新课标人教版高中数学必修1优秀教案全套

合集下载

教案高中数学必修一

教案高中数学必修一

教案高中数学必修一
1. 知识与技能:掌握数列的概念、基本性质和常见数列的求和公式等知识,能够运用数列的性质解决实际问题。

2. 过程与方法:培养学生观察问题、提出问题、解决问题的能力,培养学生的逻辑思维和分析问题的能力。

3. 情感态度价值观:激发学生学习数学的兴趣,培养学生的数学思维和解决问题的能力。

教学重点与难点:
1. 了解数列的概念和性质。

2. 掌握数列的求和公式。

3. 理解并应用数列的相关知识解决问题。

教学准备:
1. 教材:高中数学必修一教材。

2. 教具:黑板、粉笔、投影仪等。

3. 学生自带:笔、笔记本等。

教学步骤:
一、导入(5分钟)
教师出示一个数列,让学生分别讨论这个数列的特点,引导学生了解数列的概念。

二、讲授(30分钟)
1. 数列的概念和基本性质。

2. 等差数列和等比数列的性质及求和公式。

三、练习(15分钟)
教师设计一些相关练习题,让学生在课堂上进行练习,巩固所学知识。

四、讨论与解析(10分钟)
教师与学生共同讨论练习题的解法,并解析其中的难点。

五、作业布置(5分钟)
布置作业,让学生回顾所学知识,巩固练习。

六、小结(5分钟)
教师总结本节课的重点内容,强调数列的重要性及应用,并激励学生努力学习数学。

新人教版高一数学必修一教案(实用13篇)

新人教版高一数学必修一教案(实用13篇)

新人教版高一数学必修一教案(实用13篇)高一数学必修二教案(1)理解函数的概念;。

(2)了解区间的概念;。

2、目标解析。

(2)了解区间的概念就是指能够体会用区间表示数集的意义和作用;。

【问题诊断分析】在本节课的教学中,学生可能遇到的问题是函数的概念及符号的理解,产生这一问题的原因是:函数本身就是一个抽象的概念,对学生来说一个难点。

要解决这一问题,就要在通过从实际问题中抽象概况函数的概念,培养学生的抽象概况能力,其中关键是理论联系实际,把抽象转化为具体。

【教学过程】。

问题1:一枚炮弹发射后,经过26s落到地面击中目标.炮弹的射高为845m,且炮弹距离地面的高度h(单位:m)随时间t(单位:s)变化的规律是:h=130t-5t2.1.1这里的变量t的变化范围是什么?变量h的变化范围是什么?试用集合表示?1.2高度变量h与时间变量t之间的对应关系是否为函数?若是,其自变量是什么?设计意图:通过以上问题,让学生正确理解让学生体会用解析式或图象刻画两个变量之间的依赖关系,从问题的实际意义可知,在t的变化范围内任给一个t,按照给定的对应关系,都有的一个高度h与之对应。

问题2:分析教科书中的实例(2),引导学生看图并启发:在t的变化t 按照给定的图象,都有的一个臭氧层空洞面积s与之相对应。

问题3:要求学生仿照实例(1)、(2),描述实例(3)中恩格尔系数和时间的关系。

设计意图:通过这些问题,让学生理解得到函数的定义,培养学生的归纳、概况的能力。

高一数学必修一第三章教案细胞膜、细胞壁、细胞核、细胞质均不是细胞器。

一、细胞器之间分工。

1.线粒体:细胞进行有氧呼吸的主要场所。

双层膜(内膜向内折叠形成脊),分布在动植物细胞体内。

2.叶绿体:进行光合作用,“能量转换站”,双层膜,分布在植物的叶肉细胞。

3.内质网:蛋白质合成和加工,以及脂质合成的“车间”,单层膜,动植物都有。

分为光面内质网和粗面内质网(上有核糖体附着)。

高中数学人教版必修1全套教案

高中数学人教版必修1全套教案

第一章 集合与函数§1.1.1集合的含义与表示一. 教学目标:l.知识与技能(1)通过实例,了解集合的含义,体会元素与集合的属于关系;(2)知道常用数集及其专用记号;(3)了解集合中元素的确定性.互异性.无序性;(4)会用集合语言表示有关数学对象;(5)培养学生抽象概括的能力.2. 过程与方法(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.(2)让学生归纳整理本节所学知识.3. 情感.态度与价值观使学生感受到学习集合的必要性,增强学习的积极性.二. 教学重点.难点重点:集合的含义与表示方法.难点:表示法的恰当选择.三. 学法与教学用具1. 学法:学生通过阅读教材,自主学习.思考.交流.讨论和概括,从而更好地完成本节课的教学目标.2. 教学用具:投影仪.四. 教学思路(一)创设情景,揭示课题1.教师首先提出问题:在初中,我们已经接触过一些集合,你能举出一些集合的例子吗? 引导学生回忆.举例和互相交流. 与此同时,教师对学生的活动给予评价.2.接着教师指出:那么,集合的含义是什么呢?这就是我们这一堂课所要学习的内容.(二)研探新知1.教师利用多媒体设备向学生投影出下面9个实例:(1)1—20以内的所有质数;(2)我国古代的四大发明;(3)所有的安理会常任理事国;(4)所有的正方形;(5)海南省在2004年9月之前建成的所有立交桥;(6)到一个角的两边距离相等的所有的点;(7)方程2560x x -+=的所有实数根;(8)不等式30x ->的所有解;(9)国兴中学2004年9月入学的高一学生的全体.2.教师组织学生分组讨论:这9个实例的共同特征是什么?3.每个小组选出——位同学发表本组的讨论结果,在此基础上,师生共同概括出9个实例的特征,并给出集合的含义.一般地,指定的某些对象的全体称为集合(简称为集).集合中的每个对象叫作这个集合的元素.4.教师指出:集合常用大写字母A ,B ,C ,D ,…表示,元素常用小写字母,,,a b c d …表示.(三)质疑答辩,排难解惑,发展思维1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难.使学生明确集合元素的三大特性,即:确定性.互异性和无序性.只要构成两个集合的元素是一样的,我们就称这两个集合相等.2.教师组织引导学生思考以下问题:判断以下元素的全体是否组成集合,并说明理由:(1)大于3小于11的偶数;(2)我国的小河流.让学生充分发表自己的建解.3. 让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由.教师对学生的学习活动给予及时的评价.4.教师提出问题,让学生思考(1)如果用A 表示高—(3)班全体学生组成的集合,用a 表示高一(3)班的一位同学,b 是高一(4)班的一位同学,那么,a b 与集合A 分别有什么关系?由此引导学生得出元素与集合的关系有两种:属于和不属于.如果a 是集合A 的元素,就说a 属于集合A ,记作a A ∈.如果a 不是集合A 的元素,就说a 不属于集合A ,记作a A ∉.(2)如果用A 表示“所有的安理会常任理事国”组成的集合,则中国.日本与集合A 的关系分别是什么?请用数学符号分别表示.(3)让学生完成教材第6页练习第1题.5.教师引导学生回忆数集扩充过程,然后阅读教材中的相交内容,写出常用数集的记号.并让学生完成习题1.1A 组第1题.6.教师引导学生阅读教材中的相关内容,并思考.讨论下列问题:(1)要表示一个集合共有几种方式?(2)试比较自然语言.列举法和描述法在表示集合时,各自有什么特点?适用的对象是什么?(3)如何根据问题选择适当的集合表示法?使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象。

