的对角矩阵,R是A的严格下三角矩阵或严格上三角矩阵。
通过调整松弛因子的取值,可以控制每次迭代解向量的更新幅度,从而影响迭代的收敛性和速度。
二、松弛因子与迭代次数的关系1. 松弛因子小于1的情况当松弛因子ω小于1时,迭代法称为欠松弛法(under-relaxation method)。
此时,每次迭代的解向量更新比较小,迭代过程较为稳定。
在数值计算中,欠松弛法常用于处理病态问题和不可收敛问题,能够提高迭代法的稳定性和收敛性。
然而,欠松弛法由于每次迭代步长较小,收敛速度相对较慢。
因此,在求解较大规模的线性方程组时,需要进行很多次迭代才能达到收敛要求。
2. 松弛因子等于1的情况当松弛因子ω等于1时,迭代法称为正常迭代法(Gauss-Seidel method)。
此时,每次迭代的解向量更新完全由当前迭代的解向量决定,即x(k+1) = x(k)。
正常迭代法是一种简单的迭代方法,容易实现。
然而,在某些情况下,正常迭代法可能会发散或收敛速度较慢,特别是对于病态问题。
3. 松弛因子大于1的情况当松弛因子ω大于1时,迭代法称为超松弛法(over-relaxation method),也称为逐次上松法(successive overrelaxation method,SOR)。
SOR松弛因子实验报告
SOR松弛因子
200820801065 查俊
一、问题叙述
用SOR迭代法解线性方程组,在迭代收敛的情况下,松弛因子如何选项迭代收敛最快?事实上,对于这一情况始终是没有解决的问题,要反复试验才能得到比较满意的结果。
二、问题分析
SOR Gauss-Seidel迭代
0.01扫描寻找A的
最佳松弛因子。
三、实验程序及注释
新建m文件bw.m
function BW=bw(A,w)
n=max(size(A));
L=zeros(n);
U=L;
for i=1:n
for j=1:n
if j<i
L(i,j)=A(i,j);
end
if j>i
U(i,j)=A(i,j);
end
end
end
D=A-L-U
BW=inv(D+w*L)*[(1-w)*D-w*U];
新建m文件best_w.m
A=[4 -2 -1;-2 4 -2;-1 -2 3]
w=0.5:0.01:2;
n=size(w)
rho=zeros(n)
for i=1:max(n)
BW=bw(A,w(i));
rho(i)=max(abs(eig(BW)))
end
[rho_best,m]=min(rho);
w_best=w(m)
rho_best
plot(w,rho)
四、实验数据结果及分析
程序运行后,w_best=1.4400(松弛因子),rho_best=0.5291(谱半径)
下图为松弛因子和谱半径的函数图像
五、实验结论
通过实验可以看出,迭代矩阵的谱半径对于松弛因子是一个单峰函数,有唯一的最小点。
数值分析Python实现系列——二、逐次超松弛迭代法(SOR)
数值分析Python 实现系列——⼆、逐次超松弛迭代法(SOR )⼆、超松弛迭代法(SOR)1.原理:回顾:在⼀般情况下 : 收敛过慢甚⾄不收敛的B 与f ,经过对系数矩阵A 分裂成A =M −N 的形式, 使得迭代公式变为: x k +1=(I −M −1)Ax k +M −1f 雅克⽐迭代法选取 : 现将A 如下分解A =D −L −U ,D 为对⾓阵,L 为下三⾓阵,U 为上三⾓阵,取M ≡D ,取N ≡L +U ,在这⼀章中我们选取下三⾓矩阵M =1ω(D −ωL ),ω>0,其中ω为松弛因⼦,我们可以发现当ω为1时,M =D −L ,正是⾼思-赛德尔迭代法,下⾯推导迭代公式:x k +1=I −M −1A x k +M −1bx k +1=I −ω(D −ωL )−1A