新课标高中数学必修1教案

合集下载

人教新课标版数学高一-高中数学人教版必修一1-2-2-3映射教案

人教新课标版数学高一-高中数学人教版必修一1-2-2-3映射教案

1、2、2、3映射学案编写者:黄冈实验学校数学教师孟凡洲一、【学习目标】1、要求学生理解映射的对应是一种特殊的对应,元素之间的对应必须满足“一对一或多对一”;2、映射由三个部分组成:集合A,集合B及对应法则f,称为映射的三要素;3、会利用映射的定义解决一些简单的问题.二、【自学内容和要求及自学过程】阅读材料,自学教材22页内容,回答问题(映射)材料:给出以下对应关系如右:<1>这三个对应关系有什么共同特点?<2>像材料中的对应我们称为映射,请你结合教材给出映射的定义;映射定义中的“都有唯一”是什么意思?函数与映射有什么关系?<3>你能举出几个生活中映射的例子吗?结论:<1>①都有三部分组成:A、B、f;②集合A、B均为非空集合;③集合A中的元素在集合B中都有唯一的元素与之对应;<2>一般地,设A、B是两个的集合,如果按某一个确定的,使对于集合A中的,在集合B中都有的y与之对应,那么就称对应为从集合A到集合B的一个映射.记作“”;“都有唯一”包含两层意思:一是,二是,也就是说有且只有一个的意思,即是或;函数是特殊的映射,映射是函数的推广.三、【练习与巩固】1、自学教材第22页例7,然后完成练习一练习一:<1>你能理解例7中的解题思路吗?试述之;<2>图(1),(2),(3),(4)用箭头所标明的A中元素与B中元素的对应法则,是不是映射?2、根据今天所学知识,然后完成练习二练习二:设f:A→B是A到B的映射,其中A→B={(x,y)|x,y∈R},f:(x,y)→(x-y,x+y),求:(1)A中元素(-1,2)在B中对应的元素;(2)在A中什么元素与B中元素(-1,2)对应?四、【课堂作业】1、必做题:教材第23页练习4;2、选做题:教材第24页习题1.2A组第10题.1、2、2、3映射学案编写者:黄冈实验学校数学教师孟凡洲一、【学习目标】1、要求学生理解映射的对应是一种特殊的对应,元素之间的对应必须满足“一对一或多对一”;2、映射由三个部分组成:集合A,集合B及对应法则f,称为映射的三要素;3、会利用映射的定义解决一些简单的问题.【教学效果】:教学目标的出示,有利于学生明确本节课的任务,从而能激发学生学习的兴趣.二、【自学内容和要求及自学过程】阅读材料,自学教材22页内容,回答问题(映射)材料:给出以下对应关系如右:<1>这三个对应关系有什么共同特点?<2>像材料中的对应我们称为映射,请你结合教材给出映射的定义;映射定义中的“都有唯一”是什么意思?函数与映射有什么关系?<3>你能举出几个生活中映射的例子吗?结论:<1>①都有三部分组成:A、B、f;②集合A、B均为非空集合;③集合A中的元素在集合B中都有唯一的元素与之对应;<2>一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射.记作“f:A→B”;“都有唯一”包含两层意思:一是必有一个,二是只有一个,也就是说有且只有一个的意思,即是一对一或多对一;函数是特殊的映射,映射是函数的推广.【教学效果】:通过举例学习,学生能分辨出哪一些是映射,哪一些不是映射,达到了教学目标.需要注意的是,讲解的时候举反例是必要的.三、【练习与巩固】1、自学教材第22页例7,然后完成练习一练习一:<1>你能理解例7中的解题思路吗?试述之;<2>图(1),(2),(3),(4)用箭头所标明的A中元素与B中元素的对应法则,是不是映射?2、根据今天所学知识,然后完成练习二练习二:设f:A→B是A到B的映射,其中A→B={(x,y)|x,y∈R},f:(x,y)→(x-y,x+y),求:(1)A中元素(-1,2)在B中对应的元素;(2)在A中什么元素与B中元素(-1,2)对应?【教学效果】:学生们都能顺利的完成练习一,练习二需老师讲解.四、【课堂作业】1、必做题:教材第23页练习4;2、选做题:教材第24页习题1.2A组第10题.五、【小结】这节课主要学习的是映射.映射在高考中的要求不是很高,了解定义,理解函数是特殊的映射即可.学习完之后要达到能分辨出哪些是映射,哪些不是映射.哪些是函数,哪些不是函数.六、【反思】这节课符号比较多,学生学习起来比较艰涩,课前要引导学生做好预习.。

最新版-高中数学必修一教案【优秀4篇】

最新版-高中数学必修一教案【优秀4篇】

高中数学必修一教案【优秀4篇】高中数学必修一教案篇一重点难点教学:1.正确理解映射的概念;2.函数相等的两个条件;3.求函数的定义域和值域。

一。

教学过程:1. 使学生熟练掌握函数的概念和映射的定义;2. 使学生能够根据已知条件求出函数的定义域和值域;3. 使学生掌握函数的三种表示方法。

二。

教学内容:1.函数的定义设A、B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数()fx和它对应,那么称:fAB为从集合A到集合B 的一个函数(function),记作:(),yfxxA其中,x叫自变量,x的取值范围A叫作定义域(domain),与x的值对应的y值叫函数值,函数值的集合{()|}fxxA叫值域(range)。

显然,值域是集合B的子集。

注意:① “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.2.构成函数的三要素定义域、对应关系和值域。

3.映射的定义设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。

4. 区间及写法:设a、b是两个实数,且a(1) 满足不等式axb的实数x的集合叫做闭区间,表示为[a,b];(2) 满足不等式axb的实数x的集合叫做开区间,表示为(a,b);5.函数的三种表示方法①解析法②列表法③图像法高中数学必修一教案篇二一、教学目标1、知识与技能(1)理解对数的概念,了解对数与指数的关系;(2)能够进行指数式与对数式的互化;(3)理解对数的性质,掌握以上知识并培养类比、分析、归纳能力;2、过程与方法3、情感态度与价值观(1)通过本节的学习体验数学的严谨性,培养细心观察、认真分析分析、严谨认真的良好思维习惯和不断探求新知识的精神;(2)感知从具体到抽象、从特殊到一般、从感性到理性认知过程;(3)体验数学的科学功能、符号功能和工具功能,培养直觉观察、探索发现、科学论证的良好的数学思维品质、二、教学重点、难点教学重点(1)对数的定义;(2)指数式与对数式的互化;教学难点(1)对数概念的理解;(2)对数性质的理解;三、教学过程:四、归纳总结:1、对数的概念一般地,如果函数ax=n(a0且a≠1)那么数x叫做以a为底n的对数,记作x=logan,其中a叫做对数的底数,n叫做真数。

高中数学必修一教案

高中数学必修一教案

高中数学必修一教案在一年的数学教育工作中,作为高中数学老师的你了解怎样写高中数学必修一教案吗?来写一篇高中数学必修一教案吧,它会对你的数学教学工作起到不菲的帮助。

下面是为大家收集有关于高中数学必修一教案,希望你喜欢。

高中数学必修一教案1教学目标1.了解函数的单调性和奇偶性的概念,掌握有关证明和判断的基本方法.(1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念.(2)能从数和形两个角度认识单调性和奇偶性.(3)能借助图象判断一些函数的单调性,能利用定义证明某些函数的单调性;能用定义判断某些函数的奇偶性,并能利用奇偶性简化一些函数图象的绘制过程.2.通过函数单调性的证明,提高学生在代数方面的推理论证能力;通过函数奇偶性概念的形成过程,培育学生的观察,归纳,抽象的能力,同时渗透数形结合,从特殊到一般的数学思想.3.通过对函数单调性和奇偶性的理论讨论,增学生对数学美的体验,培育乐于求索的精神,形成科学,严谨的讨论态度.教学建议一、知识结构(1)函数单调性的概念。

