应力疲劳与应变疲劳分析流程

合集下载

疲劳分析流程

疲劳分析流程

疲劳分析流程f a t i g u e(总16页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除摘要:疲劳破坏是结构的主要失效形式,疲劳失效研究在结构安全分析中扮演着举足轻重的角色。

因此结构的疲劳强度和疲劳寿命是其强度和可靠性研究的主要内容之一。

机车车辆结构的疲劳设计必须服从一定的疲劳机理,并在系统结构的可靠性安全设计中考虑复合的疲劳设计技术的应用。

国内的机车车辆主要结构部件的疲劳寿命评估和分析采用复合的疲劳设计技术,国外从疲劳寿命的理论计算和疲劳试验两个方面在疲劳研究和应用领域有很多新发展的理论方法和技术手段。

不论国内国外,一批人几十年如一日致力于疲劳的研究,对疲劳问题研究贡献颇多。

关键词:疲劳 UIC标准疲劳载荷 IIW标准 S-N曲线机车车辆一、国内外轨道车辆的疲劳研究现状6月30日15时,备受关注的京沪高铁正式开通运营。

作为新中国成立以来一次建设里程最长、投资最大、标准最高的高速铁路,京沪高铁贯通“三市四省”,串起京沪“经济走廊”。

京沪高铁的开通,不仅乘客可以享受到便捷与实惠,沿线城市也需面对高铁带来的机遇和挑战。

在享受这些待遇的同时,专家指出,各省市要想从中分得一杯羹,配套设施建设以及机车车辆的安全性绝对不容忽略。

根据机车车辆的现代设计方法,对结构在要求做到尽可能轻量化的同时,也要求具备高度可靠性和足够的安全性。

这两者之间常常出现矛盾,因此,如何准确研究其关键结构部件在运行中的使用寿命以及如何进行结构的抗疲劳设计是结构强度寿命预测领域研究中的前沿课题。

在随机动载作用下的结构疲劳设计更是成为当前机车车辆结构疲劳设计的研究重点,而如何预测关键结构和部件的疲劳寿命又是未来机车车辆结构疲劳设计的重要发展方向之一。

机车车辆承受的外部载荷大部分是随时间而变化的循环随机载荷。

在这种随机动载荷的作用下,机车车辆的许多构件都产生动态应力,引起疲劳损伤,而损伤累积后的结构破坏的形式经常是疲劳裂纹的萌生和最终结构的断裂破坏。

ncode分析流程

ncode分析流程

1 介绍DesignLife:简单的S-N疲劳运用应力-寿命曲线(S-N)方法计算恒载荷下的疲劳寿命.S-N方法通常涉及名义应力失效和大量的循环失效的问题,例如循环次数大于103或者104或者长寿命问题。

S-N分析流程五框技巧在每种情况下,1加载环境下结构的加载必须考虑(加载历史框)。

2必须作出某种形式的几何因素描述,通常表现为疲劳强度缩减因子(Kf),一个服从函数(Y)或者有限元分析结果,取决于分析的类型。

3材料循环荷载的响应必须定义在材料数据框中作为S-N曲线、应变寿命曲线和应力应变循环曲线。

这里有三个输入合并在一个cycle-by-cycle fatigue analysis中,和一个后处理结果显示。

最初的结果应该是被最先考虑的,因为每个输入都遭受不同的变化和处理,由于模型或大或小的改变输入,初始疲劳分析结果影响后期处理灵敏度的结果。

放大:shift+中键框选,或者shift+左键拖动或者shift+右键自由图画旋转:ctrl+左键平移:ctrl+右键1、设置求解器属性2、设置材料属性(Edit Material Map) 本例恒载荷选PeakValley无影响3、赋材料参数4、编辑载荷(恒幅)即:最大3倍重力。

5、Run 完成2 介绍DesignLife:简单E-N疲劳E-N方法通常涉及到的一些循环载荷相对较大,大的塑性变形和与他们他们有关的,相对较短的寿命。

典型的是指低周疲劳和应变疲劳,即使对高周疲劳也很有效。

低周疲劳转化为高周疲劳通常发生104到105次循环。

不像S-N方法,通过提供时间历程文件作为载荷文件的输入,E-N方法更加量化了结构区域发生破坏的循环次数。

E-N分析流程因为E-N方法既可以用于高周疲劳也可以用于低周疲劳,它非常灵活。

也有可能用高周疲劳或者低周疲劳产生同样的结果。

1、编辑E-N分析属性PeakVally减少了时间历程点数目,Limit用于粗糙计算疲劳2、编辑材料属性3、指定分析载荷即默认配置。

ncode疲劳分析流程

ncode疲劳分析流程

ncode疲劳分析流程nCode Fatigue 分析流程概述nCode Fatigue 是一款先进的疲劳分析软件,用于评估材料和结构在循环载荷和环境条件下的疲劳寿命。

