高中数学 (3.2.1 古典概型)教案 新人教A版必修3.pdf

合集下载

[精品]新人教A版必修3高中数学3.2.1古典概型优质课教案

[精品]新人教A版必修3高中数学3.2.1古典概型优质课教案

3. 2.1古典概型【教学目标】1.能说出古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等;2.会应用古典概型的概率计算公式:P (A )=总的基本事件个数包含的基本事件个数A 3.会叙述求古典概型的步骤;【教学重难点】教学重点:正确理解掌握古典概型及其概率公式教学难点:会用列举法计算一些随机事件所含的基本事件数及事件发生的概率【教学过程】前置测评1.两个事件之间的关系包括包含事件、相等事件、互斥事件、对立事件,事件之间的运算包括和事件、积事件,这些概念的含义分别如何?若事件A 发生时事件B 一定发生,则 .若事件A 发生时事件B 一定发生,反之亦然,则A=B.若事件A 与事件B 不同时发生,则A 与B 互斥.若事件A 与事件B 有且只有一个发生,则A 与B 相互对立.2。

概率的加法公式是什么?对立事件的概率有什么关系?若事件A与事件B互斥,则 P(A+B)=P(A)+P(B).若事件A与事件B相互对立,则 P(A)+P(B)=1.3.通过试验和观察的方法,可以得到一些事件的概率估计,但这种方法耗时多,操作不方便,并且有些事件是难以组织试验的.因此,我们希望在某些特殊条件下,有一个计算事件概率的通用方法.新知探究我们再来分析事件的构成,考察两个试验:(1)掷一枚质地均匀的硬币的试验。

(2)掷一枚质地均匀的骰子的试验。

有哪几种可能结果?在试验(1)中结果只有两个,即“正面朝上”或“反面朝上”它们都是随机的;在试验(2)中所有可能的试验结果只有6个,即出现“1点”“2点”“3点”“4点”“5点”“6点”它们也都是随机事件。

我们把这类随机事件称为基本事件综上分析,基本事件有哪两个特征?(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和.例1:从字母a,b,c,d中任意取出两个不同字母的试验中,有哪些基本事件?分析:为了得到基本事件,我们可以按照某种顺序,把所有可能的结果都列出来。

人教A版必修3《3.2.1古典概型》教学设计

人教A版必修3《3.2.1古典概型》教学设计

人教A版必修3《3.2.1古典概型》教学设计一、教材内容与内容解析本节课的内容选自《普通高中课程标准实验教科书数学必修3(A)版》第三章中的第3.2.1节古典概型。

它安排在随机事件的概率之后,几何概型之前,学生还未学习排列组合的情况下教学的。

古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位,是学习概率必不可少的内容,同时有利于理解概率的概念,有利于计算一些事件的概率,能解释生活中的一些问题。

因此本节课的教学重点是理解古典概型的概念及利用古典概型求解随机事件的概率。

二、目标与目标解析根据本节教材在本章中的地位和大纲要求以及学生实际,本节课的教学目标制定如下:①结合一些具体实例,让学生理解并掌握古典概型的两个特征及其概率计算公式,培养学生观察比较、归纳问题的能力。

②会用列举法计算一些随机事件所含的基本事件数及事件发生的概率, 渗透数形结合、分类讨论的思想方法。

③使学生初步学会把一些实际问题转化为古典概型,关键是要使该问题是否满足古典概型的两个条件,培养学生分析问题、解决问题的能力。

三、教学问题诊断分析在例1教学中,求古典概型中基本事件总数是难点,原因是由于前面没有学习排列组合知识,此时教师可引导学生用列举法列举基本事件的个数,不仅能让学生直观的感受到对象的总数,而且还能使学生在列举的时候作到不重不漏,解决了这一难点。

在本节课例2的教学中,学生往往不会讨论这个问题该在什么情况下可以看成古典概型,在例3的教学中,学生给出的答案可能会有两种,原因是有些问题中的每个基本事件不是等可能的。

因此古典概型的教学应让学生通过实例验证该试验是否满足古典概型的两个条件,这也是本节课的教学难点。

四、教学支持条件分析①教师方面:教师在课堂教学过程中,根据学生的实际水平,恰时恰点的提出问题,设置合理、有效的教学情境,让每一位学生参与课堂讨论,提供学生思考讨论的时间与空间。

②学生方面:学生之间的讨论与师生之间的交流是获取知识、提高能力最直接的途径。

古典概型(第一课时) 精品教案

古典概型(第一课时)   精品教案

二.教学三维目标:
1.知识与技能:理解基本事件和古典概型的概念,并掌握它们的特点;会应用 古典概型的概率计算公式。
2.过程与方法:通过两个试验的观察让学生理解古典概型的特征,归纳总结出 古典概型的概率计算公式,体现了数形结合、分类讨论的重要数学思想方法。
3.情感态度与价值观:让学生了解随机现象与概率的意义,加强与实际生活的联系。
课堂上适当让学生互相讨论、交流,培养学生的合作精神和严谨的科学态度。
三.教学重难点
1.教学重点:正确理解掌握古典概型及其概率公式。
2.教学难点:会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。
四.教学过程:
教学
情境设计和学习任务
学生活动
设计
环节
意图
1.两个事件之间的关系有哪些? 复习
1.答:包含事件、相等事件、 互斥事件、对立事件
试验 1:两种结果“正面朝上”、 “正面朝下”
试验 2:抛掷一颗均匀的骰子一次,观察 出现的点数有哪几种结果?
试验 2:六种结果“1 点”、
“2
点”、 “3 点”、 “4 点”、 “5
点”、 “6 点”
提出问 题,激 发学生 的求知 欲望。
问题:(1)在一次试验中,会同时出现 “1 点”和“2 点”这两个基本事件吗?
知识 的生 成
(1)试验中所有可能出现的基本事件只有
有限个;(有限性) (2)每个基本事件出现的可能性相等。
让学生观察,找出特点,再概括 总结得到的结论。
(等可能性)
我们将具有这两个特点的概率模型称为古 典概率概型,简称古典概型。
从具体 到抽 象, 训 练概括 归纳能 力。
在古典概型下,基本事件出现的概率是多 少?随机事件出现的概率如何计算?