包括增函数、减函数的定义,单调区间的概念函数的单调性的判定方法,函数单调性与函数图像的关系.(2)函数奇偶性的概念。

包括奇函数、偶函数的定义,函数奇偶性的判定方法,奇函数、偶函数的图像.二、重点难点分析(1)本节教学的重点是函数的单调性,奇偶性概念的形成与认识.教学的难点是领悟函数单调性,奇偶性的本质,掌握单调性的证明.(2)函数的单调性这一性质学生在初中所学函数中曾经了解过,但只是从图象上直观观察图象的上升与下降,而现在要求把它上升到理论的高度,用准确的数学语言去刻画它.这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比较困难的,因此要在概念的形成上重点下功夫.单调性的证明是学生在函数内容中首次接触到的代数论证内容,学生在代数论证推理方面的能力是比较弱的,许多学生甚至还搞不清什么是代数证明,也没有意识到它的重要性,所以单调性的证明自然就是教学中的难点.三、教法建议(1)函数单调性概念引入时,可以先从学生熟悉的一次函数,,二次函数.反比例函数图象出发,回忆图象的增减性,从这点感性认识出发,通过问题逐步向抽象的定义靠拢.如可以设计这样的问题:图象怎么就升上去了?可以从点的坐标的角度,也可以从自变量与函数值的关系的角度来解释,引导学生发现自变量与函数值的的变化规律,再把这种规律用数学语言表示出来.在这个过程中对一些关键的词语(某个区间,任意,都有)的理解与必要性的认识就可以融入其中,将概念的形成与认识结合起来.(2)函数单调性证明的步骤是严格规定的,要让学生根据步骤去做,就必须让他们明确每一步的必要性,每一步的目的,特别是在第三步变形时,让学生明确变换的目标,到什么程度就可以断号,在例题的选择上应有不同的变换目标为选题的标准,以便帮助学生总结规律.函数的奇偶性概念引入时,可设计一个课件,以的图象为例,让自变量互为相反数,观察对应的函数值的变化规律,先从具体数值开始,逐渐让在数轴上动起来,观察任意性,再让学生把看到的用数学表达式写出来.经历了这样的过程,再得到等式时,就比较容易体会它代表的是无数多个等式,是个恒等式.关于定义域关于原点对称的问题,也可借助课件将函数图象进行多次改动,帮助学生发现定义域的对称性,同时还可以借助图象(如)说明定义域关于原点对称只是函数具备奇偶性的必要条件而不是充分条件.高中数学必修一教案2教学目标:掌握二倍角的正弦、余弦、正切公式,能用上述公式进行简单的求值、化简、恒等证明;引导学生发现数学规律,让学生体会化归这一基本数学思想在发现中所起的作用,培育学生的创新意识.教学重点:二倍角公式的推导及简单应用.教学难点:理解倍角公式,用单角的三角函数表示二倍角的三角函数.教学过程:Ⅰ.课题导入前一段时间,我们共同探讨了和角公式、差角公式,今天,我们继续探讨一下二倍角公式.我们知道,和角公式与差角公式是可以互相化归的.当两角相等时,两角之和便为此角的二倍,那么是否可把和角公式化归为二倍角公式呢?请同学们试推.先回忆和角公式sin(α+β)=sinαcosβ+cosαsinβ当α=β时,sin(α+β)=sin2α=2sinαcosα即:sin2α=2sinαcosα(S2α)cos(α+β)=cosαcosβ-sinαsinβ当α=β时cos(α+β)=cos2α=cos2α-sin2α即:cos2α=cos2α-sin2α(C2α)tan(α+β)=tanα+tanβ1-tanαtanβ当α=β时,tan2α=2tanα1-tan2αⅠ.讲授新课同学们推证所得结果是否与此结果相同呢?其中由于sin2α+cos2α=1,公式C2α还可以变形为:cos2α=2cos2α-1或:cos2α=1-2sin2α同学们是否也考虑到了呢?另外运用这些公式要注意如下几点:(1)公式S2α、C2α中,角α可以是任意角;但公式T2α只有当α≠π2 +kπ及α≠π4 +kπ2 (kⅠZ)时才成立,否则不成立(因为当α=π2 +kπ,kⅠZ 时,tanα的值不存在;当α=π4 +kπ2 ,kⅠZ时tan2α的值不存在).当α=π2 +kπ(kⅠZ)时,虽然tanα的值不存在,但tan2α的值是存在的,这时求tan2α的值可利用诱导公式:即:tan2α=tan2(π2 +kπ)=tan(π+2kπ)=tanπ=0(2)在一般情况下,sin2α≠2sinα例如:sinπ3 =32≠2sinπ6 =1;只有在一些特殊的情况下,才有可能成立[当且仅当α=kπ(kⅠZ)时,sin2α=2sinα=0成立].同样在一般情况下cos2α≠2cosαtan2α≠2tanα(3)倍角公式不仅可运用于将2α作为α的2倍的情况,还可以运用于诸如将4α作为2α的2倍,将α作为α2 的2倍,将α2 作为α4 的2倍,将3α作为3α2 的2倍等等.高中数学必修一教案3一、教材的地位和作用本节课是“空间几何体的三视图和直观图”的第一课时,主要内容是投影和三视图,这部分知识是立体几何的基础之一,一方面它是对上一节空间几何体结构特征的再一次强化,画出空间几何体的三视图并能将三视图还原为直观图,是建立空间概念的基础和训练学生几何直观能力的有效手段。

高中数学必修一(全套教案+配套练习+高考真题)

高中数学必修一(全套教案+配套练习+高考真题)

目录第一讲集合概念及其基本运算第二讲函数的概念及解析式第三讲函数的定义域及值域第四讲函数的值域第五讲函数的单调性第六讲函数的奇偶性与周期性第七讲函数的最值第八讲指数运算及指数函数第九讲对数运算及对数函数第十讲幂函数及函数性质综合运用第一讲集合的概念及其基本运算【考纲解读】1.了解集合的含义、元素与集合的属于关系.2.能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.3.理解集合之间包含与相等的含义,能识别给定集合的子集.4.在具体情境中,了解全集与空集的含义.5.理解两个集合并集与交集的含义,会求两个简单集合的并集与交集.6.理解在给定集合中一个子集的补集的含义,会求给定子集的补集.7.能使用韦恩(Venn)图表达集合的关系及运算.高考对此部分内容考查的热点与命题趋势为:1.集合的概念与运算是历年来必考内容之一,题型主要以选择填空题为主,单纯的集合问题以解答题的形式出现的机率不大,多数与函数的定义域、值域、不等式的解法相联系,解题时要注意利用韦恩图、数轴、函数图象相结合.另外,集合新定义信息题是近几年命题的热点,注意此种类型.2.高考将会继续保持稳定,坚持考查集合运算,命题形式会更加灵活、新颖.【重点知识梳理】一、集合有关概念1、集合的含义:2、集合中元素的三个特性:3、元素与集合之间只能用“”或“”符号连接。

4、集合的表示:常见的有四种方法。

5、常见的特殊集合:6、集合的分类:二、集合间的基本关系1、子集2、真子集3、空集4、集合之间只能用“”“”“=”等连接,不能用“”或“”符号连接。

三、集合的运算1.交集的定义:2、并集的定义:3、交集与并集的性质:A∩A = A A∩Φ= Φ A∩B = B∩A,A∪A = A A∪Φ= A A∪B = B∪A.4、全集与补集(1)全集:(2)补集:知识点一 元素与集合的关系1.已知A ={a +2,(a +1)2,a 2+3a +3},若1∈A,则实数a 构成的集合B 的元素个数是( )A .0B .1C .2D .3知识点二 集合与集合的关系1.已知集合A ={x|x 2-3x +2=0,x∈R },B ={x|0<x<5,x∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( )A .1B .2C .3D .4【变式探究】 (1)数集X ={x|x =(2n +1)π,n∈Z }与Y ={y|y =(4k±1)π,k∈Z }之间的关系是( )A .X ⊂YB .Y ⊂XC .X =YD .X≠Y(2)设U ={1,2,3,4},M ={x∈U|x 2-5x +p =0},若∁U M ={2,3},则实数p 的值是( )A .-4B .4C .-6D .6知识点三 集合的运算1.若全集U ={x∈R |x 2≤4},则集合A ={x∈R ||x +1|≤1}的补集A C U 为( ) A .{x∈R |0<x<2} B .{x∈R |0≤x<2}C.{x∈R |0<x≤2} D.{x∈R |0≤x≤2}2.已知全集U ={0,1,2,3,4,5,6,7,8,9},集合A ={0,1,3,5,8},集合B ={2,4,5,6,8},则(A C U )∩(B C U )=( )A .{5,8}B .{7,9}C .{0,1,3}D .{2,4,6}【变式探究1】若全集U ={a ,b ,c ,d ,e ,f},A ={b ,d},B ={a ,c},则集合{e ,f}=( )A .A∪B B.A∩BC .(A C U )∩(B C U )D .(A C U )∪(B C U )典型例题:例1:满足M ⊆{a 1,a 2,a 3,a 4},且M∩{a 1 ,a 2, a 3}={a 1,a 2}的集合M 的个数是 ( )A.1B.2C.3D.4例2:设A={x|1<x<2},B={x|x >a},若A B ,则a 的取值范围是______变式练习:1.设集合M ={x |-1≤x <2},N ={x |x -k ≤0},若M ∩N ≠,则k 的取值范围是2.已知全集}{R x x I ∈=,集合}31{≥≤=x x x A 或,集合}1{+<<=k x k x B ,且=B A C I I )(,则实数k 的取值范围是3.若集合},012{2R x x ax x M ∈=++=只有一个元素,则实数的范围是4.集合A = {x | –1<x <1},B = {x | x <a },(1)若A ∩B =,求a 的取值范围;(2)若A ∪B = {x | x <1},求a 的取值范围. 例3:设A = {x | x 2 – 8x + 15 = 0},B = {x | ax – 1 = 0},若,求实数a 组成的集合,并写出它的所有非空真子集.例4:定义集合A B 、的一种运算:121*{|A B x x x x x A ==+∈,, 2}x B ∈,若{123}A =,,,{12}B =,,则B A *中所有元素的和为 .例5:设A 为实数集,满足,, (1)若,求A;(2)A 能否为单元素集?若能把它求出来,若不能,说明理由; (3)求证:若,则基础练习:1. 由实数x,-x,|x |,所组成的集合,最多含( )(A )2个元素 (B )3个元素 (C )4个元素 (D )5个元素2. 下列结论中,不正确的是( )A.若a ∈N ,则-a NB.若a ∈Z ,则a 2∈ZC.若a ∈Q ,则|a |∈QD.若a ∈R ,则3. 已知A ,B 均为集合U={1,3,5,7,9}子集,且A∩B={3},C U B∩A={9},则A=( )∅B A ⊆a A ∈⇒11A a∈-1A ∉2A ∈a A ∈11A a -∈332,x x -∉R a ∈3(A ){1,3} (B){3,7,9} (C){3,5,9} (D){3,9}4. 设集合A={1, 3, a}, B={1, a 2-a+1},若B ⊆A, 则A ∪B=__________5. 满足的集合A 的个数是_____个。