其分析流程涉及以下关键步骤:1. 定义材料和几何导入或创建材料模型,包括应力-应变曲线、循环应力-寿命(S-N) 曲线和疲劳裂纹扩展速率 (da/dN) 曲线。

定义几何模型,包括零件几何形状、载荷施加点和约束条件。

2. 载荷和边界条件定义施加到结构上的载荷和边界条件,包括静力载荷、动力载荷和热载荷。

指定载荷时程或载荷谱,代表实际或预测的载荷条件。

3. 有限元分析 (FEA)通过 FEA 求解几何模型,以计算应力、应变和其他应力状态。

FEA 结果提供局部和全局应力分布,这些分布对于疲劳分析至关重要。

4. 疲劳损伤计算基于 FEA 结果和材料模型,计算疲劳损伤。

使用线性累积损伤理论或雨流计数算法考虑循环载荷的影响。

5. 疲劳寿命预测分析疲劳损伤分布,以预测结构的疲劳寿命。

疲劳寿命是由材料特性、结构设计和载荷条件共同决定的。

6. 灵敏度分析执行灵敏度分析以评估设计参数对疲劳寿命的影响。

通过改变材料特性、几何形状或载荷条件,可以确定最敏感的参数。

最佳实践使用准确的材料模型和几何模型。

仔细定义载荷和边界条件,代表真实情况。

校准 FEA 模型,以确保与实验结果一致。

考虑环境因素,如温度和腐蚀。

进行灵敏度分析以确定关键设计参数。

应用nCode Fatigue 可广泛应用于各种行业,包括:航空航天:飞机和发动机部件的疲劳分析汽车:汽车部件和系统的疲劳分析能源:风力涡轮机叶片和发电机部件的疲劳分析医疗设备:植入物和手术器械的疲劳分析通过遵循这些步骤和最佳实践,工程师可以使用 nCode Fatigue 准确评估结构的疲劳寿命,并优化设计以提高耐用性和安全性。

midas fea_钢桥疲劳分析

midas fea_钢桥疲劳分析
3
即便作用在结构上的应力幅(σa)相同,但是平均应力(σm)不相同时,结构的疲劳寿命也会不一样。平均应力越大,最大应力和疲劳极限应力就越小。为了考虑平均应力的这种影响,Goodman和Gerber分别建议采用下面公式。
4
S-N曲线是等幅(constant amplitude)应力作用下发生疲劳破坏时的反复作用次数的曲线。实际发生的应力一般具有变幅(variable amplitude)特性。
5.使用修正系数调整S-N曲线中应力幅。
6.考虑平均应力的影响计算损伤程度。
7.使用Miner准则将损伤程度线性组合。
8.计算所有位置的疲劳寿命或安全系数。

1.
2.
本例题是介绍疲劳分析的过程和查看结果的方法,所以省略了建模的过程,直接打开已经建立的模式。
例题模型是使用钢桥面板的箱形桥梁,跨度为27.5m,用板单元模拟。桥幅宽度为15m,梁高为2.5m,横隔梁间距为5.0m,上部U型加劲肋间距为0.64m。
疲劳荷载由几个疲劳荷载组构成,疲劳荷载组由线性分析中的荷载组的应力和用户定义的历程曲线构成。
线性分析的应力结果乘以历程曲线就是疲劳荷载组。多个疲劳荷载组将组成一个疲劳荷载,使用该疲劳荷载进行疲劳分析。
定义荷载谱/应力谱
通过定义集中系数、荷载组、曲线等定义疲劳荷载组。
定义荷载重复次数
输入疲劳荷载重复的次数。
2.
疲劳分析的步骤如下:
1)首先做结构静力分析确定最大和最小应力的绝对值或者计算von Mises应力,从而获得应力幅。
2)当作用应力为变幅时,使用可将各应力幅组成起来的雨流计数法(Rainflow counting)和S-N曲线计算。
3)考虑平均应力的影响确定疲劳寿命和损伤度。

