概率专题 历年高考真题汇总(小题)(解析版)[精品文档]

合集下载

【2022高考必备】2012-2021十年全国高考数学真题分类汇编 概率(精解精析)

【2022高考必备】2012-2021十年全国高考数学真题分类汇编 概率(精解精析)

2012-2021十年全国高考数学真题分类汇编 概率(精解精析)一,选择题1.(2021年高考全国甲卷理科)将4个1和2个0随机排成一行,则2个0不相邻地概率为( )A .13B .25C .23D .45【结果】C思路:将4个1和2个0随机排成一行,可利用插空法,4个1产生5个空,若2个0相邻,则有155C =种排法,若2个0不相邻,则有2510C =种排法,所以2个0不相邻地概率为1025103=+.故选:C .2.(2021年高考全国乙卷理科)在区间(0,1)与(1,2)中各随机取1个数,则两数之和大于74地概率为( )A .79B .2332C .932D .29【结果】B思路:如图所示:设从区间()()0,1,1,2中随机取出地数分别为,x y ,则实验地所有结果构成区域为(){},01,12x y x y Ω=<<<<,其面积为111SΩ=⨯=.设事件A 表示两数之和大于74,则构成地区域为()7,01,12,4A x y x y x y ⎧⎫=<<<+⎨⎬⎩⎭,即图中地阴影部分,其面积为13323124432A S =-⨯⨯=,所以()2332A S P A S Ω==.故选:B .【点睛】本题主要考查利用线性规划解决几何概型中地面积问题,解题关键是准确求出事件,A Ω对应地区域面积,即可顺利解出.3.(2020年高考数学课标Ⅲ卷理科)在一组样本数据中,1,2,3,4出现地频率分别为1234,,,p p p p ,且411i i p ==∑,则下面四种情形中,对应样本地标准差最大地一组是( )A .14230.1,0.4p p p p ====B .14230.4,0.1p p p p ====C .14230.2,0.3p p p p ====D .14230.3,0.2p p p p ====【结果】B思路:对于A 选项,该组数据地平均数为()()140.1230.4 2.5A x =+⨯++⨯=,方差为()()()()222221 2.50.12 2.50.43 2.50.44 2.50.10.65A s =-⨯+-⨯+-⨯+-⨯=。

高考真题数学概率题及答案

高考真题数学概率题及答案

高考真题数学概率题及答案高考真题中的数学概率题常常是考生们的心头之患,因为涉及到概率的计算和推断,考生们往往感到头疼。

在这里,我为大家整理了一些高考真题中常见的数学概率题及答案,希望能帮助大家更好地应对考试。

题目一:某班有30名学生,其中10名喜欢篮球,8名喜欢足球,6名喜欢羽毛球,3名以上三项兼喜的学生只有两名,问至少有多少名学生喜欢至少一项球类运动?
解答:设喜欢至少一项球类运动的学生有x名,根据题意可列出方程:10+8+6-x=30-2,解得x=22,因此至少有22名学生喜欢至少一项球类运动。

题目二:甲、乙、丙三人开车到达目的地的概率分别是0.6、0.7和0.8,求至少有一个人到达目的地的概率。

解答:根据概率的互补性,至少有一个人到达目的地的概率为1-三人都没有到达的概率,即1-(1-0.6)(1-0.7)(1-0.8)=1-0.4*0.3*0.2=0.976,所以至少有一个人到达目的地的概率是0.976。

题目三:已知随机事件A的概率为0.4,事件B的概率为0.3,且事件A与事件B相互独立,求事件A与事件B至少有一个发生的概率。

解答:由事件A与事件B相互独立可知,事件A与事件B至少有一个发生的概率为1-(1-0.4)(1-0.3)=1-0.6*0.7=0.58,所以事件A与事件B至少有一个发生的概率为0.58。

通过以上题目的解答,我们可以看到,数学概率题并不是难到无法解决的问题,只要掌握了基本的概率知识和解题技巧,就能在考试中得心应手。

希望以上内容能对大家有所帮助,祝愿大家在高考中取得优异的成绩。

历年(2019-2024)全国高考数学真题分类(事件与概率)汇编(附答案)

历年(2019-2024)全国高考数学真题分类(事件与概率)汇编(附答案)