人教A版新课标高中数学必修一教案 《基本不等式》

人教A版新课标高中数学必修一教案 《基本不等式》

《2.2基本不等式2a b +≤》 教材分析:“基本不等式” 是必修1的重点内容,它是在系统学习了不等关系和不等式性质,掌握了不等式性质的基础上对不等式的进一步研究,同时也是为了以后学习选修教材中关于不等式及其证明方法等内容作铺垫,起着承上启下的作用.利用基本不等式求最值在实际问题中应用广泛.同时本节知识又渗透了数形结合、化归等重要数学思想,有利于培养学生良好的思维品质.教学目标【知识与技能】1.学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等;2.2a b+≤;会应用此不等式求某些函数的最值;能够解决一些简单的实际问题 【过程与方法】通过实例探究抽象基本不等式; 【情感、态度与价值观】通过本节的学习,体会数学来源于生活,提高学习数学的兴趣.教学重难点【教学重点】2a b+的证明过程; 【教学难点】 1.2a b+≤等号成立条件; 2.2a b+≤求最大值、最小值.教学过程1.课题导入前面我们利用完全平方公式得出了一类重要不等式:一般地,∀a,b ∈R ,有a 2+b 2≥2ab ,当且仅当a =b 时,等号成立特别地,如果a >0,b >0,我们用√a ,√b 分别代替上式中的a ,b ,可得√ab ≤a+b 2①当且仅当a =b 时,等号成立.通常称不等式(1)为基本不等式(basic inequality ).其中,a+b 2叫做正数a ,b 的算术平均数,√ab 叫做正数a ,b 的几何平均数.基本不等式表明:两个正数的算术平均数不小于它们的几何平均数.思考: 上面通过考察a 2+b 2=2ab 的特殊情形获得了基本不等式,能否直接利用不等式的性质推导出基本不等式呢?下面我们来分析一下.2.讲授新课1)2a b+≤特别的,如果a >0,b >0,我们用分别代替a 、b ,可得a b +≥,(a>0,b>0)2a b+≤2)2a b+≤ 用分析法证明:要证2a b+≥ (1) 只要证 a +b ≥ (2) 要证(2),只要证 a +b - ≥0 (3)要证(3),只要证 ( - )2≥0 (4) 显然,(4)是成立的.当且仅当a =b 时,(4)中的等号成立.探究1: 在右图中,AB 是圆的直径,点C 是AB 上的一点,AC =a ,BC =b .过点C 作垂直于AB 的弦DE ,连接AD 、BD .你能利用这个图形得出基本不等式2a bab +≤的几何解释吗? 易证Rt △A CD ∽Rt △D CB ,那么CD 2=CA ·CB 即CD =ab .这个圆的半径为2ba +,显然,它大于或等于CD ,即ab ba ≥+2,其中当且仅当点C 与圆心重合,即a =b 时,等号成立. 因此:基本不等式2a bab +≤几何意义是“半径不小于半弦” 评述:1.如果把2ba +看作是正数a 、b 的等差中项,ab 看作是正数a 、b 的等比中项,那么该定理可以叙述为:两个正数的等差中项不小于它们的等比中项.2. 在数学中,我们称2ba +为a 、b 的算术平均数,称ab 为a 、b 的几何平均数.本节定理还可叙述为:两个正数的算术平均数不小于它们的几何平均数.【设计意图】老师引导,学生自主探究得到结论并证明,锻炼了学生的自主研究能力和研究问题的逻辑分析能力.例1 已知x >0,求x +1x 的最小值.分析:求x +1x 的最小值,就是要求一个y 0(=x 0+1x ),使∀x >0,都有x +1x ≥y .观察x +1x ,发现x ∙1x =1.联系基本不等式,可以利用正数x 和1x 的算术平均数与几何平均数的关系得到y 0=2. 解:因为x >0,所以x +1x ≥2√x ∙1x =2当且仅当x = 1x,即x 2=1,x =1时,等号成立,因此所求的最小值为2.在本题的解答中,我们不仅明确了∀x >0,有x +1x ≥2,而且给出了“当且仅当x =1x ,即=1,x =1时,等号成立”,这是为了说明2是x +1x(x >0)的一个取值,想一想,当y 0<2时,x +1x=y 0成立吗?这时能说y .是x +1x (x >0)的最小值吗?例2 已知x ,y 都是正数,求证:(1)如果积xy 等于定值P ,那么当x =y 时,和x +y 有最小值2√P ; (2)如果和x +y 等于定值S ,那么当x =y 时,积xy 有最大值14S 2.证明:因为x ,y 都是正数,所以x+y 2≥√xy .(1)当积xy 等于定值P 时,x+y 2≥√P ,所以x +y ≥2√P ,当且仅当x =y 时,上式等号成立.于是,当x =y 时,和x +y 有最小值2√P . (2)当和x +y 等于定值S 时,√xy ≤S2,所以xy ≤14S 2,当且仅当x =y 时,上式等号成立.于是,当x =y 时,积xy 有最大值14S 2.例3 (1)用篱笆围一个面积为100m 2的矩形菜园,当这个矩形的边长为多少时,所用篱笆最短?最短篱笆的长度是多少?(2)用一段长为36m 的篱笆围成一个矩形菜园,当这个矩形的边长为多少时,菜园的面积最大?最大面积是多少?分析:(1)矩形菜园的面积是矩形的两邻边之积,于是问题转化为:矩形的邻边之积为定值,边长多大时周长最短.(2)矩形菜园的周长是矩形两邻边之和的2倍,于是问题转化为:矩形的邻边之和为定值,边长多大时面积最大.解:设矩形菜园的相邻两条边的长分别为xm,ym,篱笆的长度为2(x+y)m.(1)由已知得xy=100.由x+y2≥√xy,可得x+y≥2√xy=20,所以2(x+y)≥40,当且仅当x=y=10时,上式等号成立因此,当这个矩形菜园是边长为10m的正方形时,所用篱笆最短,最短篱笆的长度为40m.(2)由已知得2(x+y)=36,矩形菜园的面积为xy m2.由√xy≤x+y2=182=9,可得xy≤81,当且仅当x=y=9时,上式等号成立.因此,当这个矩形菜园是边长为9m的正方形时,菜园的面积最大,最大面积是81m2. 例4某工厂要建造一个长方体形无盖贮水池,其容积为4800m2,深为3m.如果池底每平方米的造价为150元,池壁每平方米的造价为120元,那么怎样设计水池能使总造价最低?最低总造价是多少?分析:贮水池呈长方体形,它的高是3m,池底的边长没有确定.如果池底的边长确定了,那么水池的总造价也就确定了.因此,应当考察池底的边长取什么值时,水池的总造价最低.解:设贮水池池底的相邻两条边的边长分别为xm ,ym ,水池的总造价为2元.根据题意,有z =150×48003+120(2×3x +2×3y )=240000+720(x +y ).由容积为4800m 3,可得3xy =4800,因此xy =1600.所以z ≥240000+720×2√xy ,当x =y =40时,上式等号成立,此时z =297600.所以,将贮水池的池底设计成边长为40m 的正方形时总造价最低,最低总造价是297600元. 【设计意图】例题讲解,学以致用. 3.随堂练习1.已知a 、b 、c 都是正数,求证:(a +b )(b +c )(c +a )≥8abc 分析:对于此类题目,选择定理:ab ba ≥+2(a >0,b >0)灵活变形,可求得结果. 解:∵a ,b ,c 都是正数 ∴a +b ≥2√ab >0 b +c ≥2√bc >0 c +a ≥2√ca >0∴(a +b )(b +c )(c +a )≥2√ab ·2√bc ·2√ca =8abc 即(a +b )(b +c )(c +a )≥8abc . 【设计意图】讲练结合,熟悉新知. 4.课时小结本节课,我们学习了重要不等式a 2+b 2≥2ab ;两正数a 、b 的算术平均数(a+b 2),几何平均数(√ab )及它们的关系(a+b 2≥√ab ).它们成立的条件不同,前者只要求a 、b 都是实数,而后者要求a 、b 都是正数.它们既是不等式变形的基本工具,又是求函数最值的重要工具(下一节我们将学习它们的应用).我们还可以用它们下面的等价变形来解决问题:ab ≤a2+b22,ab≤(a+b2)2.我们用两个正数的算术平均数与几何平均数的关系顺利解决了函数的一些最值问题.在用均值不等式求函数的最值,是值得重视的一种方法,但在具体求解时,应注意考查下列三个条件:(1)函数的解析式中,各项均为正数;(2)函数的解析式中,含变数的各项的和或积必须有一个为定值;(3)函数的解析式中,含变数的各项均相等,取得最值即用均值不等式求某些函数的最值时,应具备三个条件:一正二定三取等.教学反思:略。

