高中数学必修1课件全册
2024版完整版高中数学必修一全册课件

完整版高中数学必修一全册课件目录•高中数学必修一概述•集合与函数概念•基本初等函数(Ⅰ)•函数的应用•空间几何体•点、直线、平面之间的位置关系01高中数学必修一概述包括集合的基本概念、集合间的关系与运算、函数的概念与性质等。
集合与函数概念包括指数函数、对数函数、幂函数等基本初等函数的图像与性质。
基本初等函数包括函数与方程、函数模型及其应用等,通过实例探究函数的性质与应用。
函数的应用教材内容与结构过程与方法通过观察、思考、探究、归纳等活动,培养学生的数学思维能力、创新能力和解决问题的能力。
知识与技能掌握集合与函数的基本概念,理解基本初等函数的图像与性质,能够运用函数知识解决一些实际问题。
情感态度与价值观激发学生学习数学的兴趣和热情,培养学生的数学素养和审美情趣。
教学目标与要求总结归纳定期对所学知识进行总结归纳,形成知识网络,便于记忆和提取。
通过大量的练习,熟练掌握解题方法和技巧,提高解题速度和准确性。
课后复习及时复习巩固所学知识,独立完成作业和练习题,加深对知识点的理解和记忆。
课前预习提前阅读教材,了解本节课的知识点和重点难点,为听课做好准备。
课中听讲认真听讲,积极思考,及时记录重要知识点和解题方法。
学习方法与建议02集合与函数概念03元素与集合的关系属于、不属于。
01集合的概念集合是由一个或多个确定的元素所构成的整体。
02集合的表示方法列举法、描述法、图像法。
集合及其表示方法集合之间的关系与运算集合之间的关系子集、真子集、相等。
集合的运算并集、交集、补集。
集合运算的性质交换律、结合律、分配律等。
函数是一种特殊的对应关系,它使得每个自变量对应唯一的因变量。
函数的概念函数的表示方法函数的三要素解析法、列表法、图像法。
定义域、值域、对应法则。
030201函数及其表示方法1 2 3单调性、奇偶性、周期性等。
函数的性质解决实际问题,如最优化问题、数学建模等。
函数的应用通过函数可以研究方程和不等式的解的性质和范围。
高中数学必修一必修1全章节ppt课件幻灯片

(2)方程x2+2x+1=0的解集中有两个元素. (3)组成单词china的字母组成一个集合.
【解题探究】 1.集合中的元素有哪些特性? 2.集合中的元素能重复吗?
探究提示: 1.集合中的元素有三个特性,即确定性、互异性和无序性. 2.构成集合的元素必须是不相同的,即集合元素具有互异性, 相同的元素只能算作一个. 【解析】1.①不正确.因为成绩较好没有明确的标准. ②正确.中国海洋大学2013级大一新生是确定的,明确的. ③正确.因为参加2012年伦敦奥运会的所有国家是确定的, 明确的. ④不正确.因为高科技产品的标准不确定. 答案:②③
(3)无序性:集合与其中元素的排列顺序无关,如由元素a,b, c与由元素b,a,c组成的集合是相等的集合.这个性质通常 用来判断两个集合的关系.
3.元素和集合之间的关系 (1)根据集合中元素的确定性可知,对任何元素a和集合A,在 a∈A和a∉A两种情况中有且只有一种成立. (2)符号“∈”和“∉”只是表示元素与集合之间的关系. 4.对一些常用的数集及其记法要关注的两点
第一章 集合与函数概念 1.1 集合
1.1.1 集合的含义与表示 第1课时 集合的含义
一、元素与集合 1.定义: (1)元素:一般地,把所研究的_对__象_统称为元素,常用小写的 拉丁字母a,b,c,…表示. (2)集合:一些元素组成的总体,简称为_集_,常用大写拉丁字 母A,B,C,…表示. 2.集合相等:指构成两个集合的元素是_一__样_的. 3.集合中元素的特性:_确__定__性_、_互_异__性__和_无__序__性__.
类型 一 集合的判定
【典型例题】
1.下列说法中正确的序号是
.
①高一(四)班学习成绩较好的同学组成一个集合;
高中数学(新人教A版)必修第一册:集合的基本运算【精品课件】