x k +ω(D −ωL )−1bx k +1=(D −ωL )−1((1−ω)D +ωU )x k +ω(D −ωL )−1b推导完毕,我们较为常⽤的是下式:(D −ωL )x k +1=((1−ω)D +ωU )x k +ωb以及:x (0)=(x (0)1,...,x (0)n )T ,x (k +1)i =x (k +)i +Δx i Δx i =ωb i −i −1∑j =1a ij x (k +1)j −n ∑j =1a ij x (k )j a ii i =1,2,...,n ,k =0,1,...,ω为松弛因⼦当ω>1时为超松弛迭代,当ω<1时为低松弛迭代迭代终⽌条件:max 1≤i ≤n |Δx i |=max1≤i ≤n |x (k +1)i −x (k )i |<ε,下⾯我们试试⽤Python 实现这⼀功能.2.实现:import numpy as npimport matplotlib.pyplot as pltMAX = 110 # 遍历最⼤次数A = np.array([[-4, 1, 1, 1], [1, -4, 1, 1], [1, 1, -4, 1], [1, 1, 1, -4]])b = np.array([[1], [1], [1], [1]]) # 注意这⾥取列向量omega_list = [1 + 0.005 * i for i in range(100)] # 取到不同的omega 值,观察趋势length = len(A)count = [] # 记录遍历的次数for omega in omega_list: # 遍历每⼀个omega 值times = 0x_0 = np.zeros((length, 1))x_hold = x_0 + np.ones((length, 1))while (np.linalg.norm(x_hold - x_0, ord=2) >= 10 ** (-5)) and (times <= MAX):# 遍历停⽌条件以k+1次与k 次迭代的向量差的⼆范数以及遍历最⼤次数为标准x_hold = x_0.copy() # 这⾥不要⽤赋值,要⽤copyx_new = x_0.copy()for i in range(length):# 根据迭代公式迭代x_new[i][0] = x_0[i][0] + omega * (b[i][0] - sum([A[i][j] * x_new[j][0] for j in range(i)]) - sum([A[i][j] * x_0[j][0] for j in range(i, length)])) / A[i][i]x_0 = x_new.copy()times += 1count.append(times)plt.plot(omega_list, count) # 观察omega 与迭代次数的关系plt.show()思路:1.遍历设限:第⼀种是到达精度,到达精度停⽌迭代,第⼆种是到达规定最⼤次数,这个可以⾃⼰设定.2.在根据迭代公式改变各个向量分量时,要注意遍历范围.结果:{。
数值分析第二次大作业SOR最优松弛因子选取方法及SOR迭代法的改进
《数值分析》第二次大作业题目:SOR最优松弛因子选取方法及SOR迭代法的改进内容:1.SOR最优松弛因子选取方法2.SOR迭代法的改进(SSOR迭代法)3.SSOR迭代法的Matlab程序4.举例比较jacobi,Gauss-Seidel,SOR及SSOR 迭代法的收敛速度姓名:合肥工业大学学号:2011班级:信息与计算科学11-1班参考资料:1.《确定SOR最优松弛因子的一个实用算法》李春光等《计算力学学报》2.《数值分析与实验》,薛毅,北京工业大学出版社.3.