高中数学必修1课件
2024版完整版高中数学必修一全册课件

完整版高中数学必修一全册课件目录•高中数学必修一概述•集合与函数概念•基本初等函数(Ⅰ)•函数的应用•空间几何体•点、直线、平面之间的位置关系01高中数学必修一概述包括集合的基本概念、集合间的关系与运算、函数的概念与性质等。
集合与函数概念包括指数函数、对数函数、幂函数等基本初等函数的图像与性质。
基本初等函数包括函数与方程、函数模型及其应用等,通过实例探究函数的性质与应用。
函数的应用教材内容与结构过程与方法通过观察、思考、探究、归纳等活动,培养学生的数学思维能力、创新能力和解决问题的能力。
知识与技能掌握集合与函数的基本概念,理解基本初等函数的图像与性质,能够运用函数知识解决一些实际问题。
情感态度与价值观激发学生学习数学的兴趣和热情,培养学生的数学素养和审美情趣。
教学目标与要求总结归纳定期对所学知识进行总结归纳,形成知识网络,便于记忆和提取。
通过大量的练习,熟练掌握解题方法和技巧,提高解题速度和准确性。
课后复习及时复习巩固所学知识,独立完成作业和练习题,加深对知识点的理解和记忆。
课前预习提前阅读教材,了解本节课的知识点和重点难点,为听课做好准备。
课中听讲认真听讲,积极思考,及时记录重要知识点和解题方法。
学习方法与建议02集合与函数概念03元素与集合的关系属于、不属于。
01集合的概念集合是由一个或多个确定的元素所构成的整体。
02集合的表示方法列举法、描述法、图像法。
集合及其表示方法集合之间的关系与运算集合之间的关系子集、真子集、相等。
集合的运算并集、交集、补集。
集合运算的性质交换律、结合律、分配律等。
函数是一种特殊的对应关系,它使得每个自变量对应唯一的因变量。
函数的概念函数的表示方法函数的三要素解析法、列表法、图像法。
定义域、值域、对应法则。
030201函数及其表示方法1 2 3单调性、奇偶性、周期性等。
函数的性质解决实际问题,如最优化问题、数学建模等。
函数的应用通过函数可以研究方程和不等式的解的性质和范围。
高中数学必修一必修1全章节ppt课件幻灯片

(2)方程x2+2x+1=0的解集中有两个元素. (3)组成单词china的字母组成一个集合.
【解题探究】 1.集合中的元素有哪些特性? 2.集合中的元素能重复吗?
探究提示: 1.集合中的元素有三个特性,即确定性、互异性和无序性. 2.构成集合的元素必须是不相同的,即集合元素具有互异性, 相同的元素只能算作一个. 【解析】1.①不正确.因为成绩较好没有明确的标准. ②正确.中国海洋大学2013级大一新生是确定的,明确的. ③正确.因为参加2012年伦敦奥运会的所有国家是确定的, 明确的. ④不正确.因为高科技产品的标准不确定. 答案:②③
(3)无序性:集合与其中元素的排列顺序无关,如由元素a,b, c与由元素b,a,c组成的集合是相等的集合.这个性质通常 用来判断两个集合的关系.
3.元素和集合之间的关系 (1)根据集合中元素的确定性可知,对任何元素a和集合A,在 a∈A和a∉A两种情况中有且只有一种成立. (2)符号“∈”和“∉”只是表示元素与集合之间的关系. 4.对一些常用的数集及其记法要关注的两点
第一章 集合与函数概念 1.1 集合
1.1.1 集合的含义与表示 第1课时 集合的含义
一、元素与集合 1.定义: (1)元素:一般地,把所研究的_对__象_统称为元素,常用小写的 拉丁字母a,b,c,…表示. (2)集合:一些元素组成的总体,简称为_集_,常用大写拉丁字 母A,B,C,…表示. 2.集合相等:指构成两个集合的元素是_一__样_的. 3.集合中元素的特性:_确__定__性_、_互_异__性__和_无__序__性__.