应力疲劳法,应变疲劳法,断裂疲劳法

应力疲劳法,应变疲劳法,断裂疲劳法

应力疲劳法,应变疲劳法,断裂疲劳法应力疲劳法、应变疲劳法和断裂疲劳法是材料科学和工程领域中常用的疲劳试验方法。

这些方法可用于评估材料在长期重复加载下的疲劳性能,以及预测材料的寿命。

下面将分别介绍这三种疲劳试验方法及其应用。

一、应力疲劳法应力疲劳法是通过施加周期性的应力加载来评估材料的疲劳性能。

在应力疲劳试验中,材料会在一定的应力水平下进行重复加载,加载过程中记录应力和应变数据。

通过分析应力-应变曲线,可以得到材料的疲劳寿命和疲劳强度。

应力疲劳法可以用于评估金属材料、复合材料和橡胶等各种材料的疲劳性能。

二、应变疲劳法应变疲劳法是通过施加周期性的应变加载来评估材料的疲劳性能。

在应变疲劳试验中,材料会在一定的应变幅值下进行重复加载,加载过程中记录应力和应变数据。

通过分析应力-应变曲线,可以得到材料的疲劳寿命和疲劳强度。

应变疲劳法在评估纤维增强复合材料等材料的疲劳性能时,具有一定的优势。

三、断裂疲劳法断裂疲劳法是通过施加循环加载并观察材料破裂的方式来评估材料的疲劳性能。

在断裂疲劳试验中,材料会在一定的加载循环数下进行重复加载,加载过程中记录应力和位移等数据。

通过分析应力-位移曲线,可以得到材料的疲劳寿命和疲劳强度。

断裂疲劳法适用于评估金属材料、混凝土和岩石等材料的疲劳性能。

这三种疲劳试验方法在实际工程中有着广泛的应用。

例如,在航空航天领域,疲劳性能是评估飞机部件和发动机部件可靠性的重要指标之一。

通过应力疲劳法、应变疲劳法和断裂疲劳法,可以对材料在复杂载荷下的疲劳行为进行研究,提高航空器的安全性和可靠性。

疲劳试验方法还可以应用于材料的研发和设计过程中。

通过对不同材料的疲劳性能进行评估,可以选择合适的材料用于特定的工程应用,提高产品的寿命和可靠性。

同时,疲劳试验方法也可以用于研究材料的疲劳机制和损伤演化规律,为材料的改进和优化提供科学依据。

应力疲劳法、应变疲劳法和断裂疲劳法是评估材料疲劳性能的重要方法。

这些方法可以通过施加不同的加载方式,对材料的疲劳寿命和疲劳强度进行评估,为工程应用和材料设计提供依据。

06-07疲劳断裂分析4-2

06-07疲劳断裂分析4-2

4.2
应变疲劳
3.局部应力-应变法:局部应力应变的确定
解:1)缺口的应力-应变响应
p ( np e ) K
4.2
应变疲劳
3.局部应力-应变法:局部应力应变的确定
解:2)缺口的应力-应变响应如图所示,根据稳态环可 知:
3)将其带入ε-N曲线:
则可求得:N=12470循环
p ( np e ) K
4.2
应变疲劳
3.局部应力-应变法:局部应力应变的确定 在循环载荷作用下,缺口的局部应力-应变也是随时 间变化,此时用反映材料性能的循环应力-应变曲线代 替单调应力-应变曲线,反向加载后,应力-应变响应应 当由滞后环来描述,还要考虑缺口应力集中的影响。
p ( np e ) K
4.2
1 n'
p ( np e ) K
4.2
应变疲劳
材料记得曾为反向加载所 中断的应力-应变路径 应变第二次到达某处, 该处曾经发生过反向应 变,则形成封闭环; 过了封闭环顶点以后, σ-ε路径不受封闭环的 影响,仍然记得原有路 径
④ 循环应力-应变曲线:材料的记忆特性
材料的记忆特性图
4.29
b 疲劳强度指数(-0.06 -0.14,可取-0.1);
典型应变-寿命曲线
c-疲劳延性指数(-0.5 0.7,可取-0.6)
p ( np e ) K
4.2
应变疲劳
当 ea= pa时,有:
2.应变寿命曲线(ε-N曲线)
f
'
E 可得 :
(2 N )b= f '(2 N )c
p ( np e ) K
4.2
应变疲劳