《数值分析中的迭代法解线性方程组》,马云,科学出版社4.《非线性互补问题的改进超松弛迭代算法》,段班祥等,江西师范大学出版社5.《迭代法解线性方程组的收敛性比较》,郑亚敏,江西科学出版社.一、SOR最优松弛因子选取方法SOR迭代法迭代公式:x(k+1)i=(1-ω)xi+(k) bi-∑aijxjaii⎝j=1ω⎛ i-1(k+1)-j=i+1∑axijn(k)j⎫⎪ (i=1,2,..n.), ⎪⎭1.二分比较法将松弛因子1/2,ω的区间(1,2)进行二分,每个小区间的长度为ω去中间值3/2,按照SOR 迭代法迭代公式,求出跌代次数k,如果k不超过指定的发散常数,则可确定ω的值;否则将(1,2)四等分,每个区间长度为1/4,ω取各分点值,继续迭代,一般地,将1区间(1,2)二分M次,每次二分步长为,ω一次取取各分点值,2M按照SOR迭代法迭代公式,求出跌代次数k,如果k不超过指定的发散常数,则可确定的ω的值,这样总能找到一个不超过指定发散常数ω值。
2.逐步搜索法将1+ω的取值区间(1,2)进行M等分,ω分别取ω的值。
12M-1,1+,...,1+,通过迭代公式依次对同意精度要求求出迭代MMM次数k的值,并从中选出最优松弛因子3.黄金分割法依据黄金分割比的思想,通过计算机主动选取最优松弛因子的近似值,步骤如下a.对(1,2)区间进行第一次0.618的分割,区间边界a1=1,b1=2,在区间(a1,b1)分割出黄金点p1=a1+0.618(b1-a1),进行SOR迭代法的迭代,求出迭代次数k的值,如果没有超过规定的发散常数,迭代结束,否则做步骤b。
超松弛迭代法及其松弛因子的选取
电子科技大学数值分析实验报告题目:超松弛迭代法及其松弛因子的选取学生姓名:学号:日期:年月日超松弛迭代法及其松弛因子的选取问题提出:在Gauss-Seidel 迭代法基础上,人们发现通过迭代-松弛—再迭代的方法,能更加减少计算步骤,极大的缩短计算时间,在此基础上,超松弛迭代法被学者们研究出来。
在求解大型稀疏线性方程组中超松弛迭代法得到广泛应用.而SOR 迭代方法中松弛因子ω的取值直接影响到算法的收敛性及收敛速度,是应用超松弛迭代法的关键.选择得当,可以加快收敛速度,甚至可以使发散的迭代变成收敛。
因此, 超松弛因子的选取是学者们又一个研究目标.通过一些被验证的定理,我们知道为了保证迭代过程的收敛,必须要求1<ω<2,而且松弛因子和迭代矩阵谱半径之间有着密切的联系,现今学者们已经研究出部分特殊矩阵的最优松弛因子的计算公式.对于一般的矩阵,我们也可以从松弛因子和谱半径的关系着手研究最优松弛因子的选取。
问题分析:1.超松弛迭代基本知识1.1 超松弛迭代法定义[1]超松弛(Successive Over Relaxation)迭代法,简称SOR 迭代法,它是在Gauss-Seidel 法基础上为提高收敛速度,采用加权平均而得到的新算法.设解方程组的Gauss-Seidel 法记为1(1)(1)()111(),1,2,,i nk k k ii ij j ij j j j i ii x b a x a x i na -++==+=--=∑∑ (1)再由()k i x 与(1)k i x +加权平均得(1)(1)(1)()()()(1)(),1,2,,k k k k k k i i i ii x x xx x x i nωωω+++=-+=+-=这里ω>0称为松弛参数,将(1)代入则得1(1)()(1)()11(1)(),1,2,,i nk k k k iii ij jijjj j i iix x b a x a xi na ωω-++==+=-+--=∑∑ (2)称为SOR 迭代法,ω>0称为松弛因子,当ω=1时(2)即为Gauss-Seidel 法,将(2)写成矩阵形式,则得(1)()(1)()(1)()k k k k Dx Dx b Lx Ux ωω++=-+++于是得SOR 迭代的矩阵表示[3](1)()k k i x G x f ωω+=+ (3)其中1()[(1)]G D L D U ωωωω-=--+1()f D L b ωωω-=-1.2 收敛性判别条件根据迭代法收敛性定理[2],SOR 法收敛的充分必要条件为()1G ωρ<,但要计算()G ωρ比较复杂,通常都不用此结论,而直接根据方程组的系数矩阵A 判断SOR 迭代收敛性,下面先给出收敛必要条件. 