历年(2019-2024)全国高考数学真题分类(事件与概率)汇编考点01 古典概率一、单选题1.(2024∙全国甲卷∙高考真题)甲、乙、丙、丁四人排成一列,则丙不在排头,且甲或乙在排尾的概率是()A.14B.13C.12D.232.(2023∙全国乙卷∙高考真题)某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,则甲、乙两位参赛同学抽到不同主题概率为()A.56B.23C.12D.133.(2023∙全国甲卷∙高考真题)某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为()A.16B.13C.12D.234.(2022∙全国甲卷∙高考真题)从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为()A.15B.13C.25D.235.(2022∙全国新Ⅰ卷∙高考真题)从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为()A.16B.13C.12D.236.(2021∙全国甲卷∙高考真题)将3个1和2个0随机排成一行,则2个0不相邻的概率为() A.0.3 B.0.5 C.0.6 D.0.87.(2019∙全国∙高考真题)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是A.16B.14C.13D.128.(2019∙全国∙高考真题)生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为A.23 B.35C.25D.15二、填空题21.(2024∙全国新Ⅰ卷∙高考真题)甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为 .22.(2024∙全国甲卷∙高考真题)有6个相同的球,分别标有数字1、2、3、4、5、6,从中无放回地随机取3次,每次取1个球.记m 为前两次取出的球上数字的平均值,n 为取出的三个球上数字的平均值,则m 与n 之差的绝对值不大于12的概率为 .23.(2024∙全国新Ⅱ卷∙高考真题)在如图的4×4的方格表中选4个方格,要求每行和每列均恰有一个方格被选中,则共有 种选法,在所有符合上述要求的选法中,选中方格中的4个数之和的最大值是 .24.(2023∙天津∙高考真题)把若干个黑球和白球(这些球除颜色外无其它差异)放进三个空箱子中,三个箱子中的球数之比为5:4:6.且其中的黑球比例依次为40%,25%,50%.若从每个箱子中各随机摸出一球,则三个球都是黑球的概率为 ;若把所有球放在一起,随机摸出一球,则该球是白球的概率为 . 25.(2022∙浙江∙高考真题)现有7张卡片,分别写上数字1,2,2,3,4,5,6.从这7张卡片中随机抽取3张,记所抽取卡片上数字的最小值为ξ,则(2)P ξ== ,()E ξ= .26.(2022∙全国甲卷∙高考真题)从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为 . 27.(2022∙全国乙卷∙高考真题)从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为 .28.(2021∙浙江∙高考真题)袋中有4个红球m 个黄球,n 个绿球.现从中任取两个球,记取出的红球数为ξ,若取出的两个球都是红球的概率为16,一红一黄的概率为13,则m n -= ,()E ξ= .29.(2020∙江苏∙高考真题)将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是 .30.(2019∙江苏∙高考真题)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是 .考点02 条件概率1.(2024∙天津∙高考真题),,,,A B C D E 五种活动,甲、乙都要选择三个活动参加.甲选到A 的概率为 ;已知乙选了A 活动,他再选择B 活动的概率为 .2.(2023∙全国甲卷∙高考真题)某地的中学生中有60%的同学爱好滑冰,50%的同学爱好滑雪,70%的同学爱好滑冰或爱好滑雪.在该地的中学生中随机调查一位同学,若该同学爱好滑雪,则该同学也爱好滑冰的概率为( ) A .0.8B .0.6C .0.5D .0.43.(2022∙天津∙高考真题)52张扑克牌,没有大小王,无放回地抽取两次,则两次都抽到A 的概率为 ;已知第一次抽到的是A ,则第二次抽取A 的概率为考点03 全概率公式与贝叶斯公式1.(2024∙上海∙高考真题)某校举办科学竞技比赛,有、、A B C 3种题库,A 题库有5000道题,B 题库有4000道题,C 题库有3000道题.小申已完成所有题,他A 题库的正确率是0.92,B 题库的正确率是0.86,C 题库的正确率是0.72.现他从所有的题中随机选一题,正确率是 .2.(2023∙全国新Ⅰ卷∙高考真题)甲、乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投篮,若末命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8.由抽签确定第1次投篮的人选,第1次投篮的人是甲、乙的概率各为0.5. (1)求第2次投篮的人是乙的概率; (2)求第i 次投篮的人是甲的概率;(3)已知:若随机变量i X 服从两点分布,且()()110,1,2,,i i i P X P X q i n ==-===⋅⋅⋅,则11n n i i i i E X q ==⎛⎫= ⎪⎝⎭∑∑.记前n 次(即从第1次到第n 次投篮)中甲投篮的次数为Y ,求()E Y .考点04 正态分布指定区间的概率1.(2024∙全国新Ⅰ卷∙高考真题)(多选)随着“一带一路”国际合作的深入,某茶叶种植区多措并举推动茶叶出口.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值 2.1x =,样本方差20.01s =,已知该种植区以往的亩收入X 服从正态分布()21.8,0.1N ,假设推动出口后的亩收入Y 服从正态分布()2,N x s ,则( )(若随机变量Z 服从正态分布()2,N μσ,()0.8413P Z μσ<+≈)A .(2)0.2P X >>B .(2)0.5P X ><C .(2)0.5P Y >>D .(2)0.8P Y ><2.(2022∙全国新Ⅱ卷∙高考真题)已知随机变量X 服从正态分布()22,N σ,且(2 2.5)0.36P X <≤=,则( 2.5)P X >= .3.(2021∙全国新Ⅱ卷∙高考真题)某物理量的测量结果服从正态分布()210,N σ,下列结论中不正确的是( ) A .σ越小,该物理量在一次测量中在(9.9,10.1)的概率越大 B .该物理量在一次测量中大于10的概率为0.5C .该物理量在一次测量中小于9.99与大于10.01的概率相等D .该物理量在一次测量中落在(9.9,10.2)与落在(10,10.3)的概率相等参考答案考点01 古典概率一、单选题 1.(2024∙全国甲卷∙高考真题)甲、乙、丙、丁四人排成一列,则丙不在排头,且甲或乙在排尾的概率是( ) A .14 B .13C .12D .23【答案】B【详细分析】解法一:画出树状图,结合古典概型概率公式即可求解.解法二:分类讨论甲乙的位置,结合得到符合条件的情况,然后根据古典概型计算公式进行求解. 【答案详解】解法一:画出树状图,如图,由树状图可得,甲、乙、丙、丁四人排成一列,共有24种排法, 其中丙不在排头,且甲或乙在排尾的排法共有8种, 故所求概率81=243P =. 解法二:当甲排在排尾,乙排第一位,丙有2种排法,丁就1种,共2种; 当甲排在排尾,乙排第二位或第三位,丙有1种排法,丁就1种,共2种;于是甲排在排尾共4种方法,同理乙排在排尾共4种方法,于是共8种排法符合题意;基本事件总数显然是44A 24=,根据古典概型的计算公式,丙不在排头,甲或乙在排尾的概率为81243=. 故选:B2.(2023∙全国乙卷∙高考真题)某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,则甲、乙两位参赛同学抽到不同主题概率为( )6323【答案】A【详细分析】对6个主题编号,利用列举列出甲、乙抽取的所有结果,并求出抽到不同主题的结果,再利用古典概率求解作答.【答案详解】用1,2,3,4,5,6表示6个主题,甲、乙二人每人抽取1个主题的所有结果如下表:甲 1234 5 61 (1,1) (1,2) (1,3) (1,4)(1,5) (1,6) 2 (2,1)(2,2) (2,3) (2,4) (2,5) (2,6) 3 (3,1) (3,2) (3,3)(3,4) (3,5)(3,6) 4 (4,1)(4,2) (4,3) (4,4) (4,5) (4,6) 5 (5,1) (5,2) (5,3)(5,4) (5,5) (5,6) 6(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)共有36个不同结果,它们等可能,其中甲乙抽到相同结果有(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),共6个, 因此甲、乙两位参赛同学抽到不同主题的结果有30个,概率305366P ==. 故选:A3.(2023∙全国甲卷∙高考真题)某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为( )A .16B .13C .12D .23【答案】D【详细分析】利用古典概率的概率公式,结合组合的知识即可得解.【答案详解】依题意,从这4名学生中随机选2名组织校文艺汇演,总的基本事件有24C 6=件, 其中这2名学生来自不同年级的基本事件有1122C C 4=,所以这2名学生来自不同年级的概率为4263=. 故选:D.4.(2022∙全国甲卷∙高考真题)从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为( )5353【答案】C【详细分析】方法一:先列举出所有情况,再从中挑出数字之积是4的倍数的情况,由古典概型求概率即可.【答案详解】[方法一]:【最优解】无序 从6张卡片中无放回抽取2张,共有()()()()()()()()()()()()()()()1,2,1,3,1,4,1,5,1,6,2,3,2,4,2,5,2,6,3,4,3,5,3,6,4,5,4,6,5,615种情况,其中数字之积为4的倍数的有()()()()()()1,4,2,4,2,6,3,4,4,5,4,66种情况,故概率为62155=. [方法二]:有序从6张卡片中无放回抽取2张,共有()()()()()()()()()()()()()()()1,2,1,3,1,4,1,5,1,6,2,3,2,4,2,5,2,6,3,4,3,5,3,6,4,5,4,6,5,6,(2,1),(3,1),(4,1),(5,1),(6,1),(3,2),(4,2),(5,2),(6,2),(4,3),(5,3),(6,3),(5,4),(6,4),(6,5)30种情况,其中数字之积为4的倍数有(1,4),(2,4),(2,6),(3,4),(4,1),(4,2),(4,3),(4,5),(4,6),(5,4),(6,2),(6,4)12种情况,故概率为122305=. 故选:C.【整体点评】方法一:将抽出的卡片看成一个组合,再利用古典概型的概率公式解出,是该题的最优解; 方法二:将抽出的卡片看成一个排列,再利用古典概型的概率公式解出;5.(2022∙全国新Ⅰ卷∙高考真题)从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为( )A .16B .13C .12D .23【答案】D【详细分析】由古典概型概率公式结合组合、列举法即可得解.【答案详解】从2至8的7个整数中随机取2个不同的数,共有27C 21=种不同的取法,若两数不互质,不同的取法有:()()()()()()()2,4,2,6,2,8,3,6,4,6,4,8,6,8,共7种, 故所求概率2172213P -==. 故选:D.6.(2021∙全国甲卷∙高考真题)将3个1和2个0随机排成一行,则2个0不相邻的概率为( ) A .0.3 B .0.5C .0.6D .0.8【答案】C【详细分析】利用古典概型的概率公式可求概率.【答案详解】解:将3个1和2个0随机排成一行,可以是:00111,01011,01101,01110,10011,10101,10110,11001,11010,11100,共10种排法,其中2个0不相邻的排列方法为:01011,01101,01110,10101,10110,11010,共6种方法,故2个0不相邻的概率为6=0.610, 故选:C.7.(2019∙全国∙高考真题)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是A .16B .14 C .13D .12【答案】D【解析】男女生人数相同可利用整体发详细分析出两位女生相邻的概率,进而得解.【答案详解】两位男同学和两位女同学排成一列,因为男生和女生人数相等,两位女生相邻与不相邻的排法种数相同,所以两位女生相邻与不相邻的概率均是12.故选D .【名师点评】本题考查常见背景中的古典概型,渗透了数学建模和数学运算素养.采取等同法,利用等价转化的思想解题.8.(2019∙全国∙高考真题)生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为 A .23B .35C .25D .15【答案】B【详细分析】本题首先用列举法写出所有基本事件,从中确定符合条件的基本事件数,应用古典概率的计算公式求解.【答案详解】设其中做过测试的3只兔子为,,a b c ,剩余的2只为,A B ,则从这5只中任取3只的所有取法有{,,},{,,},{,,},{,,},{,,},{,,}a b c a b A a b B a c A a c B a A B ,{,c,},{,c,},{b,,},{c,,}b A b B A B A B 共10种.其中恰有2只做过测试的取法有{,,},{,,},{,,},{,,},a b A a b B a c A a c B {,c,},{,c,}b A b B 共6种, 所以恰有2只做过测试的概率为63105,选B . 【名师点评】本题主要考查古典概率的求解,题目较易,注重了基础知识、基本计算能力的考查.应用列举法写出所有基本事件过程中易于出现遗漏或重复,将兔子标注字母,利用“树图法”,可最大限度的避免出错.二、填空题 21.(2024∙全国新Ⅰ卷∙高考真题)甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为 . 【答案】12/0.5 【详细分析】将每局的得分分别作为随机变量,然后详细分析其和随机变量即可. 【答案详解】设甲在四轮游戏中的得分分别为1234,,,X X X X ,四轮的总得分为X .对于任意一轮,甲乙两人在该轮出示每张牌的概率都均等,其中使得甲获胜的出牌组合有六种,从而甲在该轮获胜的概率()631448k P X ===⨯,所以()()31,2,3,48k E X k ==. 从而()()()441234113382k k k E X E X X X X E X ===+++===∑∑.记()()0,1,2,3k p P X k k ===.如果甲得0分,则组合方式是唯一的:必定是甲出1,3,5,7分别对应乙出2,4,6,8,所以04411A 24p ==; 如果甲得3分,则组合方式也是唯一的:必定是甲出1,3,5,7分别对应乙出8,2,4,6,所以34411A 24p ==. 而X 的所有可能取值是0,1,2,3,故01231p p p p +++=,()1233232p p p E X ++==. 所以121112p p ++=,1213282p p ++=,两式相减即得211242p +=,故2312p p +=.所以甲的总得分不小于2的概率为2312p p +=. 故答案为:12.【名师点评】关键点名师点评:本题的关键在于将问题转化为随机变量问题,利用期望的可加性得到等量关系,从而避免繁琐的列举.22.(2024∙全国甲卷∙高考真题)有6个相同的球,分别标有数字1、2、3、4、5、6,从中无放回地随机取3次,每次取1个球.记m 为前两次取出的球上数字的平均值,n 为取出的三个球上数字的平均值,则m 与n 之差的绝对值不大于12的概率为 . 【答案】715【详细分析】根据排列可求基本事件的总数,设前两个球的号码为,a b ,第三个球的号码为c ,则323a b c a b +-≤≤++,就c 的不同取值分类讨论后可求随机事件的概率.【答案详解】从6个不同的球中不放回地抽取3次,共有36A 120=种,设前两个球的号码为,a b ,第三个球的号码为c ,则1322a b c a b +++-≤, 故2()3c a b -+≤,故32()3c a b -≤-+≤, 故323a b c a b +-≤≤++,若1c =,则5a b +≤,则(),a b 为:()()2,3,3,2,故有2种, 若2c =,则17a b ≤+≤,则(),a b 为:()()()()()1,3,1,4,1,5,1,6,3,4,()()()()()3,1,4,1,5,1,6,1,4,3,故有10种,当3c =,则39a b ≤+≤,则(),a b 为:()()()()()()()()1,2,1,4,1,5,1,6,2,4,2,5,2,6,4,5, ()()()()()()()()2,1,4,1,5,1,6,1,4,2,5,2,6,2,5,4,故有16种,当4c =,则511a b ≤+≤,同理有16种, 当5c =,则713a b ≤+≤,同理有10种, 当6c =,则915a b ≤+≤,同理有2种, 共m 与n 的差的绝对值不超过12时不同的抽取方法总数为()22101656++=, 故所求概率为56712015=. 故答案为:71523.(2024∙全国新Ⅱ卷∙高考真题)在如图的4×4的方格表中选4个方格,要求每行和每列均恰有一个方格被选中,则共有 种选法,在所有符合上述要求的选法中,选中方格中的4个数之和的最大值是 .【答案】 24 112【详细分析】由题意可知第一、二、三、四列分别有4、3、2、1个方格可选;利用列举法写出所有的可能结果,即可求解.【答案详解】由题意知,选4个方格,每行和每列均恰有一个方格被选中, 则第一列有4个方格可选,第二列有3个方格可选,第三列有2个方格可选,第四列有1个方格可选, 所以共有432124⨯⨯⨯=种选法;每种选法可标记为(,,,)a b c d ,ab c d ,,,分别表示第一、二、三、四列的数字, 则所有的可能结果为:(11,22,33,44),(11,22,34,43),(11,22,33,44),(11,22,34,42),(11,24,33,43),(11,24,33,42), (12,21,33,44),(12,21,34,43),(12,22,31,44),(12,22,34,40),(12,24,31,43),(12,24,33,40), (13,21,33,44),(13,21,34,42),(13,22,31,44),(13,22,34,40),(13,24,31,42),(13,24,33,40), (15,21,33,43),(15,21,33,42),(15,22,31,43),(15,22,33,40),(15,22,31,42),(15,22,33,40),所以选中的方格中,(15,21,33,43)的4个数之和最大,为152********+++=. 故答案为:24;112【名师点评】关键点名师点评:解决本题的关键是确定第一、二、三、四列分别有4、3、2、1个方格可选,利用列举法写出所有的可能结果.24.(2023∙天津∙高考真题)把若干个黑球和白球(这些球除颜色外无其它差异)放进三个空箱子中,三个箱子中的球数之比为5:4:6.且其中的黑球比例依次为40%,25%,50%.若从每个箱子中各随机摸出一球,则三个球都是黑球的概率为 ;若把所有球放在一起,随机摸出一球,则该球是白球的概率为 . 【答案】 0.0535/0.6 【详细分析】先根据题意求出各盒中白球,黑球的数量,再根据概率的乘法公式可求出第一空; 根据古典概型的概率公式可求出第二个空.【答案详解】设甲、乙、丙三个盒子中的球的个数分别为5,4,6n n n ,所以总数为15n , 所以甲盒中黑球个数为40%52n n ⨯=,白球个数为3n ; 乙盒中黑球个数为25%4n n ⨯=,白球个数为3n ; 丙盒中黑球个数为50%63n n ⨯=,白球个数为3n ;记“从三个盒子中各取一个球,取到的球都是黑球”为事件A ,所以,()0.40.250.50.05P A =⨯⨯=;记“将三个盒子混合后取出一个球,是白球”为事件B , 黑球总共有236n n n n ++=个,白球共有9n 个, 所以,()93155n P B n ==. 故答案为:0.05;35.25.(2022∙浙江∙高考真题)现有7张卡片,分别写上数字1,2,2,3,4,5,6.从这7张卡片中随机抽取3张,记所抽取卡片上数字的最小值为ξ,则(2)P ξ== ,()E ξ= . 【答案】1635,127/517【详细分析】利用古典概型概率公式求(2)P ξ=,由条件求ξ分布列,再由期望公式求其期望.【答案详解】从写有数字1,2,2,3,4,5,6的7张卡片中任取3张共有37C 种取法,其中所抽取的卡片上的数字的最小值为2的取法有112424C C C +种,所以11242437C C C 16(2)C 35P ξ+===, 由已知可得ξ的取值有1,2,3,4,2637C 15(1)C 35P ξ===,16(2)35P ξ==,,()()233377C 31134C 35C 35P P ξξ======所以15163112()1234353535357E ξ=⨯+⨯+⨯+⨯=, 故答案为:1635,127. 26.(2022∙全国甲卷∙高考真题)从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为 . 【答案】635. 【详细分析】根据古典概型的概率公式即可求出.【答案详解】从正方体的8个顶点中任取4个,有48C 70n ==个结果,这4个点在同一个平面的有6612m =+=个,故所求概率1267035m P n ===. 故答案为:635. 27.(2022∙全国乙卷∙高考真题)从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为 . 【答案】310/0.3 【详细分析】根据古典概型计算即可【答案详解】解法一:设这5名同学分别为甲,乙,1,2,3,从5名同学中随机选3名,有:(甲,乙,1),(甲,乙,2),(甲,乙,3),(甲,1,2),(甲,1,3),(甲,2,3),(乙,1,2),(乙,1,3),(乙,2,3),(1,2,3),共10种选法; 其中,甲、乙都入选的选法有3种,故所求概率310P =. 故答案为:310. 解法二:从5名同学中随机选3名的方法数为35C 10=甲、乙都入选的方法数为13C 3=,所以甲、乙都入选的概率310P =故答案为:31028.(2021∙浙江∙高考真题)袋中有4个红球m 个黄球,n 个绿球.现从中任取两个球,记取出的红球数为ξ,若取出的两个球都是红球的概率为16,一红一黄的概率为13,则m n -= ,()E ξ= .【答案】 189【详细分析】根据古典概型的概率公式即可列式求得,m n 的值,再根据随机变量ξ的分布列即可求出()E ξ. 【答案详解】2244224461(2)366m n m n m n C P C CCξ++++++====⇒=,所以49m n ++=, ()P 一红一黄114244133693m m n C C m m m C ++⋅====⇒=, 所以2n =, 则1m n -=.由于11245522991455105(2),(1),(0)63693618C C C P P P C C ξξξ⋅⨯========== 155158()2106918399E ξ∴=⨯+⨯+⨯=+=.故答案为:1;89.29.(2020∙江苏∙高考真题)将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是 . 【答案】19【详细分析】分别求出基本事件总数,点数和为5的种数,再根据概率公式解答即可. 【答案详解】根据题意可得基本事件数总为6636⨯=个. 点数和为5的基本事件有()1,4,()4,1,()2,3,()3,2共4个.∴出现向上的点数和为5的概率为41369P ==. 故答案为:19.【名师点评】本题考查概率的求法,考查古典概型、列举法等基础知识,考查运算求解能力,是基础题. 30.(2019∙江苏∙高考真题)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是 . 【答案】710. 【详细分析】先求事件的总数,再求选出的2名同学中至少有1名女同学的事件数,最后根据古典概型的概率计算公式得出答案.【答案详解】从3名男同学和2名女同学中任选2名同学参加志愿服务,共有2510C =种情况.若选出的2名学生恰有1名女生,有11326C C=种情况,若选出的2名学生都是女生,有221C=种情况,所以所求的概率为617 1010 +=.【名师点评】计数原理是高考考查的重点内容,考查的形式有两种,一是独立考查,二是与古典概型结合考查,由于古典概型概率的计算比较明确,所以,计算正确基本事件总数是解题的重要一环.在处理问题的过程中,应注意审清题意,明确“分类”“分步”,根据顺序有无,明确“排列”“组合”.考点02 条件概率1.(2024∙天津∙高考真题),,,,A B C D E五种活动,甲、乙都要选择三个活动参加.甲选到A的概率为;已知乙选了A活动,他再选择B活动的概率为.【答案】 3512【详细分析】结合列举法或组合公式和概率公式可求甲选到A的概率;采用列举法或者条件概率公式可求乙选了A活动,他再选择B活动的概率.【答案详解】解法一:列举法从五个活动中选三个的情况有:,,,,,,,,,ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE,共10种情况,其中甲选到A有6种可能性:,,,,,ABC ABD ABE ACD ACE ADE,则甲选到A得概率为:63105P==;乙选A活动有6种可能性:,,,,,ABC ABD ABE ACD ACE ADE, 其中再选则B有3种可能性:,,ABC ABD ABE,故乙选了A活动,他再选择B活动的概率为31 = 62.解法二:设甲、乙选到A为事件M,乙选到B为事件N,则甲选到A的概率为()2435C3 C5P M==;乙选了A活动,他再选择B活动的概率为()()()133524351C2CCP MN CP N MP M===故答案为:35;122.(2023∙全国甲卷∙高考真题)某地的中学生中有60%的同学爱好滑冰,50%的同学爱好滑雪,70%的同学爱好滑冰或爱好滑雪.在该地的中学生中随机调查一位同学,若该同学爱好滑雪,则该同学也爱好滑冰的概率为( ) A .0.8 B .0.6C .0.5D .0.4【答案】A【详细分析】先算出同时爱好两项的概率,利用条件概率的知识求解. 【答案详解】同时爱好两项的概率为0.50.60.70.4+-=, 记“该同学爱好滑雪”为事件A ,记“该同学爱好滑冰”为事件B , 则()0.5,()0.4P A P AB ==,所以()0.4()0.8()0.5P AB P B A P A ===∣. 故选:A .3.(2022∙天津∙高考真题)52张扑克牌,没有大小王,无放回地抽取两次,则两次都抽到A 的概率为 ;已知第一次抽到的是A ,则第二次抽取A 的概率为 【答案】1221 117【详细分析】由题意结合概率的乘法公式可得两次都抽到A 的概率,再由条件概率的公式即可求得在第一次抽到A 的条件下,第二次抽到A 的概率.【答案详解】由题意,设第一次抽到A 的事件为B ,第二次抽到A 的事件为C ,则()()()()1431411221,(),|1525122152131713BC P BC P B P C B P B P =⨯======. 故答案为:1221;117.考点03 全概率公式与贝叶斯公式1.(2024∙上海∙高考真题)某校举办科学竞技比赛,有、、A B C 3种题库,A 题库有5000道题,B 题库有4000道题,C 题库有3000道题.小申已完成所有题,他A 题库的正确率是0.92,B 题库的正确率是0.86,C 题库的正确率是0.72.现他从所有的题中随机选一题,正确率是 .【答案】0.85【详细分析】求出各题库所占比,根据全概率公式即可得到答案. 【答案详解】由题意知,,,A B C 题库的比例为:5:4:3, 各占比分别为543,,121212, 则根据全概率公式知所求正确率5430.920.860.720.85121212p =⨯+⨯+⨯=.故答案为:0.85.(附加)2.(2023∙全国新Ⅰ卷∙高考真题)甲、乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投篮,若末命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8.由抽签确定第1次投篮的人选,第1次投篮的人是甲、乙的概率各为0.5. (1)求第2次投篮的人是乙的概率; (2)求第i 次投篮的人是甲的概率;(3)已知:若随机变量i X 服从两点分布,且()()110,1,2,,i i i P X P X q i n ==-===⋅⋅⋅,则11n n i i i i E X q ==⎛⎫= ⎪⎝⎭∑∑.记前n 次(即从第1次到第n 次投篮)中甲投篮的次数为Y ,求()E Y . 【答案】(1)0.6(2)1121653i -⎛⎫⨯+ ⎪⎝⎭(3)52()11853nnE Y ⎡⎤⎛⎫=-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦【详细分析】(1)根据全概率公式即可求出;(2)设()i i P A p =,由题意可得10.40.2i i p p +=+,根据数列知识,构造等比数列即可解出; (3)先求出两点分布的期望,再根据题中的结论以及等比数列的求和公式即可求出. 【答案详解】(1)记“第i 次投篮的人是甲”为事件i A ,“第i 次投篮的人是乙”为事件i B , 所以,()()()()()()()21212121121||P B P A B P B B P A P B A P B P B B =+=+ ()0.510.60.50.80.6=⨯-+⨯=.(2)设()i i P A p =,依题可知,()1i i P B p =-,则()()()()()()()11111||i i i i i i i i i i i P A P A A P B A P A P A A P B P A B +++++=+=+,即()()10.610.810.40.2i i i i p p p p +=+-⨯-=+, 构造等比数列{}i p λ+, 设()125i i p p λλ++=+,解得13λ=-,则1121353i i p p +⎛⎫-=- ⎪⎝⎭, 又11111,236p p =-=,所以13i p ⎧⎫-⎨⎩⎭是首项为16,公比为25的等比数列,即11112121,365653i i i i p p --⎛⎫⎛⎫-=⨯=⨯+ ⎪ ⎪⎝⎭⎝⎭. (3)因为1121653i i p -⎛⎫=⨯+ ⎪⎝⎭,1,2,,i n =⋅⋅⋅,所以当*N n ∈时,()122115251263185315nn n n n E Y p p p ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭=+++=⨯+=-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦- ,故52()11853nnE Y ⎡⎤⎛⎫=-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦. 【名师点评】本题第一问直接考查全概率公式的应用,后两问的解题关键是根据题意找到递推式,然后根据数列的基本知识求解.考点04 正态分布指定区间的概率1.(2024∙全国新Ⅰ卷∙高考真题)(多选)随着“一带一路”国际合作的深入,某茶叶种植区多措并举推动茶叶出口.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值 2.1x =,样本方差20.01s =,已知该种植区以往的亩收入X 服从正态分布()21.8,0.1N ,假设推动出口后的亩收入Y 服从正态分布()2,N x s ,则( )(若随机变量Z 服从正态分布()2,N μσ,()0.8413P Z μσ<+≈)A .(2)0.2P X >>B .(2)0.5P X ><C .(2)0.5P Y >>D .(2)0.8P Y ><【答案】BC【详细分析】根据正态分布的3σ原则以及正态分布的对称性即可解出. 【答案详解】依题可知,22.1,0.01x s ==,所以()2.1,0.1Y N ,故()()()2 2.10.1 2.10.10.84130.5P Y P Y P Y >=>-=<+≈>,C 正确,D 错误; 因为()1.8,0.1X N ,所以()()2 1.820.1P X P X >=>+⨯,因为()1.80.10.8413P X <+≈,所以()1.80.110.84130.15870.2P X >+≈-=<, 而()()()2 1.820.1 1.80.10.2P X P X P X >=>+⨯<>+<,B 正确,A 错误, 故选:BC .2.(2022∙全国新Ⅱ卷∙高考真题)已知随机变量X 服从正态分布()22,N σ,且(2 2.5)0.36P X <≤=,则( 2.5)P X >= .【答案】0.14/750. 【详细分析】根据正态分布曲线的性质即可解出.【答案详解】因为()22,X N σ ,所以()()220.5P X P X <=>=,因此()()()2.522 2.50.50.360.14P X P X P X >=>-<≤=-=.故答案为:0.14.3.(2021∙全国新Ⅱ卷∙高考真题)某物理量的测量结果服从正态分布()210,N σ,下列结论中不正确的是( ) A .σ越小,该物理量在一次测量中在(9.9,10.1)的概率越大 B .该物理量在一次测量中大于10的概率为0.5C .该物理量在一次测量中小于9.99与大于10.01的概率相等D .该物理量在一次测量中落在(9.9,10.2)与落在(10,10.3)的概率相等【答案】D【详细分析】由正态分布密度曲线的特征逐项判断即可得解.【答案详解】对于A ,2σ为数据的方差,所以σ越小,数据在10μ=附近越集中,所以测量结果落在()9.9,10.1内的概率越大,故A 正确;对于B ,由正态分布密度曲线的对称性可知该物理量一次测量大于10的概率为0.5,故B 正确;对于C ,由正态分布密度曲线的对称性可知该物理量一次测量结果大于10.01的概率与小于9.99的概率相等,故C 正确;对于D ,因为该物理量一次测量结果落在()9.9,10.0的概率与落在()10.2,10.3的概率不同,所以一次测量结果落在()9.9,10.2的概率与落在()10,10.3的概率不同,故D 错误. 故选:D.。