的交集仍存在,此时A∩B=∅.
(三)交集
【做一做】
【探究2】
已知集合A={0,2},B={-2,-1,0,1,2},
则A∩B=(
)
A.{0,2}
C.{0}
B.{1,2}
D.{-2,-1,0,1,2}
交集的性质:
[答案]
A
①A∩B=B∩A;②A∩A=A;
③A∩∅=∅; ④若A⊆B,则A∩B=A;
(四)集合的交并运算
【巩固练习1】
(1) 已知集合A={x|(x-1)(x+2)=0},B={x|(x+2)(x-3)=0},则集合A∪B是(
A.{-1,2,3}
B.{-1,-2,3}
C.{1,-2,3}
D.{1,-2,-3}
(2) 若集合A={x|-2≤x<3},B={x|0≤x<4},则A∪B=________.
⑤(A∩B)⊆A;(A∩B)⊆B.
(四)集合的交并运算
1.集合的并集运算
例1.
(1)设集合M={x| 2 +2x=0,x∈R},N={x| 2 -2x=0,x∈R},则M∪N=(
A.{0}
B.{0,2} C.{-2,0} D.{-2,0,2}
(2)已知A={x|x≤-2,或x>5},B={x|1<x≤7},求A∪B。
(2)在解决问题时,用到了哪些数学思想?
第一章 集合与常用逻辑用语
1.3 集合的基本运算(第2课时)
教材分析
本小节内容选自:
《普通高中数学必修第一册》
人教A版(2019)
第一课时
课时内容
集合的并集、交集运算
集合的补集、综合运算
所在位置
教材第10页
人教版高中数学必修1全套PPT课件

并集交集例题
例1.设集合A={x|-1<x<2},B={x|1<x<3}, 求AUB.A∩B
解:A B {x | 1 x 2}{x |1 x 3} x | 1 x 3
A B {x1 x 2}
可以在数轴上表示例2中的并集 交集,如 下图:
例3. 已知集合A={x -2≤x≤4},B={x x>a} ①若A∩B=φ,求实数a的取值范围; ②若A∩B=A,求实数a的取值范围.
-2 -1 0
1
234
x
-2 -1 0
1
234
x
引导探究二
并集性质
①A∪A= A ; ②A∪= A ;
③A∪B=A A____B
交集性质
①AA= A ; ②A= ;
当堂诊学
一、完成课本P7页练习2、3 二、完成选做题
选做题1. 已知集合A={x|-2≤x≤7},B={x|m+1<
x<2m-1},若B⊆A,求实数m的取值范围.
分析:若B⊆A,则B=Ø或B≠Ø,故分两种情况讨论.
解:当B=Ø时,有m+1≥2m-1,得m≤2,
当B≠Ø 时,有
m+1≥-2,
2m-1≤7, 解得 2<m≤4.
m+1<2m-1,
综上:m≤4.
强化补清
• 一、课本P12页A组5 • 二、完全解读P16、17页习题
课题导入
考察下列各个集合,你能说出集合C与集合A,B 之间的关系吗? (1) A={1,3,5}, B={2,4,6} ,C={1,2,3,4,5,6}
(2) A={x|x是有理数},B={x|x是无理数}, C={x|x是实数}.
2024年度人教版高中数学必修1全套课件

2024/3/23
25
从第二项起,每一项与它的前一项的比等于同一个常数的一种数列。
2024/3/23
等差数列与等比数列的通项公式及求和公式
等差数列的通项公式为an=a1+(n-1)d,求和公式为Sn=n/2(a1+an);等比数列的通项公式为 an=a1q^(n-1),求和公式根据q的不同取值有不同的形式。
24
THANKS
通过综合问题,进一步理解函数与方程的 联系,掌握运用函数与方程的思想解决实 际问题的方法。
2024/3/23
13
04
三角函数与解三角形
2024/3/23
14
任意角和弧度制及任意角的三角函数
01
任意角的概念和分类
2024/3/23
02
03
04
弧度制与角度制的互化
任意角的三角函数定义及性质
三角函数在各象限的符号规律
15
三角函数的图象和性质
正弦函数、余弦函数的图象和性质 三角函数的周期性、奇偶性、单调性等性质
正切函数、余切函数的图象和性质 三角函数的最值问题
2024/3/23
16
三角恒等变换
两角和与差的正弦、余弦 公式
2024/3/23
半角公式及其应用
二倍角公式及其应用
积化和差与和差化积公式
17
解三角形及其应用举例
21
平面向量的数量积及应用举例
01
02
03
数量积的定义
两个向量的数量积是一个 数量,记作a·b,满足 a·b=|a||b|cosθ,其中θ为 两向量的夹角。
2024/3/23
数量积的性质
满足交换律、分配律等性 质。
高中数学必修一整册全套课件(共40个课件) 人教课标版32