高中数学(32古典概型)教案 新人教A版必修3 教案

高中数学(32古典概型)教案 新人教A版必修3 教案

古典概型一、教学内容解析1.本节课时高中数学(必修3)第三章概率的第二节古典概型的第一课时,是在学习了随机事件的概率、概率的加法公式之后,学习几何概型之前,尚未学习排列组合的情况下进行教学的.这节课的学习任务所包括的知识类型主要有:事实性知识:基本事件及古典概型的特点;概念性知识:基本事件及古典概型的概念,古典概型概率计算公式;元认知知识:根据古典概型的研究分析,解释和预测生活中的古典概率模型问题.2.古典概型在概率的学习中承上启下,不仅有利于进一步理解概率的有关概念,而且有助于几何概型的学习,也可以为以后概率的学习奠定基础.3.古典概型是一种特殊的数学模型,能培养学生建模的思想,同时其与生活联系密切,便于解释生活中的一些问题,增加学生学习数学的兴趣.二、教学目标设置1.知识与技能理解基本事件、等可能事件等概念;正确理解古典概型的特点;会用列举法求解简单的古典概型问题;掌握古典概型的概率计算公式.2.过程与方法通过对现实生活中具体的概率问题的探究,感受应用数学解决问题的方式,体会数学知识与现实世界的联系,培养学生的逻辑推理能力;通过模拟试验,感知应用数学解决问题的方法,自觉养成多动手、勤动脑的良好习惯.3.情感、态度与价值观在教师指导、学生参与的过程中培养学生的自主学习能力;同时,使其获得数学源于生活服务于生活的体验,培养学生应用数学的意识.三、学生学情分析我校是湖南省著名的示范性中学,学生学习基础较好.从课前的微视频自学反馈中,了解到学生在以下3个方面仍需加强.1.学生已经学习了概率的加法,能够比较熟练的应用互斥事件的概率运算法则进行计算.2.通过预习,学生能够初步了解基本事件及古典概型的概念,但对其深入的理解和应用还需加强.3.学生对古典概型及其概率计算公式含义的认识上并不能直击本质,因此在教学过程中,将采用自主探究、小组讨论等环节强调其本质含义,突破难点.四、教学策略分析1.有效开发、合理利用教材资源.以教材中两个试验的其中之一作为实验探究,将第二个试验进行适当改编,引导学生认识基本事件及其两大特点和古典概型的定义及特征.让学生自己动手体会在试验、合作中得到的新知,同时通过归纳总结对知识有更为深刻的理解和认识.2.学生已经学习了概率的相关基础知识,通过试验后,对古典概型也有了较初步的印象.为加深学生对古典概型两个特征的认识和理解,在例题中加强对有限性和等可能性的区分和辨别,使学生深刻领会”有限”和”等可能”的含义.五、教学过程(一)复习回顾引入课题分析掷硬币试验和抛掷骰子试验的试验结果,引出基本事件的定义及特点:一次试验中可能出现的每一个结果称为基本事件.(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和.引导学生进一步分析以上两个试验中基本事件的共同点,发现两个试验中的基本事件只有有限个,并得到关于“古典概型中每个基本事件出现的可能性相等”的猜想.【设计意图】课堂开始阶段,引导学生由之前课堂中曾完成过的掷硬币试验进行分析,让学生在熟悉的情景下、了解的知识中温故知新,得到基本事件的定义和特点.同时鼓励学生大胆猜想古典概型中基本事件的等可能性,培养学生的发散思维和研究精神.(二)试验探究概念形成实验目的:验证古典概型中基本事件的等可能性.实验内容:抛掷一颗骰子,统计实验中向上点数出现的次数.实验用具:质地均匀的骰子1个、空量杯一个、数据统计表1份.实验步骤:(1)3位同学为1个小组,3个小组为1个大组进行实验.(2)每小组中,第一位同学负责抛掷骰子,每次实验将骰子置于同一高度在(量杯口处)向下掷,待骰子静止后,观察实验结果;第二位同学负责记录实验结果;第三位同学负责监督实验过程,并检验统计数据.(3)小组实验结束后,将数据汇总至所在大组的实验数据统计表中.由学生展示每小组的统计结果,进行比较分析,然后师生合作将每小组的实验数据累加,并综合继续分析.最后运用EXCEL软件模拟掷骰子试验,得到1000次、10000次及100000次的试验结果,说明在大量的试验下,掷骰子试验中的六个基本事件出现的频率基本相等,也就验证了对于“古典概型中每个基本事件出现的可能性相等”的猜想.从而,通过掷一颗骰子的试验得到古典概型的概念:(1)试验中所有可能出现的基本事件的个数只有有限个;(2)每个基本事件出现的可能性相等.我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型.【设计意图】以抛掷骰子的数学实验作为切入点,在学生动手实践、动脑思考、数据分析的学习活动中,验证”每个基本事件出现的可能性相等”的猜想,并抽象出古典概型的概念.在实验过程中,突出了本节课的重点,培养了学生合作探究的能力,并进一步加深了学生对古典概型中基本事件的认识.1.下列概型是否为古典概型?(1)在长度为3厘米的线段AB上随机取一点C,求点A到点C的距离小于1的概率.你认为这是古典概型吗?为什么?分析:不是.具有等可能性,不具有有限性.(2)一颗质地均匀的骰子,在其一个面上标记1点,两个面上标记2点,三个面上标记3点,现掷这颗骰子,试验结果有:”出现1点”、”出现2点”、”出现3点”.你认为这是古典概型吗?为什么?分析:不是.具有有限性,不具有等可能性.2.你能举出生活中的古典概型例子吗?学生例举生活实例.【设计意图】通过2个问题,加深学生对有限性及等可能性的认识.让学生自己举例,即可加深学生对古典概型特征的理解,又可以将数学练习生活,提升学生的学习兴趣.通过学生对生活中实例的分析,进一步提出问题:既然生活中有如此多的古典概型,那么我们能否找到其概率计算的通法呢?再次回到刚刚的试验中,你能否求出“出现偶数点”这个随机事件的概率呢?学生以小组为单位进行讨论,引导学生应用古典概型特点及互斥事件概率加法公式得到问题答案,并归纳总结出古典概型的概率计算公式:()AP A包含的基本事件个数基本事件总数【设计意图】由学生小组讨论,得到事件“出现偶数点”的概率,进而归纳出古典概型的概率计算公式.在学习新知识的同时培养学生的沟通交流能力,也加深了学生对概率公式的理解.(三)例题精讲感悟本质例1 从一个装有4颗巧克力(形状大小均相同)的布袋中随机取出2颗巧克力.(1)若4颗巧克力中,红色、黄色、蓝色、绿色各1颗,写出所有的基本事件.(2)若4颗巧克力中,红色、黄色各2颗,写出所有的基本事件.(3)在(2)的条件下,计算取出的2颗均为黄色的概率.在第(1)问的解题过程中引入树状图法进行列举,使学生熟悉掌握列举的重要方法之一——树状图法.学生在对比(1)完成(2)时,往往容易忽视古典概型的两个特点,预计学生在求解时可能会有以下两种情况:①将黄色巧克力标号为1、2,红色巧克力标号为3、4,试验结果共6种:②不对巧克力进行编号,试验结果包含(黄,黄)(红,红)(红,黄)3种.针对学生出现的典型错误,引导学生独立思考、合作交流,并提出问题:上述两种计数方法是否符合古典概型的特点?你能解释其中的原因吗?待学生充分讨论后,由学生代表发言,引导学生认识到在第二种情况下得到的事件不是等可能发生,不具备古典概型的特点,故不能用古典概型的概率计算公式进行计算.【设计意图】例1是基于教科书中第125页例1创新改编而成,将原例题中的a b c d,,,四个字母换为不同颜色的巧克力,以“抽取巧克力”试验作为背景,让学生在轻松的氛围中通过观察分析掌握古典概型的两个特点.这样既培养了学生观察、分析问题和解决问题的能力,又有效地突破了本节课的教学难点.练习题:同时掷两枚硬币,出现”1个正面朝上、1个反面朝上”的概率是多少?由学生独立完成练习【设计意图】例题1中的(2)(3)问是本节课的难点,这里设计一道与之类似的习题,使学生在多次练习的过程中,突破这一难点.例2 同时掷两个骰子,求:(1)向上的点数均为3的概率.(2)向上的点数和为5的概率.(3)向上的点数和为偶数的概率.由学生自主解答,小组交流,学生代表向全班进行展示,同时在学生展示中,进一步强调古典概型的两个重要特点,并针对学生解答过程中可能出现的问题适当加以引导,【设计意图】为了固化古典概型的概念及其概率计算公式,我将教科书中例3的设问作了变式与创新,使学生能够熟练地运用列表法列出所有的基本事件,掌握古典概型的概率计算公式,加深对古典概型概念的理解.进一步突出本节课的教学重点.(四)回顾总结提炼要点这节课我们学习了哪些知识和方法?【设计意图】学生总结反思,进一步强调本节课内容的重点和难点和方法,培养学生提炼、总结、概括的能力.(五)课后拓展探究提升1、课后练习教科书130页,第2题、第 3题.2、思考提升下面有三个游戏规则,袋子中分别装有球,从袋中无放回的取球,分别计算甲获胜的概率,则游戏是公平的是()游戏1 游戏2 游戏31个红球和1个白球2个红球和2个白球3个红球和1个白球取1个球取1个球,再取1个球取1个球,再取1个球取出的球是红球,则甲胜取出的两个球同色,则甲胜取出的两个球同色,则甲胜取出的球是白球,则乙胜取出的两个球不同色,则乙胜取出的两个球不同色,则乙胜A.游戏1 B.游戏1和3 C.游戏2 D.游戏2和33、实践应用近年来,国家越来越重视商品的质量问题,经常组织质检部门对其进行抽样检测.请你收集相关的新闻材料、数据或进行实际的市场调查,从古典概型角度针对检测产品的数量和检测出不合格产品的概率进行分析研究,说明质量抽检的科学性或提出你的建议.【设计意图】在作业的布置中,注意将双基训练与能力发展相结合.创新性地设计探究问题,有意识地将数学与生活结合,使学生能够学以致用,既巩固了基本知识,同时又提升了学生运用知识分析问题和解决问题的能力.。