人教版高一数学必修一教案(优秀4篇)

人教版高一数学必修一教案(优秀4篇)

人教版高一数学必修一教案(优秀4篇)人教版高一数学必修一教案篇一教学目的:(1)理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集;(2)能用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。

课型:新授课教学重点:集合的交集与并集的概念;教学难点:集合的交集与并集“是什么”,“为什么”,“怎样做”;教学过程:一、引入课题我们两个实数除了可以比较大小外,还可以进行加法运算,类比实数的加法运算,两个集合是否也可以“相加”呢?思考(P9思考题),引入并集概念。

二、新课教学1、并集一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集(Union)记作:A∪B 读作:“A并B”即:A∪B={x|x∪A,或x∪B}Venn图表示:说明:两个集合求并集,结果还是一个集合,是由集合A与B的所有元素组成的集合(重复元素只看成一个元素)。

例题1求集合A与B的并集① A={6,8,10,12} B={3,6,9,12}② A={x|-1≤x≤2} B={x|0≤x≤3}(过度)问题:在上图中我们除了研究集合A与B的并集外,它们的公共部分(即问号部分)还应是我们所关心的,我们称其为集合A与B的交集。

2、交集一般地,由属于集合A且属于集合B的元素所组成的集合,叫做集合A与B的交集(intersection)。

记作:A∩B 读作:“A交B”即:A∩B={x|∪A,且x∪B}交集的Venn图表示说明:两个集合求交集,结果还是一个集合,是由集合A与B的公共元素组成的集合。

例题2求集合A与B的交集③ A={6,8,10,12} B={3,6,9,12}④ A={x|-1≤x≤2} B={x|0≤x≤3}拓展:求下列各图中集合A与B的并集与交集(用彩笔图出)说明:当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集3、例题讲解例3(P12例1):理解所给集合的含义,可借助venn图分析例4 P12例2):先“化简”所给集合,搞清楚各自所含元素后,再进行运算。

人教版高中数学必修1全册教案

人教版高中数学必修1全册教案

人教版高中数学必修1全册教案一、教学目标本教案旨在帮助学生:1. 掌握高中数学的基本概念和基本工具;2. 培养数学思维和解决问题的能力;3. 培养学生合作研究和自主研究的能力;4. 提高学生对数学的兴趣和研究动机。

二、教学内容本教案涵盖了人教版高中数学必修1全册的所有内容,包括但不限于以下几个单元:1. 数与式2. 二次函数与一元二次方程3. 三角函数与解三角形4. 平面坐标系与参数方程5. 二次函数与简单二次方程6. 平面向量初步三、教学方法针对不同的教学内容,本教案采用了多种教学方法,如:1. 讲授法:通过教师的讲解、示范和解释,帮助学生理解数学的概念和原理;2. 实践法:通过实际的例题、练和探究活动,培养学生解决问题的能力;3. 小组合作研究:组织学生进行小组合作研究,提高学生的交流和合作能力;4. 自主研究:引导学生进行自主研究,培养学生的自主研究和自我管理能力;四、教学评估本教案采用多种形式的教学评估方式,如:1. 课堂练:通过课堂上的小测验和练,检验学生对知识的掌握情况;2. 作业布置:通过作业的批改和评价,评估学生的研究效果;3. 期中考试:通过期中考试,评估学生对整个教学内容的掌握情况;4. 期末考试:通过期末考试,评估学生对整个学期的研究效果。

五、教学资源本教案所需的教学资源包括但不限于以下几个方面:1. 课本和教辅材料:学生使用的教科书和相关教辅材料;2. 多媒体设备:投影仪、电脑等多媒体设备;3. 实验器材:实验课时所需的实验器材;4. 额外参考资料:学生自主研究时所需的额外参考资料。

以上是本教案的主要内容和要点,请根据需要进行调整和补充。

教师在教学过程中应根据学生的实际情况和学习进度,灵活运用教学方法和评估方式,以达到最佳的教学效果。

人教版高中数学必修一教案全套

人教版高中数学必修一教案全套

人教版高中数学必修一教案全套第一单元函数与方程
课时1 了解函数
教学目标:通过本节课的研究,学生将了解到函数的定义,掌
握函数的分类和表示方法。

教学内容:
1. 函数的定义和特点
2. 函数的分类:一次函数、二次函数、三次函数等
3. 函数的表示方法:函数图像、函数表达式
教学步骤:
1. 引入函数的概念,让学生了解函数的定义和特点。

2. 介绍不同类型的函数,如一次函数、二次函数等,并让学生
掌握其特点和表示方法。

3. 通过实例演示函数的表示方法,包括函数图像和函数表达式。

4. 练题,巩固学生对函数的理解。

课时2 解一次方程
教学目标:通过本节课的研究,学生将学会解一次方程的方法,并应用于实际问题中。

教学内容:
1. 一次方程的定义和特点
2. 解一次方程的基本方法
3. 实际问题中的一次方程应用
教学步骤:
1. 引入一次方程的概念和例子,让学生理解一次方程的定义和
特点。

2. 介绍解一次方程的基本方法,包括化简、移项等步骤。

3. 通过实例演示解一次方程的步骤和思路。

4. 练题,巩固学生对解一次方程的掌握。

...... (按照教案的顺序继续添加后续课时的内容)
总结
通过本套教案的研究,学生将全面了解函数与方程的相关知识,并能够应用这些知识解决实际问题。

教师可以根据教案的内容和步
骤进行教学,逐步引导学生掌握数学知识。

以上为人教版高中数学必修一教案全套的简要内容,详细内容
请参考教材或教案原文。

高中数学必修一教案全套优秀6篇

高中数学必修一教案全套优秀6篇

高中数学必修一教案全套优秀6篇高一上册数学教案篇一一、教材《直线与圆的位置关系》是高中人教版必修2第四章第二节的内容,直线和圆的位置关系是本章的重点内容之一。

从知识体系上看,它既是点与圆的位置关系的延续与提高,又是学习切线的判定定理、圆与圆的位置关系的基础。

从数学思想方法层面上看它运用运动变化的观点揭示了知识的发生过程以及相关知识间的内在联系,渗透了数形结合、分类讨论、类比、化归等数学思想方法,有助于提高学生的思维品质。

二、学情学生初中已经接触过直线与圆相交、相切、相离的定义和判定;且在上节的学习过程中掌握了点的坐标、直线的方程、圆的方程以及点到直线的距离公式;掌握利用方程组的方法来求直线的交点;具有用坐标法研究点与圆的位置关系的基础;具有一定的数形结合解题思想的基础。

三、教学目标(一)知识与技能目标能够准确用图形表示出直线与圆的三种位置关系;可以利用联立方程的方法和求点到直线的距离的方法简单判断出直线与圆的关系。

(二)过程与方法目标经历操作、观察、探索、总结直线与圆的位置关系的判断方法,从而锻炼观察、比较、概括的逻辑思维能力。

(三)情感态度价值观目标激发求知欲和学习兴趣,锻炼积极探索、发现新知识、总结规律的能力,解题时养成归纳总结的良好习惯。

四、教学重难点(一)重点用解析法研究直线与圆的位置关系。

(二)难点体会用解析法解决问题的数学思想。

五、教学方法根据本节课教材内容的特点,为了更直观、形象地突出重点,突破难点,借助信息技术工具,以几何画板为平台,通过图形的动态演示,变抽象为直观,为学生的数学探究与数学思维提供支持。