定理1]4[ 设(),0(1,2,...,)n nij ii A a Ra i n ⨯=∈≠=,则解方程Ax b =的SOR 迭代法收敛的必要条件是0<ω<2. 定理2]5[ 若n nA R⨯∈对称正定,且0<ω<2,则解Ax=b 的SOR 迭代法(3)对nx R ∀∈迭代收敛.对于SOR 迭代法,松弛因子的选择对收敛速度影响较大,关于最优松弛因子研究较为复杂,且已有不少理论结果.下面只给出一种简单且便于使用的结论. 1.3 收敛速度的估计SOR 迭代法的迭代矩阵G ω与ω有关,当选取不同的ω时,其迭代速度也有所不同.因此,需要找到最优的松弛因子b ω,使对应b ω的SOR 方法收敛最快. 定理3]7[ 设n A Rn⨯∈,如果存在排列矩阵P ,使1122T D M PAP M D =其中,1D ,2D 为对角矩阵,则称A 是2-循环的.此外,若当0α≠时,矩阵11-1D U D L αα--+的特征值都和α无关,则称A 是相容次序矩阵.定理4]7[ 设n A Rn⨯∈,A 有非零的对角元,且是2-循环和相容次序的矩阵.又设1(U)J B D L -=+是方程组A x b =的Jacobi 法迭代的迭代矩阵,且2B 的所有特征值均在(0,1)上,若()1J B ρ<,记()J B μρ=,则SOR 法的最优松弛因子b ω为2211b ωμ=+-且222[4(1)],0()41,2bb G ωωμωμωωωρωωω⎧+--⎪<<=⎨⎪-<<⎩02()min ()bb G G ωωωρρ≤≤=图12 松弛因子选取方法方法思想]8[:(1)给出ω的范围,当取不同的ω值时,进行迭代,在符合同一个精度要求下依次求出谱半径的值,比较出最小的谱半径,那么这个最小的谱半径所对应的的ω,即为所求最佳松弛因子.(2)给出ω的范围,当取不同的ω值时,进行迭代,看它们在相同精度范围内的迭代次数,找到迭代次数最少的那一个,其所对应的ω即为最佳松弛因子.”2.1 逐步搜索法 算法:Step 1:读入线性方程组的系数矩阵,常数向量,初值,精度,给出ω的取值范围,以及其变化步长;Step 2:按照如下公式迭代(1)()k k i x G x f ωω+=+找出符合精度要求ε的迭代次数及谱半径;Step 3:循环迭代,最后找到最优松弛因子Step 4: 改变ω的取值范围,重新设定变化步长,重复Step2. 2.2 黄金分割法从定理4我们可以看到,最优松弛因子对应的谱半径最小,而黄金分割法对于数值求解单调函数的极小和极大值是非常方便和有效的]9[,因此,我们可以把黄金分割法应用在求最优松弛因子上,其算法与主要思想是: Step1:利用优选法思想,在)2,1(之间选取四个点,12441314141,0.618(),0.618(),2p p p p p p p p p p ==--=+-=Step 2: 分别取2p 与3p 作为松弛因子代入迭代程序,比较出最少的迭代次数,如果对2p 应的迭代次数少,则选取),(31p p 作为收敛区间,如果是对应的3p 迭代次数少,则选取),(42p p 作为收敛区间.Step 3: 在所选取的收敛区间里循环进行上述的两个步骤,直到选取出满足精度要求且2p ,3p 所对应的迭代次数差不超过某个数∆时选3p 为最优松弛因子.3 数值算例例1: 矩阵3101130000311013A -⎡⎤⎢⎥-⎢⎥=⎢⎥-⎢⎥-⎣⎦(1,2,2,1)T b =----,精度为161.0*10k k x x ---≤解法1:黄金分割法令05.0=∆,程序结果如下:由上可以看出我们只需作几次0.618法就可以找到最优松弛因子,本例中最优松弛因子0901.1=ω,迭代次数为8次.