概率经典例题及解析、近年高考题50道带答案

概率经典例题及解析、近年高考题50道带答案

【经典例题】【例1】(2012)如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 随机取一点,则此点取自阴影部分的概率是A .1- 2πB . 12 - 1πC . 2πD . 1π【答案】A【解析】令OA=1,扇形OAB 为对称图形,ACBD 围成面积为S 1,围成OC 为S 2,作对称轴OD ,则过C 点.S 2即为以OA 为直径的半圆面积减去三角形OAC 的面积,S 2= π2 ( 12 )2- 12 × 12 × 12 = π-28 .在扇形OAD 中 S 12 为扇形面积减去三角形OAC 面积和 S 22 , S 12 = 18 π×12- 18 - S 22 = π-216 ,S 1+S 2= π-24 ,扇形OAB 面积S= π4 ,选A .【例2】(2013)如图所示,将一个各面都涂了油漆的体,切割为125个同样大小的小体,经过搅拌后,从中随机取一个小体,记它的涂漆面数为X ,则X 的均值E(X)=( )A.126125 B. 65 C. 168125 D. 75【答案】B【解析】X 的取值为0,1,2,3且P(X =0)=27125,P(X =1)=54125,P(X =2)=36125,P(X =3)=8125,故E(X)=0×27125+1×54125+2×36125+3×8125=65,选B. 【例3】(2012)节日前夕,小在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是( )A. 14B. 12C. 34D. 78【答案】C【解析】设第一串彩灯在通电后第x 秒闪亮,第二串彩灯在通电后第y 秒闪亮,由题意⎩⎨⎧0≤x≤4,0≤y≤4,满足条件的关系式为-2≤x -y≤2.根据几何概型可知,事件全体的测度(面积)为16平方单位,而满足条件的事件测度(阴影部分面积)为12平方单位,故概率为1216=34.【例4】(2009)现有5根竹竿,它们的长度(单位:m )分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3m 的概率为 . 【答案】0.2 【解析】从5根竹竿中一次随机抽取2根的可能的事件总数为10,它们的长度恰好相差0.3m 的事件数为2,分别是:2.5和2.8,2.6和2.9,所求概率为0.2 【例5】(2013)现有某类病毒记作X m Y n ,其中正整数m ,n(m≤7,n≤9)可以任意选取,则m ,n 都取到奇数的概率为________.【答案】2063【解析】基本事件共有7×9=63种,m 可以取1,3,5,7,n 可以取1,3,5,7,9.所以m ,n 都取到奇数共有20种,故所求概率为2063.【例6】(2013)在区间[-3,3]上随机取一个数x ,使得|x +1|-|x -2|≥1成立的概率为________. 【答案】13【解析】当x<-1时,不等式化为-x -1+x -2≥1,此时无解;当-1≤x≤2时,不等式化为x +1+x -2≥1,解之得x≥1;当x>2时,不等式化为x +1-x +2≥1,此时恒成立,∴|x +1|-|x -2|≥1的解集为[)1,+∞.在[]-3,3上使不等式有解的区间为[]1,3,由几何概型的概率公式得P =3-13-(-3)=13.【例7】(2013北京)下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(1)求此人到达当日空气重度污染的概率;(2)设X 是此人停留期间空气质量优良的天数,求X 的分布列与数学期望; (3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明) 【答案】213;1213;3月5日【解析】设Ai 表示事件“此人于3月i 日到达该市”(i =1,2,…,13).根据题意,P(Ai)=113,且Ai ∩Aj =(i≠j).(1)设B 为事件“此人到达当日空气重度污染”,则B =A5∪A8. 所以P(B)=P(A5∪A8)=P(A5)+P(A8)=213.(2)由题意可知,X 的所有可能取值为0,1,2,且 P(X =1)=P(A3∪A6∪A7∪A11) =P(A3)+P(A6)+P(A7)+P(A11)=413, P(X =2)=P(A1∪A2∪A12∪A13) =P(A1)+P(A2)+P(A12)+P(A13)=413, P(X =0)=1-P(X =1)-P(X =2)=513.所以X 的分布列为X 0 1 2 P513413413故X 的期望E(X)=0×513+1×13+2×13=13.(3)从3月5日开始连续三天的空气质量指数方差最大.【例8】(2013)某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为23,中奖可以获得2分;方案乙的中奖率为25,中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为X ,求X≤3的概率;(2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?【答案】1115;方案甲.【解析】方法一:(1)由已知得,小明中奖的概率为23,小红中奖的概率为25,且两人中奖与否互不影响.记“这2人的累计得分X≤3”的事件为A , 则事件A 的对立事件为“X =5”,因为P(X =5)=23×25=415,所以P(A)=1-P(X =5)=1115,即这两人的累计得分X≤3的概率为1115.(2)设小明、小红都选择方案甲抽奖中奖次数为X1,都选择方案乙抽奖中奖次数为X2,则这两人选择方案甲抽奖累计得分的数学期望为E(2X1),选择方案乙抽奖累计得分的数学期望为E(3X2). 由已知可得,X1~B ⎝⎛⎭⎫2,23,X2~B ⎝⎛⎭⎫2,25, 所以E(X1)=2×23=43,E(X2)=2×25=45, 从而E(2X1)=2E(X1)=83,E(3X2)=3E(X2)=125.因为E(2X1)>E(3X2),所以他们都选择方案甲进行抽奖时,累计得分的数学期望较大.方法二:(1)由已知得,小明中奖的概率为23,小红中奖的概率为25,且两人中奖与否互不影响.记“这两人的累计得分X≤3”的事件为A ,则事件A 包含有“X =0”“X =2”“X =3”三个两两互斥的事件,因为P(X =0)=⎝⎛⎭⎫1-23×⎝⎛⎭⎫1-25=15,P(X =2)=23×⎝⎛⎭⎫1-25=25,P(X =3)=⎝⎛⎭⎫1-23×25=215, 所以P(A)=P(X =0)+P(X =2)+P(X =3)=1115,即这两人的累计得分X≤3的概率为1115.(2)设小明、小红都选择方案甲所获得的累计得分为X1,都选择方案乙所获得的累计得分为X2,则X1,X2的分布列如下:X1 0 2 4 P194949所以E(X1)=0×19+2×49+4×49=83, E(X2)=0×925+3×1225+6×425=125. 因为E(X1)>E(X2),所以他们都选择方案甲进行抽奖时,累计得分的数学期望较大.【例9】(2013)设袋子中装有a 个红球,b 个黄球,c 个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分.(1)当a =3,b =2,c =1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和,求ξ的分布列; (2)从该袋子中任取(每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若Eη=53,Dη=59,求a ∶b ∶c. 【答案】3∶2∶1 【解析】(1)由题意得,ξ=2,3,4,5,6.P(ξ=2)=3×36×6=14, P(ξ=3)=2×3×26×6=13, P(ξ=4)=2×3×1+2×26×6=518.P(ξ=5)=2×2×16×6=19, P(ξ=6)=1×16×6=136, 所以ξ的分布列为(2)由题意知η的分布列为所以Eη=a a +b +c +2b a +b +c +3c a +b +c =53,Dη=1-532·a a +b +c +2-532·b a +b +c +3-532·c a +b +c =59,化简得⎩⎨⎧2a -b -4c =0,a +4b -11c =0,解得a =3c ,b =2c ,故a ∶b ∶c =3∶2∶1. 【例10】(2009北京理)某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是13,遇到红灯时停留的时间都是2min.(1)求这名学生在上学路上到第三个路口时首次遇到红灯的概率; (2)求这名学生在上学路上因遇到红灯停留的总时间ξ的分布列及期望. 【答案】427;38【解析】本题主要考查随机事件、互斥事件、相互独立事件等概率知识、考查离散型随机变量的分布列和期望等基础知识,考查运用概率与统计知识解决实际问题的能力.(1)设这名学生在上学路上到第三个路口时首次遇到红灯为事件A ,因为事件A 等于事件“这名学生在第一和第二个路口没有遇到红灯,在第三个路口遇到红灯”,所以事件A 的概率为()11141133327P A ⎛⎫⎛⎫=-⨯-⨯= ⎪ ⎪⎝⎭⎝⎭. (2)由题意,可得ξ可能取的值为0,2,4,6,8(单位:min ).事件“2k ξ=”等价于事件“该学生在路上遇到k 次红灯”(k =0,1,2,3,4),∴()()441220,1,2,3,433kkkP k C k ξ-⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,∴即ξ的分布列是∴ξ的期望是0246881812781813E ξ=⨯+⨯+⨯+⨯+⨯=. 【课堂练习】1.(2013)已知离散型随机变量X 的分布列为则X 的数学期望E(X)=( )A. 32 B .2 C. 52 D .32.(2013)如图,在矩形区域ABCD 的A ,C 两点处各有一个通信基站,假设其信号的覆盖围分别是扇形区域ADE 和扇形区域CBF(该矩形区域无其他信号来源,基站工作正常).若在该矩形区域随机地选一地点,则该地点无.信号的概率是( )A .1-π4B .π2-1 B .2-π2 D .π43.在棱长分别为1,2,3的长方体上随机选取两个相异顶点,若每个顶点被选的概率相同,则选到两个顶点的距离大于3的概率为( )A .47B .37C .27D .3144.(2009理)考察体6个面的中心,甲从这6个点中任意选两个点连成直线,乙也从这6个点中任意选两个点连成直线,则所得的两条直线相互平行但不重合的概率等于 A .175 B . 275 C .375 D .4755.(2009理)为了庆祝六一儿童节,某食品厂制作了3种不同的精美卡片,每袋食品随机装入一卡片,集齐3种卡片可获奖,现购买该种食品5袋,能获奖的概率为( )A .3181 B .3381 C .4881 D .5081. 6.(2009文)ABCD 为长方形,AB =2,BC =1,O 为AB 的中点,在长方形ABCD 随机取一点,取到的点到O 的距离大于1的概率为A .4πB .14π-C .8π D .18π-7.(2009上海理)若事件E 与F 相互独立,且()()14P E P F ==,则()P E F 的值等于A .0B .116C .14D .128.(2013)在区间[1,5]和[2,4]上分别取一个数,记为a ,b ,则方程x 2a 2+y 2b 2=1表示焦点在x 轴上且离心率小于32的椭圆的概率为( )A .12B .1532C .1732D .31329.已知数列{a n }满足a n =a n -1+n -1(n≥2,n ∈N ),一颗质地均匀的体骰子,其六个面上的点数分别为1,2,3,4,5,6,将这颗骰子连续抛掷三次,得到的点数分别记为a ,b ,c ,则满足集合{a ,b ,c}={a 1,a 2,a 3}(1≤a i ≤6,i =1,2,3)的概率是( )A .172B .136C .124D .11210.(2009文)甲、乙、丙三人将参加某项测试,他们能达标的概率分别是0.8、0.6、0.5,则三人都达标的概率是 ,三人中至少有一人达标的概率是 。