高中数学新课程必修1教案设计函数的概念

高中数学新课程必修1教案设计函数的概念

高中数学新课程必修1教案设计——函数的概念大姚县实验中学董家金一、预习提纲阅读课本必修1,15页到18页的有关内容回答问题(一)什么是函数概念?(二)两个函数是同一函数应该满足那些条件?二、学习目标1、知识与技能:(1)正确理解函数的定义;了解构成函数的要素(2)会求函数的定义域和值域;掌握判定两个函数是否相等的方法;(3)、培养学生运用变化的观点来观察事物之间的关系。

2、过程与方法:.通过创设实际例子的情景,让学生接近现实生活,关注社会实际;培养学生的语言表达能力,团结协作精神3、情态与价值使学生感受到学习函数的必要性的重要性,建立学生函数模型化的思想与意识,激发学习的积极性。

三、学习重点与难点:重点:理解函数的模型化思想,用集合与对应的语言来刻画函数;难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;四、学习任务正确理解函数的定义;了解构成函数的要素;会求函数的定义域和值域;掌握判定两个函数是否相等的方法;五、学习过程(一)、问题情景1、初中所学函数是怎么定义,2、阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:(1)炮弹的射高与时间的变化关系问题;(2)南极臭氧空洞面积与时间的变化关系问题;(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题3、分析、归纳以上三个实例,它们有什么共同点。

4、引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;5、根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.(二)、知识储备1.函数的定义、定义域、值域:问题:分析、归纳以上三个实例,它们有什么共同特点?分组讨论以上三个实例的共同特点,由各小组派代表表达出来(共同特点:都牵涉到两个数集A 、B,都存在某种对应关系,使对于A 中的每一个数x,按照这种对应关系,在B 中都有唯一的y 与x 对应.)师生:共同归纳总结出函数的定义:设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x,在集合B 中都有唯一确定的数f (x)和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y=f (x),x ∈A.定义域:x 的取值范围A 叫做函数的定义域;值域:函数值的集合{}A x x f ∈)(叫做函数的值域.注意: ① f :A →B,方向性; ②关键词“任意一个x ”和“唯一确定的数f (x)2、构成函数的三要素是什么?定义域、对应关系和值域3、区间的概念①区间可以分成哪些类:开区间、闭区间、半开半闭区间;②无穷区间怎么写;③怎样区间在数轴上表示. 3、出示标杆题:标杆题:已知函数f (x ) =3+x +21+x (1)求函数的定义域;(2)求f (-3),f (32)的值; (3)当a >0时,求f (a ),f (a -1)的值.4、选用标杆题的依据1、新课标要求:通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。

新课标人教A版高中数学必修1教案完整版

新课标人教A版高中数学必修1教案完整版

第一章 集合与函数概念§1.1.1集合的含义与表示一. 教学目标:l.知识与技能(1)通过实例,了解集合的含义,体会元素与集合的属于关系;(2)知道常用数集及其专用记号;(3)了解集合中元素的确定性.互异性.无序性;(4)会用集合语言表示有关数学对象;(5)培养学生抽象概括的能力.2. 过程与方法(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.(2)让学生归纳整理本节所学知识.3. 情感.态度与价值观使学生感受到学习集合的必要性,增强学习的积极性.二. 教学重点.难点重点:集合的含义与表示方法.难点:表示法的恰当选择.三. 学法与教学用具1. 学法:学生通过阅读教材,自主学习.思考.交流.讨论和概括,从而更好地完成本节课的教学目标.2. 教学用具:投影仪.四. 教学思路(一)创设情景,揭示课题1.教师首先提出问题:在初中,我们已经接触过一些集合,你能举出一些集合的例子吗?引导学生回忆.举例和互相交流. 与此同时,教师对学生的活动给予评价.2.接着教师指出:那么,集合的含义是什么呢?这就是我们这一堂课所要学习的内容.(二)研探新知1.教师利用多媒体设备向学生投影出下面9个实例:(1)1—20以内的所有质数;(2)我国古代的四大发明;(3)所有的安理会常任理事国;(4)所有的正方形;(5)海南省在2004年9月之前建成的所有立交桥;(6)到一个角的两边距离相等的所有的点;(7)方程2560x x -+=的所有实数根;(8)不等式30x ->的所有解;(9)国兴中学2004年9月入学的高一学生的全体.2.教师组织学生分组讨论:这9个实例的共同特征是什么?3.每个小组选出——位同学发表本组的讨论结果,在此基础上,师生共同概括出9个实例的特征,并给出集合的含义.一般地,指定的某些对象的全体称为集合(简称为集).集合中的每个对象叫作这个集合的元素.4.教师指出:集合常用大写字母A ,B ,C ,D ,…表示,元素常用小写字母,,,a b c d …表示.(三)质疑答辩,排难解惑,发展思维1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难.使学生明确集合元素的三大特性,即:确定性.互异性和无序性.只要构成两个集合的元素是一样的,我们就称这两个集合相等.2.教师组织引导学生思考以下问题:判断以下元素的全体是否组成集合,并说明理由:(1)大于3小于11的偶数;(2)我国的小河流.让学生充分发表自己的建解.3. 让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由.教师对学生的学习活动给予及时的评价.4.教师提出问题,让学生思考(1)如果用A 表示高—(3)班全体学生组成的集合,用a 表示高一(3)班的一位同学,b 是高一(4)班的一位同学,那么,a b 与集合A 分别有什么关系?由此引导学生得出元素与集合的关系有两种:属于和不属于.如果a 是集合A 的元素,就说a 属于集合A ,记作a A ∈.如果a 不是集合A 的元素,就说a 不属于集合A ,记作a A ∉.(2)如果用A 表示“所有的安理会常任理事国”组成的集合,则中国.日本与集合A 的关系分别是什么?请用数学符号分别表示.(3)让学生完成教材第6页练习第1题.5.教师引导学生回忆数集扩充过程,然后阅读教材中的相交内容,写出常用数集的记号.并让学生完成习题1.1A 组第1题.6.教师引导学生阅读教材中的相关内容,并思考.讨论下列问题:(1)要表示一个集合共有几种方式?(2)试比较自然语言.列举法和描述法在表示集合时,各自有什么特点?适用的对象是什么?(3)如何根据问题选择适当的集合表示法?使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象。

高中数学必修1第一册第一章 教案示例 新课标 人教版

高中数学必修1第一册第一章 教案示例 新课标 人教版

函数的表示方法高中数学必修1第一册第一章 教案示例一教学目标:在实际情境中,会根据不同的需要选择恰当的方法表示函数教学重点:图像法、列表法、解析法表示函数教学过程:1、列表法:通过列出自变量与对应的函数值的表来表达函数关系的方法叫列表法2、图像法:如果图形F 是函数)(x f y =的图像,则图像上的任意点的坐标满足函数的关系式,反之满足函数关系的点都在图像上.这种由图形表示函数的方法叫做图像法.3、如果在函数)(x f y =)(A x ∈中,)(x f 是用代数式来表达的,这种方法叫做解析法4、与x 轴垂直的直线至多与函数的曲线有一个交点5、用计算机软件画出函数x x y 1+=,31)3(+++=x x y ,111-+-=x x y ,xx y 1+=的图像 420244202455-x 1x+x 3+()1x 3+()+x 1-()1x 1-()⎡⎢⎣⎤⎥⎦+x 1x +44-x6、讨论分别用a x -,a y -分别替换函数)(x f y =中的x ,y 以后函数的图像会发生哪些变化?7、讨论分别用x -,y -分别替换函数)(x f y =中的x ,y 以后函数的图像会发生哪些变化?8、讨论分别用ax ,by 分别替换函数)(x f y =中的x ,y 以后函数的图像会发生哪些变化?9、讨论分别用||x ,|)(|x f 分别替换函数)(x f y =中的x ,)(x f 以后函数的图像会发生哪些变化?10、试作出下列函数的图像:(1)43-+=x x y (2)11-=x y 11、若)3()3(x f x f +=-,那么函数)(x f 的图像有何性质?12、)3(x f y -=与)3(x f +的图像之间有何关系13、第44页例3课堂练习:教材第45页 练习A 、B小结:本节课学习了图像法、列表法、解析法表示函数.课后作业:第58页 习题2-1B 第5题二教学目标:根据要求求函数的解析式、了解分段函数及其简单应用教学重点:函数解析式的求法教学过程:1、 分段函数由实际生活中,某某至港、澳、台地区信函部分资费表引出问题:若设信函的重量为(克)应支付的资费为元,能否建立函数的解析式?导出分段函数的概念。