在教学中采用小组合作学习的方式,这样可以为不同认知基础的学生提供学习机会,同时有利于发挥各层次学生的作用,教师始终坚持启发式教学原则,设计一系列问题串,以引导学生的数学思维活动。

高中数学必修1教案篇二一、教材分析本节课选自《普通高中课程标准数学教科书-必修1》(人教A版)《1.2.1函数的概念》共3课时,本节课是第1课时。

新课标人教A版高中数学必修1全册教案完整版

新课标人教A版高中数学必修1全册教案完整版

第一章集合与函数概念一. 课标要求:本章将集合作为一种语言来学习,使学生感受用集合表示数学内容时的简洁性、准确性,帮助学生学会用集合语言描述数学对象,发展学生运用数学语言进行交流的能力.函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重要数学模型来学习,强调结合实际问题,使学生感受运用函数概念建立模型的过程与方法,从而发展学生对变量数学的认识.1. 了解集合的含义,体会元素与集合的“属于”关系,掌握某些数集的专用符号.2. 理解集合的表示法,能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用.3、理解集合之间包含与相等的含义,能识别给定集合的子集,培养学生分析、比较、归纳的逻辑思维能力.4、能在具体情境中,了解全集与空集的含义.5、理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集, 培养学生从具体到抽象的思维能力.6. 理解在给定集合中,一个子集的补集的含义,会求给定子集的补集.7. 能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.8. 学会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;了解函数构成的三要素,了解映射的概念;体会函数是一种刻画变量之间关系的重要数学模型,体会对应关系在刻画函数概念中的作用;会求一些简单函数的定义域和值域,并熟练使用区间表示法.9. 了解函数的一些基本表示法(列表法、图象法、分析法),并能在实际情境中,恰当地进行选择;会用描点法画一些简单函数的图象.10. 通过具体实例,了解简单的分段函数,并能简单应用.11. 结合熟悉的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性和周期性的含义,通过具体函数的图象,初步了解中心对称图形和轴对称图形.12. 学会运用函数的图象理解和研究函数的性质,体会数形结合的数学方法.13. 通过实习作业,使学生初步了解对数学发展有过重大影响的重大历史事件和重要人物,了解生活中的函数实例.二. 编写意图与教学建议1. 教材不涉及集合论理论,只将集合作为一种语言来学习,要求学生能够使用最基本的集合语言表示有关的数学对象,从而体会集合语言的简洁性和准确性,发展运用数学语言进行交流的能力. 教材力求紧密结合学生的生活经验和已有数学知识,通过列举丰富的实例,使学生了解集合的含义,理解并掌握集合间的基本关系及集合的基本运算.教材突出了函数概念的背景教学,强调从实例出发,让学生对函数概念有充分的感性基础,再用集合与对应语言抽象出函数概念,这样比较符合学生的认识规律,同时有利于培养学生的抽象概括的能力,增强学生应用数学的意识,教学中要高度重视数学概念的背景教学.2. 教材尽量创设使学生运用集合语言进行表达和交流的情境和机会,并注意运用Venn图表达集合的关系及运算,帮助学生借助直观图示认识抽象概念. 教学中,要充分体现这种直观的数学思想,发挥图形在子集以及集合运算教学中的直观作用。

高中数学必修1教案 最新人教版高一数学必修一教案(大全(优秀11篇)

高中数学必修1教案 最新人教版高一数学必修一教案(大全(优秀11篇)

高中数学必修1教案最新人教版高一数学必修一教案(大全(优秀11篇)高中数学必修一教案全套篇一本节课力的合成,是在学生了解力的基本性质和常见几种力的基础上,通过等效替代思想,研究多个力的合成方法,是对前几节内容的深化。

本节重点介绍力的合成法则——平行四边形定则,但实际这是所有矢量运算的共同工具,为学习其他矢量的运算奠定了基础。

更重要的是,力的合成是解决力学问题的基础,对今后牛顿运动定律、平衡问题、动量与能量问题的理解和应用都会产生重要影响。

因此,这节课承前启后,在整个高中物理学习中占据着非常重要的地位。

二、教学目标定位为了让学生充分进行实验探究,体验获取知识的过程,本节内容分两课时来完成,今天我说课的内容为本节内容的第一课时。

根据上述教材分析,考虑到学生的实际情况,在本节课的教学过程中,我制定了如下教学目标:一、知识与技能.理解合力、分力、力的合成的概念。

理解力的合成本质上是从等效的角度进行力的替代。

.探究求合力的方法——力的平行四边形定则,会用平行四边形定则求合力。

二、过程与方法.通过学习合力和分力的概念,了解物理学常用的方法——等效替代法。

.通过实验探究方案的设计与实施,体验科学探究的过程。

三、情感态度与价值观.培养学生的合作精神,激发学生学习兴趣,形成良好的学习方法和习惯。

.培养认真细致、实事求是的实验态度。

根据以上分析确定本节课的重点与难点如下:一、重点.合力和分力的概念以及它们的关系。

.实验探究力的合成所遵循的法则。

二、难点平行四边形定则的理解和运用。

三、重、难点突破方法——教法简介本堂课的重、难点为实验探究力的合成所遵循的法则——平行四边形定则,为了实现重难点的突破,让学生真正理解平行四边形定则,就要让学生亲自体验规律获得的过程。

因此,本堂课在学法上采用学生自主探究的实验归纳法——通过重现获取知识和方法的思维过程,让学生亲自去体验、探究、归纳总结。

体现学生主体性。

实验归纳法的步骤如下。

高中数学人教版必修1(全部教案)

高中数学人教版必修1(全部教案)

1.1.1集合的含义与表示(第一课时)教学时间:2010年8月26日星期四教学班级:高一(11、12)班教学目标:1.理解集合的含义。

2.了解元素与集合的表示方法及相互关系。

3.熟记有关数集的专用符号。

4.培养学生认识事物的能力。

教学重点:集合含义教学难点:集合含义的理解教学方法:尝试指导法教学过程:引入问题(I)提出问题问题1:班级有20名男生,16名女生,问班级一共多少人?问题2:某次运动会上,班级有20人参加田赛,16人参加径赛,问一共多少人参加比赛?讨论问题:按小组讨论。

归纳总结:问题2已无法用学过的知识加以解释,这是与集合有关的问题,因此需用集合的语言加以描述(板书标题)。

复习问题问题3:在小学和初中我们学过哪些集合?(数集,点集)(如自然数的集合,有理数的集合,不等式的解的集合,到一个定点的距离等于定长的点的集合,到一条线段的两个端点距离相等的点的集合等等)。

(II)讲授新课通过以上实例,指出:(1)含义:一般地,我们把研究对象统称为元素(element),把一些元素组成的总体叫做集合(set)(简称为集)。

说明:在初中几何中,点,线,面都是原始的,不定义的概念,同样集合也是原始的,不定义的概念,只可描述,不可定义。

(2)表示方法:集合通常用大括号{ }或大写的拉丁字母A,B,C…表示,而元素用小写的拉丁字母a,b,c…表示。

问题4:由此上述例中集合的元素分别是什么?2. 集合元素的三个特征(1)确定性:设A是一个给定的集合,a是某一具体的对象,则a或者是A的元素,或者不是A的元素,两种情况必有一种而且只有一种成立。