类型 一 集合的判定
【典型例题】
1.下列说法中正确的序号是
.
①高一(四)班学习成绩较好的同学组成一个集合;
高中数学必修1 集合与函数概念 PPT课件 图文

a23a0 0a3
1 . 下 面 四 组 中 的 函 数 f ( x ) 与 g ( x ) , 表 示 同 一 个 函 数 的 是 ( C )
A .f(x )x ,g (x )( x)2
B .f(x)x,g(x)x2
C .f(x)x,g(x)3x3
D .f(x ) |x 2 1 |,g (x ) |x 1 |
函数值, 函数值y的集合叫做
.
, 与X的值对应的y值 叫做
(2)函数的三要素: , ,
。
(3)区间的概念。
(4)函数的表示法: , ,
。
(5)两个函数相同必须是它们的 和 分别完全相同
(6)映射的定义:设A、B是两个非空集合,如果按照某个对应关系f ,对
于A中的
, 在集合B中都有 的元素 f (x) 与之对应, 那么就
3. 教材在例题、习题教学中注重运用集合的观点研究、处理数学问题,这一观点,一直贯穿 到以后的数学学习中.
4. 在例题和习题的编排中,渗透了集合中的分类思想,让学生体会到分类思想在生活中和数 学中的广泛运用,这是学生在初中阶段所缺少的. 在教学中,一定要循序渐进,从繁到难,逐步渗透这方 面的训练 .
3x
f(2)4p25 p2 63
设 x1x21 则 x 1 x 2 0 ,x 1 x 2 1
f(x1)f(x2)2 3(x1x 21 1x2x 22 1)23(x1
x2)
x1x2 1 x1x2
0
f(x1)f(x2)
即 函 数 f ( x ) 在 ( , 1 ) 上 是 增 函 数 .
问题,感受集合语言的意义和作用. 3、理解集合之间包含与相等的含义,能识别给定集合的子集,培养学生分析、比较、归纳的逻辑
人教版高中数学必修1《集合的概念》PPT课件

• 题型二 元素与集合的关系 • 【学透用活】
• 元素与集合的关系解读
a∈A与a∉A取决于a是不是集合A中的元素,只 唯一性
有属于和不属于两种关系 符号“∈”“∉”具有方向性,左边是元素, 方向性 右边是集合
[典例 2] (1)满足“a∈A 且 4-a∈A,a∈N 且 4-a∈N ”,有且只有 2
名称 自然数集 正整数集 整数集 有理数集 实数集
记法
N _________
_N_*_或N_+_
_Z__
_Q__
_R__
• [微思考] N与N*有何区别?
• 提示:N*是所有正整数组成的集合,而N是由0和所有的 正整数组成的集合,所以N比N*多一个元素0.
(二)基本知能小试
1.给出下列关系:①13∈R ;② 5∈Q ;③-3∉Z ;④- 3∉N ,其中正确的个
数为
()
A.1
B.2
C.3
D.4
解析:13是实数,①正确; 5是无理数,②错误;-3 是整数,③错误;- 3
是无理数,④正确.故选 B. 答案:B
2.已知集合 M 有两个元素 3 和 a+1,且 4∈M,则实数 a=________.
解析:由题意可知 a+1=4,即 a=3. 答案:3
• 知识点三 集合的表示方法
• [方法技巧] • 用列举法表示集合的3个步骤
• (1)求出集合的元素.
• (2)把元素一一列举出来,且相同元素只能列举一次.
• (3)用花括号括起来.
• 提醒:二元方程组的所有实数解组成的集合、函数图象 上的所有点构成的集合都是点的集合,一定要写成实数对 的形式,元素与元素之间用“,”隔开,如{(2,3),(5,- 1)}.
人教版高中数学必修1全套PPT课件

并集交集例题
例1.设集合A={x|-1<x<2},B={x|1<x<3}, 求AUB.A∩B
解:A B {x | 1 x 2}{x |1 x 3} x | 1 x 3
A B {x1 x 2}
可以在数轴上表示例2中的并集 交集,如 下图:
例3. 已知集合A={x -2≤x≤4},B={x x>a} ①若A∩B=φ,求实数a的取值范围; ②若A∩B=A,求实数a的取值范围.