高考概率论真题及答案解析

高考概率论真题及答案解析

高考概率论真题及答案解析概率论作为数学中的一个分支,是高考数学中的一个重要考点。

在高考中,概率论题目常常给考生带来困扰。

本文将选取几道高考概率论真题,以及对应的解析方法,帮助考生更好地掌握解题技巧。

一、某高中有400名学生,其中300名喜欢足球,200名喜欢篮球。

求既不喜欢足球也不喜欢篮球的学生人数。

解析:首先,该高中学生总人数为400人。

喜欢足球的人数为300人,喜欢篮球的人数为200人。

根据概率论中的容斥原理,我们可以得到既不喜欢足球也不喜欢篮球的学生人数为400-300-200=100人。

二、在一个班级中,60%的学生喜欢音乐,40%的学生喜欢运动,且有70%的学生至少喜欢一种。

求这个班级中既不喜欢音乐也不喜欢运动的学生人数。

解析:根据题意,喜欢音乐的学生占60%,喜欢运动的学生占40%,至少喜欢一种的学生占70%。

根据概率论中的加法原理,我们可以得到既不喜欢音乐也不喜欢运动的学生人数为100% - 70% = 30%。

假设班级中共有100名学生,那么既不喜欢音乐也不喜欢运动的学生人数为30% * 100 = 30人。

三、有两个盒子,盒子A中有3个白球,2个黑球,盒子B中有4个白球,1个黑球。

先从一个盒子中任取一球放入另一个盒子,然后从新的盒子中随机取一球。

已知最后随机取到的球是白色,求原盒子中的球的颜色。

解析:根据题意,我们可以列出两个条件:1. 最后取到的球是白色;2. 先取球的盒子中的球的颜色。

设事件A表示最后取到的球是白色,设事件B表示先取球的盒子中的球的颜色。

我们要求的是事件B在已知事件A发生的条件下的概率P(B|A)。

根据概率论中的条件概率公式,我们有:P(B|A) = P(A∩B) / P(A)。

根据题意,我们可以知道:P(A∩B) = P(从盒子A中取出球放入盒子B,然后从盒子B中取出白球) = (3/5) * (5/6) = 1/2。

因为最后取到的球是白色,所以P(A) = 1。

2024年高考数学专题概率统计历年题目归纳

2024年高考数学专题概率统计历年题目归纳

2024年高考数学专题概率统计历年题目归纳在高考数学考试中,概率统计是一个重要的考点。

掌握概率统计的基础理论和解题方法是学生取得高分的关键。

为了帮助同学们更好地备考2024年高考数学专题概率统计,本文将对历年高考数学专题概率统计题目进行归纳和总结。

1. 投掷硬币问题:- 实例:某学生有3枚硬币,分别为甲、乙、丙。

每枚硬币均正反面均匀无区别,共有两面。

甲硬币正面为A,乙硬币正面为B,丙硬币正面为C。

每枚硬币正、反面出现的概率均为0.5。

如果学生随机选取一枚硬币并投掷,问投掷得到正面的概率是多少?- 解题思路:根据题意,学生随机选取硬币的概率为1/3,而每枚硬币出现正面的概率为0.5。

因此,投掷得到正面的概率为(1/3)×0.5 = 1/6。

2. 生日相同问题:- 实例:某班级有30名学生,问他们中至少有两人生日相同的概率是多少?- 解题思路:首先需要计算不同学生生日都不相同的概率。

第一个学生的生日可以是任意一天,而第二个学生的生日不同于第一个学生的概率为(365-1)/365,第三个学生的生日不同于前两个学生的概率为(365-2)/365,以此类推。

所以,30名学生都不生日相同的概率为(365-1)/365 × (365-2)/365 × … × (365-29)/365。

因此,他们中至少有两人生日相同的概率为1-[(365-1)/365 × (365-2)/365 × … × (365-29)/365]。

3. 球的抽取问题:- 实例:某箱子里有5个白球和3个黑球,从中随机抽取2个球,问这两个球颜色相同的概率是多少?- 解题思路:首先需要计算抽取第一个球后,剩下球的情况。

若首先抽到白球,则剩下4个白球和3个黑球。

此时,抽取第二个球颜色相同的概率为4/7。

若首先抽到黑球,则剩下5个白球和2个黑球。

此时,抽取第二个球颜色相同的概率为2/7。

历年(2019-2023)高考数学真题专项(概率与统计解答题)汇编(附答案)

历年(2019-2023)高考数学真题专项(概率与统计解答题)汇编(附答案)