高中数学人教A版必修三3.2.1【教学设计】《古典概型》

高中数学人教A版必修三3.2.1【教学设计】《古典概型》

古典概型1.知识与技能(1)正确理解古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等;(2)掌握古典概型的概率计算公式:()AP A包含的基本事件个数总的基本事件个数;(3)会叙述求古典概型的步骤。

2.过程与方法通过对现实生活中具体的概率问题的探究,感知应用数学解决问题的方法,体会数学知识与现实世界的联系,培养逻辑推理能力。

3.情感态度与价值观通过数学与探究活动,体会理论来源于实践并应用于实践的辩证唯物主义观点。

【教学重点】正确理解掌握古典概型及其概率公式。

【教学难点】能应用古典概型计算公式求复杂事件的概率。

(一)新课导入在标准化的考试中既有单选题又有多选题,多选题是从A、B、C、D四个选项中选出所有正确答案,同学们可能有一种感觉,如果不知道正确答案,多选题更难猜对,这是为什么?(二)复习回顾1.从事件发生与否的角度可将事件分为哪几类?必然事件、不可能事件、随机事件2.概率是怎样定义的?一般地,如果随机事件A在n次试验中发生了m次,当试验的次数n很大时,我们可以将事件A发生的频率mn作为事件A发生的概率的近似值,即()mP An。

(其中P(A)为事件A发生的概率)3.概率的性质:0≤P(A)≤1;P(Ω)=1,P(φ)=0(三)新课讲授1.基本事件在一个试验可能发生的所有结果中,那些不能再分的最简单的随机事件称为基本事件。

(其他事件都可由基本事件的和来描述)考察两个试验(1)掷一枚质地均匀的硬币的试验正面向上 ,反面向上(2)掷一枚质地均匀的骰子的试验六种随机事件基本事件(1)中有两个基本事件 (2)中有6个基本事件基本事件的特点:(1)任何两个基本事件是不能同时发生的;(2)任何事件(除不可能事件)都可以表示成基本事件的和.思考1:抛掷两枚质地均匀的硬币,有哪几种可能结果?连续抛掷三枚质地均匀的硬币,有哪几种可能结果?答:(正,正),(正,反),(反,正),(反,反);(正,正,正),(正,正,反), (正,反,正),(反,正,正),(正,反,反),(反,正,反),(反,反,正),(反,反,反). 思考2:在连续抛掷三枚质地均匀的硬币的试验中,随机事件“出现两次正面和一次反面”,“至少出现两次正面”分别由哪些基本事件组成?答:(正,正,反),(正,反,正),(反,正,正);(正,正,正),(正,正,反),(正,反,正),(反,正,正).例1从字母a、b、c、d中任意取出两个不同字母的试验中,有哪些基本事件?事件“取到字母a”是哪些基本事件的和?解:所求的基本事件有6个, A={a,b},B={a,c},C={a,d}, D={b,c},E={b,d},F={c,d};“取到字母a”是基本事件A、B、C的和,即A+B+C反思与感悟基本事件有如下两个特点:(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和。

《古典概型》教案

《古典概型》教案

《古典概型》教学设计一、教材分析本节课是人教A版高中数学3(必修)第三章概率的第二节古典概型的第一课时,是在随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的。

古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位。

学好古典概型能够为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题。

二、教学目标1.知识与技能(1)理解基本领件的特点;(2)通过实例,理解古典概型及其概率计算公式;(3)会用列举法计算一些随机事件所含的基本领件数及事件发生的概率。

2.过程与方法根据本节课的内容和学生的实际水平,通过两个试验的观察让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比骰子试验,归纳总结出古典概型的概率计算公式,表达了化归的重要思想,掌握列举法,学会使用数形结合、分类讨论的思想解决概率的计算问题。

3.情感态度与价值观概率教学的核心问题是让学生理解随机现象与概率的意义,增强与实际生活的联系,以科学的态度评价身边的一些随机现象。

适当地增加学生合作学习交流的机会,尽量地让学生自己举出生活和学习中与古典概型相关的实例。

使得学生在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是地科学态度和锲而不舍的求学精神。

三、重点、难点重点:理解古典概型的概念及利用古典概型求解随机事件的概率。

难点:如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本领件的个数和试验中基本领件的总数。

四、教学过程教学环节教学内容师生互动设计意图以境激情试验1:掷一枚质地均匀的硬币,观察出现哪几种结果?(见课件)试验2:抛掷一颗均匀的骰子一次,观察出现的点数有哪几种结果?1.基本领件的概念一次试验可能出现的每一个结果称为一个基本领件。