如:“地球上的四大洋”(太平洋,大西洋,印度洋,北冰洋)“中国古代四大发明”(造纸,印刷,火药,指南针)可以构成集合,其元素具有确定性;而“比较大的数”,“平面点P周围的点”一般不构成集合元素与集合的关系:(元素与集合的关系有“属于”及“不属于两种) 若a是集合A中的元素,则称a属于集合A,记作aA;若a不是集合A的元素,则称a不属于集合A,记作aA。

高中数学必修一教案全套

高中数学必修一教案全套

高中数学必修一教案全套课程名称:高中数学必修一课时安排:共40课时教学目标:1. 熟练掌握代数式的化简和因式分解;2. 能够灵活运用一元一次方程及其解法;3. 熟练掌握二次函数的相关概念和性质;4. 熟练掌握直线和圆的相关知识;5. 能够解决数学题目并能灵活运用所学知识。

教学内容安排:第一课时:代数式的定义和基本性质- 理解代数式的定义- 掌握代数式的常见运算规则- 能够化简代数式第二课时:因式分解- 理解因式分解的概念- 熟练掌握因式分解的方法- 解决因式分解相关问题第三至十课时:一元一次方程- 了解一元一次方程的定义和性质- 熟练掌握一元一次方程的解法- 解决实际问题时如何建立一元一次方程第十一至二十课时:二次函数- 理解二次函数的定义和性质- 掌握二次函数的图像特征- 熟练掌握二次函数相关计算方法第二十一至三十课时:直线与圆- 了解直线的基本性质和方程- 掌握求直线的斜率和截距- 了解圆的定义和性质- 解决直线与圆相关问题第三十一至四十课时:综合习题训练和复习- 综合习题训练,巩固知识点- 复习已学知识,做好总结归纳- 解决难题,提高解题能力课堂教学形式:理论讲解、案例分析、练习与讨论、小组合作等形式。

教学评价方式:平时作业、课堂表现、期中期末考试成绩。

教学参考教材:《高中数学必修一》教学器材:教材、教具、黑板、白板、投影仪等。

教学方法:启发式教学法、讨论式教学法、案例教学法等。

教学流程:1. 激发学生兴趣,引入新知识;2. 介绍新知识概念及定义;3. 解释新知识的具体运用方法;4. 练习相关题目;5. 总结归纳;6. 布置作业,复习巩固。

教学建议:学生应注重理论学习,多练习相关题目,灵活运用所学知识解决实际问题,提高解题能力。

以上为高中数学必修一教案全套范本,具体教学内容和安排可根据实际情况进行调整。

祝教学顺利!。

人教版高一数学必修一教案优秀4篇

人教版高一数学必修一教案优秀4篇

人教版高一数学必修一教案优秀4篇人教版高一数学必修一教案篇一教学目标1.使学生掌握的概念,图象和性质。

(1)能根据定义判断形如什么样的函数是,了解对底数的限制条件的合理性,明确的定义域。

(2)能在基本性质的指导下,用列表描点法画出的图象,能从数形两方面认识的性质。

(3)能利用的性质比较某些幂形数的大小,会利用的图象画出形如的图象。

2.通过对的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法。

3.通过对的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣。

使学生善于从现实生活中数学的发现问题,解决问题。

教学建议教材分析(1)是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以应重点研究。

(2)本节的教学重点是在理解定义的基础上掌握的图象和性质。

难点是对底数在和时,函数值变化情况的区分。

(3)是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究。

教法建议(1)关于的定义按照课本上说法它是一种形式定义即解析式的特征必须是的样子,不能有一点差异,诸如,等都不是。

(2)对底数的限制条件的理解与认识也是认识的重要内容。

如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来。

关于图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象。

高中数学必修1教案人教版

高中数学必修1教案人教版

高中数学必修1教案人教版教材版本:人教版教学内容:函数教学目标:1. 理解函数的概念和特征,掌握函数的运算法则。

2. 能够用一次函数、二次函数和绝对值函数解决实际问题。

3. 能够应用函数的性质解决实际问题。

教学重点和难点:1. 函数的概念和特征。

2. 一次函数、二次函数和绝对值函数的性质。

3. 函数的应用问题。

教学准备:1. 教师准备教材《高中数学必修1》人教版。

2. 准备数学练习题和实际问题,以便学生练习和应用。

教学过程:第一节函数的概念和特征1. 引导学生讨论“函数”这一概念,并给出定义。

2. 介绍函数的自变量和因变量的概念,说明函数的性质。

3. 讲解函数的图像和函数的图形性质。

第二节函数的运算法则1. 教师讲解函数的四则运算规则,例如加减乘除。

2. 给出例题让学生进行练习。

3. 教师引导学生进行讨论,总结函数的运算规则。

第三节函数的应用问题1. 提供一些实际问题,让学生利用一次函数、二次函数和绝对值函数进行解决。

2. 学生进行讨论和解答,讲解解题方法。

3. 学生完成练习题和应用题。

第四节函数的性质1. 教师讲解函数的单调性、奇偶性、周期性等性质。

2. 学生进行讨论和练习。

3. 总结函数的性质及其应用。

教学反馈:1. 教师对学生的课堂表现和练习题做出评价和反馈。

2. 学生提出问题,教师进行解答和指导。

3. 鼓励学生在课后继续练习和应用。

教学反思:1. 总结此次教学的亮点和不足之处。

2. 探讨如何更好地引导学生理解和应用函数。

3. 调整教学策略,提高教学效果。

新人教版高中数学必修1教案全套

新人教版高中数学必修1教案全套

新人教版高中数学必修1教案全套1.1.1集合的含义与表示教学目的:要求学生初步理解集合的概念,理解元素与集合间的关系,掌握集合的表示法,知道常用数集及其记法. 教学重难点:1、元素与集合间的关系 2、集合的表示法教学过程:一、集合的概念实例引入:⑴ 1~20以内的所有质数;⑵ 我国从1991~2021的13年内所发射的所有人造卫星; ⑶ 金星汽车厂2021年生产的所有汽车;⑷ 2021年1月1日之前与我国建立外交关系的所有国家; ⑸ 所有的正方形;⑹ 黄图盛中学2021年9月入学的高一学生全体.结论:一般地,我们把研究对象统称为元素;把一些元素组成的总体叫做集合,也简称集.二、集合元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立.(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素. (3)无序性:一般不考虑元素之间的顺序,但在表示数列之类的特殊集合时,通常按照习惯的由小到大的数轴顺序书写练习:判断下列各组对象能否构成一个集合⑴ 2,3,4 ⑵ (2,3),(3,4)⑶ 三角形⑷ 2,4,6,8,?⑸ 1,2,(1,2),{1,2} ⑹我国的小河流⑺方程x2+4=0的所有实数解⑻好心的人⑼著名的数学家⑽方程x2+2x+1=0的解三、集合相等构成两个集合的元素一样,就称这两个集合相等四、集合元素与集合的关系集合元素与集合的关系用“属于”和“不属于”表示:(1)如果a是集合A的元素,就说a属于A,记作a∈A (2)如果a不是集合A的元素,就说a不属于A,记作a∈A 五、常用数集及其记法非负整数集(或自然数集),记作N;除0的非负整数集,也称正整数集,记作N*或N+;整数集,记作Z;有理数集,记作Q;实数集,记作R.练习:(1)已知集合M={a,b,c}中的三个元素可构成某一三角形的三条边,那么此三角形一定不是()A直角三角形 B 锐角三角形 C钝角三角形 D等腰三角形(2)说出集合{1,2}与集合{x=1,y=2}的异同点?六、集合的表示方式(1)列举法:把集合中的元素一一列举出来,写在大括号内;(2)描述法:用集合所含元素的共同特征表示的方法.(具体方法)例 1、用列举法表示下列集合:(1)小于10的所有自然数组成的集合;(2)方程x2=x的所有实数根组成的集合;(3)由1~20以内的所有质数组成。