3
让学生复述本节课的历程:从实际背景 出发,通过实例的探究归纳出二分法的思想, 进而建构出具体的算法程序,并经过操作加 以巩固,对本节课学习的内容、知识的生长 过程,研究问题的方法与思想进行反思与总 结。 这是一个知识技能内化的过程,能逐步 促进学生形成正确的数学观,培养学生严谨 的学习作风,进一步树立科学的人生观、价 值观。
【教学目标】 1.能够借助计算器用二分法求 方程的近似解 2.理解二分法求方程近似解 的实质。 3、了解逼近思想,体验并理解函 数方程的相互转化的数学思想方法。
【教学重点】用二分法求方程近似解的 一般步骤;能够借助计算器用二分法求 方程的近似解。 【教学难点】对用二分法求方程近似解 的实质的理解。
教材首先以学生熟悉的一元二次方程 为例对用二分法求方程的近似解作了详细 的介绍,并进一步拓展到其它简单方程, 使学生体会函数与方程之间的关系,初步 形成用函数观点处理问题的能力和意识。
本节课内容属于高中数学新增内容, 既是函数与方程联系的桥梁;也是中等数 学与高等数学联系的一根纽带;同时是学 习一种思维方式,其中渗透了逼近思想和 算法思想,以及从具体到抽象的认识规律, 体现了新课程的理念。也是今后高考的重 要内容,值得关注!
让学生试着归纳、猜想得到
求方程近似解的大体思路为:
第一步:确定根的大致范围即求隔离区间; 第二步 :以根的隔离区间的端点作为根的初 始近似值; 然后,逐步改善根的近似值的精度,直至求 得满足精确度要求的近似解。
1.
因此, 给定精确度 ,用 二分法求方程 解近似值 f (x) 0 的步骤如下: f( a ) f( b ) 0
教学中,我创设情境,充分激发学生探 索新知的欲望,此过程中充分发挥他们的自 主探索能力。
高中数学必修一课件全册课件(2024)

2024/1/28
1
目录
2024/1/28
• 集合与函数概念 • 基本初等函数(Ⅰ) • 函数的应用 • 空间几何体 • 点、直线、平面之间的位置关系
2
01
集合与函数概念
2024/1/28
3
集合的含义与表示
01 集合的概念
集合是由一个或多个确定的元素所构成的整体。
02 集合的表示方法
01 中心投影与平行投影
02 三视图的形成及其投影规律 02 由三视图还原成实物图
2024/1/28
22
空间几何体的表面积与体积
柱体、锥体、台体的表面 积与体积
空间几何体的表面积和体 积的计算方法
2024/1/28
球的表面积和体积
23
点、直线、平面之间的位置
05
关系
2024/1/28
24
空间点、直线、平面的位置关系
平面与平面平行的判定
若一个平面内的两条相交直线分别平行于另一个平面,则 这两个平面平行。
平行直线的性质
平行于同一直线的两条直线互相平行;平行于同一平面的 两个平面互相平行。
26
直线、平面垂直的判定及其性质
01
直线与平面垂直的判定
若直线与平面内任意一条直线都垂直,则该直线与该平面垂直。
02
平面与平面垂直的判定
2024/1/28
5
集合的基本运算
并集
由所有属于集合A或属于 集合B的元素所组成的集 合。
补集
在全集U中,不属于集合 A的所有元素组成的集合 称为集合A的补集。
2024/1/28
交集
由所有既属于集合A又属 于集合B的元素所组成的 集合。
高中数学必修一课件全册

1 乘以10再加20 30
2
40
3
50
4
60
5
70
6
80
7
90
8
100
1 平方后乘以4.94.9
1.5
?2?源自3?5?
6
?
7
?
8
?
二、映射
通过上面的两个例子,我们说明了什么是函数,上面的两个例子都是研究的 数值的情况,那么进一步扩展,如果集合A和集合B不是数值,而是其他类型的 集合,则这种对应关系就称为映射。具体定义如下:
因此,函数就是表达了两个变量之间变化关系的一个表达式。其准确定义如
下:
设A.B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任 意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为集 合A到集合B的一个函数(function),记作y=f(x),x∈A。
其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y 值叫做函数值(因变量),函数值的集合{f(x)|x ∈A}叫做函数的值域。而对应的 关系f则成为对应法则,则上面两个例子中,对应法则分别是“乘以10再加20” 和“平方后乘以4.9”
第一章: 集合与函数
第二节: 函数
函数及其表示
一、函数的概念
小明从出生开始,每年过生日的时候都会测量一下自己的身高,其测量数据 如下:
年龄(岁) 身高(cm)
1 2 3 4 5 6 7 8 9 10 30 40 50 60 70 80 90 100 110 120
从以上两个例子,我们可以把年龄当做一个集合A,身高当做一个集合B;把 时间当做一个集合C,把下降高度当做一个集D。那么对于集合A、C中的每一个 元素,集合B.D中都有唯一的一个元素与其相对应。比如,对于A的每一个元素 “乘以10再加20”,就得到了集合B中的元素。对于集合C中的元素“平方后乘以 4.9”就得到集合D中的元素。