高中数学必修一教案全套优秀6篇

高中数学必修一教案全套优秀6篇

高中数学必修一教案全套优秀6篇高一上册数学教案篇一一、教材《直线与圆的位置关系》是高中人教版必修2第四章第二节的内容,直线和圆的位置关系是本章的重点内容之一。

从知识体系上看,它既是点与圆的位置关系的延续与提高,又是学习切线的判定定理、圆与圆的位置关系的基础。

从数学思想方法层面上看它运用运动变化的观点揭示了知识的发生过程以及相关知识间的内在联系,渗透了数形结合、分类讨论、类比、化归等数学思想方法,有助于提高学生的思维品质。

二、学情学生初中已经接触过直线与圆相交、相切、相离的定义和判定;且在上节的学习过程中掌握了点的坐标、直线的方程、圆的方程以及点到直线的距离公式;掌握利用方程组的方法来求直线的交点;具有用坐标法研究点与圆的位置关系的基础;具有一定的数形结合解题思想的基础。

三、教学目标(一)知识与技能目标能够准确用图形表示出直线与圆的三种位置关系;可以利用联立方程的方法和求点到直线的距离的方法简单判断出直线与圆的关系。

(二)过程与方法目标经历操作、观察、探索、总结直线与圆的位置关系的判断方法,从而锻炼观察、比较、概括的逻辑思维能力。

(三)情感态度价值观目标激发求知欲和学习兴趣,锻炼积极探索、发现新知识、总结规律的能力,解题时养成归纳总结的良好习惯。

四、教学重难点(一)重点用解析法研究直线与圆的位置关系。

(二)难点体会用解析法解决问题的数学思想。

五、教学方法根据本节课教材内容的特点,为了更直观、形象地突出重点,突破难点,借助信息技术工具,以几何画板为平台,通过图形的动态演示,变抽象为直观,为学生的数学探究与数学思维提供支持。

在教学中采用小组合作学习的方式,这样可以为不同认知基础的学生提供学习机会,同时有利于发挥各层次学生的作用,教师始终坚持启发式教学原则,设计一系列问题串,以引导学生的数学思维活动。

高中数学必修1教案篇二一、教材分析本节课选自《普通高中课程标准数学教科书-必修1》(人教A版)《1.2.1函数的概念》共3课时,本节课是第1课时。

高中数学必修1教案 最新人教版高一数学必修一教案(大全(优秀11篇)

高中数学必修1教案 最新人教版高一数学必修一教案(大全(优秀11篇)

高中数学必修1教案最新人教版高一数学必修一教案(大全(优秀11篇)高中数学必修一教案全套篇一本节课力的合成,是在学生了解力的基本性质和常见几种力的基础上,通过等效替代思想,研究多个力的合成方法,是对前几节内容的深化。

本节重点介绍力的合成法则——平行四边形定则,但实际这是所有矢量运算的共同工具,为学习其他矢量的运算奠定了基础。

更重要的是,力的合成是解决力学问题的基础,对今后牛顿运动定律、平衡问题、动量与能量问题的理解和应用都会产生重要影响。

因此,这节课承前启后,在整个高中物理学习中占据着非常重要的地位。

二、教学目标定位为了让学生充分进行实验探究,体验获取知识的过程,本节内容分两课时来完成,今天我说课的内容为本节内容的第一课时。

根据上述教材分析,考虑到学生的实际情况,在本节课的教学过程中,我制定了如下教学目标:一、知识与技能.理解合力、分力、力的合成的概念。

理解力的合成本质上是从等效的角度进行力的替代。

.探究求合力的方法——力的平行四边形定则,会用平行四边形定则求合力。

二、过程与方法.通过学习合力和分力的概念,了解物理学常用的方法——等效替代法。

.通过实验探究方案的设计与实施,体验科学探究的过程。

三、情感态度与价值观.培养学生的合作精神,激发学生学习兴趣,形成良好的学习方法和习惯。

.培养认真细致、实事求是的实验态度。

根据以上分析确定本节课的重点与难点如下:一、重点.合力和分力的概念以及它们的关系。

.实验探究力的合成所遵循的法则。

二、难点平行四边形定则的理解和运用。

三、重、难点突破方法——教法简介本堂课的重、难点为实验探究力的合成所遵循的法则——平行四边形定则,为了实现重难点的突破,让学生真正理解平行四边形定则,就要让学生亲自体验规律获得的过程。