历年(2019-2023)高考数学真题专项(概率与统计解答题)汇编考点01:统计案例及应用1 (2021年全国高考乙卷文科)某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:122S .(1)求x ,y ,21S ,22S ;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果y x -≥则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高).2 (2020年高考数学课标Ⅰ卷文科)某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A ,B ,C ,D 四个等级.加工业务约定:对于A 级品、B 级品、C 级品,厂家每件分别收取加工费90元,50元,20元;对于D 级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下: 甲分厂产品等级的频数分布表等级 ABCD频数40202020乙分厂产品等级的频数分布表等级 ABCD频数28173421(1)分别估计甲、乙两分厂加工出来的一件产品为A 级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?3 (2019年高考数学课标Ⅲ卷文科)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下实验:将200只小鼠随机分成A ,B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据实验数据分别得到如下直方图:记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P (C )的估计值为0.70. (1)求乙离子残留百分比直方图中的a ,b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用改组区间的中点值为代表).4 (2019年高考数学课标Ⅱ卷文科)某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y 的频数分布表.y 的分组[0.20,0)-[0,0.20)[0.20,0.40)[0.40,0.60)[0.60,0.80)企业数 2 24 53 147 (1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)8.602≈.5.(2022新高考全国II 卷·)在某地区进行流行病学调查,随机调查了100位某种疾病患者的年龄,得到如下的样本数据的频率分布直方图:(1)估计该地区这种疾病患者的平均年龄(同一组中的数据用该组区间的中点值为代表); (2)估计该地区一位这种疾病患者的年龄位于区间[20,70)的概率;(3)已知该地区这种疾病的患病率为0.1%,该地区年龄位于区间[40,50)的人口占该地区总人口的16%.从该地区中任选一人,若此人的年龄位于区间[40,50),求此人患这种疾病的概率.(以样本数据中患者的年龄位于各区间的频率作为患者的年龄位于该区间的概率,精确到0.0001).考点02相关关系与回归分析1.(2022年高考全国乙卷(文)·)某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:2m )和材积量(单位:3m ),得到如下数据:样本号i 12345678910总和根部横截面积i x0.04 0.06 0.04 0.08 0.08 0050050.07 0.07 0.06 0.6材积0.25 0.40 0.22 0.54 0.51 0.34 0.36 0.46 0.42 0.40 3.9..量i y并计算得10101022i i i ii=1i=1i=10.038, 1.6158,0.2474x y x y===∑∑∑.(1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量;(2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为2186m.已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值.附:相关系数i i(1.377)()nx x y yr--=≈∑.2.(2020年高考数学课标Ⅱ卷文科·)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i,y i)(i=1,2,…,20),其中x i和y i分别表示第i个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160iix==∑,2011200iiy==∑,202180iixx=-=∑(,2021)9000iiy y=-=∑(,201)800iiix yx y=--=∑((.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i,y i)(i=1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r)ni ix yx y--∑((≈1.414.考点03 独立性检验1.(2022年全国高考甲卷(文)·)甲、乙两城之间的长途客车均由A 和B 两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:准点班次数 未准点班次数 A 240 20 B21030(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率;(2)能否有0090的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,()2P K k …0.100 0.050 0.010 k2.7063.8416.6352.(2020年新高考I 卷(山东卷)·)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和2SO 浓度(单位:3μg/m ),得下表: 2SOPM2.5[0,50](50,150] (150,475][0,35]32 18 4 (35,75]6 8 12 (75,115]3710(1)估计事件“该市一天空气中PM2.5浓度不超过75,且2SO 浓度不超过150”的概率; (2)根据所给数据,完成下面的22⨯列联表: 2SOPM2.5[0,150](150,475][0,75](75,115](3)根据(2)中列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与2SO 浓度有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,2()P K k ≥ 0.050 0.010 0.001 k3.841 6.63510.8283 .(2020新高考II 卷(海南卷)·)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM 2.5和2SO 浓度(单位:3μg/m ),得下表:(1)估计事件“该市一天空气中PM 2.5浓度不超过75,且2SO 浓度不超过150”的概率; (2)根据所给数据,完成下面的22⨯列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM 2.5浓度与2SO 浓度有关?的附:22()()()()()n ad bc K a b c d a c b d -=++++,4.(2021年高考全国甲卷文科·)甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:一级品 二级品 合计 甲机床 150 50 200 乙机床 120 80 200 合计270130400(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?(2)能否有99%把握认为甲机床的产品质量与乙机床的产品质量有差异?附:22()()()()()n ad bc K a b c d a c b d -=++++ ()2P K k ≥ 0.050 0.0100.001k 3.841 6.635 10.8285.(2020年高考数学课标Ⅲ卷文科·)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天): 锻炼人次 空气质量等级 [0,200](200,400](400,600]1(优) 2 16 25 2(良)51012的3(轻度污染) 67 84(中度污染) 72 0(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?人次≤400人次>400空气质量好空气质量不好附:22()()()()()n ad bcKa b c d a c b d-=++++,P(K2≥k)0.050 0.010 0.001k 3.841 6.635 10.8286.(2019年高考数学课标Ⅰ卷文科·)某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:满意不满意男顾客40 10女顾客30 20(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++.2()P K k…0.050 0.010 0.001 k 3.841 6.635 10.828参考答案考点01:统计案例及应用1 (2021年全国高考乙卷文科)某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:122S .(1)求x ,y ,21S ,22S ;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果y x -≥则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高).【答案】(1)221210,10.3,0.036,0.04x yS S ====;(2)新设备生产产品的该项指标的均值较旧设备有显著提高. 【答案解析】:(1)9.810.31010.29.99.81010.110.29.71010x +++++++++==,10.110.410.11010.110.310.610.510.410.510.310y +++++++++==,22222222210.20.300.20.10.200.10.20.30.03610S +++++++++==,222222222220.20.10.20.30.200.30.20.10.20.0410S +++++++++==(2)依题意,0.320.15y x -==⨯==,=y x -≥,所以新设备生产产品的该项指标的均值较旧设备有显著提高.2 (2020年高考数学课标Ⅰ卷文科)某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A ,B ,C ,D 四个等级.加工业务约定:对于A 级品、B 级品、C 级品,厂家每件分别收取加工费90元,50元,20元;对于D 级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲.分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表等级 A B C D频数 4020 20 20乙分厂产品等级的频数分布表等级 A B C D频数 2817 34 21(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?【答案】(1)甲分厂加工出来的A级品的概率为0.4,乙分厂加工出来的A级品的概率为0.28;(2)选甲分厂,理由见答案解析.【答案解析】(1)由表可知,甲厂加工出来的一件产品为A级品的概率为400.4100=,乙厂加工出来的一件产品为A级品的概率为280.28 100=;(2)甲分厂加工100件产品总利润为()()()()4090252050252020252050251500⨯-+⨯-+⨯--⨯+=元,所以甲分厂加工100件产品的平均利润为15元每件;乙分厂加工100件产品的总利润为()()()()2890201750203420202150201000⨯-+⨯-+⨯--⨯+=元,所以乙分厂加工100件产品的平均利润为10元每件.故厂家选择甲分厂承接加工任务.3 (2019年高考数学课标Ⅲ卷文科)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下实验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据实验数据分别得到如下直方图:的记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P (C )的估计值为0.70. (1)求乙离子残留百分比直方图中的a ,b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用改组区间的中点值为代表). 【答案】【答案解析】:(1)C 为事件:“乙离子残留在体内的百分比不低于5.5”, 根据直方图得到P (C )的估计值为0.70. 则由频率分布直方图得: 0.200.150.70.050.1510.7a b ++=⎧⎨++=-⎩, 解得乙离子残留百分比直方图中0.35a =,0.10b =. (2)估计甲离子残留百分比的平均值为:20.1530.2040.3050.2060.1070.05 4.05x =⨯+⨯+⨯+⨯+⨯+⨯=甲.乙离子残留百分比的平均值为:30.0540.150.1560.3570.280.156x =⨯+⨯+⨯+⨯+⨯+⨯=乙.4 (2019年高考数学课标Ⅱ卷文科)某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y 的频数分布表.y 的分组[0.20,0)-[0,0.20)[0.20,0.40)[0.40,0.60)[0.60,0.80)企业数 2 24 53 147 (1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)8.602≈. 【答案】【答案解析】:(1)根据产值增长率频数分布表得,所调查的100个企业中产值增长率不低于40%的企业频率为1470.21100+=.产值负增长的企业频率为20.02100=. 用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%.(2)1(0.1020.10240.30530.50140.707)0.30100y =-⨯+⨯+⨯+⨯+⨯=,()52211100i i i s n y y ==-∑222221(0.40)2(0.20)240530.20140.407100⎡⎤=-⨯+-⨯+⨯+⨯+⨯⎣⎦ =0.0296,0.020.17s ==≈,所以,这类企业产值增长率的平均数与标准差的估计值分别为30%,17%.5.(2022新高考全国II 卷·)在某地区进行流行病学调查,随机调查了100位某种疾病患者的年龄,得到如下的样本数据的频率分布直方图:(1)估计该地区这种疾病患者的平均年龄(同一组中的数据用该组区间的中点值为代表); (2)估计该地区一位这种疾病患者的年龄位于区间[20,70)的概率;(3)已知该地区这种疾病的患病率为0.1%,该地区年龄位于区间[40,50)的人口占该地区总人口的16%.从该地区中任选一人,若此人的年龄位于区间[40,50),求此人患这种疾病的概率.(以样本数据中患者的年龄位于各区间的频率作为患者的年龄位于该区间的概率,精确到0.0001). 【答案】(1)47.9岁; (2)0.89; (3)0.0014.【答案解析】:(1)平均年龄(50.001150.002250.012350.017450.023x =⨯+⨯+⨯+⨯+⨯ 550.020650.017750.006850.002)1047.9+⨯+⨯+⨯+⨯⨯=(岁). (2)设A ={一人患这种疾病的年龄在区间[20,70)},所以()1()1(0.0010.0020.0060.002)1010.110.89P A P A =-=-+++⨯=-=.(3)设{B =任选一人年龄位于区间}[40,50),{C =任选一人患这种疾病}, 则由条件概率公式可得 ()0.1%0.023100.0010.23(|)0.00143750.0014()16%0.16P BC P C B P B ⨯⨯⨯====≈.考点02相关关系与回归分析1.(2022年高考全国乙卷(文)·)某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:2m )和材积量(单位:3m ),得到如下数据: 样本号i 12345678910总和根部横截面积i x0.04 0.06 0.04 0.08 0.08 0050050.07 0.07 0.06 0.6材积量i y0.25 0.40 0.22 0.54 0.51 0.34 0.36 0.46 0.42 0.40 3.9并计算得10101022ii i i i=1i=1i=10.038, 1.6158,0.2474xy x y ===∑∑∑.(1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量; (2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为2186m .已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值.附:相关系数ii( 1.377)()nx x y y r --=≈∑.【答案】(1)20.06m ;30.39m (2)0.97..(3)31209m【答案解析】:【小问1详解】样本中10棵这种树木的根部横截面积的平均值0.60.0610x == 样本中10棵这种树木的材积量的平均值 3.90.3910y == 据此可估计该林区这种树木平均一棵的根部横截面积为20.06m , 平均一棵的材积量为30.39m 【小问2详解】()()1010iii i10x x y y x y xyr ---==∑∑0.01340.970.01377==≈≈则0.97r ≈ 【小问3详解】设该林区这种树木的总材积量的估计值为3m Y , 又已知树木的材积量与其根部横截面积近似成正比, 可得0.06186=0.39Y,解之得3=1209m Y . 则该林区这种树木总材积量估计为31209m2.(2020年高考数学课标Ⅱ卷文科·)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i ix==∑,2011200i i y ==∑,202180i ix x =-=∑(,2021)9000i i y y =-=∑(,201)800i i i x y x y =--=∑((.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.的附:相关系数r)niix y x y --∑((≈1.414.【答案】(1)12000;(2)0.94;(3)详见答案解析【答案解析】(1)样区野生动物平均数为201111200602020ii y ==⨯=∑, 地块数为200,该地区这种野生动物的估计值为2006012000⨯= (2)样本(,)i i x y (i =1,2,…,20)的相关系数为20()()0.943iix x y y r --===≈∑(3)由(2)知各样区的这种野生动物的数量与植物覆盖面积有很强的正相关性, 由于各地块间植物覆盖面积差异很大,从俄各地块间这种野生动物的数量差异很大, 采用分层抽样的方法较好地保持了样本结构与总体结构得以执行,提高了样本的代表性, 从而可以获得该地区这种野生动物数量更准确的估计.【点晴】本题主要考查平均数的估计值、相关系数的计算以及抽样方法的选取,考查学生数学运算能力,是一道容易题.考点03 独立性检验1.(2022年全国高考甲卷(文)·)甲、乙两城之间的长途客车均由A 和B 两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:准点班次数 未准点班次数 A 240 20 B21030(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率;(2)能否有0090的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,()2P K k …0.100 0.050 0.010 k2.7063.8416.635【答案】(1)A ,B 两家公司长途客车准点的概率分别为1213,78(2)有 【答案解析】根据表中数据,A 共有班次260次,准点班次有240次, 设A 家公司长途客车准点事件为M ,则24012()26013P M ==; B 共有班次240次,准点班次有210次, 设B 家公司长途客车准点事件为N , 则210()28074P N ==. A 家公司长途客车准点的概率为1213; B 家公司长途客车准点的概率为78. (2)列联表准点班次数未准点班次数 合计A 240 20 260B 210 30 240 合计4505050022()()()()()n ad bc K a b c d a c b d -=++++=2500(2403021020) 3.205 2.70626024045050⨯⨯-⨯≈>⨯⨯⨯,根据临界值表可知,有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关. 2.(2020年新高考I 卷(山东卷)·)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和2SO 浓度(单位:3μg/m ),得下表: 2SOPM2.5[0,50](50,150] (150,475][0,35]32 18 4 (35,75]6812(75,115]3 7 10(1)估计事件“该市一天空气中PM2.5浓度不超过75,且2SO 浓度不超过150”的概率; (2)根据所给数据,完成下面的22⨯列联表: 2SOPM2.5[0,150](150,475][0,75](75,115](3)根据(2)中列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与2SO 浓度有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,2()P K k ≥ 0.050 0.010 0.001 k3.841 6.63510.828【答案】(1)0.64;(2)答案见答案解析;(3)有.【答案解析】:(1)由表格可知,该市100天中,空气中的 2.5PM 浓度不超过75,且2SO 浓度不超过150的天数有32618864+++=天,所以该市一天中,空气中的 2.5PM 浓度不超过75,且2SO 浓度不超过150的概率为640.64100=; (2)由所给数据,可得22⨯列联表为:2SO2.5PM[]0,150(]150,475合计[]0,7564 16 80 (]75,11510 10 20 合计 7426100(3)根据22⨯列联表中的数据可得的222()100(64101610)()()()()80207426n ad bc K a b c d a c b d -⨯⨯-⨯==++++⨯⨯⨯36007.4844 6.635481=≈>, 因为根据临界值表可知,有99%的把握认为该市一天空气中 2.5PM 浓度与2SO 浓度有关. 3 .(2020新高考II 卷(海南卷)·)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM 2.5和2SO 浓度(单位:3μg/m ),得下表:(1)估计事件“该市一天空气中PM 2.5浓度不超过75,且2SO 浓度不超过150”的概率; (2)根据所给数据,完成下面的22⨯列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM 2.5浓度与2SO 浓度有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,【答案】(1)0.64;(2)答案见答案解析;(3)有.【答案解析】:(1)由表格可知,该市100天中,空气中的 2.5PM 浓度不超过75,且2SO 浓度不超过150的天数有32618864+++=天,所以该市一天中,空气中的 2.5PM 浓度不超过75,且2SO 浓度不超过150的概率为640.64100=; (2)由所给数据,可得22⨯列联表为:2SO2.5PM[]0,150(]150,475合计[]0,7564 16 80 (]75,11510 10 20 合计 7426100(3)根据22⨯列联表中的数据可得222()100(64101610)()()()()80207426n ad bc K a b c d a c b d -⨯⨯-⨯==++++⨯⨯⨯36007.4844 6.635481=≈>, 因为根据临界值表可知,有99%的把握认为该市一天空气中 2.5PM 浓度与2SO 浓度有关. 【题目栏目】统计\相关关系、回归分析与独立性检验\独立性检验4.(2021年高考全国甲卷文科·)甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:一级品 二级品 合计 甲机床 150 50 200 乙机床 120 80 200 合计270130400(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?(2)能否有99%把握认为甲机床的产品质量与乙机床的产品质量有差异?附:22()()()()()n ad bc K a b c d a c b d -=++++ ()2P K k ≥ 0.050 0.0100.001k 3.841 6.635 10.828【答案】(1)75%;60%;的(2)能.答案解析:(1)甲机床生产的产品中的一级品的频率为15075% 200=,乙机床生产的产品中的一级品的频率为12060% 200=.(2)()22400150801205040010 6.63527013020020039K⨯-⨯==>>⨯⨯⨯,故能有99%的把握认为甲机床的产品与乙机床的产品质量有差异.5.(2020年高考数学课标Ⅲ卷文科·)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):锻炼人次空气质量等级[0,200](200,400] (400,600]1(优) 216 252(良) 510 123(轻度污染) 67 84(中度污染) 72 0(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?人次≤400人次>400空气质量好空气质量不好附:22()()()()()n ad bcKa b c d a c b d-=++++,P(K2≥k)0.050 0.010 0.001 k 3.841 6.635 10.828【答案】(1)该市一天的空气质量等级分别为1、2、3、4的概率分别为0.43、0.27、0.21、0.09;(2)350;(3)有,理由见答案解析.【答案解析】(1)由频数分布表可知,该市一天的空气质量等级为1的概率为216250.43100++=,等级为2的概率为510120.27100++=,等级为3的概率为6780.21100++=,等级为4的概率为7200.09100++=;(2)由频数分布表可知,一天中到该公园锻炼的人次的平均数为100203003550045350100⨯+⨯+⨯=(3)22⨯列联表如下:人次400≤人次400>空气质量不好 3337 空气质量好 228()221003383722 5.820 3.84155457030K ⨯⨯-⨯=≈>⨯⨯⨯,因此,有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.6.(2019年高考数学课标Ⅰ卷文科·)某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:满意 不满意 男顾客 40 10 女顾客3020(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异? 附:22()()()()()n ad bc K a b c d a c b d -=++++.2()P K k …0.050 0.010 0.001 k3.8416.63510.828【答案】【答案解析】(1)由调查数据,男顾客中对该商场服务满意的比率为400.850=,因此男顾客对该商场服务满意的概率的估计值为0.8.女顾客中对该商场服务满意的比率为300.650=,因此女顾客对该商场服务满意的概率的估计值为0.6.(2)22100(40203010)4.76250507030K⨯⨯-⨯=≈⨯⨯⨯.由于4.762 3.841>,故有95%的把握认为男、女顾客对该商场服务的评价有差异.。

2023年概率专题历年高考真题汇总小题解析版

2023年概率专题历年高考真题汇总小题解析版

概率专题历年高考真题汇总(小题)1.(·新课标Ⅰ, 3)为理解某地区旳中小学生旳视力状况, 拟从该地区旳中小学生中抽取部分学生进行调查, 事先已理解到该地区小学、初中、高中三个学段学生旳视力状况有较大差异, 而男女生视力状况差异不大. 在下面旳抽样措施中, 最合理旳抽样措施是().A. 简朴随机抽样B. 按性别分层抽样C. 按学段分层抽样D. 系统抽样解析:由于学段层次差异较大, 因此在不一样学段中抽取宜用分层抽样.故选C.2.(·新课标Ⅱ, 6)安排3名志愿者完毕4项工作, 每人至少完毕1项, 每项工作由1人完毕, 则不一样旳安排方式共有..)A. 12种B. 18种C. 24种D. 36种【答案】D 解析: 解法一: 将三人提成两组, 一组为三个人, 有种也许, 此外一组从三人在选调一人, 有种也许;两组前后在排序, 在对位找工作即可, 有种也许;合计有36种也许.解法二:工作提成三份有种也许, 在把三组工作分给3个人有也许, 合计有36种也许.3.(·新课标Ⅱ, 理8)我国数学家陈景润在哥德巴赫猜测旳研究中获得了世界领先旳成果. 哥德巴赫猜测是“每个不小于2旳偶数可以表达为两个素数旳和”, 如. 在不超过30旳素数中, 随机选用两个不一样旳数, 其和等于30旳概率是..)A. B. C. D.【答案】C 解析:30以内旳素数有10个, 满足和为30旳素数对有3对, 概率为, 选C.4.(·新课标Ⅰ, 2)如图, 正方形ABCD内旳图形来自中国古代旳太极图, 正方形内切圆中旳黑色部分和白色部分有关正方形旳中心成中心对称. 在正方形内随机取一点, 则此点取自黑色部分旳概率是()A. B. C. D.【答案】B 解析: 设正方形边长为, 则圆半径为, 则正方形旳面积为, 圆旳面积为, 图中黑色部分旳概率为, 则此点取自黑色部分旳概率为, 故选B;【解题技巧】解几何概型旳试题, 一般先求出试验旳基本领件构成旳区域长度(面积或体积), 再求出事件构成旳区域长度(面积或体积), 最终裔入几何概型旳概率公式即可.几何概型计算公式:P(A)=。

概率高考题及答案详解

概率高考题及答案详解

概率高考题及答案详解14.(本小题满分12分)购买某种保险,每个投保人每年度向保险公司交纳保费a 元,若投保人在购买保险的一年度内出险,则能够获得10 000元的赔偿金.假定在一年度内有10 000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10 000元的概率为41010.999-.(Ⅰ)求一投保人在一年度内出险的概率p ;投保人应交纳的最低保费(单位:元).15.(本小题满分12分)甲、乙两队参加奥运知识竞赛,每队3人,每人回答一个问题,答对者对本队赢得一分,答错得零分.假设甲队中每人答对的概率均为23,乙队中3人答对的概率分别为221332,,,且各人回答准确与否相互之间没有影响.用ξ表示甲队的总得分.(Ⅰ)求随机变量ξ的分布列和数学期望;(Ⅱ)用A 表示“甲、乙两个队总得分之和等于3”这个事件,用B 表示“甲队总得分大于乙队总得分”这个事件,求()P AB .16.(本小题满分12分)已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法:方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.(Ⅰ)求依方案甲所需化验次数很多于依方案乙所需化验次数的概率;(Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望. 17(本小题满分12分)如图,由M 到N 的电路中有4个元件,分别标为T 1,T 2,T 3,T 4,电流能通过T 1,T 2,T 3的概率都是p ,电流能通过T 4的概率是0.9.电流能否通过各元件相互独立.已知T 1,T 2,T 3中至少有一个能通过电流的概率为0.999.(Ⅰ)求p ;(Ⅱ)求电流能在M 与N 之间通过的概率;(Ⅲ)ξ表示T 1,T 2,T 3,T 4中能通过电流的元件个数,求ξ的期望.(18)(本小题满分12分)投到某杂志的稿件,先由两位初审专家实行评审.若能通过两位初审专家的评审,则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家实行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3.各专家独立评审.(I)求投到该杂志的1篇稿件被录用的概率;(II)记X 表示投到该杂志的4篇稿件中被录用的篇数,求X 的分布列及期望.19某学校举行知识竞赛,第一轮选拔共设有ABCD 四个问题,规则如下:①每位参加者计分器的初始分均为10分,答对问题ABCD 分别加1分2分3分6分,打错任一题减2分; ②每回答一题,计分器显示累计分数,当累计分数小于8分时,答题结束,淘汰出局;当累计分数大于或等于14分时,答题结束,进入下一轮;当答完四题,累计分数不足14分时,答题结束,淘汰出局。