新高中数学必修一教案

新高中数学必修一教案

新高中数学必修一教案
教学内容:线性代数的基本概念:线性方程组、矩阵、向量、线性相关性和线性无关性;线性代数的基本性质:线性组合、行列式、矩阵的运算、矩阵的逆、矩阵的转置和对角化等。

教学目标:通过本节课的学习,学生能够掌握线性代数的基本概念和性质,能够运用所学知识解决相关问题。

教学重点:线性方程组的解法、矩阵的运算、矩阵的逆的求法。

教学难点:矩阵的转置和对角化的概念及应用。

教学准备:教师准备PPT课件、黑板、彩色粉笔、教材、习题集等教学资源。

教学过程:
一、导入(5分钟)
教师通过提问引入线性代数的基本概念,引发学生思考,并激发他们的学习兴趣。

二、讲解与示例(20分钟)
1. 讲解线性方程组的基本概念和解法;
2. 讲解矩阵的基本概念和运算法则;
3. 讲解矩阵的逆的求法;
4. 通过例题演示以上知识点的应用。

三、练习与讨论(15分钟)
1. 学生自主练习相关习题,巩固所学知识;
2. 学生之间相互讨论,解决问题,并分享解题思路。

四、总结(5分钟)
教师总结本节课的重点内容,强调学生需要掌握的知识点,并鼓励学生在课后多加练习,巩固所学知识。

五、作业布置(5分钟)
布置相关作业,督促学生课后复习,并加强练习。

教学反思:
本节课主要介绍了线性代数的基本概念和性质,通过例题演示,加深了学生对相关知识点的理解。

在以后的教学中,可以适当增加实际应用案例的讲解,激发学生学习兴趣,提高他们对数学的学习热情。

2022高中数学必修一的优秀教案

2022高中数学必修一的优秀教案

有一种成立。

(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。

(3)集合相等:构成两个集合的元素完全一样
4. 元素与集合的关系;
(1)假如a是集合A的元素,就说a属于(belong to)A,记作
a∈A(2)假如a不是集合A的元素,就说a不属于(not belong to)A,记作a A(或a A)
5. 常用数集及其记法
非负整数集(或自然数集),记作N
正整数集,记作N_或N+;
整数集,记作Z
有理数集,记作Q
实数集,记作R
(二)集合的表示方法
我们可以用自然语言来描述一个集合,但这将给我们带来许多不便,除此之外还常用列举法和描述法来表示集合。

(1) 列举法:把集合中的元素一一列举出来,写在大括号内。

如:{1,2,3,4,5},{_2,3_+2,5y3-_,_2+y2},…;
思索2,引入描述法
说明:集合中的元素具有无序性,所以用列举法表示集合时。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