如:试验1中的“正面朝上”、“正面朝下”;试验2中的出现“1点”、“2点”、“3点”、“4点”、“5点”、“6点”教师创设情境,为导入新知做准备。

高中数学3.2.1古典概型教案新人教A版必修3

高中数学3.2.1古典概型教案新人教A版必修3

高一数学集体备课教案:古典概型教学目:根据本的内容和学生的水平,通模学生理解古典概型的特征:果的有限性和每一个果出的等可能性,察比各个,正确理解古典概型的两大特点;立从具体到抽象、从特殊到一般的唯物主点,培养学生用随机的点来理性地理解世界,使得学生在体会概率意鼓励学生通察、比,提高、分析、解决的能力,出古典概型的概率算公式,掌握古典概型的概率算公式;注意公式:P〔A〕A包含的根本领件个数=的使用条件——古典概型,体了化的重要思想.掌握列法,总的根本领件个数学会运用分的思想解决概率的算,增学生数学思情趣.教学重点:理解古典概型的概念及利用古典概型求解随机事件的概率.教学点:如何判断一个是否是古典概型,分清在一个古典概型中某随机事件包含的根本领件的个数和中根本领件的数.教学方法:授法安排:教学程:一、入新:一枚地均匀的硬,果只有2个,即“正面朝上〞或“反面朝上〞,它都是随机事件.(2)一个盒子中有 10个完全相同的球,分以号1,2,3,不同的果,即号1,2,3,⋯,10.思考根据上述情况,你能它有什么共同特点?二、新解:1、提出:⋯,10,从中任取一球,只有10种一:抛一枚地均匀的硬,分“正面朝上〞和“反面朝上〞的次数,要求每个数学小至少完成20次〔最好是整十数〕,最后由学科代表;二:抛一枚地均匀的骰子,分“1点〞“2点〞“3点〞“4点〞“5点〞和“6点〞的次数,要求每个数学小至少完成60次〔最好是整十数〕,最后由学科代表.1〕用模的方法来求某一随机事件的概率好不好?什么?2〕根据以前的学,上述两个模的每个果之都有什么特点?3〕什么是根本领件?根本领件具有什么特点?4〕什么是古典概型?它具有什么特点?5〕于古典概型,怎算事件的概率?2、活:学生展示模的操作方法和果,并与同学交流活感受,可能出的情况,生共同方法、果和感受.3、果:〔1〕用模的方法来求某一随机事件的概率不好,因需要行大量的,同我只是把随机事件出的率近似地随机事件的概率,存在一定的差.2〕上述一的两个果是“正面朝上〞和“反面朝上〞,它都是随机事件,出的概率是相等的,都是0.5.上述二的6个果是“1点〞“2点〞“3点〞“4点〞“5点〞和“6点〞,它也都是随机事件,出的概率是相等的,都是1.63〕根据以前的学,上述一的两个果“正面朝上〞和“反面朝上〞,它都是随机事件;上述二的6个果“1点〞“2点〞“3点〞“4点〞“5点〞和“6点〞,它都是随机事件,像随机事件我称根本领件〔 elementary event〕;它是的每一个可能果.根本领件具有如下的两个特点:①任何两个根本领件是互斥的;②任何事件〔除不可能事件〕都可以表示成根本领件的和.〔4〕在一个中如果①中所有可能出的根本领件只有有限个;〔有限性〕②每个根本领件出的可能性相等.〔等可能性〕我将具有两个特点的概率模型称古典概率模型〔classical modelsofprobability 〕, 称古典概型.向一个面内随机地投射一个点,如果点落在内任意一点都是等可能的,你是古典概型?什么?因的所有可能果是面内所有的点,的所有可能果数是无限的一个果出的“可能性相同〞,但个缺乏古典概型的第一个条件如下,某同学随机地向一靶心行射,一的果只有有限个:命中中9⋯⋯命中5和不中.你是古典概型?什么?.,然每10、命不是古典概型,因的所有可能果只有7个,而命中10、命中和不中的出不是等可能的,即缺乏古典概型的第二个条件.〔5〕古典概型,随机事件的概率算于一中,出正面朝上的概率与反面朝上的概率相等,即P 〔“正面朝上〞〕=P〔“反面朝上〞〕由概率的加法公式,得P 〔“正面朝上〞〕+P〔“反面朝上〞〕=P〔必然事件〕=1.9⋯⋯命中5因此P〔“正面朝上〞〕=P〔“反面朝上〞〕1=.2即P〔“出现正面朝上〞)=1"出现正面朝上"所包含的根本领件的个数根本领件的总数. 2试验二中,出现各个点的概率相等,即〔“1点〞〕=P〔“2点〞〕=P〔“3点〞〕=P〔“4点〞〕=P〔“5点〞〕=P〔“6点〞〕.反复利用概率的加法公式,我们有P〔“1点〞〕+P〔“2点〞〕+P〔“3点〞〕+P〔“4点〞〕+P〔“5点〞〕+P〔“6点〞〕=P〔必然事件〕=1.所以P〔“1点〞〕=P〔“2点〞〕=P〔“3点〞〕=P〔“4点〞〕=P〔“5点〞〕=P 〔“6点〞〕=1.6进一步地,利用加法公式还可以计算这个试验中任何一个事件的概率 ,例如,〔“出现偶数点〞〕=P〔“2点〞〕+P〔“4点〞〕+P〔“6点〞〕=1+1+1=3=1.66662即P〔“出现偶数点〞〕=3"出现偶数点"所包含的根本领件的个数.根本领件的总数6因此根据上述两那么模拟试验,可以概括总结出,古典概型计算任何事件的概率计算公式为:A所包含的根本领件的个数P〔A〕=.根本领件的总数在使用古典概型的概率公式时,应该注意:①要判断该概率模型是不是古典概型;②要找出随机事件A包含的根本领件的个数和试验中根本领件的总数.三、例题讲解:例1从字母a,b,c,d活动:师生交流或讨论中任意取出两个不同字母的试验中,我们可以按照字典排序的顺序,有哪些根本领件?,把所有可能的结果都列出来.解:根本领件共有6个:A={a,b},B={a,c},C={a,d},D={b,c},E={b,d},F={c,d}.点评:一般用列举法列出所有根本领件的结果,画树状图是列举法的根本方法.例2:单项选择题是标准化考试中常用的题型,一般是从A,B,C,D四个选项. 中选择一个正确答案如果考生掌握了考查的内容,他可以选择唯一正确的答案 .假设考生不会做,他随机地选择一个答案,问他答对的概率是多少?解:〔略〕点评:古典概型解题步骤:1〕阅读题目,搜集信息;2〕判断是否是等可能事件,并用字母表示事件;3〕求出根本领件总数n和事件A所包含的结果数m;4〕用公式P(A)=m求出概率并下结论.n式抛两枚均匀硬,求出两个正面的概率.一次投两骰子,求出的点数之和奇数的概率.例3 同两个骰子,算:一共有多少种不同的果?其中向上的点数之和是5的果有多少种?向上的点数之和是5的概率是多少?解:〔略〕例4:假蓄卡的密由4个数字成一个.假一个人完全忘了自己的蓄卡密取到的概率是多少 ?,每个数字可以是 0,1,2, ⋯,9十个数字中的任意,他到自取款机上随机一次密就能解:〔略〕例5:某种料每箱装6听,如果其中有2听不合格,人从中随机抽出2听,出不合格品的概率有多大?解:〔略〕四、堂:教材第130:1、2、3五、堂小:古典概型我将具有1〕中所有可能出的根本领件只有有限个;〔有限性〕2〕每个根本领件出的可能性相等.〔等可能性〕两个特点的概率模型称古典概率概型,称古典概型.2.古典概型算任何事件的概率算公式P〔A〕=A所包含的根本领件的个根本领件的总数数.求某个随机事件A包含的根本领件的个数和中根本领件的数的常用方法是列法〔画状和列表〕,做到不重不漏.六、后作A 1、2、3、4.板古典概型1.古典概型2、P〔A〕=A所包含的根本领件的个根本领件的总数数.。

《古典概型》教案

《古典概型》教案

必修三《3.2.1古典概型》教案一、教学内容本节课选自《普通高中课程标准实验教科书》人教A 版必修3第三章第二节《古典概型》,教学安排是2课时,本节课是第一课时。

二、教学目标1.知识与技能:(1)通过试验理解基本事件的概念和特点;(2)通过具体实例分析,抽离出古典概型的两个基本特征,并推导出古典概型下的概率计算公式; (3)会求一些简单的古典概率问题。

2.过程与方法:经历探究古典概型的过程,体验由特殊到一般的数学思想方法。

3.情感与价值:用具有现实意义的实例,激发学生的学习兴趣,培养学生勇于探索,善于发现的创 新思想。

三、教学重、难点重点:理解古典概型的概念,利用古典概型求解随机事件的概率。

难点:如何判断一个试验是否为古典概型,弄清在一个古典概型中基本事件的总数和某随机事件包含的基本事件的个数。

四、教学过程(一)情境引入小军和小民玩掷骰子游戏,他们约定:两颗骰子掷出去,如果朝上的两个数的和是9,那么小军获胜,如果朝上的两个数的和是10,那么小民获胜。

请问:谁会获胜?这样的游戏公平吗? (二)探究新知一、基本事件思考1:掷一枚质地均匀的硬币,观察可能出现哪几种结果?掷一枚质地均匀的骰子,观察可能出现的点数有哪几种结果?1、定义:一次试验中可能出现的每一个结果称为一个基本事件。

2、基本事件的特征:(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和。

试一试:从字母a 、b 、c 、d 任意取出两个不同字母的试验中,有哪些基本事件?分析:为了得到基本事件,我们可以按照某种顺序把所有可能的结果都列出来。

{,}C a d ={,}A a b ={,}B a c ={,}E b d ={,}D b c ={,}F c d =61nA P )(二、形成概念通过上面的共同特征:(1)试验中所有可能出现的基本事件的个数有限;(2)每个基本事件出现的可能性相等。

我们把具有这两个特点的概率模型称为古典概率模型,简称古典概型. 三、概念辨析(1)从2名男生3名女生中任意选取一名当数学课代表是古典概型吗? (是) (2)从所有整数中任取一个数的试验是古典概型吗? (不是)(3)某同学随机地向一靶心进行射击,这一试验的结果只有有限个:命中10环、命中9环……命中5环和不中环。