-2 -1 0
1
234
x
-2 -1 0
1
234
x
引导探究二
并集性质
①A∪A= A ; ②A∪= A ;
③A∪B=A A____B
交集性质
①AA= A ; ②A= ;
当堂诊学
一、完成课本P7页练习2、3 二、完成选做题
选做题1. 已知集合A={x|-2≤x≤7},B={x|m+1<
x<2m-1},若B⊆A,求实数m的取值范围.
分析:若B⊆A,则B=Ø或B≠Ø,故分两种情况讨论.
解:当B=Ø时,有m+1≥2m-1,得m≤2,
当B≠Ø 时,有
m+1≥-2,
2m-1≤7, 解得 2<m≤4.
m+1<2m-1,
综上:m≤4.
强化补清
• 一、课本P12页A组5 • 二、完全解读P16、17页习题
课题导入
考察下列各个集合,你能说出集合C与集合A,B 之间的关系吗? (1) A={1,3,5}, B={2,4,6} ,C={1,2,3,4,5,6}
(2) A={x|x是有理数},B={x|x是无理数}, C={x|x是实数}.
人教版高中数学必修1《函数的单调性》PPT课件

解:函数 f (x) kx b (k 0)的定义域是R.
x1, x2 R,且 x1 x2,则 f (x1) f (x2 ) kx1 b (kx2 b)
k(x1 x2 ). 由 x1 x2,得 x1 x2 0.所以
①当k 0时,k(x1 x2 ) 0.
只要 x1 x2,就有 f (x1) f (x2 ).
追问 3:这里对 x1,x2有什么要求?只取(,0]上的某些数对 是否可以?你能举例说明吗?
追问 3:这里对 x1,x2有什么要求?只取(,0]上的某些数对 是否可以?你能举例说明吗?
所有的 x1 x2,有 f (x1) f (x2 ).
你能由例 1、例 2 的证明过程,归纳一下用单调性定义研究或证 明一个函数在区间 D上的单调性的基本步骤吗?
证明函数在区间 D 上的单调性的基本步骤:
证明函数在区间 D 上的单调性的基本步骤: 第一步,在区间 D上任取两个自变量的值 x1,x2 D,并规定 x1 x2;
证明函数在区间 D 上的单调性的基本步骤: 第一步,在区间 D上任取两个自变量的值 x1,x2 D,并规定 x1 x2;
V
于一定量的气体,当其体积V 减小时,压强 p将增大,试对此用函数
的单调性证明.
例 2 物理学中的玻意耳定律 p k (k 为正常数)告诉我们,对
V
于一定量的气体,当其体积V 减小时,压强 p将增大,试对此用函数 的单调性证明.
思考:“体积V 减小时,压强 p增大”的含义?
例 2 物理学中的玻意耳定律 p k (k 为正常数)告诉我们,对
解:函数 f (x) kx b (k 0)的定义域是R.
x1, x2 R,且 x1 x2,则 f (x1) f (x2 ) kx1 b (kx2 b)
高中数学必修一全册课件人教版(共99张PPT)

四、集合的表示方法
1、列举法
就是将集合中的元素一一列举出来并放在大括号内表示集合的方法
注意:1、元素间要用逗号隔开; 2、不管次序放在大括号内。
例如:book中的字母组成的集合表示为:{b,o,o,k}{b,o,k} 一次函数y=x+3与y=-2x+6的图像的交点组成的集合。{1,4}{(1,4)}
的关系f则成为对应法则,则上面两个例子中,对应法则分别是“乘以10再加20” 和“平方后乘以”
1 乘以10再加20 30
2
40
3
50
4
60
5
70
6
80
7
90
8
100
1 平方后乘以4.94.9
1.5
?
2
?
3
?
5
?
6
?
7
?
8
?