解法2:逐步搜索法,步长为0.1,21<≤ω程序结果如下:图3图3中,其横坐标表示松弛因子,纵坐标表示谱半径.也可以求出最优松弛因子为1.1,迭代次数为8.然后我们改变松弛因子区间,令1.11≤≤ω以步长为0.01来继续求更精确的松弛因子.程序结果如下:图4图4中,其横坐标表示松弛因子,纵坐标表示谱半径.这样继续缩小松弛因子范围,以更小的步长求得的最优松弛因子为1.0900,更加精确. 例2 方程组A x b =,⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=40001-1-1-0004001-01-1-0004001-1-01-0004001-1-1-1-1-00400001-01-00400001-1-1-0040001-01-00040001-1-00004AT (2,2,0,2,2,1,1,1,1)b =.精度为161.0*10k k x x ---≤.初始迭代值为0(0,0,0,0,0,0,0,0,0)T x =.求最优松弛因子.解法1 黄金分割法令001.0=∆,程序结果如下:求得最优松弛因子为1.1772. 解法2 逐步搜索法首先以21<≤ω,步长为0.1搜索求得的最优松弛因子为1.2000,然后重新设定范围,以步长为0.01运行程序在改变范围,以步长为0.001运行,程序结果如下:求得的最优松弛因子为1.1780.由这两个例子可以看出利用黄金分割法求最优松弛因子比用逐步搜索法更加简便快速,但是用逐步搜索法步长取的很小时求得的松弛因子比黄金分割法更加精确。
松弛因子的取值范围
松弛因子的取值范围
松弛因子(Relaxation Factor)在不同的上下文中有不同的应用,通常是指在迭代求解算法中的一个参数,用于控制每一步迭代的步长或权重。
常见的应用包括迭代法求解线性方程组、优化问题等。
1.迭代法中的松弛因子:
•在迭代法中,例如迭代法求解线性方程组的过程中,松弛因子通常表示为符号ω(omega)。
其取值范围通常
为(0, 2) 之间,包括0和2。
常见的取值有1、1.1、1.2
等,取决于具体问题和算法。
2.松弛法(Relaxation Methods)中的松弛因子:
•在一些优化问题的求解中,也可以采用松弛法,松弛因子的选择可能依赖于问题的性质。
一般而言,松弛因
子的取值范围也是在(0, 2) 之间。
3.有限元分析中的松弛因子:
•在有限元分析等领域,松弛因子通常用于控制迭代法的收敛速度,取值范围也在(0, 2) 之间。
总体而言,松弛因子的合适取值依赖于具体问题的性质和迭代算法的特点。
通常来说,选择一个适当的松弛因子可以加速算法的收敛,提高求解效率。
然而,选择过大或过小的松弛因子可能导致算法不稳定或者收敛速度过慢,因此在实际应用中需要进行调试和优化。
SOR迭代法松弛因子选取
l d e t ( B 】 = l 丑 … l b( B ) 】 ” < i
又
.
d e t ( B ) = d e t [ ( D 一 ) J d e t [ ( 1 一 w ) D + w U ]
=
[ d e t ( D ) ] ~ x d e t ( D ) × [ ( 1 一 w ) D + w D — t U 】 = ( 1 - w )
多的 取值 ,这样 的 w如何 取 ?