高中数学人教A版必修3第三章3.2.1 古典概型教学设计

高中数学人教A版必修3第三章3.2.1  古典概型教学设计

编写时间:2021年月日2020-2021学年第二学期总第课时编写人:课题 3.2.1古典概型授课班级高二班授课时间学习目标1.正确理解基本事件的概念,准确求出基本事件及其个数;在数学建模的过程中,正确理解古典概型的两个特征;推导和掌握古典概型的概率计算公式,体现了化归的重要思想,会用列举法计算一些随机事件所含的基本事件数及其事件发生的概率,学会运用数形结合、分类讨论的思想解决概率的计算问题.2.进一步发展学生类比、归纳、猜想等合情推理能力;通过对各种不同的实际情况的分析、判断、探索,培养学生的应用能力.3.通过各种有趣的,贴近学生生活的素材,激发学生学习数学的热情和兴趣,培养学生勇于探索,善于发现的创新思想;通过参与探究活动,领会理论与实践对立统一的辨证思想;结合问题的现实意义,培养学生的合作精神.教学重点理解古典概型的含义及其概率的计算公式n m A P =)(.教学难点应用古典概型计算公式n m A P =)(时,用枚举和列表法正确求出m,n 课型新课主要教学方法自主学习、思考、交流、讨论、讲解教学模式合作探究,归纳总结教学手段与教具智慧黑板等.教学过程设计各环节教学反思一、创设情景引出新课模拟试验(多媒体演示):(1)(计算机模拟)抛掷一枚质地均匀的硬币,观察哪个面朝上的试验.(2)抛掷一枚质地均匀的骰子的试验,观察出现点数的试验.问题1:用模拟试验的方法求某一随机事件的概率好不好?为什么?问题2:分别说出上述两试验的所有可能的实验结果是什么?每两个结果之间都有什么关系?二、通过类比引出概念问题研究一:基本事件及其特征教师引导:提出两个试验结果的的问题及发现它们的联系?学习方式:先小组讨论,然后全班交流明确概念:一次随机试验连同其可能发生的某一个结果称为基本事件.(elementary event)基本事件的特点:(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和.练习(多媒体演示):(1)在掷骰子的试验中,事件“出现偶数点”是哪些基本事件的和事件?(2)从字母a,b,c,d 中任意选出两个不同字母的试验中,有哪些基本事件?(3)先后抛掷两枚均匀的硬币的试验中,有哪些基本事件?.(4)两人在玩“剪子、包袱、锤”这个游戏时,有哪些基本事件?教师引导:在上述4个练习中,从基本事件这一角度去探究发现它们共同的特点.选择的可能性大,还是他掌握了一定的知识的可能性大?(2)在标准化的考试中既有单选题又有不定项选择题,不定项选择题从A、B、C、D 四个选项中选出所有正确答案,同学们可能有一种感觉,如果不知道正确答案,多选题更难猜对,这是为什么?注:1、让学生用枚举法列出基本事件,明确解决问题的关键.2、培养学生解决实际问题的能力,把概率思想运用于生活,解释有关现象.例3.同时掷两个骰子,计算:(1)一共有多少种不同的结果?(2)其中向上的点数之和是5的结果有多少种?(3)向上的点数之和是5的概率是多少?错解:(1)所有结果共有21种,如下所示:(1,1)(2,1)(2,2)(3,1)(3,2)(3,3)(4,1)(4,2)(4,3)(4,4)(5,1)(5,2)(5,3)(5,4)(5,5)(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)(2)其中向上的点数之和是5的结果有2种.(3)向上的点数之和是5的概率是2/21思考:错在什么地方?正确解答:(1)掷一个骰子的结果有6种,我们把两个骰子标上记号1,2以便区分,由于1号骰子的结果都可以与2号骰子的任意一个结果配对,我们用一个“有序实数对”来表示组成同时掷两个骰子的一个结果(如表),其中第一个数表示1号骰子的结果,第二个数表示2号骰子的结果.(可由列表法得到)2号1号1234561(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)2(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)3(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)4(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)5(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)6(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)由表中可知同时掷两个骰子的结果共有36种.(2)在上面的结果中,向上的点数之和为5的结果有4种,分别为:(1,4),(2,3),(3,2),(4,1)(3)由于所有36种结果是等可能的,其中向上点数之和为5的结果(记为事件A)有4种,因此,由古典概型的概率计算公式可得91364)(===数试验包含的基本事件总数所包含的基本事件的个A A p解后:我们通过对错题的研究,培养学生观察、对比的能力,理解公式使用的两个前提,突出本节课的教学重点.教学中学生的分析讨论体现了学生的主体地位,逐渐养成自主探究的能力.掌握枚举法,培养学生运用数形结合的思想解决问题的能力,突破本节课的教学难点.五、循序渐进知识延伸探究:下面两例试验是不是古典概型(多媒体演示)1、向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的,你认为这是古典概型吗?为什么?答:不是古典概型,因为试验的所有可能结果是圆面内所有的点,试验的所有可能结果数是无限的,虽然每一个试验结果出现的“可能性相同”,但这个试验不满足古典概型的第一个条件.2、如图,某同学随机地向一靶心进行射击,这一试验的结果只有有限个:命中10环、命中9环……命中5环和不中环.你认为这是古典概型吗?为什么?答:不是古典概型,因为试验的所有可能结果只有7个,而命中10环、命中9环……命中5环和不中环的出现不是等可能的,即不满足古典概型的第二个条件.通过对问题的探究,拓展学生的思维空间,进一步正确理解古典概型概念中的“有限等可能”这一教学重点,讨论也使本节课将达到学生思维的高潮.六、反思小结,培养能力1、求事件A的概率可以不通过大量的重复试验,而只需对一次试验中的可能出现的结果进行分析计算即可.2、事件A概率计算,关键在于根据“有限等可能”来判断是否为古典概型.如果是,用枚举法或列表法来求出基本事件总数n,事件A包含的基本事件个数m.应特别注意:严防遗漏,绝不重复.3、解题步骤(1)符号化(2)理论分析(3)求解作答七、课后作业,自主学习1、阅读本节教材内容习题§3.21,2,32、书面作业:教材P1393、弹性作业:口袋里有2个白球和2个黑球,这4个球除颜色外完全相同,4个人按顺序依次从中摸出一球,试计算第二个人摸到白球的概率?。