二、映射
通过上面的两个例子,我们说明了什么是函数,上面的两个例子都是研究的 数值的情况,那么进一步扩展,如果集合A和集合B不是数值,而是其他类型的 集合,则这种对应关系就称为映射。具体定义如下:
7、判断下列表示是否正确:
(1)a {a}; (2) {a} ∈{a,b};
(3){a,b} {b,a}; (4){-1,1}{-1,0,1}
(5)0;
(6) {-1,1}.
集合与集合的运算
1、交集
一般地,由所有属于集合A且属于集合B的元素构成的集合,称为A与B的交集, 记作A∩B,即
A∩B={x|x∈A,且x∈B} A∩B可用右图中的阴影部分来表示。
⑴ A={1,2,3} , B={1,2,3,4,5};
高中数学必修一课件全册课件(2024)

2024/1/28
1
目录
2024/1/28
• 集合与函数概念 • 基本初等函数(Ⅰ) • 函数的应用 • 空间几何体 • 点、直线、平面之间的位置关系
2
01
集合与函数概念
2024/1/28
3
集合的含义与表示
01 集合的概念
集合是由一个或多个确定的元素所构成的整体。
02 集合的表示方法
01 中心投影与平行投影
02 三视图的形成及其投影规律 02 由三视图还原成实物图
2024/1/28
22
空间几何体的表面积与体积
柱体、锥体、台体的表面 积与体积
空间几何体的表面积和体 积的计算方法
2024/1/28
球的表面积和体积
23
点、直线、平面之间的位置
05
关系
2024/1/28
24
空间点、直线、平面的位置关系
平面与平面平行的判定
若一个平面内的两条相交直线分别平行于另一个平面,则 这两个平面平行。
平行直线的性质
平行于同一直线的两条直线互相平行;平行于同一平面的 两个平面互相平行。
26
直线、平面垂直的判定及其性质
01
直线与平面垂直的判定
若直线与平面内任意一条直线都垂直,则该直线与该平面垂直。
02
平面与平面垂直的判定
2024/1/28
5
集合的基本运算
并集
由所有属于集合A或属于 集合B的元素所组成的集 合。
补集
在全集U中,不属于集合 A的所有元素组成的集合 称为集合A的补集。
2024/1/28
交集
由所有既属于集合A又属 于集合B的元素所组成的 集合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)若A B A,求k的取值范围
点此播放讲课视频
返回
一、函数的概念:
设A、B是非空的数集,如果按照某种确定的 对应关系f,使对于集合A中的任意一个数x, 在集合B中都有惟一确定的数f(x)和它对应, 那么就称f:A B为从集合A到集合B的一个 函数。记作y f(x),x A 其中,x叫做自变量,x的取值范围A叫做函数的 定义域;与x的值相对应的y值叫做函数值,函
二、函数的定义域
例3、求下列函数的定义域
1) f (x) 3 4 x (x 4)0 x 1 log2(x 1)
点此播放讲课视频
2、抽象函数的定义域
1)已知函数y=f(x)的定义域是[1,3], 求f(2x-1)的定义域
1 2x 1 3,1 x 2,函数的定义域为x |1 x 2.
2)已知函数y=f(x)的定义域是[0,5), 求g(x)=f(x-1)- f(x+1)的定义域
一、集合 二、函数 三、初等函数 四、函数应用 五、函数的零点与二分法
一、集合的概念
1、集合:把研究对象称为元素, 把一些元素组成的总体叫做集合
2、元素与集合的关系: 或
3、元素的特性:确定性、互异性、无序性 4、常用数集: N 、N、Z、Q、R
二、集合的表示
1、列举法:把集合中的元素一一列举出 来,并放在{ }内
指数幂与根式运算
1.指数幂的运算性质 (1)am • an am n
(2)(am )n amn
(3)
am an
amn
(4)(ab)n an • bn
2.a的n次方根
如果 xn a,(n>1,且n N ),那么x就叫做a
的n次方根.