概率学高考试题及答案

概率学高考试题及答案

概率学高考试题及答案概率学是高中数学课程中的一个重要分支,它研究随机事件的规律性。

以下是一套概率学高考试题及答案,供考生练习。

一、选择题(每题3分,共15分)1. 某班有30名学生,其中男生20人,女生10人。

从这30名学生中随机抽取一人,抽到男生的概率是多少?A. 1/3B. 2/3C. 1/2D. 3/5答案:B2. 一个袋子里装有3个红球和2个蓝球,随机取出2个球,至少有一个红球的概率是多少?A. 1/3B. 3/5C. 2/3D. 4/5答案:C3. 如果事件A和事件B是互斥的,且P(A) = 0.4,P(B) = 0.3,那么P(A∪B)等于多少?A. 0.7B. 0.6C. 0.5D. 0.4答案:B4. 抛一枚硬币两次,出现正面朝上的次数X服从什么分布?A. 正态分布B. 二项分布C. 泊松分布D. 几何分布答案:B5. 一个随机变量X服从参数为λ的泊松分布,那么P(X=k)等于多少?A. λ^k * e^(-λ) / k!B. k * λ^(k-1) * e^(-λ)C. λ * e^(-λ) / kD. e^(-λ) * (λ/k)答案:A二、填空题(每题2分,共10分)6. 一个盒子里有5个白球和3个黑球,随机取出2个球,两个都是白球的概率是______。

答案:5/147. 某次考试的及格率为70%,如果随机抽取10名学生,至少有7名学生及格的概率是______。

答案:[计算略]8. 一个骰子连续掷两次,点数之和为7的概率是______。

答案:5/369. 某工厂生产的产品中有2%是次品,如果随机抽取100件产品,期望的次品数是______。

答案:210. 一个随机变量X服从标准正态分布,那么P(-1 < X < 1) ≈______。

答案:0.6827三、解答题(共25分)11. 一个袋子里有5个红球和5个蓝球,随机取出3个球,求以下事件的概率:- 事件A:取出的3个球都是红球。

(完整版)概率经典例题及解析、近年高考题50道带答案.doc

(完整版)概率经典例题及解析、近年高考题50道带答案.doc

【经典例题】【例 1】( 2012 湖北) 如图,在圆心角为直角的扇形 OAB 中,分别以 OA , OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是21 121 A .1- πB . 2 - πC . πD . π【答案】 A【解析】 令 OA=1,扇形 OAB 为对称图形, ACBD 围成面积为 S 1,围成 OC 为 S 2,作对称轴 OD ,则过 C 点. S 2 即为以 OA2 π 1 2 111 π -2 S2(2)-2×2×2=1为直径的半圆面积减去三角形OAC 的面积, S =8 .在扇形 OAD 中 2 为扇形面积减去三角S 2 S 1 1 21 S 2π -2 π -2π形 OAC 面积和 2 , 2 = 8 π×1 - 8 - 2 =16 , S 1+S 2= 4 ,扇形 OAB 面积 S= 4 ,选 A .【例 2】( 2013 湖北) 如图所示,将一个各面都涂了油漆的正方体,切割为 125 个同样大小的小正方体,经过搅拌后, 从中随机取一个小正方体,记它的涂漆面数为X ,则 X 的均值 E(X) = ( )1266 1687 A. 125B. 5C.125D. 5【答案】 B27 54 36 8 27【解析】 X 的取值为 0,1, 2,3 且 P(X = 0) =125,P(X = 1) =125,P(X = 2) = 125,P(X = 3) = 125,故 E(X) =0× 125+1× 54 36 8 6+2× +3× =,选B.125 125 125 5【例 3】( 2012 四川) 节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通 电后的 4 秒内任一时刻等可能发生,然后每串彩灯以 4 秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过 2 秒的概率是 ()1 1 3 7 A. 4B. 2C. 4D. 8【答案】 C【解析】 设第一串彩灯在通电后第 x 秒闪亮, 第二串彩灯在通电后第 y 秒闪亮,由题意 0≤ x ≤ 4,满足条件的关系式0≤y ≤4,根据几何概型可知, 事件全体的测度 ( 面积 ) 为 16 平方单位,而满足条件的事件测度( 阴影部分面积 ) 为 12 平方单位,123故概率为 16= 4.【例 4】( 2009 江苏) 现有 5 根竹竿,它们的长度(单位: m )分别为 2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2 根竹竿,则它们的长度恰好相差 0.3m 的概率为 .【答案】 0.2 【解析】 从 5 根竹竿中一次随机抽取 2 根的可能的事件总数为 10,它们的长度恰好相差 0.3m 的事件数为 2,分别是:2.5 和 2.8 , 2.6 和 2.9 ,所求概率为 0.2【例 5】( 2013 江苏) 现有某类病毒记作 X m Y n ,其中正整数 m , n(m ≤7, n ≤ 9)可以任意选取,则 m , n 都取到奇数的概率为 ________.20【答案】【解析】 基本事件共有 7×9= 63 种, m 可以取 1, 3, 5,7, n 可以取 1, 3,5, 7, 9. 所以 m ,n 都取到奇数共有 2020种,故所求概率为63.【例 6】( 2013 山东) 在区间 [- 3,3] 上随机取一个数 x ,使得 |x + 1|- |x - 2| ≥1成立的概率为 ________.【答案】13【解析】 当 x<- 1 时,不等式化为- x - 1+ x -2≥1,此时无解;当- 1≤x ≤2 时,不等式化为 x +1+ x -2≥1,解之得 x ≥1;当 x>2 时,不等式化为 x + 1- x +2≥1,此时恒成立, ∴|x + 1| - |x -2| ≥1的解集为 [ 1,+∞ ) . 在 [ -3, 3]上使不等式有解的区间为 [ 1,3] ,由几何概型的概率公式得 P = 3- 1 1 .3-(- 3) =3【例 7】( 2013 北京)下图是某市 3 月 1 日至 14 日的空气质量指数趋势图, 空气质量指数小于 100 表示空气质量优良, 空气质量指数大于 200 表示空气重度污染. 某人随机选择 3 月 1 日至 3 月 13 日中的某一天到达该市, 并停留 2 天.( 1)求此人到达当日空气重度污染的概率;( 2)设 X 是此人停留 期间空气质量优良的天数,求 X 的分布列与数学期望;( 3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明 )【答案】 132; 1213; 3 月 5 日【解析】 设 Ai 表示事件“此人于3 月 i 日到达该市” (i = 1, 2, , 13) .1(i ≠j) .根据题意, P(Ai) = ,且 Ai ∩Aj =13( 1)设 B 为事件“此人到达当日空气重度污染”,则B =A5∪A8.2所以 P(B) =P(A5∪A8)= P(A5) + P(A8) = .13( 2)由题意可知, X 的所有可能取值为 0,1, 2,且P(X= 1) =P(A3∪A6∪A7 ∪A11)4=P(A3) + P(A6) + P(A7) + P(A11) =13,P(X= 2) =P(A1∪A2∪A12∪A13)4=P(A1) + P(A2) + P(A12) + P(A13) =13,5P(X= 0) = 1- P(X= 1) - P(X= 2) =13.所以 X 的分布列为X 0 1 2P 5 4 4 13 13 135 4 4 12故 X 的期望 E(X) =0×+1×+2×= .13 13 13 13( 3)从 3 月 5 日开始连续三天的空气质量指数方差最大.【例 8】(2013 福建)某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为2,中奖可以3 获得 2 分;方案乙的中奖率为2,中奖可以获得 3 分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中5奖与否互不影响,晚会结束后凭分数兑换奖品.( 1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为X ,求 X≤3的概率;(2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?【答案】1115;方案甲.2 2【解析】方法一:( 1)由已知得,小明中奖的概率为3,小红中奖的概率为5,且两人中奖与否互不影响.记“这2 人的累计得分X≤3”的事件为A,则事件 A 的对立事件为“ X=5”,2 2 411因为 P(X=5) =×=,所以P(A)=1-P(X=5)=,3 5 151511即这两人的累计得分X≤3的概率为15.( 2)设小明、小红都选择方案甲抽奖中奖次数为X1,都选择方案乙抽奖中奖次数为X2,则这两人选择方案甲抽奖累计得分的数学期望为E(2X1) ,选择方案乙抽奖累计得分的数学期望为E(3X2) .2 2由已知可得,X1~ B 2,3, X2~ B 2,5,2 42 4所以 E(X1) =2×3=3, E(X2) =2×5=5,812从而 E(2X1) = 2E(X1) =, E(3X2) = 3E(X2) =.3 5因为 E(2X1)>E(3X2) ,所以他们都选择方案甲进行抽奖时,累计得分的数学期望较大.方法二:( 1)由已知得,小明中奖的概率为2,小红中奖的概率为2,且两人中奖与否互不影响.35记“这两人的累计得分 X ≤3”的事件为 A ,则事件 A 包含有“ X =0”“ X =2”“ X =3”三个两两互斥的事件,2 2 1 2 2 22 22, 因为 P(X = 0) = 1-× 1- = ,P(X = 2) = × 1-= ,P(X =3) = 1- × = 15 355355 3 511所以 P(A) = P(X = 0) + P(X = 2) + P(X = 3) =15,11即这两人的累计得分 X ≤3的概率为 15.( 2)设小明、小红都选择方案甲所获得的累计得分为 X1,都选择方案乙所获得的累计得分为X2,则 X1, X2 的分布列如下:X1 0 2 4 X2 0 3 6 P14 4 P912 4 9 9 9 2525251448所以 E(X1) =0× 9+2× 9+4× 9= 3,E(X2) =0× 9 +3× 12+6× 4 = 12.25 25 25 5因为 E(X1)>E(X2) ,所以他们都选择方案甲进行抽奖时,累计得分的数学期望较大.【例 9】( 2013 浙江) 设袋子中装有 a 个红球, b 个黄球, c 个蓝球,且规定:取出一个红球得1 分,取出一个黄球得2 分,取出一个蓝球得3 分.( 1)当 a = 3, b = 2,c = 1 时,从该袋子中任取 (有放回,且每球取到的机会均等 )2 个球,记随机变量 ξ为取出此 2球所得分数之和,求 ξ的分布列;( 2)从该袋子中任取 (每球取到的机会均等 )1 个球,记随机变量 η为取出此球所得分数. 若 E η= 5,D η=5,求 a ∶ b ∶ c.3 9【答案】 3∶ 2∶ 1【解析】( 1)由题意得,ξ= 2, 3, 4, 5, 6.P(ξ= 2) = 3×3 1= ,6×6 4 P(ξ= 3) =2×3×2= 1,6×6 32×3×1+2×2 5 P(ξ= 4) = 6×6 = 18. P(ξ= 5) = 2×2×1 16×6= 9,P(ξ= 6) = 1×1 1,= 366×6 所以 ξ 的分布列为ξ 2 3 4 5 6 P1 1 5 1 1 4318936( 2)由题意知 η 的分布列为η 1 2 3Pa b ca +b +c a + b + ca +b +ca 2b3c5所以 E η= a + b + c + a +b + c + a +b + c = 3,5 a 5 b 5c5D η= 1- 32· a + b + c +2- 32· a + b + c +3- 32· a + b + c = 9, 2a - b - 4c = 0,解得 a = 3c , b = 2c , 化简得a + 4b -11c = 0,故 a ∶b ∶c =3∶2∶1.【例 10】( 2009 北京理) 某学生在上学路上要经过 4 个路口, 假设在各路口是否遇到红灯是相互独立的,遇到红灯的 概率都是 1,遇到红灯时停留的时间都是2min.3( 1)求这名学生在上学路上到第三个路口时首次遇到红灯的概率; ( 2)求这名学生在上学路上因遇到红灯停留的总时间的分布列及期望 .【答案】4;327 8【解析】 本题主要考查随机事件、互斥事件、相互独立事件等概率知识、考查离散型随机变量的分布列和期望等基础 知识,考查运用概率与统计知识解决实际问题的能力.( 1)设这名学生在上学路上到第三个路口时首次遇到红灯为事件 A ,因为事件 A 等于事件“这名学生在第一和第二个路口没有遇到红灯,在第三个路口遇到红灯”,所以事件A 的概率为PA11111 4 .333 27( 2)由题意,可得可能取的值为 0,2, 4, 6,8(单位: min ) .事件“2k ”等价于事件“该学生在路上遇到k 次红灯”( k 0, 1, 2,3, 4),k 4 k∴ P2kC k412k 0,1,2,3,4,33∴即 的分布列是0 246 8P16 32 8818181278181∴ 的期望是 E16 32 88 1 82468.818127 81813【课堂练习】1.( 2013 广东) 已知离散型随机变量X 的分布列为X 1 2 3P3 3 151010则 X 的数学期望 E(X) = () 35A. 2B . 2 C. 2 D . 32.( 2013 陕西) 如图,在矩形区域 ABCD 的 A ,C 两点处各有一个通信基站,假设其信号的覆盖范围分别是扇形区 域 ADE 和扇形区域 CBF( 该矩形区域内无其他信号来源,基站工作正常 ).若在该矩形区域内随机地选一地点,则该地点无 信号的概率是 ( ).A .1- π π π D . π4 B . -1 B .2- 42 23.在棱长分别为 1, 2, 3 的长方体上随机选取两个相异顶点,若每个顶点被选的概率相同,则选到两个顶点的距离 大于 3的概率为 ()4 3 2 3A .7B . 7C . 7D . 144.( 2009 安徽理) 考察正方体 6 个面的中心,甲从这 6 个点中任意选两个点连成直线,乙也从这6 个点中任意选两个点连成直线,则所得的两条直线相互平行但不重合的概率等于12 34?BA .B .C .D .75757575?F?C?D? E? A5.( 2009 江西理) 为了庆祝六一儿童节,某食品厂制作了3 种不同的精美卡片,每袋食品随机装入一张卡片,集齐3种卡片可获奖,现购买该种食品5 袋,能获奖的概率为()3133 C .4850A .B .81D ..8181816.( 2009 辽宁文) ABCD 为长方形, AB = 2, BC =1,O 为 AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于 1 的概率为A .B . 1C .8D . 18447.( 2009 上海理) 若事件 E 与 F 相互独立,且 P EP F1 的值等于,则P EI F4A . 01 C .11B .4D .1628.( 2013 广州) 在区间 [1,5] 和[2, 4]上分别取一个数,记为a ,b ,则方程 x 2 y 22+b 2= 1 表示焦点在 x 轴上且离心率小a于 3的椭圆的概率为 ()2C .1711531A .2B . 3232D . 321, 2,3,9.已知数列 {a } 满足 a = a+ n - 1(n ≥2,n ∈ N),一颗质地均匀的正方体骰子,其六个面上的点数分别为nnn -14, 5, 6,将这颗骰子连续抛掷三次,得到的点数分别记为 a , b , c ,则满足集合 {a ,b , c} = {a 1, a 2, a 3}(1 ≤a i ≤6,i = 1, 2, 3)的概率是 ()1B . 1C . 1D . 1A .72 36 24 1210.( 2009 湖北文) 甲、乙、丙三人将参加某项测试,他们能达标的概率分别是0.8、 0.6、 0.5,则三人都达标的概率是,三人中至少有一人达标的概率是 。