备课资料[备选例题]【例1】判断下列集合是有限集还是无限集,并用适当的方法表示:(1)被3除余1的自然数组成的集合;(2)由所有小于20的既是奇数又是质数的正整数组成的集合;(3)二次函数y=x 2+2x-10的图象上的所有点组成的集合;(4)设a 、b 是非零实数,求y=||||||ab ab b b a a ++的所有值组成的集合. 思路分析:本题主要考查集合的表示法和集合的分类.用列举法与描述法表示集合时,一要分清元素是什么,二要明确元素满足的条件是什么.解:(1)被3除余1的自然数有无数个,这些自然数可以表示为3n+1(n ∈N ).用描述法表示为{x|x=3n+1,n ∈N }.(2)由题意得满足条件的正整数有:3,5,7,11,13,17,19.则此集合中的元素有7个,用列举法表示为{3,5,7,11,13,17,19}.(3)满足条件的点有无数个,则此集合中有无数个元素,可用描述法来表示.通常用有序数对(x,y)表示点,那么满足条件的点组成的集合表示为{(x,y)|y=x 2+2x-10}.(4)当ab<0时,y=||||||ab ab b b a a ++=-1;当ab>0时,则a>0,b>0或a<0,b<0. 若a>0,b>0,则有y=||||||ab ab b b a a ++=3;若a<0,b<0,则有y=||||||ab ab b b a a ++=-1. ∴y=||||||ab ab b b a a ++的所有值组成的集合共有两个元素-1和3.则用列举法表示为{-1,3}. 【例2】定义A-B={x|x ∈A,x ∉B},若M={1,2,3,4,5},N={2,3,6},试用列举法表示集合N-M. 分析:应用集合A-B={x|x ∈A,x ∉B}与集合A 、B 的关系来解决.依据定义知N-M 就是集合N 中除去集合M 和集合N 的公共元素组成的集合.观察集合M 、N,它们的公共元素是2,3.集合N 中除去元素2,3还剩下元素6,则N-M={6}.答案:{6}.(设计者:张新军)设计方案(二)教学过程导入新课思路1.在初中代数不等式的解法一节中提到:一般地,一个含有未知数的不等式的所有的解,组成这个不等式的解的集合,简称这个不等式的解集.不等式解集的定义中涉及到“集合”,那么,集合的含义是什么呢?这就是我们这一堂课所要学习的内容.今天我们开始学习集合,引出课题.思路2.开场白:集合是现代数学的基本语言,它可以简洁、准确地表达数学内容.这个词听起来比较陌生,其实在初中我们已经有所接触,比如自然数集、有理数集,一元一次不等式x-3>5的解集,这些都是集合.还有,我们学过的圆的定义是什么?(提问学生)圆是到一个定点的距离等于定长的点的集合.接着点出课题.推进新课新知探究提出问题教师利用多媒体设备向学生投影出下面实例,这5个实例的共同特征是什么?(1)1~20以内的所有质数;(2)我国古代的四大发明;(3)所有的安理会常任理事国;(4)所有的正方形;(5)北京大学2004年9月入学的全体学生.活动:教师组织学生分小组讨论,每个小组选出一位同学发表本组的讨论结果,在此基础上,师生共同概括出5个实例的特征,并给出集合的含义.引导过程:①一般地,指定的某些对象的全体称为集合(简称为集),集合中的每个对象叫做这个集合的元素.②集合常用大写字母A,B,C,D,…表示,元素常用小写字母a,b,c,d,…表示.③集合的表示法:a.自然语言(5个实例);b.字母表示法.④集合元素的性质:a.确定性:即任给一个元素和一个集合,那么这个元素和这个集合的关系只有两种:这个元素要么属于这个集合,要么不属于这个集合;b.互异性:一个给定集合的元素是互不相同的,即集合中的元素是不重复出现的;c.无序性:集合中的元素是没有顺序的.⑤集合相等:如果两个集合中的元素完全相同,那么这两个集合是相等的.⑥元素与集合的关系:“属于”和“不属于”分别用“∈”和“∉”表示.元素确定性的符号语言表述为:对任意元素a和集合A,要么a∈A,要么a∉A.⑦在初中我们学过了一些数的集合,国际标准化组织(ISO)制定了常用数集的记法:自然数集(包含零):N,正整数集:N*(N+),整数集:Z,有理数集:Q,实数集:R.因此字母N、Z、Q、R不能再表示其他的集合,否则会出现混乱的局面.提出问题(1)请列举出“小于5的所有自然数组成的集合A”.(2)你能写出不等式2-x>3的所有解吗?怎样表示这个不等式的解集?活动:学生回答后,教师指出:①在数学中,为书写规范,我们把封闭曲线简化为一个大括号,然后把元素一一列举出来,元素与元素之间用逗号隔开写在大括号内来表示这个集合.这种表示集合的方法称为列举法.如本例可表示为A={0,1,2,3,4}.②描述法:将集合的所有元素都具有的性质(满足的条件)表示出来,写成{x|p(x)}的形式.其中x 为元素的一般特征,p(x)为x满足的条件.如数集常用{x|p(x)}表示,点集常用{(x,y)|p(x,y)}表示. 应用示例思路11.课本第3页例1.思路分析:用相应的数学知识明确集合中的元素,再写在大括号内.点评:本题主要考查集合表示法中的列举法.如果一个集合是有限集,并且元素的个数较少时,通常选择列举法表示,其特点是非常显明地表示出了集合中的元素,是常用的表示法;列举法表示集合的步骤:(1)用字母表示集合;(2)明确集合中的元素;(3)把集合中所有元素写在大括号“{}”内,并写成A={……}的形式.变式训练请试一试用列举法表示下列集合:(1)A={x ∈N |且x-99∈N }; (2)B={y|y=-x 2+6,x ∈N ,y ∈N };(3)C={(x,y)|y=-x 2+6,x ∈N ,y ∈N }.分析:本题考查列举法与描述法的相互转化.明确各个集合中的元素后再写在大括号内.(1)集合A 中元素x 满足x-99均为自然数; (2)集合B 中y 值为函数y=-x 2+6的函数值的集合;(3)集合C 中元素为点,抛物线上横、纵坐标均为自然数的点.答案:(1)A={0,6,8};(2)B={2,5,6};(3)C={(0,6),(1,5),(2,2)}.2.课本第4页例2.思路分析:本题重点学习用描述法表示集合.用一个小写英文字母表示集合中的元素,作为集合中元素的代表符号,找到集合中元素的共同特征,并把共同特征用数学符号来表达,然后写在大括号“{}”内.点评:本题主要考查集合的表示方法,以及应用知识解决问题的能力;描述法表示集合的步骤:(1)用字母分别表示集合和元素,(2)用数学符号表达集合元素的共同特征;(3)在大括号内先写上集合中元素的代表符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.并写成A={…|…}的形式;描述法适合表示有无数个元素的集合,当集合中的元素个数较少时,通常用列举法表示.变式训练课本P 5练习2.思路21.下列所给对象不能构成集合的是( )A.一个平面内的所有点B.所有大于零的正数C.某校高一(4)班的高个子学生D.某一天到商场买过货物的顾客思路分析:本题考查集合中元素的确定性.由集合的含义,可知组成集合的元素必须是明确的,不能模棱两可.在A 中对于任何一个点要么在这个平面内,要么不在这个平面内,因而它可以组成一个集合;在B 中由于大于零的正数很明确,因此B 也能组成一个集合;C 中由于“高个子”没有一个确定的标准,因而不能判定一个学生到底是不是高个子,故它不能组成集合;而D 中对于任何一个顾客在这一天是否到过某商场,以及是否买过货物是非常明确的,因此它也能组成一个集合.答案:C变式训练下列各组对象中不能构成集合的是( )A.高一(1)班全体女生B.高一(1)班全体学生家长C.高一(1)班开设的所有课程D.高一(1)班身高较高的男同学分析:判断所给对象能否构成集合的问题,只需根据构成集合的条件,即集合中元素的确定性便可以解决.因为A 、B 、C 中所给对象都是确定的,从而可以构成集合;而D 中所给对象不确定,原因是找不到衡量学生身高较高的标准,故不能构成集合.若将D 中“身高较高的男同学”改为“身高175 cm 以上的男同学”,则能构成集合.答案:D2.