因此,本堂课在学法上采用学生自主探究的实验归纳法——通过重现获取知识和方法的思维过程,让学生亲自去体验、探究、归纳总结。

体现学生主体性。

实验归纳法的步骤如下。

人教B版新课标高中数学必修一教案《基本不等式》

人教B版新课标高中数学必修一教案《基本不等式》

《基本不等式Jab色丰(第1课时)》教学设计“基本不等式” 是必修5的重点内容,它是在系统学习了不等关系和不等式性质,掌握了不等式性质的基础上对不等式的进一步研究,同时也是为了以后学习选修教材中关于不等式及其证明方法等内容作铺垫,起着承上启下的作用.利用基本不等式求最值在实际问题中应用广泛•同时本节知识又渗透了数形结合、化归等重要数学思想,有利于培养学生良好的思维品质.1. 学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号取等号的条件是:当且仅当这两个数相等;2. 通过实例探究抽象基本不等式;3. 通过本节的学习,体会数学来源于生活,提高学习数学的兴趣.♦教学重难点-------------- -- --------------- J【教学重点】应用数形结合的思想理解不等式,并从不同角度探索不等式.ab 的证明过程;2 【教学难点】基本不等式■. ab -―b等号成立条件21•课题导入基本不等式,ab 乞上的几何背景:2如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客. 你能在这个图案中找出一些相等关系或不等关系吗?教师引导学生从面积的关系去找相等关系或不等关系.【设计意图】由北京召开的第24界国际数学家大会的会标引出新课,使数学贴近实际,来源于生活.2 •讲授新课1 •探究图形中的不等关系将图中的“风车”抽象成如图,在正方形ABCD中右个全等的直角三角形.设直角三角形的两条直角边长为a, b那么正方形的边长为「a2b2.这样,4个直角三角形的面积的和是2ab,正方形的面积为a2 b2.由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式:a2 b2 2ab .当直角三角形变为等腰直角三角形,即a=b时,正方形EFGH缩为一个点,这时有2 2a b 2ab.2.得到结论:般的,如果a,b R,那么a2 b2 2ab(当且仅当a b时取""号)3. 思考证明:你能给出它的证明吗?证明:因为a2 b2 2ab (a b)22 2当a b时,(a b) 0,当 a b时,(a b) 0, 所以,(a b)20,即(a2 b2)2ab.a b4. (1)从几何图形的面积关系认识基本不等式,ab2特别的,如果a>0, b>0,我们用分别代替a、b,可得a b 2. ab ,通常我们把上式写作:ab ^-b(a>0,b>0)2(2)从不等式的性质推导基本不等式、ab 乞上22显然,(4)是成立的.当且仅当 a=b 时,(4)中的等号成立. (3)理解基本不等式•一不 的几何意义探究:用分析法证明: 要证a b ab2只要证a+b要证(2),只要证a+b-要证(3),只要证 (-)2(1) (2)(3) ⑷2在右图中,AB 是圆的直径,点 C 是AB 上的一点,AC=a , BC=b .过点 作垂直于 AB 的弦DE ,连接 AD 、BD .你能利用这个图形得出基本不等式ab〒的几何解释吗?易证 R 让 A C D S R t △ D C B ,那么 C D 2= C A • C B 即 C D = ab .这个圆的半径为,显然,它大于或等于 CD ,即.. ab ,其中当且仅当点2 2C 与圆心重合,即a = b 时,等号成立._ a b因此:基本不等式几何意义是“半径不小于半弦”2评述:1•如果把看作是正数a 、b 的等差中项,.ab 看作是正数a 、b 的等比中2项,那么该定理可以叙述为:两个正数的等差中项不小于它们的等比中项.2.在数学中,我们称 为a 、b 的算术平均数,称.ab 为a 、b 的几何平均数.本2节定理还可叙述为:两个正数的算术平均数不小于它们的几何平均数.【设计意图】老师引导,学生自主探究得到结论并证明,锻炼了学生的自主研究能力和研究问题的逻辑分析能力.[补充例题]例1 已知x 、y 都是正数,求证: (1) 1> 2;x y(2) (x + y ) (x 2 + y 2) ( x 3 + y 3)>8 x 3y 3.分析:在运用定理: 丄上 ,ab 时,注意条件a 、b 均为正数,结合不等式的性质(把 2 握好每条性质成立的条件),进行变形.解:T x , y 都是正数/• — >0, — >0, x 2>0, y 2 >0, x 3>0, y 3> 0y x/ 八 x v o i'x y 口口 x v (1)2 y = 2 即> 2.y x \ y x y x(2)x + y >2 . xy >0 x 2+ y 2>2 x y 2 >0 x 3+y 3>2 . x 3y 3•••( x+ y) (x2+ y2) (x3+ y3)> 2 xy • 2 x2y2• 2. x3y3=8 x3y3即(x+ y) (x2+ y2) (x3+ y3)>8 x3y3.【设计意图】例题讲解,学以致用.3•随堂练习1. 已知a、b、c都是正数,求证(a+ b) (b+ c) (c+ a)>8 abc分析:对于此类题目,选择定理:- ab (a>0, b>0)灵活变形,可求得结2果.解:••• a, b, c都是正数•- a+ b》2-/ab > 0b + c》2 be > 0c+ a > 2 - ac > 0■'■( a+ b) (b + c) (c+ a)》2 ■丿ab • 2、.,bc • 2 -h ac = 8 abc即(a+ b) (b + c) (c+ a)》8 abc.【设计意图】讲练结合,熟悉新知.4. 课时小结a b本节课,我们学习了重要不等式a2+ b2》2ab;两正数a、b的算术平均数( ),2几何平均数(JOb )及它们的关系(仝上》宅ab ).它们成立的条件不同,前者只要求a、2b都是实数,而后者要求a、b都是正数.它们既是不等式变形的基本工具,又是求函数最值的重要工具(下一节我们将学习它们的应用) .我们还可以用它们下面的等价变形来解决2 b2问题:ab w a ----------- , ab w2【设计意图】课时小结,内化知识.本次课通过实例探究抽象基本不等式;由北京召开的第境引入,贴近24界国际数学家大会的会标情生活,贴近数学,能让学生体会数学来源于生活,提高学习数学的兴趣.《基本不等式,ab 乎(第2课时)》教学设计♦教材分析L_ 」“基本不等式” 是必修5的重点内容,它是在系统学习了不等关系和不等式性质,掌握了不等式性质的基础上对不等式的进一步研究,同时也是为了以后学习选修教材中关于不等式及其证明方法等内容作铺垫,起着承上启下的作用.利用基本不等式求最值在实际问题中应用广泛•同时本节知识又渗透了数形结合、化归等重要数学思想,有利于培养学生良好的思维品质.1. 进一步掌握基本不等式.ab ;会应用此不等式求某些函数的最值;能够解2决一些简单的实际问题2. 通过两个例题的研究,进一步掌握基本不等式.Ob电上,并会用此定理求某些2函数的最大、最小值.3. 引发学生学习和使用数学知识的兴趣,发展创新精神,培养实事求是、理论与实际相结合的科学态度和科学道德.♦教学重难点♦教学重点基本不等式、.ab的应用2教学难点利用基本不等式ab以求最大值、最小值.1•课题导入1. 重要不等式:如果a,b R,那么a2 b2 2ab(当且仅当a b时取""号)2.基本不等式:如果a, b是正数,那么 $卫..ab(当且仅当a b时取""号).a b --我们称 -------- 为a b的算术平均数,称J ab为a, b的几何平均数2 ,a2 b22ab和-__b. ab成立的条件是不同的:前者只要求a, b都是实数,2而后者要求a, b都是正数.【设计意图】复习引入.2•讲授新课例1 (1)用篱笆围成一个面积为100m2的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短.最短的篱笆是多少?(2)段长为36 m的篱笆围成一个一边靠墙的矩形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?解:(1)设矩形菜园的长为x m,宽为y m,贝U xy=100,篱笆的长为2 (x+y) m.由可得x y 2 100 , 2(x y) 40 .等号当且仅当x=y时成立,此时x=y=10.因此,这个矩形的长、宽都为10m时,所用的篱笆最短,最短的篱笆是40m.(2)解法一:设矩形菜园的宽为x m,则长为(36 —2x) m,其中0v x v丄,其面积21 c " c、 1 2x 36 2x2 362S= x (36 —2x)= —• 2x (36 —2x)w —( )2 2 2 8当且仅当2x= 36 —2x,即x = 9时菜园面积最大,即菜园长9m,宽为9 m时菜园面积最大为81 m2解法二:设矩形菜园的长为x m.,宽为y m,则2 ( x+y) =36 , x+y=18,矩形菜园的面积为xy m 2.由当且仅当x=y ,即x=y=9时,等号成立.因此,这个矩形的长、宽都为9m 时,菜园的面积最大,最大面积是81m 2归纳:1.两个正数的和为定值时,它们的积有最大值,即若 a , b € R +,且a + b = M ,则a + b 》2、P ,等号当且仅当a = b 时成立.例2某工厂要建造一个长方体无盖贮水池,其容积为4800m 3,深为3m ,如果池底每1m 2的造价为150元,池壁每1m 2的造价为120元,问怎样设计水池能使总造价最低,最低 总造价是多少元?分析:此题首先需要由实际问题向数学问题转化, 即建立函数关系式, 然后求函数的最值,其中用到了均值不等式定理.解:设水池底面一边的长度为xm ,水池的总造价为I 元,根据题意,得1600240000 720(x)x1600240000720 2 x ——240000 720 2 40297600当x 空°,即x 40时,1有最小值2976000.x因此,当水池的底面是边长为40m 的正方形时,水池的总造价最低,最低总造价是297600 元评述:此题既是不等式性质在实际中的应用, 应注意数学语言的应用即函数解析式的建 立,又是不等式性质在求最值中的应用,应注意不等式性质的适用条件.归纳:用均值不等式解决此类问题时,应按如下步骤进行:x y 189,可得 xy 81M 为定值,则M ab w4,等号当且仅当a =b 时成立.2.两个正数的积为定值时,它们的和有最小值,即若a ,b € R +,且 ab = P , P 为定值,(1)先理解题意,设变量,设变量时一般把要求最大值或最小值的变量定为函数;(2)建立相应的函数关系式,把实际问题抽象为函数的最大值或最小值问题;(3)在定义域内,求出函数的最大值或最小值;(4)正确写出答案.【设计意图】讲解例题,熟悉方法.3•随堂练习811. 已知X M 0,当x取什么值时,x2+ 2的值最小?最小值是多少?x2. 课本练习.【设计意图】讲练结合,巩固新知.4. 课时小结本节课我们用两个正数的算术平均数与几何平均数的关系顺利解决了函数的一些最值问题.在用均值不等式求函数的最值,是值得重视的一种方法,但在具体求解时,应注意考查下列三个条件:(1 )函数的解析式中,各项均为正数;(2 )函数的解析式中,含变数的各项的和或积必须有一个为定值;(3)函数的解析式中,含变数的各项均相等,取得最值即用均值不等式求某些函数的最值时,应具备三个条件:一正二定三取等.【设计意图】课时小结,内化知识.本次课通过两个例题的研究,进一步掌握基本不等式 '、不丄卫,并会用此定理求某2些函数的最大、最小值.引发学生学习和使用数学知识的兴趣,发展创新精神,培养实事求是、理论与实际相结合的科学态度和科学道德.《基本不等式、、不¥ (第3课时)》教学设计“基本不等式”是必修5的重点内容, 它是在系统学习了不等关系和不等式性质,握了不等式性质的基础上对不等式的进一步研究, 同时也是为了以后学习选修教材中关于不等式及其证明方法等内容作铺垫, 起着承上启下的作用.利用基本不等式求最值在实际问题中应用广泛.同时本节知识又渗透了数形结合、化归等重要数学思想,有利 好的思维品质.1.进一步掌握基本不等式 ab 皂上;会用此不等式证明不等式,会应用此不等式2求某些函数的最值,能够解决一些简单的实际问题; 2. 通过例题的研究,进一步掌握基本不等式 的最大、最小值.3. 引发学生学习和使用数学知识的兴趣,发展创新精神,培养实事求是、理论与实际 相结合的科学态度和科学道德.♦教学重难点----------- -------------教学重点掌握基本不等式..Ob,会用此不等式证明不等式,会用此不等式求某些函数的2 最值 教学难点利用此不等式求函数的最大、最小值.1•课题导入 1. 基本不等式:如果 a , b 是正数,那么 仝上 .ab (当且仅当a b 时取""号).22. 用基本不等式.ab求最大(小)值的步骤.2 【设计意图】复习引入. 2•讲授新课1)利用基本不等式证明不等式基本不等式.于培养学生良 ..ab 丈亠,并会用此定理求某些函数 224已知m>0,求证 6m24. [思维切入]因为m>0 ,所以可把24 一和6m 分别看作基本不等式中的 a 和b ,直接利用[证明]因为 m>0,,由基本不等式得246m 2m J 24 6m 2j24 6 2 12 2424 当且仅当24 =m=6m ,即m=2时,取等号. 规律技巧总结 24注意: m>0这一前提条件和 —— 6m =144为定值的前提条件.m 【设计意图】例题讲解,利用基本不等式证明不等式,熟练使用基本不等式. 3•随堂练习1[思维拓展1]已知a , b , c , d 都是正数,求证(ab cd)(ac bd) 4abcd .2 2 2 2 2[思维拓展 2]求证(a 2 b 2)(c 2 d 2) (ac bd)2. 例2求证: 4 当且仅当 =a-3即a=5时,等号成立.a 3 规律技巧总结 通过加减项的方法配凑成基本不等式的形式.2)利用不等式求最值9例3 (1)若x>0,求f (x) 4x 的最小值; x9(2)若x<0,求f(x) 4x 的最大值.x9 [思维切入]本题(1) x>0和4x - =36两个前提条件;(2)中x<0,可以用-x>0来转化.[思维切入] 由于不等式左边含有字母a ,右边无字母,直接使用基本不等式,无法约 掉字母a ,而左边 a 丄(a a 3 3) 3 .这样变形后,在用基本不等式即可得证.[证明]3 a 34 厂(a 3)(a 3) 3 2.4 3 7解(1)因为x>0由基本不等式得9 j 9』— 9 3 n . f(x) 4x 2 4x 2.36 12,当 且仅当 4x 即 x= 时 x \ xx 29f (x) 4x 取最小值12. x (2)因为x<0, 所以-x>0,由基本不等式得: 所以 f (x) 12 .9 39即x=-时,f (x) 4x 取得最大-12. x 2x 规律技巧总结 利用基本不等式求最值时, 个项必须为正数,若为负数,则添负号变正.随堂练习29[思维拓展1]求f (x) 4x ( x>5)的最小值.x 5 2 8[思维拓展2]若x>0, y>0,且 1,求xy 的最小值.x y 【设计意图】讲练结合,巩固新知.4. 课时小结用基本不等式王上证明不等式和求函数的最大、最小值.2【设计意图】总结基本不等式在某些方面的运用,锻炼学生自我总结的能力.5•评价设计f(x)9 (4x -) x (4x)( -)2^( 4x)( 9) X x当且仅当 4x1.证明:a2 b2 2 2a 2b42 .若x 1,则x为何值时x ——有最小值,最小值为几?x 1【设计意图】将课堂知识延伸至课外,在巩固知识的同时,锻炼了学生的自主学习能力. ♦教学反思本次课是一次常规的习题课,复习知识、举例运用、学生练习、课外练习,从而达到巩固知识的效果.其实这次课还是可以采用老师引导,学生分组讨论研究,得到结果,得到解题方法,从而让学生体验自主研究题目,得到结论的乐趣.。