点此播放讲课视频
3.根式
当n为正奇数时,n an a ,
全集:某集合含有我们所研究的各个 集合的全部元素,用U表示
三、集合的并集、交集、全集、补集
1、A B {x | x A或x B} A
B
2、A B {x | x A且x B}
3、CU A {x | x U且x A}
全集:某集合含有我们所研究的各个集合的全
部元素,用U表示
例6、已知集合A {x | 1 x 2}, B {x | x k 0},
x2 3
(3)已知f
(
x)
1
x 4
Байду номын сангаас
x0 x 0 ,求f [ f (4)] x0
(4)已知f [ f (x)] 4x 1,求一次函数 f (x)的解析式
点此播放讲课视频
函数单调性
定义:一般地,设函数f(x)的定义域为I:
如果对于定义域I内某个区间D上的任意两个自变量x1、
x2,当x1<x2时,都有f(x1) < f(x2) ,那么就说函数在区间 上是增函数。区间D叫做函数的增区间。
2、描述法:用文字或公式等描述出元素 的特性,并放在{ }内
例1、已知x {1,2, x2}, 则x 0或2
例2、已知集合A {x | ax2 2x 1 0, a R}, 若A中元素至多只有一个,求a的取值范围
点此播放讲课视频
三、集合间的基本关系
1、子集:对于两个集合A,B如果集合A 中的任何一个元素都是集合B的元素,我 们称A为B的子集
数值的集合f (x) x A叫做函数的值域。
例2、下列题中两个函数是否表示同一个函数
2
1) f (x) x g(x) ( x ) 2) f (x) x g(x) x2 3) f (x) x g(x) 3 x3 4) f (x) x2 4 g(x) x 2
x2 5) f (x) (x 2)2 g(x) x 2
2、集合相等: A B, B A A B
3、空集:规定空集是任何集合的子 集,是任何非空集合的真子集
例3、若集合A {x | 2 x 4}, B {x | x a}, 满足A B,求a的取值范围
二、集合间的基本关系
1、子集:对于两个集合A,B如果集合A中的任
何一个元素都是集合B的元素,我们称A为B的子集.
若集合中元素有n个,则其子集个数为 2n
真子集个数为
2n-1
非空真子集个数为
2n-2
2、集合相等: A B, B A A B
3、空集:规定空集是任何集合的子集,是任
何非空集合的真子集
四、集合的并集、交集、全集、补集
1、A B {x | x A或x B} 2、A B {x | x A且x B} 3、CU A {x | x U且x A}
函数的奇偶性
1.奇函数:对任意的 x I ,都有 f (x) f (x) 2.偶函数:对任意的 x I ,都有 f (x) f (x)
3.奇函数和偶函数的必要条件:
定义域关于原点对称.
注:要判断函数的奇偶性,首先要看其定 义域区间是否关于原点对称!
例1、判断下列函数的奇偶性
(1) f x x 1 x 1
0 0
x x
1 1
5, 5,
1 1
x
6, 1
x 4,
x
4,
函数的定义域为x |1 x 4.
三、函数的表示法
1、解 析 法 2、列 表 法 3、图 像 法
例 (1)已知f (x) x2 4x 3,求f (x 1) (2)已知f (x 1) x2 2x,求f (x)
点此播放讲课视频
(2)
f
x
3 x2
(3) f x x 1
x
(4) f x x2 , x 2,3
例2、已知f x是奇函数,且在3,7是
增函数,且最大值是4,那么f x
在 7, 3上是
函数
且最
值是
点此播放讲课视频
例13 已知f x是R上的奇函数, 且当x 0时,f x x(1 x),
(1)求f (x); (2)求x 0时,f (x)表达式 ; (3)求 f (x).
如果对于定义域I内某个区间D上的任意两个自变量x1、
x2,当x1<x2时,都有f(x1) >f(x2) ,那么就说函数在区间 上是减函数。区间D叫做函数的减区间。
增函数、减函数、单调函数是 对定义域上的某个区间而言的。
函数单调性:
用定义证明函数单调性的步骤:
(1). 设x1<x2, 并是某个区间上任意二值; (2). 作差 f(x1)-f(x2) ; (3). 判断 f(x1)-f(x2) 的符号: (4). 作结论.