用另一种形式表示下列集合:(1){绝对值不大于3的整数};(2){所有被3整除的数};(3){x|x=|x|,x ∈Z 且x<5};(4){x|(3x-5)(x+2)(x 2+3)=0,x ∈Z };(5){(x,y)|x+y=6,x>0,y>0,x ∈Z ,y ∈Z }.思路分析:用列举法与描述法表示集合时,一要分清元素是什么,二要明确元素满足的条件是什么.答案:(1){绝对值不大于3的整数}还可以表示为{x||x|≤3,x ∈Z },也可表示为{-3,-2,-1,0,1,2,3}.(2){x|x=3n,n ∈Z }.(3)∵x=|x|,∴x≥0.又∵x ∈Z 且x<5,∴{x|x=|x|,x ∈Z 且x<5}还可以表示为{0,1,2,3,4}.(4){-2}.(5){(1,5),(2,4),(3,3),(4,2),(5,1)}.变式训练用适当的形式表示下列集合:(1)绝对值不大于3的整数组成的集合;(2)所有被3整除的数组成的集合;(3)方程(3x-5)(x+2)(x 2+3)=0实数解组成的集合;(4)一次函数y=x+6图象上所有点组成的集合.分析:元素较少的有限集宜采用列举法;对无限集或元素较多的有限集宜采用描述法. 答案:(1){x||x|≤3,x ∈Z }或{-3,-2,-1,0,1,2,3};(2){x|x=3n,n ∈Z }; (3){35,-2}; (4){(x,y)|y=x+6}.3.已知集合A={x|ax 2-3x+2=0,a ∈R},若A 中至少有一个元素,求a 的取值范围.思路分析:对于方程ax 2-3x+2=0,a ∈R 的解,要看这个方程左边的x 2的系数,a=0和a≠0方程的根的情况是不一样的,则集合A 的元素也不相同,所以首先要分类讨论.解:当a=0时,原方程为-3x+2=0⇒x=32,符合题意; 当a≠0时,方程ax 2-3x+2=0为一元二次方程,则⎩⎨⎧≥-≠.089,0a a 解得a≠0且a≤89. 综上所得a 的取值范围是{a|a≤89}. 4.用适当的方法表示下列集合:(1)方程组⎩⎨⎧=+=82y 3x 14,3y -2x 的解集;(2)1000以内被3除余2的正整数所组成的集合;(3)直角坐标平面上在第二象限内的点所组成的集合;(4)所有正方形;(5)直角坐标平面上在直线x=1和x=-1的两侧的点所组成的集合.分析:本题考查集合的表示方法.所谓适当的表示方法,就是较简单、较明了的表示方法.由于方程组⎩⎨⎧=+=82y 3x 14,3y -2x 的解为x=4,y=-2.故(1)宜用列举法;(2)中尽管是有限集,但由于它的元素个数较多,所以用列举法表示是不明智的,故用描述法;(3)和(5)也宜用描述法;而(4)则宜用列举法为好.解:(1){(4,-2)};(2){x|x=3k+2,k ∈N 且x<1000};(3){(x,y)|x<0且y>0};(4){正方形};(5){(x,y)|x<-1或x>1}.知能训练课本P 5练习1、2.拓展提升1.已知A={x ∈R |x=abcabc bc bc ac ac ab ab c c b b a a ||||||||||||||++++++,abc≠0},用列举法表示集合A.分析:解决本题的关键是去掉绝对值符号,需分类讨论.解:题目中x 的取值取决于a 、b 、c 的正负情况,可分成以下几种情况讨论:(1)a 、b 、c 全为正时,x=7;(2)a 、b 、c 两正一负时,x=-1;(3)a 、b 、c 一正两负时,x=-1;(4)a 、b 、c 全为负时,x=-1.∴A={7,-1}.注意:(2)、(3)中又包括多种情况(a 、b 、c 各自的正负情况),解题时应考虑全面.2.已知集合C={x|x=a+b,a ∈A,b ∈B}.(1)若A={0,1,2,3},B={6,7,8,9},求集合C 中所有元素之和S;(2)若A={0,1,2,3,4,…,2 005},B={5,6,7,8,9},试用代数式表示出集合C 中所有元素之和S;(3)联系高斯求S=1+2+3+4+…+99+100的方法,试求出(2)中的S.思路分析:先用列举法写出集合C,然后解决各个小题.答案:(1)列举法表示集合C={6,7,8,9,10,11,12},进而易求得S=6+7+8+9+10+11+12=63.(2)列举法表示集合C={5,6,7,…,2 013,2 014},由此可得S=5+6+7+…+2 013+2 014.(3)高斯求S=1+2+3+4+…+99+100时,利用1+100=2+99=3+98=…=50+51=101,进而得S=1+2+3+4+…+99+100=101×50=5 050.本题(2)中S=5+6+7+…+2 013+2 014=2 019×1 005=2 029 095.课堂小结在师生互动中,让学生了解或体会下列问题:(1)本节课我们学习过哪些知识内容?(2)你认为学习集合有什么意义?(3)选择集合的表示法时应注意些什么?设计感想本节课是集合的起始课,采用教师启发引导,学生探究学习的教学方法,通过创设情境,引导探究,师生交流,最终形成概念,获得方法.作业1.课本P11习题1.1A组4.2.元素与集合的关系有多少种?如何表示?类似地集合与集合间的关系又有多少种呢?如何表示?请同学们通过预习课本来解答.(设计者:韩双影)模块纵览课标要求1.知识与技能认识和理解集合、映射、函数、幂函数、指数函数、对数函数等概念,认识和理解它们的有关性质和运算.具有一定的把函数应用于实际的能力.2.过程与方法通过背景的给出,通过经历、体验和实践探索过程的展现,通过数学思想方法的渗透,让学生体会过程的重要,并在过程中学习知识,同时领会一定的数学思想和方法.3.情感、态度与价值观教育的根本目的是育人.通过对本模块内容的教学,使学生在学习和运用知识的过程中提高对数学学习的兴趣,并在初中函数的学习基础上,对数学有更深刻的感受,提高说理、批判和质疑精神,形成锲而不舍追求真理的科学态度和习惯,树立良好的情感态度和价值观.内容概述本模块共三章:第一章集合与函数概念;第二章基本初等函数(Ⅰ);第三章函数的应用.本模块为了用集合与对应的语言刻画函数概念,先在第一章给出集合的有关概念、表示、关系和运算等;然后从函数实例出发深化函数概念及其表示,并研究映射概念;进而又给出了函数的性质:单调性、最值、奇偶性,这也是对函数的深化;接下来再回到特殊的函数——几个基本初等函数,继续认识函数,本模块重点涉及了指数函数、对数函数、幂函数;最后专门给出了函数在数学和实际中的一些应用实例,使函数的价值得到体现,也是进一步巩固函数的概念,更加强了数学应用.概括地说,本模块的核心内容是“函数”.函数是描述现实世界最重要、最常用的数学模型,是贯穿整个高中数学的纽带,是学生进一步学习的准备,是未来公民的必需,因此,整个模块以函数作为中心,以函数思想作为指导思想.本模块无论是数还是形都用函数观点来研究,研究它们的变化及其规律.对方程的认识和研究,也是从函数出发,把它与两个函数相结合,把它的解看成两个函数图象的交点的横坐标.这里把函数作为整体来认识,方程则被看成是包含于函数的局部.教学建议教师,对数学应该有自己深入的想法,只有教师深入了才能有教学的浅出;教师,对于教学也应该有自己的想法,唯其有自己的想法,才能发挥自己的特长,教出具有独到想法的学生.1.抓住核心,重点突破由于函数是本模块的重点和核心,因此教师要重视函数的教学,向学生贯彻函数的数学思想,逐步让学生掌握学会函数,更会用函数的思想去解决数学和实际问题.函数概念的教学要从实际背景和定义两个方面帮助学生理解函数的本质,教学中可引导学生联系生活常识,尝试列举具体函数,构建函数的一般定义.要注意:①构成函数的要素和相同函数的含义,②函数的三种表示法的联系、区别与适用性,③分段函数的意义,④映射的概念和判断.教学中应强调对函数概念本质的理解,在求函数定义域、值域时,要控制难度.2.用课本教,而非教课本《普通高中数学课程标准》是在《基础教育课程改革纲要(试行)》的指导下编写的,是数学学科教育目标的具体化,体现数学学科对学生最起码的要求,是编制高考大纲的依据,是数学教学和培养学生数学素质的主要依据,具有指导性.