高中数学人教A版必修3《3.2.1古典概型》教案1

高中数学人教A版必修3《3.2.1古典概型》教案1

必修三3.2.1 古典概型一、【学习目标】1、理解基本事件的定义及其特点;2、理解古典概型及其概率计算公式.【教学效果】:教学目标的给出有利于学生从整体上把握课堂学习进度.二、【自学内容和要求及自学过程】1、阅读教材125页内容,回答问题(基本事件的定义和特点)<1>基本事件的定义是什么?应该怎样理解?结论:定义:实验的结果是有限个,且每个事件都是随机事件的事件称为基本事件.理解:基本事件是试验中不能再分的最简单的随机事件,其它事件可以用它们表示.<2>基本事件的特点是什么?结论:特点:①任何两个基本事件都是互斥的.一次试验中,只可能出现一种结果,即产生一个基本事件,如掷骰子实验,一次实验只能出现一个点数,任何两个点数不可能在一次试验中同时发生,即两个基本事件不可能同时发生,因而两个基本事件是互斥的.②任何事件(除不可能事件)都可以表示成基本事件的和.如掷硬币的试验中,必然事件由基本事件“正面朝上”和“反面朝上”组成;在掷骰子实验中,随机事件“出现偶数点”是由基本事件“出现2点”、“出现4点”、“出现6点”共同组成.相对于基本事件,由两个以上基本事件组成的随机事件称为复杂事件.小道理帮你理解大道理一次试验中的“可能结果”实际是针对待定的观察角度而言的.例如,甲、乙、丙三名同学站成一排,计算甲同学站在中间的概率时,若从三个同学的站位来看,共有“甲乙丙”、“甲丙乙”、“乙甲丙”、“乙丙甲”、“丙甲乙”、“丙乙甲”六种结果,若仅从甲的站位看,则可能结果只有三种,即站“1号位”、“2号位”、“3号位”.练习一:教材125页例1:从字母a、b、c、d中任意取出两个不同字母的试验中,有哪些基本事件?练习二:连续掷3枚硬币,观察落地后这三门硬币出现正面还是反面.<1>写出这个实验的基本事件空间;答案: ={(正,正,正),(正,正,反),(正,反,正),(正,反,反),(反,正,正),(反,正,反),(反,反,正),(反,反,反)}.<2>求这个实验的基本事件的总数;答案:8个.<3>“恰有两枚正面朝上”这一事件包含哪几个基本事件?答案:3个,如下:((正,正,反),(正,反,正),(反,正,正).【教学效果】:理解基本事件及其特点.2、阅读教材126页及思考内容,回答问题(古典概型及其概率计算公式)<1>古典概型的定义是什么?结论:<1>①试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等.我们把具有这两个特点的概率模型称为古典概率模型,简称古典概型.<2>我们怎样理解古典概型?结论:一个实验是否为古典概型,在于这个实验是否具有古典概型的两个特征——有限性和等可能性.并不是所有的实验都是古典概型,如从规格直径为200mm±0.4mm的一批合格产品中任意抽出一根,测量其直径d,测量的值可能是从199.6mm到200.4之间的任何一个值,所有可能的结果有无限多个,这个实验不是古典概型.<3>在古典概型下,基本事件出现的概率是多少?需要注意什么问题?结论:①基本事件的概率:一般地,对于古典概型,如果实验的n个基本事件为A1,A2,…A n,由于基本事件是两两互斥的,所以有P(A1)+P(A2)+…P(A n)=P(A1∪A2∪…∪A n)=P(必然事件)=1.又因为每个基本事件发生的可能性相等,所以每个基本事件发生的概率为1/n②需要注意的是,在计算基本事件的概率时要明确基本事件与基本事件总数之间的关系,如掷骰子的试验中,P(“1点”)=P(“2点”)=…P(“6点”)=1/6.而如果将事件看成是偶数点或奇数点,则事件的总数就不再是6,而是2,P(偶数点)=P(奇数点)=1/2.<4>古典概型的概率公式是什么?结论:如果随机事件A包含的基本事件数是m,由互斥事件的概率加法公式可得:P(A)=1/n+1/n+…+1/n(m个)=m/n,所以古典概型中,P(A)=(A包含的基本事件的个数)/(基本事件的总数).<5>用集合的观点看古典概型的概率.结论:在一次试验中,等可能出现的n个结果组成一个集合I,这n个结果就是集合I的n个元素,各基本事件均对应于集合I含有的1个元素的子集,包含m个结果的事件A对应于I的含有m个元素的子集A.因此从集合的角度看,事件A的概率是子集A的元素个数(记作card(A))与集合I的元素个数(记作card(I))的比值.即P(A)= card(A)/ card(I)=m/n.(注意:这个式子只适合古典概型,古典概型中的等可能判断是很重要的.)练习三:P127页思考、探究;练习四:P127例2、3;练习五;P128思考、例4、5;练习六:P130练习.三、【作业】1、必做题:习题3.2A组1、2、3、4;2、选做题:总结本节内容,形成文字到笔记本上.【教学效果】:理解古典概型及其概率计算公式.四、【小结】本节主要讲解了基本事件及其特点、古典概型及其计算公式.五、【教学反思】一节课成功与否,不在于老师讲的多津津有味,而在于学生理解了多少.六、【课后小练】1、把一枚骰子抛6次,设正面出现的点数是x,<1>求x可能出现的取值情况.(1,2,3,4,5,6)<2>下列事件是由哪些基本事件组成:①x的取值为2的倍数,记为事件A;(2,4,6)②x的取值大于3,记为事件B(4,5,6);③x的取值不超过2,记为事件C;(1,2)④x的取值是质数,记为事件D.(2,3,5)<3>判断上述事件是否为古典概型,并求其概率(是,概率为:P(A)=0.5;P(B)=0.5;P(C)=1/3;P(D)=0.5.)2、判断下列实验是否是古典概型A、在适宜的条件下,种一粒种子,观察它是否发芽(不是,发芽与不发芽概率不同)B、口袋内有2个白球和2个黑球,这四个球除颜色外完全相同,从中任取一球(是,概率相同,基本事件是有限的)C、向一圆内随机地投一点,改点落在院圆内任意一点都是都可能的(不是,因为基本事件是无数个)D、射击运动员向一靶心进行射击,实验结果为命中10环、命中9环…命中0环(不是,基本事件的概率不等)3、袋中6个球,其中4个白球,2个红球,从袋中任意取出两球,求下列事件的概率:<1>A:取出的两球都是白球(2/5);<2>取出的两球一个是白球,一个是红球(8/15).4、一个骰子连续投2次,点数和为4的概率为多少(1/12).5、在五个数字1、2、3、4、5中,若随机的取出3个数字,则剩下两个数字都是奇数的概率是多少?(3/10)6、一次硬币连续掷2次,恰好出现一次正面的概率是多少?(0.5)7、从分别写有A、B、C、D、E的5张卡片中任意取出2张,这2张卡片上的字母恰好是按字母相邻顺序的概率是多少?(2/5)8、在40根纤维中,有12根的长度超过30mm,从中任取一根,取到长度超过30mm的纤维的概率是多少?(3/10).9、盒中有十个铁定,八个合格,2个不合格,从中任取一个恰为合格铁定的概率是多少?(4/5)10、在大小相同的5个球中,2个是红球,3个是白球,若从中任取2个,则所求2个球中至少有一个是红球的概率是(7/10).11、抛掷2颗2质地均匀的骰子,求点数和是8的概率(5/36).12、豆的高矮性状的遗传由其一对基因确定,其中决定高的基因记为D,决定矮的基因记为d,则子二代中高茎的概率是多少?(0.75).13、判断下列命题正确与否:①掷两枚硬币,基本事件有三个:两正,两反,一正一反(错,概率不相等,基本事件有4个)②某袋中装有大小均匀的三个红球,两个黑球、一个白球,任取一个球,那么每种颜色的球被摸到得可能性相同(错)③从-4、-3、-2、-1、0、1、2中任取一数,取到的数小于0与不小于0 的概率相同(错)④分别从3名男同学、4名女同学中各选一名代表,男、女同学当选的可能性相同(错)⑤5人抽签,甲先抽,乙后抽,那么乙与甲抽到某好号中奖签的可能性不同(错:甲概率为1/5,乙为:4/5×1/4=1/5,以此类推.)。

人教A版高中数学必修三古典概型教案新(1)

人教A版高中数学必修三古典概型教案新(1)

3.2.1<<古典概型>>教案(新人教A 必修3)一、教学目标:1、知识与技能:(1)正确理解古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等;(2)掌握古典概型的概率计算公式:P (A )=总的基本事件个数包含的基本事件个数A 2、过程与方法:(1)通过对现实生活中具体的概率问题的探究,感知应用数学解决问题的方法,体会数学知识与现实世界的联系,培养逻辑推理能力.3、情感态度与价值观:通过数学与探究活动,体会理论来源于实践并应用于实践的辩证唯物主义观点.二、重点与难点:正确理解掌握古典概型及其概率公式.三、学法与教学用具:与学生共同探讨,应用数学解决现实问题.四、教学设想:1、创设情境:(1)掷一枚质地均匀的硬币,结果只有2个,即“正面朝上”或“反面朝上”,它们都是随机事件。

(2)一个盒子中有10个完全相同的球,分别标以号码1,2,3,...,10,从中任取一球,只有10种不同的结果,即标号为1,2,3 (10)师生共同探讨:根据上述情况,你能发现它们有什么共同特点?2、基本概念:(1)基本事件、古典概率模型;(2)古典概型的概率计算公式:P (A )=总的基本事件个数包含的基本事件个数A . 3、例题分析:课本例题略例1 掷一颗骰子,观察掷出的点数,求掷得奇数点的概率。

分析:掷骰子有6个基本事件,具有有限性和等可能性,因此是古典概型。

解:这个试验的基本事件共有6个,即(出现1点)、(出现2点)……、(出现6点) 所以基本事件数n=6,事件A=(掷得奇数点)=(出现1点,出现3点,出现5点),其包含的基本事件数m=3所以,P (A )=n m =63=21=0.5 小结:利用古典概型的计算公式时应注意两点:(1)所有的基本事件必须是互斥的;(2)m 为事件A 所包含的基本事件数,求m 值时,要做到不重不漏。

例2 从含有两件正品a 1,a 2和一件次品b 1的三件产品中,每次任取一件,每次取出后不放回,连续取两次,求取出的两件产品中恰有一件次品的概率。

2020高中数学 3.2.1古典概型教学设计 新人教A版必修3

2020高中数学 3.2.1古典概型教学设计 新人教A版必修3

课题:3.2.1 古典概型一、教学内容分析本节课的内容选自《普通高中课程标准实验教科书数学A版》必修三第三章中的第3.2.1节古典概型,它安排在随机事件的概率之后,几何概型之前。