( 1 )等 区问 分割 比 例法 。
将区间 ( 0 ,2 ) M 等分 ,则松弛因子
…
收 敛 的 充 要 条 件 。对 单 松 弛 因子 W做 了取 值 范 围的 论 证和 具 体
厂, Ⅳ、
2
值选 取的 算法 分 析; 对双 松弛因 子W , 介绍了 当 A = l A 1 l 时 ,
X “ = ( D— w L ) [ ( 1 一 w ) D+ w U I x ) + ( D— w L ) w b ( 4 )
迭代 矩阵 B = ( D— w L ) [ ( 1 一 w ) D+ w U 】 。 而这样的w满 足什
么 条件 和 如 何 选 取 以对 的情 况 我 们 将 在 下 文 中 作进 一步 的讨
1 引言
厂 对 2 ' 3 , …,
相 容 线性 方 程组
=
b
(1)
有唯一解, 则A 非奇异, b ≠ 0。 其中 = ) ~为 系数矩阵,
b =( b 1 , b 2 , …, b ) 。
任取 的一 近 似解 ( ,由迭 代 公式 :
( 川 =B X( ”+ 厂 ( 2)
双 松 弛 因 子 的确 定 。
6.4超松弛迭代法
表6.3 Gauss-Seidel迭代法与SOR迭代法比较
Gauss-Seidel迭代法
SOR迭代法(ω=1.25)
k
x1
0
1.0000000
x2 1.0000000
x3 1.0000000
x1 1.0000000
x2 1.0000000
x3 1.0000000
1
5.2500000
3.1825000
第六章 线性方程组迭代解法
§ 6.4 超松弛迭代法(SOR)
§ 6.4超松弛迭代法(SOR)
SOR(Successive Over-Relaxation)法, 即超松弛迭代法,是目前解大型线性方程 组的一种最常用的方法,是Gauss-Seidel迭 代法的一种加速方法。
一、SOR法迭代公式
例6.6 用SOR法求解线性方程组
前面我们看到,SOR法收敛与否或收敛速度都 与松弛因子ω 有关,关于ω 的范围,有如下定理。
SOR法收敛与收敛速度有关定理
定理6.5 设A∈Rnn,满足a ii≠0 (i=1,2,,n),则有 ρ(Bω)≥ |1-ω| 。
推论 解线性方程组,SOR法收敛的必要条件是 |1-ω| <1 ,即 0<ω <2。
4.0009262
-4.9982822
7 3.0134110
3.9888241
-5.0027940
3.0000498
4.0002586
-5.0003486
迭代法若要精确到七位小数, Gauss-Seidel迭代法需要34次迭代; 而用SOR迭代法(ω=1.25),只需要14次迭代。
可见,若选好参数ω,SOR迭代法收敛速度会很 快。
MATLAB实现迭代法最佳松弛因子的选取
迭代法最佳松弛因子的选取一、问题提出:针对矩阵430341014A ⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦,b=[24;30;-24],用SOR 迭代求解。
并选出最佳松弛因子。
理论分析 1.24ω==≈。
做出()L ωρ关于ω函数的图像。
二、理论基础选取分裂矩阵M 为带参数的下三角矩阵)(1wL D wM -=, 其中w>0为可选择的松弛因子. 于是,由⎪⎩⎪⎨⎧+=+f Bx xx k k )()1()0()(初始向量 (k=0,1,…,)可构造一个迭代法,其迭代矩阵为A wL D w I L w 1)(---≡=).)1(()(1wU D w wL D +---从而得到解Ax=b 的主次逐次超松弛迭代法.解Ax=b 的SOR 方法为⎪⎩⎪⎨⎧+=+f Bx xx k k )()1()0()(初始向量 (k=0,1,…,) (1) 其中w L =).)1(()(1wU D w wL D +---(2) b wL D w f 1)(--=下面给出解Ax=b 的SOR 迭代法的分量计算公式.记 ,),...,,...,()()()(1)(T k n k ik k x x x x =由(1)式可得,))1(()()()1(wb x wU D w x wL D k k ++-==-+ ).