《普通高中数学课程标准》的目标是包含“双基”在内的三维发展目标:知识与技能,过程与方法,情感、态度与价值观.在这种教学过程中,课本仅仅是一种学习工具,是课程标准的具体化,课本内容仅仅是帮助学生实现三维发展目标的一种载体,并不要求学生将课本内容全部掌握.由于高中数学课本版本的多样化,高考数学只能依据高中数学课程标准而不是某个版本的课本来命题.因此在处理新课标课本时,首先要考虑高中数学课程标准的培养目标和具体要求.就课本来说,版本不同,对课程标准的理解就有不同,其处理的方式也就不同,因此,在教学中,要深入钻研课程标准、课本、学生,找准三者的连接点.这样在新课程改革的形势下,课本仅仅是教学的素材,在教学过程中,以课本为依托,把课本当作指导教学的素材和蓝本,创造性地使用、改造课本,最终突破课本,即变“教课本”为“用课本教”,树立“用课本教”的课本观.同时这也要求提醒学生,不要把课本看得过于神圣.3.把学生当成学习的主人独立自主地思考是学习数学的需要,但是合作交流更不能少.在课堂上,教师尽量不要大包大揽,以先知先觉出现,把结论告诉学生,而是推出判断,引导学生独立思考,并在此基础上进行合作和交流,努力实现师生的互动,这是课标的要求也是时代发展的必然.4.强调应用,突出提出、分析和解决问题的能力数学是美的,这正是数学使人兴趣盎然、乐此不疲之处.数学的美,有两个方面:一是其中的思维之美,内在的逻辑和运用逻辑的机智,外在的形式,莫不充满着思维之美;另一方面则是它的作用,它在方方面面的应用.新课标要求强化数学应用,在应用中,应该特别重视实践能力和创造能力的培养;在教学中,要重视动手和一题多解的能力.第一章集合与函数概念本章教材分析通过本章的学习,使学生会使用最基本的集合语言表示有关的数学对象,并能在自然语言、图形语言、集合语言之间进行转换,体会用集合语言表达数学内容的简洁性、准确性,帮助学生学会用集合语言描述数学对象,发展学生运用数学语言进行交流的能力.通过本章的学习,使学生不仅把函数看成变量之间的依赖关系,同时还会用集合与对应的语言刻画函数,为后续学习奠定基础.函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重要数学模型来学习,强调结合实际问题,使学生感受运用函数概念建立模型的过程与方法,从而发展学生对变量数学的认识,培养学生的抽象概括能力,增强学生应用数学的意识.课本力求紧密结合学生的生活经验和已有数学知识,通过列举丰富的实例,强调从实例出发,让学生对集合和函数概念有充分的感性认知基础,再用集合与对应语言抽象出函数概念.课本突出了集合和函数概念的背景教学,这样比较符合学生的认识规律.教学中要高度重视数学概念的背景教学.课本尽量创设使学生运用集合语言和数学符号进行表达和交流的情境和机会,并注意运用Venn图表达集合的关系及运算,用图象表示函数,帮助学生借助直观图示认识抽象概念.课本在例题、习题的教学中注重运用集合和函数的观点研究、处理数学问题,这一观点,一直贯穿到以后的数学学习中.在例题和习题的编排中,渗透了分类讨论思想,让学生体会到分类讨论思想在生活中和数学中的广泛运用,这是学生在初中阶段所缺少的.函数的表示是本章的主要内容之一,课本重视采用不同的表示法(列表法、图象法、分析法),目的是丰富学生对函数的认识,帮助理解抽象的函数概念.在教学中,既要充分发挥图象的直观作用,又要适当地引导学生从代数的角度研究图象,使学生深刻体会数形结合这一重要数学方法.课本将函数推广到了映射,体现了由特殊到一般的思维规律,有利于学生对函数概念学习的连续性.在教学中,要坚持循序渐进,逐步渗透数形结合、分类讨论这方面的训练.对函数的三要素着重从函数的实质上要求理解,而对定义域、值域的繁难计算,特别是人为的过于技巧化的训练不作提倡,要准确把握这方面的要求,防止拔高教学.重视函数与信息技术整合的要求,通过电脑绘制简单函数动态图象,使学生初步感受到信息技术在函数学习中的重要作用.为了体现课本的选择性,在练习题安排上加大了弹性,教师应根据学生实际情况,合理地取舍.1.1.1 集合的含义与表示整体设计教学分析集合论是现代数学的一个重要的基础.在高中数学中,集合的初步知识与其他内容有着密切的联系,是学习、掌握和使用数学语言的基础.课本从学生熟悉的集合(自然数的集合、有理数的集合等)出发,结合实例给出元素、集合的含义,课本注重体现逻辑思考的方法,如抽象、概括等.值得注意的问题:由于本小节的新概念、新符号较多,建议教学时先引导学生阅读课本,然后进行交流,让学生在阅读与交流中理解概念并熟悉新符号的使用.在信息技术条件较好的学校,可以利用网络平台让学生交流学习概念后的认识;也可以由教师给出问题,让学生读后回答问题,再由教师给出评价.这样做的目的是培养学生主动学习的习惯,提高阅读与理解、合作与交流的能力.在处理集合问题时,根据需要,及时提示学生运用集合语言进行表述.三维目标1.通过实例了解集合的含义,体会元素与集合的“属于”关系,能选择集合不同的语言形式描述具体的问题,提高语言转换和抽象概括能力,树立用集合语言表示数学内容的意识.2.了解集合元素的确定性、互异性、无序性,掌握常用数集及其专用符号,并能够用其解决有关问题,提高学生分析问题和解决问题的能力,培养学生的应用意识.重点难点教学重点:集合的基本概念与表示方法.教学难点:选择恰当的方法表示一些简单的集合.课时安排1课时设计方案(一)教学过程导入新课思路1.军训前学校通知:8月15日8点,高一年级学生到操场集合进行军训.试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合.思路2.首先教师提出问题:在初中,我们已经接触过一些集合,你能举出一些集合的例子吗?引导学生回忆、举例和互相交流自己举的例子.与此同时,教师对学生的活动给予评价.接着教师指出:那么,集合的含义是什么呢?这就是我们这一堂课所要学习的内容.推进新课新知探究提出问题①请我们班的全体女生起立!接下来问:“咱班的所有女生能不能构成一个集合啊?”②下面请班上身高在1.75以上的男生起立!他们能不能构成一个集合啊?③其实,生活中有很多东西能构成集合,比如新华字典里所有的汉字可以构成一个集合等等.那么,大家能不能再举出一些生活中的实际例子呢?请你给出集合的含义.④如果用A表示高一(3)班全体学生组成的集合,用a表示高一(3)班的一位同学,b是高一(4)班的一位同学,那么a、b与集合A分别有什么关系?由此看见元素与集合之间有什么关系?⑤世界上最高的山能不能构成一个集合?⑥世界上的高山能不能构成一个集合?⑦问题⑥说明集合中的元素具有什么性质?⑧由实数1、2、3、1组成的集合有几个元素?⑨问题⑧说明集合中的元素具有什么性质?⑩由实数1、2、3组成的集合记为M,由实数3、1、2组成的集合记为N,这两个集合中的元素相同吗?这说明集合中的元素具有什么性质?由此类比实数相等,你发现集合有什么结论?讨论结果:①能.②能.③我们把研究的对象统称为“元素”,那么把一些元素组成的总体叫“集合”.④a是集合A的元素,b不是集合A的元素.学生得出元素与集合的关系有两种:属于和不属于.⑤能,是珠穆朗玛峰.⑥不能.⑦确定性.给定的集合,它的元素必须是明确的,即任何一个元素要么在这个集合中,要么不在这个集合中,这就是集合的确定性.⑧3个.⑨互异性.一个给定集合的元素是互不相同的,即集合中的元素是不重复出现的,这就是集合的互异性.⑩集合M和N相同.这说明集合中的元素具有无序性,即集合中的元素是没有顺序的.可以发现:如果两个集合中的元素完全相同,那么这两个集合是相等的.提出问题阅读课本P3中:数学中一些常用的数集及其记法.快速写出常见数集的记号.活动:先让学生阅读课本,教师指定学生展示结果.学生写出常用数集的记号后,教师强调:通常情况下,大写的英文字母N、Z、Q、R不能再表示其他的集合,这是专用集合表示符号,类似于110、119等专用电话号码一样.以后,我们会经常用到这些常见的数集,要求熟练掌握.讨论结果:常见数集的专用符号.N:非负整数集(或自然数集)(全体非负整数的集合);。

相关文档
最新文档