古典概型是一种特殊的数学模型,也是一种最基本的概率模型,它的引入避免了大量的重复试验,而且得到的是概率准确值,同时古典概型也是后面学习其它概率的基础。

在概率论中占有相当重要的地位,是学习概率必不可少的内容,同时有利于理解概率的概念,能解释生活中的一些问题,也有利于计算一些事件的概率,起到承前启后的作用,所以在概率论中占有相当重要的地位。

本节教材主要是学习古典概型,教学安排是2课时,本节是第一课时。

教学中让学生通过生活中的实例与数学模型理解基本事件的概念和古典概型的两个特征,通过具体的实例来推导古典概型下的概率公式,并通过当堂练习和典型例题加以引申,让学生初步学会把一些实际问题转化为古典概型问题。

二.学情分析教学进行时,在数学必修三学习了“算法案例”和“统计”之后,进入了第三章“概率”的学习.学生在学习了随机事件的概率,了解随机事件发生的不确定性和频率的稳定性的基础上,得到了用频率估计概率的思想和方法,并通过用概率知识澄清日常生活中遇到的一些错误认识,加深了对概率意义的正确理解,概率的基本性质、互斥事件的概率加法公式等知识的学习又为简化概率的计算提供依据.通过试验和观察的方法,虽然可以得到一些事件的概率估计:如抛硬币试验,但是这种通过大量重复试验,用频率估计概率的方法耗时多,并且得到的仅是概率的近似值,有没有更方便、更有效、更精确的计算概率的方法呢?古典概型的知识构建顺应的是学生内在的认知需要,符合学生的认知规律.三、教学设计思路1.设计理念概率教学的核心任务是让学生理解概率的意义和概率的思想,学会用概率知识解释和解决一些实际问题.古典概型作为一种特殊而重要的概率模型,一方面有着其独有的特征,必须准确理解严格把握;另一方面,与日常生活息息相关,应用非常广泛,充满着问题解决的情景.故本课采用探究式教学,重点是古典概型的概念教学,创设适当的问题情景,引发必要的认知冲突,通过对教材内容的再创造,再设计,构建一个反映数学内在发展逻辑、符合学生数学认知规律的概念体系,呈现概念的来龙去脉,揭示概念的内涵和外延,突出概念的核心,引导学生观察、思考、分析、归纳、尝试、体验,亲历概念的生成,从浅入深,逐步加深对古典概型本质的理解,掌握研究途径,领悟思想方法,用问题引导思维,以活动培养能力.2.设计重点概念的动态生成.灵活创设情景,主动“创造”知识,有效提升能力.3.难点突破古典概型的特征,实验结果的有限性和等可能性.四、教学目标:知识目标:正确理解基本事件的概念,准确求出基本事件及其个数;在数学建模的过程中,正确理解古典概型的两个特点;推导和掌握古典概型的概率计算公式,体现了化归的重要思想,会用列举法计算一些随机事件所含的基本事件数及其事件发生的概率,学会运用数形结合、分类讨论的思想解决概率的计算问题。

3.2.1古典概型(教学设计)

3.2.1古典概型(教学设计)

3.2.1古典概型(教学设计) 宁夏彭阳县第一中学 张有花一、 教材分析(一) 教材地位、作用《古典概型》是高中数学人教A 版必修3第三章概率3.2的内容,教学安排是2课时,本节是第一课时。

是在随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的。

古典概型是一种特殊的数学模型,也是一种最基本的概率模型,它的引入避免了大量的重复试验,而且得到的是概率精确值,同时古典概型也是后面学习条件概率的基础,它有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题,起到承前启后的作用,所以在概率论中占有相当重要的地位。

(二)教材处理:学情分析:学生基础一般,但师生之间,学生之间情感融洽,上课互动氛围良好。

他们具备一定的观察,类比,分析,归纳能力,但对知识的理解和方法的掌握在一些细节上不完备,反映在解题中就是思维不慎密,过程不完整。

教学内容组织和安排:根据上面的学情分析,学生思维不严密,意志力薄弱,故而整个教学环节总是创设恰当的问题情境,引导学生积极思考,培养他们的逻辑思维能力。

通过对问题情境的分析,引出基本事件的概念,古典概型中基本事件的特点,以及古典概型的计算公式。

对典型例题进行分析,以巩固概念,掌握解题方法。

二、三维目标知识与技能目标:(1)正确理解古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等;(2)理解古典概型的概率计算公式 :P (A )=总的基本事件个数包含的基本事件个数A(3)会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。

过程与方法目标:根据本节课的内容和学生的实际水平,通过模拟试验让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比各个试验,归纳总结出古典概型的概率计算公式,体现了化归的重要思想,掌握列举法,学会运用分类讨论的思想解决概率的计算问题。

情感态度与价值观目标:通过各种有趣的,贴近学生生活的素材,激发学生学习数学的热情和兴趣,培养学生勇于探索,善于发现的创新思想;通过参与探究活动,领会理论与实践对立统一的辨证思想;结合问题的现实意义,培养学生的合作精神.三、教学重点与难点1、重点:理解古典概型的概念及利用古典概型求解随机事件的概率。

高中数学 古典概型教学设计 新人教A版必修3

高中数学 古典概型教学设计 新人教A版必修3

古典概型二思考交流形成概念在试验一中随机事件只有两个,即“正面朝上〞和“反面朝上〞,并且他们都是互斥的,由于硬币质地是均匀的,因此出现两种随机事件的可能性相等,即它们的概率都是;在试验二中随机事件有六个,即“1点〞、“2点〞、“3点〞、“4点〞、“5点〞和“6点〞,并且他们都是互斥的,由于骰子质地是均匀的,因此出现六种随机事件的可能性相等,即它们的概率都是。

我们把上述试验中的随机事件称为根本领件,它是试验的每一个可能结果。

根本领件有如下的两个特点:〔1〕任何两个根本领件是互斥的;〔2〕任何事件〔除不可能事件〕都可以表示成根本领件的和。

特点〔2〕的理解:在试验一中,必然事件由根本领件“正面朝上〞和“反面朝上〞组成;在试验二中,随机事件“出现偶数点〞可以由根本领件“2点〞、“4点〞和“6点〞共同组成。

学生观察比照得出两个模拟试验的相同点和不同点,教师给出根本领件的概念,并对相关特点加以说明,加深新概念的理解。

让学生从问题的相同点和不同点中找出研究对象的对立统一面,这能培养学生分析问题的能力,同时也教会学生运用对立统一的辩证唯物主义观点来分析问题的一种方法。

教师的注解可以使学生更好的把握问题的关键。

项目内容师生活动理论依据或意图教二思例1 从字母中任意取出两个不同字母的试验中,有哪些根本领件?分析:为了解根本领件,我们可以按照字典排序的顺序,把所有可能的结果都列出来。

利用树状图可以将它们之间的关系列出来。

我们一般用列举法列出所有根本领件的结果,画树状图是列举法的根本方法,一般分布完成的结果(两步以上)可以用树状图进行先让学生尝试着列出所有的根本领件,教师再讲解用树状图列举问题的将数形结合和分类讨论的思想渗透到具体问题中来。