高中数学必修1电子教案

高中数学必修1电子教案

高中数学必修1电子教案主题:直线的方程
一、教学目标:
1. 了解直线的基本性质和表示方法;
2. 掌握直线的一般方程和斜截式方程的求解方法;
3. 能够通过给定两点或斜率和一点求直线的方程;
4. 能够解决实际问题中的直线方程相关问题。

二、教学内容:
1. 直线的基本性质和表示方法;
2. 直线的一般方程和斜截式方程;
3. 求解直线的方程。

三、教学步骤:
1. 引入直线的概念,讲解直线的基本性质和表示方法;
2. 介绍直线的一般方程和斜截式方程,讲解求解方法;
3. 给学生练习求解直线方程的例题,引导学生掌握方法;
4. 结合实际问题,让学生解决直线方程相关问题;
5. 总结本节课的内容,进行小结。

四、教学资源:
1. 教材《高中数学必修1》
2. 多媒体课件
3. 作业习题
五、教学评估:
1. 学生课堂表现;
2. 学生作业完成情况;
3. 学生课后讨论。

六、拓展延伸:
1. 探讨直线与其他几何图形的关系;
2. 引导学生研究曲线的方程。

以上为本次课程的教案范本,可根据具体教学情况进行适当调整和修改。

新课改高中必修一数学教案

新课改高中必修一数学教案

新课改高中必修一数学教案
课时:1课时
教学内容:函数概念及性质
教学目标:
1. 了解函数的定义及其性质;
2. 掌握一次函数、二次函数的图像和基本性质;
3. 能够应用函数解决实际问题。

教学重点:
1. 函数的定义;
2. 一次函数和二次函数的性质;
3. 函数的实际应用。

教学步骤:
1. 导入(5分钟)
教师利用例题引出函数的概念,让学生了解函数的基本定义及特点。

2. 讲解(15分钟)
教师详细讲解函数的定义和性质,包括定义域、值域、增减性、奇偶性等内容,并通过具体的例题进行说明。

3. 示例演练(20分钟)
教师让学生做一些简单的练习题,巩固函数的基本概念,并引导学生探讨一次函数和二次函数的图像及性质。

4. 实践应用(15分钟)
教师设计一些实际问题,让学生应用函数的知识解决问题,培养学生的数学建模能力。

5. 总结(5分钟)
教师对本节课的重点内容进行总结,强调函数的重要性和应用价值,并鼓励学生继续深入学习数学知识。

教学反馈:
教师在课堂上和课后可以布置作业,评价学生对函数概念的掌握情况,及时纠正学生的错误,提高学生的学习兴趣和自信心。

新高中数学必修一教案

新高中数学必修一教案

新高中数学必修一教案
教学内容:线性代数的基本概念:线性方程组、矩阵、向量、线性相关性和线性无关性;线性代数的基本性质:线性组合、行列式、矩阵的运算、矩阵的逆、矩阵的转置和对角化等。

教学目标:通过本节课的学习,学生能够掌握线性代数的基本概念和性质,能够运用所学知识解决相关问题。

教学重点:线性方程组的解法、矩阵的运算、矩阵的逆的求法。

教学难点:矩阵的转置和对角化的概念及应用。

教学准备:教师准备PPT课件、黑板、彩色粉笔、教材、习题集等教学资源。

教学过程:
一、导入(5分钟)
教师通过提问引入线性代数的基本概念,引发学生思考,并激发他们的学习兴趣。

二、讲解与示例(20分钟)
1. 讲解线性方程组的基本概念和解法;
2. 讲解矩阵的基本概念和运算法则;
3. 讲解矩阵的逆的求法;
4. 通过例题演示以上知识点的应用。

三、练习与讨论(15分钟)
1. 学生自主练习相关习题,巩固所学知识;
2. 学生之间相互讨论,解决问题,并分享解题思路。

四、总结(5分钟)
教师总结本节课的重点内容,强调学生需要掌握的知识点,并鼓励学生在课后多加练习,巩固所学知识。

五、作业布置(5分钟)
布置相关作业,督促学生课后复习,并加强练习。

教学反思:
本节课主要介绍了线性代数的基本概念和性质,通过例题演示,加深了学生对相关知识点的理解。

在以后的教学中,可以适当增加实际应用案例的讲解,激发学生学习兴趣,提高他们对数学的学习热情。

2022高中数学必修一的优秀教案

2022高中数学必修一的优秀教案

有一种成立。

(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。

(3)集合相等:构成两个集合的元素完全一样
4. 元素与集合的关系;
(1)假如a是集合A的元素,就说a属于(belong to)A,记作
a∈A(2)假如a不是集合A的元素,就说a不属于(not belong to)A,记作a A(或a A)
5. 常用数集及其记法
非负整数集(或自然数集),记作N
正整数集,记作N_或N+;
整数集,记作Z
有理数集,记作Q
实数集,记作R
(二)集合的表示方法
我们可以用自然语言来描述一个集合,但这将给我们带来许多不便,除此之外还常用列举法和描述法来表示集合。