()()()1()()1(k k k k k Dx Ux Lx b w Dx Dx -+++=++ (3) 由此,得到解Ax=b 的SOR 方法的计算公式⎪⎪⎪⎩⎪⎪⎪⎨⎧==--+==∑∑-==++.),1,0;,...,2,1(/)(,),...,(11)(1)()1()0()0(1)0(为松弛因子w k n i a x a x a b w x x x x x iii j ni j k j ij k j ij i k i k i T n (4)或⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧==--=∆∆+==∑∑-==++.,...),1,0;,...,2,1()/(,,),...,(.11)()1()()1()0()0(1)0(为松弛因子w k n i a x a x a b w x x x x x x x i j n i j ii k j ij k j ij i i i k i k iT n (5)※ 若要求选取出最佳松弛因子,则有两种方法:⑴、 给出w 的最佳范围,当取不同的w 值时,会求出不同的谱半径R 的值,然后判断出值最小的谱半径。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《计算方法》实验报告(二)
实验名称:SOR 迭代法松弛因子的选取
班级: 数学1402班 姓名: 高艺萌 学号:14404210
一、 实验目的
通过本实验学习线性方程组的SOR 迭代解法以及SOR 迭代法的编程与应用。
对比分析不同条件下的超松弛因子w 的取值大小会对方程组的解造成影响,通过这个实验我们可以了解的w 不同取值会对方程组的解产生的影响。
培养编程与上机调试能力。
二、 实验题目
用逐次超松弛(SOR )迭代法求解方程组b Ax =,其中
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=555555122-12-122-112-122-112-122-112-122-12-12201918321 x x x x x x A (1)给定迭代误差,选取不同的超松弛因子1>ω进行计算,观察得到的近似解向量并分析计算结果,给出你的结论;
(2)给定迭代误差,选取不同的超松弛因子1<ω进行计算,观察得到的近似解向量并分析计算结果,给出你的结论;
三、 实验原理
1.逐次超松弛迭代法可以看作Gauss-Seidel 迭代法的加速,
b D Ux D Lx D x k k k 1)(1)1(1)1(--+-+++=
2.SOR 迭代计算格式
b D L wD I w x U wD I w L wD x k k 111)(111)1()(])1[()-1(------+-++-= 其中,w 叫松弛因子,当w>1时叫超松弛,0<w<1时叫低松弛,w=1时就是Gauss-Seidel 迭代法。
3.利用SOR 迭代算法进行求解。
4.算法原理:SOR 迭代法
%masor.m
function x=masor(A,b,omega,x0,ep,N)
n=length(b);
if nargin<6,N=500;end
if nargin<5,ep=1e-6;end
if nargin<4,x0=zeros(n,1);end
if nargin<3,omega=1.5;end
x=zeros(n,1);k=0;
while k<N
for i=1:n
if i==1 x1(1)=(b(1)-A(1,2:n)*x0(2:n))/A(1,1);
else if i==n x1(n)=(b(n)-A(n,1:n-1)*x(n:n-1)/A(n,n);
else
x1(i)=(b(i)-A(i,1;i-1)*x(1:i-1)-A(i,i+1:n)*x0(i+1:n))/A(
i,i); end
end
x(i)=(1-omega)*x0(i)+omega*x1(i); end
if norm(x0-x,inf)<ep,break;end
k=k+1;x0=x; end
if k==N Warning; end
disp([’k=’,num2str(k)])
运行程序
四、实验内容
根据实验题目,分别对问题一,问题二进行求解。
SOR迭代法松弛因子的选取
1.当SOR迭代法松弛因子1
w时,分别取了以下情况
>
(1)5.1
w,k=26;
=
(2)25
w,k=64;
.1
=
(3)03
=
w,k=8;
.1
(4)01
w,k=8;
.1
=
2. 当SOR 迭代法松弛因子1<w 时,分别取了以下情况
(1)9.0=w ,k=9;
(2)5.0=w ,k=23;
(3)75.0=w ,k=13;
(4)25.0=w ,k=51;
五、 实验结果
当SOR 迭代法松弛因子1>w 时,w 越大,迭代的次数就越大,收敛速度就越慢,w 越接近1时,迭代的次数越小,收敛速度越快。
当SOR 迭代法松弛因子1<w 时,w 越小,迭代的次数就越大,收敛速度就越慢,w 越接近1时,迭代的次数越小,收敛速度越快。
当SOR 迭代法松弛因子的范围是20<<w ;
n 对迭代次数的影响较小;
SOR 迭代法松弛因子w 越趋近与1,迭代次数越小,收敛越快,误差越小;。