由于没有学习排列组合,因此用列举法列举根本领件的个数,不仅能让学过程分析考交流形成概念列举。

〔树状图〕解:所求的根本领件共有6个:,,,,,观察比照,发现两个模拟试验和例1的共同特点:试验一中所有可能出现的根本领件有“正面朝上〞和“反面朝上〞2个,并且每个根本领件出现的可能性相等,都是;试验二中所有可能出现的根本领件有“1点〞、“2点〞、“3点〞、“4点〞、“5点〞和“6点〞6个,并且每个根本领件出现的可能性相等,都是;例1中所有可能出现的根本领件有“A〞、“B〞、“C〞、“D〞、“E〞和“F〞6个,并且每个根本领件出现的可能性相等,都是;经概括总结后得到:〔1〕试验中所有可能出现的根本领件只有有限个;〔有限性〕〔2〕每个根本领件出现的可能性相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课 题:3.2.1 古典概型
教学目标:
1.根据本节课的内容和学生的实际水平,通过模拟试验让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比各个试验,正确理解古典概型的两大特点;树立从具体到抽象、从特殊到一般的辩证唯物主义观点,培养学生用随机的观点来理性地理解世界,使得学生在体会概率意义
2.鼓励学生通过观察、类比,提高发现问题、分析问题、解决问题的能力,归纳总结出古典概型的概率计算公式,掌握古典概型的概率计算公式;注意公式:P (A )=总的基本事件个数
包含的基本事件个数A 的使用条件——古典概型,体现了化归的重要思想.掌握列举法,学会运用分类讨论的思想解决概率的计算问题,增强学生数学思维情趣.
教学重点:
理解古典概型的概念及利用古典概型求解随机事件的概率.
教学难点:
如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数.
教学方法:
讲授法
课时安排:
1课时
教学过程:
一、导入新课:
(1)掷一枚质地均匀的硬币,结果只有2个,即“正面朝上”或“反面朝上”,它们都是随机事件.
(2)一个盒子中有10个完全相同的球,分别标以号码1,2,3,...,10,从中任取一球,只有10种不同的结果,即标号为1,2,3, (10)
思考讨论根据上述情况,你能发现它们有什么共同特点?
二、新课讲解:
1、提出问题:
试验一:抛掷一枚质地均匀的硬币,分别记录“正面朝上”和“反面朝上”的次数,要求每个数学小组至少完成20次(最好是整十数),最后由学科代表汇总;
试验二:抛掷一枚质地均匀的骰子,分别记录“1点”“2点”“3点”“4点”“5点”和“6点”的次数,要求每个数学小组至少完成60次(最好是整十数),最后由学科代表汇总.
(1)用模拟试验的方法来求某一随机事件的概率好不好?为什么?
(2)根据以前的学习,上述两个模拟试验的每个结果之间都有什么特点?
(3)什么是基本事件?基本事件具有什么特点?
(4)什么是古典概型?它具有什么特点?
(5)对于古典概型,应怎样计算事件的概率?
2、活动:学生展示模拟试验的操作方法和试验结果,并与同学交流活动感受,讨论可能出现的情况,师生共同汇总方法、结果和感受.
3、讨论结果:(1)用模拟试验的方法来求某一随机事件的概率不好,因为需要进行大量的试验,同时我们只是把随机事件出现的频率近似地认为随机事件的概率,存在一定的误差.
(2)上述试验一的两个结果是“正面朝上”和“反面朝上”,它们都是随机事件,出现的概率是相等的,都是0.5.上述试验二的6个结果是“1点”“2点”“3点”“4点”“5点”和“6点”,它们也都是随机事件,出现的概率是相等的,都是6
1. (3)根据以前的学习,上述试验一的两个结果“正面朝上”和“反面朝上”,它们都是随机事件;上述试验二的6个结果“1点”“2点”“3点”“4点”“5点”和“6点”,它们都是随机事件,像这类随机事件我们称为基本事件(elementary event );它是试验的每一个可能结果.
基本事件具有如下的两个特点:
①任何两个基本事件是互斥的;
②任何事件(除不可能事件)都可以表示成基本事件的和.
(4)在一个试验中如果
①试验中所有可能出现的基本事件只有有限个;(有限性)
②每个基本事件出现的可能性相等.(等可能性)
我们将具有这两个特点的概率模型称为古典概率模型(classical models of probability ),简称古典概型.
向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的,你认为这是古典概型吗?为什么?
因为试验的所有可能结果是圆面内所有的点,试验的所有可能结果数是无限的,虽然每一个试验结果出现的“可能性相同”,但这个试验不满足古典概型的第一个条件.
如下图,某同学随机地向一靶心进行射击,这一试验的结果只有有限个:命中10环、命中9环……命中5环和不中环.你认为这是古典概型吗?为什么?
不是古典概型,因为试验的所有可能结果只有7个,而命中10环、命中9环……命中5环和不中环的出现不是等可能的,即不满足古典概型的第二个条件.
(5)古典概型,随机事件的概率计算
对于实验一中,出现正面朝上的概率与反面朝上的概率相等,即
P (“正面朝上”)=P (“反面朝上”)
由概率的加法公式,得
P (“正面朝上”)+P (“反面朝上”)=P (必然事件)=1.
因此P (“正面朝上”)=P (“反面朝上”)=21. 即P (“出现正面朝上”)=基本事件的总数数所包含的基本事件的个出现正面朝上""21=. 试验二中,出现各个点的概率相等,即
P (“1点”)=P (“2点”)=P (“3点”)=P (“4点”)=P (“5点”)=P (“6点”).
反复利用概率的加法公式,我们有P (“1点”)+P (“2点”)+P (“3点”)+P (“4点”)+P (“5点”)+P (“6点”)=P (必然事件)=1.
所以P (“1点”)=P (“2点”)=P (“3点”)=P (“4点”)=P (“5点”)=P (“6点”)=6
1. 进一步地,利用加法公式还可以计算这个试验中任何一个事件的概率,例如,
P (“出现偶数点”)=P (“2点”)+P (“4点”)+P (“6点”)=61+61+61=63=21. 即P (“出现偶数点”)=基本事件的总数
数所包含的基本事件的个出现偶数点""63=. 因此根据上述两则模拟试验,可以概括总结出,古典概型计算任何事件的概率计算公式为: P (A )=基本事件的总数
数所包含的基本事件的个A . 在使用古典概型的概率公式时,应该注意:
①要判断该概率模型是不是古典概型;
②要找出随机事件A 包含的基本事件的个数和试验中基本事件的总数.
三、例题讲解:
例1 从字母a,b,c,d 中任意取出两个不同字母的试验中,有哪些基本事件?
活动:师生交流或讨论,我们可以按照字典排序的顺序,把所有可能的结果都列出来.
解:基本事件共有6个:
A={a,b},B={a,c},C={a,d},D={b,c},E={b,d},F={c,d}.
点评:一般用列举法列出所有基本事件的结果,画树状图是列举法的基本方法.
例2 :单选题是标准化考试中常用的题型,一般是从A,B,C,D 四个选项中选择一个正确答案.如果考生掌握了考查的内容,他可以选择唯一正确的答案.假设考生不会做,他随机地选择一个答案,问他答对的概率是多少?
解:(略)
点评:古典概型解题步骤:
(1)阅读题目,搜集信息;
(2)判断是否是等可能事件,并用字母表示事件;
(3)求出基本事件总数n 和事件A 所包含的结果数m ;
(4)用公式P(A)=n
m 求出概率并下结论.
变式训练
1.抛两枚均匀硬币,求出现两个正面的概率.
2.一次投掷两颗骰子,求出现的点数之和为奇数的概率.
例3同时掷两个骰子,计算:
(1)一共有多少种不同的结果?
(2)其中向上的点数之和是5的结果有多少种?
(3)向上的点数之和是5的概率是多少?
解:(略)
例4:假设储蓄卡的密码由4个数字组成,每个数字可以是0,1,2,…,9十个数字中的任意一个.假设一个人完全忘记了自己的储蓄卡密码,问他到自动取款机上随机试一次密码就能取到钱的概率是多少?
解:(略)
例5 :某种饮料每箱装6听,如果其中有2听不合格,问质检人员从中随机抽出2听,检测出不合格产品的概率有多大?
解:(略)
四、课堂练习:
教材第130页练习:1、2、3
五、课堂小结:
1.古典概型我们将具有
(1)试验中所有可能出现的基本事件只有有限个;(有限性)
(2)每个基本事件出现的可能性相等.(等可能性)
这样两个特点的概率模型称为古典概率概型,简称古典概型.
2.古典概型计算任何事件的概率计算公式
P(A)=
基本事件的总数数
所包含的基本事件的个
A
.
3.求某个随机事件A包含的基本事件的个数和实验中基本事件的总数的常用方法是列举法(画树状图和列表),应做到不重不漏.
六、课后作业
习题3.2 A组1、2、3、4.
板书设计
3.2.1 古典概型
1.古典概型
2、P(A)=
基本事件的总数数
所包含的基本事件的个
A
.。

相关文档
最新文档