(1) 列举法:把集合中的元素一一列举出来,写在大括号内。

如:{1,2,3,4,5},{_2,3_+2,5y3-_,_2+y2},…;
思索2,引入描述法
说明:集合中的元素具有无序性,所以用列举法表示集合时。

高一数学必修一教案8篇

高一数学必修一教案8篇

高一数学必修一教案8篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!高一数学必修一教案8篇只有认真准备好详细的教案,我们的教学进度和课堂效率才会有提升,教案在撰写的时候,教师务必要强调逻辑思路清晰,下面是本店铺为您分享的高一数学必修一教案8篇,感谢您的参阅。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新课标高中数学必修1教案通过将含绝对值的不等式同解变形为不含绝对值的不等式,培养学生化归的思想和转化的能力;一起看看新课标高中数学必修1教案!欢迎查阅!新课标高中数学必修1教案1教学目标(1)掌握与( )型的绝对值不等式的解法.(2)掌握与( )型的绝对值不等式的解法.(3)通过用数轴来表示含绝对值不等式的解集,培养学生数形结合的能力;(4)通过将含绝对值的不等式同解变形为不含绝对值的不等式,培养学生化归的思想和转化的能力;教学重点:型的不等式的解法;教学难点:利用绝对值的意义分析、解决问题.教学过程设计教师活动学生活动设计意图一、导入新课【提问】正数的绝对值什么?负数的绝对值是什么?零的绝对值是什么?举例说明?【概括】口答绝对值的概念是解与()型绝对值不等值的概念,为解这种类型的绝对值不等式做好铺垫.二、新课【导入】2的绝对值等于几?-2的绝对值等于几?绝对值等于2的数是谁?在数轴上表示出来.【讲述】求绝对值等于2的数可以用方程来表示,这样的方程叫做绝对值方程.显然,它的解有二个,一个是2,另一个是-2.【提问】如何解绝对值方程.【设问】解绝对值不等式,由绝对值的意义你能在数轴上画出它的解吗?这个绝对值不等式的解集怎样表示?【讲述】根据绝对值的意义,由右面的数轴可以看出,不等式的解集就是表示数轴上到原点的距离小于2的点的集合.【设问】解绝对值不等式,由绝对值的意义你能在数轴上画出它的解吗?这个绝对值不等式的解集怎样表示?【质疑】的解集有几部分?为什么也是它的解集?【讲述】这个集合中的数都比-2小,从数轴上可以明显看出它们的绝对值都比2大,所以是解集的一部分.在解时容易出现只求出这部分解集,而丢掉这部解集的错误.【练习】解下列不等式:(1);(2)【设问】如果在中的,也就是怎样解?【点拨】可以把看成一个整体,也就是把看成,按照的解法来解.所以,原不等式的解集是【设问】如果中的是,也就是怎样解?【点拨】可以把看成一个整体,也就是把看成,按照的解法来解.,或,由得由得所以,原不等式的解集是口答.画出数轴后在数轴上表示绝对值等于2的数.画出数轴,思考答案不等式的解集表示为画出数轴思考答案不等式的解集为或表示为,或笔答(1)(2),或笔答笔答根据绝对值的意义自然引出绝对值方程()的解法.由浅入深,循序渐进,在()型绝对值方程的基础上引出()型绝对值方程的解法.针对解()绝对值不等式学生常出现的情况,运用数轴质疑、解惑.落实会正确解出与()绝对值不等式的教学目标.在将看成一个整体的关键处点拨、启发,使学生主动地进行练习.继续强化将看成一个整体继续强化解不等式时不要犯丢掉这部分解的错误.三、课堂练习解下列不等式:(1);(2)笔答(1);(2)检查教学目标落实情况.四、小结的解集是;的解集是解绝对值不等式注意不要丢掉这部分解集.或型的绝对值不等式,若把看成一个整体一个字母,就可以归结为或型绝对值不等式的解法.五、作业1.阅读课本含绝对值不等式解法.2.习题2、3、4课堂教学设计说明1.抓住解型绝对值不等式的关键是绝对值的意义,为此首先通过复习让学生掌握好绝对值的意义,为解绝对值不等式打下牢固的基础.2.在解与绝对值不等式中的关键处设问、质疑、点拨,让学生融会贯通的掌握它们解法之间的内在联系,以达到提高学生解题能力的目的.3.针对学生解( )绝对值不等式容易出现丢掉这部分解集的错误,在教学中应根据绝对值的意义从数轴进行突破,并在练习中纠正这个错误,以提高学生的运算能力.新课标高中数学必修1教案2教学目标:(1)理解子集、真子集、补集、两个集合相等概念;(2)了解全集、空集的意义,(3)掌握有关子集、全集、补集的符号及表示方法,会用它们正确表示一些简单的集合,培养学生的符号表示的能力;(4)会求已知集合的子集、真子集,会求全集中子集在全集中的补集;(5)能判断两集合间的包含、相等关系,并会用符号及图形(文氏图)准确地表示出来,培养学生的数学结合的数学思想;(6)培养学生用集合的观点分析问题、解决问题的能力.教学重点:子集、补集的概念教学难点:弄清元素与子集、属于与包含之间的区别教学用具:幻灯机教学过程设计(一)导入新课上节课我们学习了集合、元素、集合中元素的三性、元素与集合的关系等知识.【提出问题】(投影打出)已知,,,问:1.哪些集合表示方法是列举法.2.哪些集合表示方法是描述法.3.将集M、集从集P用图示法表示.4.分别说出各集合中的元素.5.将每个集合中的元素与该集合的关系用符号表示出来.将集N中元素3与集M的关系用符号表示出来.6.集M中元素与集N有何关系.集M中元素与集P有何关系.【找学生回答】1.集合M和集合N;(口答)2.集合P;(口答)3.(笔练结合板演)4.集M中元素有-1,1;集N中元素有-1,1,3;集P中元素有-1,1.(口答)5. ,,,,,,,(笔练结合板演)6.集M中任何元素都是集N的元素.集M中任何元素都是集P的元素.(口答)【引入】在上面见到的集M与集N;集M与集P通过元素建立了某种关系,而具有这种关系的两个集合在今后学习中会经常出现,本节将研究有关两个集合间关系的问题.(二)新授知识1.子集(1)子集定义:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A。

记作:读作:A包含于B或B包含A当集合A不包含于集合B,或集合B不包含集合A时,则记作:A B或B A.性质:① (任何一个集合是它本身的子集)② (空集是任何集合的子集)【置疑】能否把子集说成是由原来集合中的部分元素组成的集合?【解疑】不能把A是B的子集解释成A是由B中部分元素所组成的集合.因为B的子集也包括它本身,而这个子集是由B的全体元素组成的.空集也是B的子集,而这个集合中并不含有B中的元素.由此也可看到,把A是B的子集解释成A是由B的部分元素组成的集合是不确切的.(2)集合相等:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,记作A=B。

例:,可见,集合,是指A、B的所有元素完全相同.(3)真子集:对于两个集合A与B,如果,并且,我们就说集合A是集合B的真子集,记作:(或),读作A真包含于B或B真包含A。

【思考】能否这样定义真子集:“如果A是B的子集,并且B中至少有一个元素不属于A,那么集合A叫做集合B的真子集.”集合B同它的真子集A之间的关系,可用文氏图表示,其中两个圆的内部分别表示集合A,B.【提问】(1) 写出数集N,Z,Q,R的包含关系,并用文氏图表示。

(2) 判断下列写法是否正确① A ② A ③ ④A A性质:(1)空集是任何非空集合的真子集。

若A ,且A≠ ,则A;(2)如果,,则.例1 写出集合的所有子集,并指出其中哪些是它的真子集.解:集合的所有的子集是,,,,其中,,是的真子集.【注意】(1)子集与真子集符号的方向。

(2)易混符号①“ ”与“ ”:元素与集合之间是属于关系;集合与集合之间是包含关系。

如R,{1} {1,2,3}②{0}与:{0}是含有一个元素0的集合,是不含任何元素的集合。

如:{0}。

不能写成={0},∈{0}例2 见教材P8(解略)例3 判断下列说法是否正确,如果不正确,请加以改正.(1) 表示空集;(2)空集是任何集合的真子集;(3) 不是;(4) 的所有子集是;(5)如果且,那么B必是A的真子集;(6) 与不能同时成立.解:(1) 不表示空集,它表示以空集为元素的集合,所以(1)不正确;(2)不正确.空集是任何非空集合的真子集;(3)不正确. 与表示同一集合;(4)不正确. 的所有子集是;(5)正确(6)不正确.当时,与能同时成立.例4 用适当的符号( ,)填空:(1) ; ; ;(2) ; ;(3) ;(4)设,,,则A B C.解:(1)0 0 ;(2) = ,;(3) ,∴ ;(4)A,B,C均表示所有奇数组成的集合,∴A=B=C. 【练习】教材P9用适当的符号( ,)填空:(1) ; (5) ;(2) ; (6) ;(3) ; (7) ;(4) ; (8) .解:(1) ;(2) ;(3) ;(4) ;(5)=;(6) ;(7) ;(8) .提问:见教材P9例子(二) 全集与补集1.补集:一般地,设S是一个集合,A是S的一个子集(即),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集),记作,即.A在S中的补集可用右图中阴影部分表示.性质:S( SA)=A如:(1)若S={1,2,3,4,5,6},A={1,3,5},则SA={2,4,6};(2)若A={0},则NA=N;(3) RQ是无理数集。

2.全集:如果集合S中含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,全集通常用表示.注:是对于给定的全集而言的,当全集不同时,补集也会不同.例如:若,当时,;当时,则.例5 设全集,,,判断与之间的关系.解:∵∴∵∴∴练习:见教材P10练习1.填空:,,,那么,.解:,2.填空:(1)如果全集,那么N的补集;(2)如果全集,,那么的补集( )= .解:(1) ;(2) .(三)小结:本节课学习了以下内容:1.五个概念(子集、集合相等、真子集、补集、全集,其中子集、补集为重点)2.五条性质(1)空集是任何集合的子集。

Φ A(2)空集是任何非空集合的真子集。

Φ A (A≠Φ)(3)任何一个集合是它本身的子集。

(4)如果,,则.(5) S( SA)=A3.两组易混符号:(1)“ ”与“ ”:(2){0}与(四)课后作业:见教材P10习题1.2新课标高中数学必修1教案3一.说教材1.1 教材结构与内容简析本节课为《江苏省中等职业学校试用教材·数学(第二册)》§5.6函数图象的定位作图法的第一课时,主要内容为基本函数与一般函数间的图象平移变换规律。

函数图象的平移,既是前阶段函数性质及具体函数研究的延续和深化,也是后阶段定位作图法以至解析几何中移轴化简的基础和渗透,在教材中起着重要的承上启下作用。

更为重要的是,这段内容还蕴涵着重要的数学思想方法,如化归思想、映射与对应思想、换元方法等。

1.2 教学目标1.2.1知识目标⑴、给定平移前后函数解析式,能熟练叙述相应的平移变换,正确掌握平移方向与、符号的关系。

⑵、能较熟练地化简较复杂的函数解析式,找出对应的基本函数模型(如一次函数,反比例函数、指数函数等)。

⑶、初步学会应用平移变换规律研究较复杂的函数的具体性质(如值域、单调性等)。

1.2.2能力目标⑴、在数学实验平台上,能自主探究,改变相应参数和函数解析式,观察相应图象变化,经历命题探索发现的过程,提高观察、归纳、概括能力。

相关文档
最新文档