2024高考数学概率与统计历年题目大盘点

2024高考数学概率与统计历年题目大盘点

2024高考数学概率与统计历年题目大盘点概率与统计作为高中数学的重要内容之一,一直以来都是高考中的必考内容。

掌握好概率与统计的理论知识,并通过做题来加深对知识点的理解和应用能力的培养,对于顺利应对高考数学考试至关重要。

本文将通过对2024年高考数学概率与统计部分的历年题目进行大盘点,帮助同学们更好地掌握和复习这一知识点。

一、选择题1. 设随机变量X的概率密度函数为f(x) = kx^2,其中0<x<1,求k的值。

2. 设随机变量X的概率密度函数为f(x) = cx(1-x),其中0<x<1,求c的值。

3. 已知事件A发生的概率为P(A) = 0.4,事件B发生的概率为P(B) = 0.5,事件A与事件B独立,求事件A与事件B同时发生的概率P(A∩B)。

4. 写出使得事件A、B、C相互独立的随机试验的条件。

5. 已知事件A发生的概率为P(A) = 0.3,事件B发生的概率为P(B) = 0.4,事件A与事件B互斥,求事件"A或B发生"的概率P(A∪B)。

6. 已知事件A发生的概率为P(A) = 0.3,事件B发生的概率为P(B) = 0.4,且P(A∪B) = 0.6,求事件"A与B互斥"的概率P(A∩B)。

7. 一批产品共100个,其中有4个次品。

从中任意取出5个,求取出的样本中有2个次品的概率。

8. 已知事件A、B独立,P(A) = 0.4,P(B) = 0.6,求P(A∪B)与P(A∩B)。

二、计算题1. 某汽车4个月出事故的概率为0.01,问8个月中出事故至少2次的概率是多少?2. 某商品的销售量服从正态分布N(400,100),求销售量大于380的概率。

3. 某座城市的某个月的降水量服从正态分布N(150,25),求该月降水量大于200的概率。

4. 某厂生产的电视机寿命服从正态分布N(1000,100^2),求电视机寿命小于900的概率。

高考真题数学概率题解析

高考真题数学概率题解析

高考真题数学概率题解析在高考中,数学概率题是必不可少的一部分,通常会出现在选择题或计算题中。

概率题主要考察考生对概率相关知识的理解和运用能力,解答这类题目需要考生具备严密的逻辑思维和计算能力。

下面将结合几道高考真题,对数学概率题进行解析,帮助考生更好地理解和掌握这一考点。

1. **【高考真题一】**已知事件A的概率为P(A) = 0.6,事件B的概率为P(B) = 0.5,且事件A与事件B相互独立,求事件A与事件B同时发生的概率。

**解析:**由题意可知,事件A与事件B相互独立,即P(A∩B)= P(A) ×P(B)。

所以,P(A∩B) = 0.6 × 0.5 = 0.3。

因此,事件A与事件B同时发生的概率为0.3。

2. **【高考真题二】**某班有60名学生,其中物理成绩在80分及以上的有40人,化学成绩在80分及以上的有30人,已知物理与化学成绩均在80分及以上的有20人,求任选一名学生,其物理或化学成绩在80分及以上的概率。

**解析:**设事件A表示物理成绩在80分及以上,事件B表示化学成绩在80分及以上。

题目要求求任选一名学生,其物理或化学成绩在80分及以上的概率,即P(A∪B)。

由全概率公式可得,P(A∪B) = P(A) + P(B) - P(A∩B)。

其中,P(A) = 40/60 = 2/3,P(B) = 30/60 = 1/2,P(A∩B) = 20/60 = 1/3。

代入计算可得,P(A∪B) = 2/3 + 1/2 - 1/3 = 5/6。

因此,任选一名学生,其物理或化学成绩在80分及以上的概率为5/6。

3. **【高考真题三】**设随机变量X的概率密度函数为 f(x) = a(1-x²),x∈[-1,1],已知E(X) = 0,求a的值。

**解析:**由概率密度函数的性质可知,积分∫f(x)dx在定义域内等于1。

因此,∫a(1-x²)dx = 1,化简得∫a -a(x²)dx = 1。

概率经典例题和解析、近年高考题50道带答案解析

概率经典例题和解析、近年高考题50道带答案解析

【经典例题】【例1】(2012湖北)如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是A .1-2π B . 12 - 1π C . 2π D . 1π【答案】A【解析】令OA=1,扇形OAB 为对称图形,ACBD 围成面积为S 1,围成OC 为S 2,作对称轴OD ,则过C 点.S 2即为以OA 为直径的半圆面积减去三角形OAC 的面积,S 2=π2 ( 12 )2- 12 × 12 × 12 = π-28 .在扇形OAD 中 S 12为扇形面积减去三角形OAC 面积和S 22, S 12 = 18 π×12- 18 - S 22 = π-216 ,S 1+S 2= π-24 ,扇形OAB 面积S= π4,选A . 【例2】(2013湖北)如图所示,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X ,则X 的均值E(X)=( )A. 126125B. 65C. 168125D. 75 【答案】B【解析】X 的取值为0,1,2,3且P(X =0)=27125,P(X =1)=54125,P(X =2)=36125,P(X =3)=8125,故E(X)=0×27125+1×54125+2×36125+3×8125=65,选B.【例3】(2012四川)节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是( )A. 14B. 12C. 34D. 78【答案】C【解析】设第一串彩灯在通电后第x 秒闪亮,第二串彩灯在通电后第y 秒闪亮,由题意⎩⎪⎨⎪⎧0≤x≤4,0≤y≤4,满足条件的关系式为-2≤x-y≤2.根据几何概型可知,事件全体的测度(面积)为16平方单位,而满足条件的事件测度(阴影部分面积)为12平方单位,故概率为1216=34.【例4】(2009江苏)现有5根竹竿,它们的长度(单位:m )分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3m 的概率为 . 【答案】0.2【解析】从5根竹竿中一次随机抽取2根的可能的事件总数为10,它们的长度恰好相差0.3m 的事件数为2,分别是:2.5和2.8,2.6和2.9,所求概率为0.2 【例5】(2013江苏)现有某类病毒记作X m Y n ,其中正整数m ,n(m≤7,n≤9)可以任意选取,则m ,n 都取到奇数的概率为________. 【答案】2063【解析】基本事件共有7×9=63种,m 可以取1,3,5,7,n 可以取1,3,5,7,9.所以m ,n 都取到奇数共有20种,故所求概率为2063.【例6】(2013山东)在区间[-3,3]上随机取一个数x ,使得|x +1|-|x -2|≥1成立的概率为________. 【答案】13【解析】当x<-1时,不等式化为-x -1+x -2≥1,此时无解;当-1≤x≤2时,不等式化为x +1+x -2≥1,解之得x≥1;当x>2时,不等式化为x +1-x +2≥1,此时恒成立,∴|x+1|-|x -2|≥1的解集为[)1,+∞.在[]-3,3上使不等式有解的区间为[]1,3,由几何概型的概率公式得P =3-13-(-3)=13.【例7】(2013北京)下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(1)求此人到达当日空气重度污染的概率;(2)设X 是此人停留期间空气质量优良的天数,求X 的分布列与数学期望; (3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明) 【答案】213;1213;3月5日【解析】设Ai 表示事件“此人于3月i 日到达该市”(i=1,2,…,13).根据题意,P(Ai)=113,且Ai∩Aj=.(1)设B 为事件“此人到达当日空气重度污染”,则B =A5∪A8. 所以P(B)=P(A5∪A8)=P(A5)+P(A8)=213.(2)由题意可知,X 的所有可能取值为0,1,2,且P(X =1)=P(A3∪A6∪A7∪A11) =P(A3)+P(A6)+P(A7)+P(A11)=413,P(X =2)=P(A1∪A2∪A12∪A13) =P(A1)+P(A2)+P(A12)+P(A13)=413,P(X =0)=1-P(X =1)-P(X =2)=513.所以X 的分布列为故X 的期望E(X)=0×513+1×413+2×413=1213.(3)从3月5日开始连续三天的空气质量指数方差最大.【例8】(2013福建)某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为23,中奖可以获得2分;方案乙的中奖率为25,中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为X ,求X≤3的概率;(2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?【答案】1115;方案甲.【解析】方法一:(1)由已知得,小明中奖的概率为23,小红中奖的概率为25,且两人中奖与否互不影响.记“这2人的累计得分X≤3”的事件为A ,则事件A 的对立事件为“X=5”,因为P(X =5)=23×25=415,所以P(A)=1-P(X =5)=1115,即这两人的累计得分X≤3的概率为1115.(2)设小明、小红都选择方案甲抽奖中奖次数为X1,都选择方案乙抽奖中奖次数为X2,则这两人选择方案甲抽奖累计得分的数学期望为E(2X1),选择方案乙抽奖累计得分的数学期望为E(3X2).由已知可得,X1~B ⎝ ⎛⎭⎪⎫2,23,X2~B ⎝ ⎛⎭⎪⎫2,25, 所以E(X1)=2×23=43,E(X2)=2×25=45,从而E(2X1)=2E(X1)=83,E(3X2)=3E(X2)=125.因为E(2X1)>E(3X2),所以他们都选择方案甲进行抽奖时,累计得分的数学期望较大.方法二:(1)由已知得,小明中奖的概率为23,小红中奖的概率为25,且两人中奖与否互不影响.记“这两人的累计得分X≤3”的事件为A ,则事件A 包含有“X=0”“X=2”“X=3”三个两两互斥的事件,因为P(X =0)=⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-25=15,P(X =2)=23×⎝ ⎛⎭⎪⎫1-25=25,P(X =3)=⎝ ⎛⎭⎪⎫1-23×25=215,所以P(A)=P(X =0)+P(X =2)+P(X =3)=1115,即这两人的累计得分X≤3的概率为1115.(2)设小明、小红都选择方案甲所获得的累计得分为X1,都选择方案乙所获得的累计得分为X2,则X1,X2的分布列如下:所以E(X1)=0×19+2×49+4×49=83,E(X2)=0×925+3×1225+6×425=125.因为E(X1)>E(X2),所以他们都选择方案甲进行抽奖时,累计得分的数学期望较大.【例9】(2013浙江)设袋子中装有a 个红球,b 个黄球,c 个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分.(1)当a =3,b =2,c =1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和,求ξ的分布列; (2)从该袋子中任取(每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若Eη=53,Dη=59,求a∶b∶c.【答案】3∶2∶1 【解析】(1)由题意得,ξ=2,3,4,5,6.P(ξ=2)=3×36×6=14,P(ξ=3)=2×3×26×6=13,P(ξ=4)=2×3×1+2×26×6=518.P(ξ=5)=2×2×16×6=19,P(ξ=6)=1×16×6=136,所以ξ的分布列为(2)由题意知η的分布列为所以Eη=a a +b +c +2b a +b +c +3c a +b +c =53,Dη=1-532·a a +b +c +2-532·b a +b +c +3-532·c a +b +c =59,化简得⎩⎪⎨⎪⎧2a -b -4c =0,a +4b -11c =0,解得a =3c ,b =2c ,故a∶b∶c=3∶2∶1.【例10】(2009北京理)某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是13,遇到红灯时停留的时间都是2min. (1)求这名学生在上学路上到第三个路口时首次遇到红灯的概率; (2)求这名学生在上学路上因遇到红灯停留的总时间ξ的分布列及期望. 【答案】427;38【解析】本题主要考查随机事件、互斥事件、相互独立事件等概率知识、考查离散型随机变量的分布列和期望等基础知识,考查运用概率与统计知识解决实际问题的能力.(1)设这名学生在上学路上到第三个路口时首次遇到红灯为事件A ,因为事件A 等于事件“这名学生在第一和第二个路口没有遇到红灯,在第三个路口遇到红灯”,所以事件A 的概率为()11141133327P A ⎛⎫⎛⎫=-⨯-⨯= ⎪ ⎪⎝⎭⎝⎭. (2)由题意,可得ξ可能取的值为0,2,4,6,8(单位:min ).事件“2k ξ=”等价于事件“该学生在路上遇到k 次红灯”(k =0,1,2,3,4),∴()()441220,1,2,3,433kkkP k C k ξ-⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,∴即ξ的分布列是∴ξ的期望是0246881812781813E ξ=⨯+⨯+⨯+⨯+⨯=.【课堂练习】1.(2013广东)已知离散型随机变量则X 的数学期望E(X)=( )A. 32 B .2 C. 52D .3 2.(2013陕西)如图,在矩形区域ABCD 的A ,C 两点处各有一个通信基站,假设其信号的覆盖范围分别是扇形区域ADE 和扇形区域CBF(该矩形区域内无其他信号来源,基站工作正常).若在该矩形区域内随机地选一地点,则该地点无.信号的概率是( ) A .1-π4 B .π2-1 B .2-π2 D .π43.在棱长分别为1,2,3的长方体上随机选取两个相异顶点,若每个顶点被选的概率相同,则选到两个顶点的距离大于3的概率为( )A .47B .37C .27D .3144.(2009安徽理)考察正方体6个面的中心,甲从这6个点中任意选两个点连成直线,乙也从这6个点中任意选两个点连成直线,则所得的两条直线相互平行但不重合的概率等于 A .175 B . 275 C .375 D .4755.(2009江西理)为了庆祝六一儿童节,某食品厂制作了3种不同的精美卡片,每袋食品随机装入一张卡片,集齐3种卡片可获奖,现购买该种食品5袋,能获奖的概率为( )A .3181 B .3381 C .4881 D .5081. 6.(2009辽宁文)ABCD 为长方形,AB =2,BC =1,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为A .4πB .14π-C .8π D .18π-7.(2009上海理)若事件E 与F 相互独立,且()()14P E P F ==,则()P E F I 的值等于A .0B .116C .14D .12∙A ∙∙∙∙∙BC D EF8.(2013广州)在区间[1,5]和[2,4]上分别取一个数,记为a ,b ,则方程x 2a 2+y2b 2=1表示焦点在x 轴上且离心率小于32的椭圆的概率为( ) A .12 B .1532 C .1732 D .31329.已知数列{a n }满足a n =a n -1+n -1(n≥2,n∈N ),一颗质地均匀的正方体骰子,其六个面上的点数分别为1,2,3,4,5,6,将这颗骰子连续抛掷三次,得到的点数分别记为a ,b ,c ,则满足集合{a ,b ,c}={a 1,a 2,a 3}(1≤a i ≤6,i =1,2,3)的概率是( )A .172B .136C .124D .11210.(2009湖北文)甲、乙、丙三人将参加某项测试,他们能达标的概率分别是0.8、0.6、0.5,则三人都达标的概率是 ,三人中至少有一人达标的概率是 。

历届数学高考试题精选——概率1.doc

历届数学高考试题精选——概率1.doc

一、选择题:(每小题5分,计50分〉1. (2008辽宁文、理)4张卡片上分别写有数字1, 2, 3, 4,从这4张卡片中随机抽取2张, 则取出的2张卡片上的数字之和为奇数的概率为( )1 1=23 A. — B. — C. — D.— 3 2 3 42. (2008惠州调研二理)方程X 2+X + H = 0(/? G (0,1))有实根的概率为(). 人、丄 B 、丄 C 、丄 D.-2 3 4 43. ( 2005年广东)先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有1, 2, 3, 4, 5,6), 骰子朝上的面的点数分别为x,y,则使log 2x y = 1的概率为( )1 A.— 6 B. 5 C. 1 D. 1 36 12 2 4. (2007韶关一模文)有3张奖券,其中2张可中奖,现3个人按顺序依次从中抽一张,小明 最后抽,则他抽到中奖券的概率是() 112 1 (A )- (B )- (C )- (D )- 3 6 3 25. (2007韶关二模文)一个停车场有3个并排的车位,分别停放着“红旗”,“捷达”,“桑 塔纳”轿车各一辆,则“捷达” ”车停在“桑塔纳”车的右边的概率和“红旗”车停在最左 边的概率分别是()1 1和 1 1门 1 2小 1 22 3 3 2 3 3 2 36. (2008佛山一模理)如图,矩形长为6,宽为4,在矩形内随机地撒300颗黄豆,数得落在 椭圆外的黄豆数为96颗,以此实验数据为依据可以估计出椭圆的面积约为()A. 7.68B. 16.32C. 17.32D. 8.687. (2008T 州一模理)在区间[0,1]±任取两个数a,b,序呈x 2^-ax + h 2=O 的两根均为实数的概率为( )1113 A. — B. — C. — D.— 8 4 2 48. (2008深圳调研文)甲、乙两人各抛掷一次正方体骰子(它们的六个面分别标有数字 1,2,3,4,5,6),设甲、乙所抛掷骰子朝上的面的点数分别为x 、y,则满足复数兀+yi 的实 部大于虚部的概率是( )12 9. (2007湛江二模文)已知点满足(兀-3)2+(y-2)2W8,则点P 在区域内的概率为(A.返 10. (2008r 州二模文、理)甲、乙两位同学玩游戏,对于给定的实数%,按下列方法操作一 次产生一个新的实数:由甲、乙同时各抛一枚均匀的硬币,如果出现两个正面朝上或两个 反面朝上,贝肥①乘以2后再减去12;如果出现一个正面朝上,一个反而朝上,则把⑦除12D.以2后再加上12,这样就可得到一个新的实数色•对幻仍按上述方法进行一次操作,又 得到一个新的实数如.当们〉印时,甲获胜,否则乙获胜.若甲获胜的概率为扌,则e 的 取值范围是( )A. (-00, 12]B. [24, +00)C. (12, 24)D. (―oo, 12] U [24, +oo )二、填空题:(每小题5分,计20分)11. (2008东莞调研文)每次抛掷一枚骰子(六个面上分别标以1, 2, 3, 4, 5, 6).连续抛掷2次,则2次向上的数之和不小于10的概率为 __________ .12. (2008梅州一模文)设° w {1,2,3}" w {2,4,6},则函数)=log 方丄是增函数的概率为—13. (2008惠州调研三文、理,2007湛江一模文)下图的矩形,长为5,宽为2,在矩形内随机地 撒300颗黄豆,数得落在阴影部分的黄豆数为138颗,则我们可以估计出阴影部分的面积 为 .14. (2008江苏)在平而直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则落入E 中的概率 ____________ .三、解答题:(15、16题各12分,其余题目各14分)15. (2008 T 州调研文)已知射手甲射击一次,命中9环(含9环)以上的概率为0.56,命中8 环的概率为0.22,命中7环的概率为0.12.(1)求甲射击一次,命中不足8环的概率;(2)求甲射击一次,至少命中7环的概率. 16、(2008海南、宁夏文)为了了解《中华人民共和国道路交通安全法》在学生中的普及情况, 调查部门对某校6名学生进行问卷调查,6人得分情况如下:5, 6, 7, 8, 9, 10。

高考概率论真题答案解析

高考概率论真题答案解析

高考概率论真题答案解析在高考数学概率论部分,学生通常会遇到一些涉及概率计算和分析的问题。

这些问题需要深入理解概率概念和方法,才能给出准确的答案。

本文将对几道高考概率论的真题进行答案解析,并辅以示例和说明,帮助学生更好地理解这一知识点。

1. 题目:某城市有1000名居民,其中800人订阅了汇金日报,600人订阅了国际日报,400人既订阅了汇金日报又订阅了国际日报。

现从这1000人中随机选取一人,问他只订阅了一份报纸的概率是多少?解析:首先,我们可以利用概率的计算方法来解答这道题目。

题目给出了订阅汇金日报和国际日报的人数,以及既订阅了汇金日报又订阅了国际日报的人数。

订阅汇金日报的人数为800人,订阅国际日报的人数为600人,既订阅了两份报纸的人数为400人。

我们可以根据集合的概念来解答这个问题。

设A为订阅汇金日报的事件,B为订阅国际日报的事件,则只订阅了一份报纸的事件为A或B但不同时为A和B的事件(即A∪B - A∩B)。

根据概率的定义,我们可以得到只订阅了一份报纸的概率为P(A∪B - A∩B) = P(A) + P(B) - 2P(A∩B)。

代入已知的值,我们有P(A∪B - A∩B) = 800/1000 + 600/1000 - 2 * 400/1000 = 1.4 - 0.8 = 0.6。

因此,只订阅了一份报纸的概率为0.6。

2. 题目:某医院一天普通门诊接诊病人为150人,每当一名病人到达急诊科采用如下方法确定是否需要留院,先随机取三张标有“留院”的纸条、47张标有“回家”的纸条,第一名来到急诊科的病人取一张纸条,如果得到的纸条是“留院”,则需留院观察;如果得到的纸条是“回家”,则需回家。

已知第一名病人未留院,求第二名病人需要留院的概率是多少?解析:这道题目涉及到条件概率的计算。

我们知道,第一名病人未留院是已知条件。

设A为第一名病人不留院的事件,B为第二名病人需要留院的事件。

我们需要求解的是P(B|A),即在第一名病人不留院的条件下,第二名病人需要留院的概率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率专题 历年高考真题汇总(小题)1. (2013·新课标Ⅰ,3)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( ).A .简单随机抽样B .按性别分层抽样C .按学段分层抽样D .系统抽样解析:因为学段层次差异较大,所以在不同学段中抽取宜用分层抽样.故选C.2. (2017·新课标Ⅱ,6)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A .12种B .18种C .24种D .36种【答案】D 解析:解法一:将三人分成两组,一组为三个人,有336A =种可能,另外一组从三人在选调一人,有133C =种可能;两组前后在排序,在对位找工作即可,有222A =种可能;共计有36种可能. 解法二:工作分成三份有246C =种可能,在把三组工作分给3个人有336A =可能,共计有36种可能.3. (2018·新课标Ⅱ,理8)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( )A .112B .114C .115D .118【答案】C 解析:30以内的素数有10个,满足和为30的素数对有3对,概率为2103314515C ==,选C.4.(2017·新课标Ⅰ,2)如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A .14B .π8C .12D .π4【答案】B 解析:设正方形边长为2,则圆半径为1,则正方形的面积为224⨯=,圆的面积为2π1π⨯=,图中黑色部分的概率为π2,则此点取自黑色部分的概率为ππ248=,故选B ; 【解题技巧】解几何概型的试题,一般先求出实验的基本事件构成的区域长度(面积或体积),再求出事件A 构成的区域长度(面积或体积),最后代入几何概型的概率公式即可.几何概型计算公式:P (A )=构成事件A 的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积。

5.(2018·新课标Ⅰ,理10)下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC ,ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为1p ,2p ,3p ,则( )A .12p p =B .13p p =C .23p p =D .123p p p =+【答案】B 解析:设123,,BC r AB r AC r ===.222123r r r =+,112231422S r r r r =⨯=,23123122S r r r π=-, 22222222233232231123231111111=r 2222222222S r r S r r r r r r r r r r πππππππ=+-+-+=-+=, 12S S =,12P P ∴= ,故选A.6.(2018·新课标Ⅱ,理8)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( )A .112B .114C .115D .118【答案】C 解析:30以内的素数有10个,满足和为30的素数对有3对,概率为2103314515C ==,选C.7.(2018·新课标Ⅲ,理8)某群体中的每位成品使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,()()46P X P X =<=,则p =( )A .0.7B .0.6C .0.4D .0.3【答案】B 解析:由~(10,)X B p ,∴10(1) 2.4DX p p =-=,∴21010 2.40p p -+=,解之得120.4,0.6p p ==,由(4)(6)P X P X =<=,有0.6p =.8.(2017·新课标Ⅱ,6)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A .12种B .18种C .24种D .36种【答案】D 解析:解法一:将三人分成两组,一组为三个人,有336A =种可能,另外一组从三人在选调一人,有133C =种可能;两组前后在排序,在对位找工作即可,有222A =种可能;共计有36种可能. 解法二:工作分成三份有246C =种可能,在把三组工作分给3个人有336A =可能,共计有36种可能. 9.(2016·新课标Ⅰ,4)某公司的班车在30:7,00:8,30:8发车,小明在50:7至30:8之间到达发车站乘坐班车,且到达发车丫的时候是随机的,则他等车时间不超过10分钟的概率是(A )31 (B )21 (C )32 (D )43 【答案】B 解析:如图所示,画出时间轴:8:208:107:507:408:308:007:30小明到达的时间会随机的落在图中线段AB 中,而当他的到达时间落在线段AC 或DB 时,才能保证他等车的时间不超过10分钟,根据几何概型,所求概率10101402P +==.故选B . 10.(2016·新课标Ⅱ,10)从区间[0,1]随机抽取2n 个数x 1,x 2,…,x n ,y 1,y 2,…,y n ,构成n 个数对11(,)x y ,22(,)x y ,…,(,)n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( )A .4n mB .2n mC .4m nD .2m n【答案】C 解析:由题意得:()()12i i x y i n =⋅⋅⋅,,,,在如图所示方格中,而平方和小于1的点均在如图所示的阴影中,由几何概型概率计算公式知π41m n=,∴4πm n =,故选C .11.(2015·新课标Ⅰ,4)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为(A )0.648 (B )0.432 (C )0.36 (D )0.312【答案】A 解析:该同学通过测试的概率为223230.60.40.60.6(1.20.6)0.648C ⋅+=+=,或312310.40.40.60.648C --⋅=,选(A ). 12.(2014·新课标Ⅰ,5)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率( ) A .18B .38C .58D .78【答案】D 解析:4位同学各自在周六、周日两天中任选一天参加公益活动共有4216=种,周六、周日都有同学参加公益活动有两种情况:①一天一人一天三人有11428C A =种;②每天2人有246C =种,则周六、周日都有同学参加公益活动的概率为867168+=;或间接解法:4位同学都在周六或周日参加公益活动有2种,则周六、周日都有同学参加公益活动的概率为1627168-=;选D. 13.(2014·新课标Ⅱ,5)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A .0.8B .0.75C .0.6D .0.45【答案】A 解析:设 A =“某一天的空气质量为优良”,B =“随后一天的空气质量为优良”,则()0.6(|)0.8()0.75P AB P B A P A ===.14.(2013·新课标Ⅰ,3)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( ).A .简单随机抽样B .按性别分层抽样C .按学段分层抽样D .系统抽样【答案】C 解析:因为学段层次差异较大,所以在不同学段中抽取宜用分层抽样.15.(2012·新课标Ⅰ,2)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )A .12种B .10种C .9种D .8种【答案】A 解析:先安排甲组,共有122412C C ⋅=种,再安排乙组,将剩余的1名教师和2名学生安排到乙组即可,共有1种,根据乘法原理得不同的安排方案共有12种,故选择A 。

16.(2011·新课标Ⅰ,4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为(A )13 (B )12 (C )23 (D )34【答案】A 解析:每个同学参加的情形都有3种,故两个同学参加一组的情形有9种,而参加同一组的情形只有3种,所求的概率为p=3193=选A 17.(2012·新课标Ⅱ,2)将2名教师,4名学生分成两个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由一名教师和2名学生组成,不同的安排方案共有( )A. 12种B. 10种C. 9种D. 8种【答案】A 解析:只需选定安排到甲地的1名教师2名学生即可,共有1224C C 种安排方案.18.(2011·新课标Ⅱ,4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )A .13B .12C .23D .34【答案】A 解析:每个同学参加的情形都有3种,故两个同学参加一组的情形有9种,而参加同一组的情形只有3种,所求的概率为P =3193=,故选A. 19.(2018·新课标Ⅰ,理15) 从2名女生,4名男生中选3人参加科技比赛,且至少有1名女生入选,则不同的选法共有 种(用数字填写答案).【答案】16 解析:方法一:一类:1名女生,2名男生,则有2412C C 种;二类:2名女生,1名男生,则有1422C C 种;∴共有1614221412=+C C C C 种.方法二:共有36C 种选法,没有女生的选法有:34C 种,∴至少有一名女生的选法的种数163436=-C C . 20.(2017·新课标Ⅱ,13)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则D X = .【答案】1.96 解析:随机变量()100,0.02∽B X ,()()1 1.96D X np p =-=.21.(2016·15)有三张卡片,分别写有1和2,1和3,2和3. 甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是 .【答案】(1,3) 解析:由题意得:丙不拿(2,3),若丙(1,2),则乙(2,3),甲(1,3)满足; 若丙(1,3),则乙(2,3),甲(1,2)不满足,故甲(1,3).22.(2013·新课标Ⅱ,14)从n 个正整数1,2,…,n 中任意取出两个不同的数,若取出的两数之和等于5的概率为114,则n=______. 【答案】8 解析:从1,2,…,n 中任取两个不同的数共有2C n 种取法,两数之和为5的有(1,4),(2,3),共2种,所以221C 14n =,即24111142n n n n ==(-)(-),亦即n 2-n -56=0,解得n =8. 23.(2012·新课标Ⅰ、Ⅱ,15)某一部件由三个电子元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作. 设三个电子元件的使用寿命(单位:小时)服从正态分布N (1000,502),且各元件能否正常工作互相独立,那么该部件的使用寿命超过1000小时的概率为 . 【答案】38解析:由已知可得,三个电子元件使用寿命超过1000小时的概率均为12,所以该部件的使用寿命超过1000小时的概率为2113[1(1)]228--⨯=.元件1 元件2元件3。

相关文档
最新文档