应力疲劳与应变疲劳分析流程

应力疲劳与应变疲劳分析流程

应力疲劳与应变疲劳分析流程应力疲劳与应变疲劳分析是一种对材料在长期受到交变载荷作用下的损伤和破坏进行研究的方法。

应力疲劳是指材料在交变载荷作用下,由于周期性应力超过其疲劳极限而引起的疲劳失效。

应变疲劳是指材料在交变载荷作用下,由于周期性应变超过其疲劳极限而引起的疲劳失效。

下面将介绍应力疲劳与应变疲劳分析的流程。

1.材料性能测试:首先需要对材料进行性能测试,确定其力学性能和疲劳性能。

力学性能测试包括拉伸试验、冲击试验等,疲劳性能测试主要包括疲劳寿命试验和疲劳裂纹扩展试验等。

2.应力/应变历程获取:通过实验或模拟计算得到材料在实际工况下的应力或应变历程。

应力或应变历程描述了材料在实际使用中的载荷变化规律,是进行疲劳分析的基础。

3.应力/应变分析:利用实验结果或有限元分析等手段对材料的应力或应变进行分析。

应力分析可以通过应力级数法、极限干扰法等方法,得到材料在不同载荷状态下的应力分布情况。

应变分析可以使用应变分布测试或数值模拟等方法,获得材料在不同应力状态下的应变分布情况。

4.损伤累积分析:根据得到的应力或应变分布情况,对材料的损伤进行累积分析。

损伤累积分析是基于疲劳寿命模型和疲劳裂纹扩展理论进行的,得到材料在不同工况下的疲劳寿命或裂纹扩展速率。

5.疲劳寿命预测:基于损伤累积分析的结果,可以预测材料在实际使用条件下的疲劳寿命。

对于应力疲劳,常用的寿命预测方法有S-N曲线法、评估疲劳损失法等。

对于应变疲劳,常用的寿命预测方法有应变寿命法、塑性应变范围法等。

6.疲劳强度评估:根据疲劳寿命预测的结果,对材料的疲劳强度进行评估。

疲劳强度评估是对材料在实际工况下的耐久性能进行综合评估,可以用于决策材料的选用与设计参数的确定。

总结起来,应力疲劳与应变疲劳分析流程包括材料性能测试、应力/应变历程获取、应力/应变分析、损伤累积分析、疲劳寿命预测和疲劳强度评估等步骤。

这些步骤相互关联,共同构成了对材料在长期受到交变载荷作用下的疲劳损伤和破坏进行分析和预测的方法。

midas fea_钢桥疲劳分析

midas fea_钢桥疲劳分析
应力类型提供范梅塞斯应力和主应力。
应力类型
①范梅塞斯
节点周围有四个单元时,取范梅塞斯准则的最大、最小应力。
②主应力
首先取主应力的绝对值,当选择最大值时取各最大值中的最大值;当选择最小值时取各最小值中的最小值。
应力值
①平均
取各单元在共享节点上的应力平均值(绕节点平均法)
②最大/最小
取各单元在共享节点上的应力中最大/最小值。
疲劳荷载由几个疲劳荷载组构成,疲劳荷载组由线性分析中的荷载组的应力和用户定义的历程曲线构成。
线性分析的应力结果乘以历程曲线就是疲劳荷载组。多个疲劳荷载组将组成一个疲劳荷载,使用该疲劳荷载进行疲劳分析。
定义荷载谱/应力谱
通过定义集中系数、荷载组、曲线等定义疲劳荷载组。
定义荷载重复次数
输入疲劳荷载重复的次数。
Gerber :按Gerber公式考虑平均应力。
输出
选择要输出的疲劳分析的结果。
损伤度:输出疲劳引起的损伤度,单位是%。
疲劳寿命周期:输出疲劳寿命,用疲劳荷载的反复次数表示。
输出节点
选择输出疲劳分析结果的节点。
边界:模型表面的节点。
全部:所有节点。
选择:选择的网格组内的节点。
疲劳荷载
定义各荷载组的荷载变化历程曲线。程序将对各荷载历程曲线进行线性组合形成一个历程曲线。

1.
各荷载组为独立的荷载工况选项说明:
分析工况中各荷载组决定疲劳分析时的变化历程曲线。各荷载组具有不同的荷载曲线和应力集中系数(stress concentration factor)并形成不同的荷载历程曲线(load history curve)。各荷载历程曲线通过线性组合形成一个荷载历程曲线,所以分析时各荷载组应相互独立不关联。

ncode分析流程

ncode分析流程

1 介绍DesignLife:简单的S-N疲劳运用应力-寿命曲线(S-N)方法计算恒载荷下的疲劳寿命.S-N方法通常涉及名义应力失效和大量的循环失效的问题,例如循环次数大于103或者104或者长寿命问题。

S-N分析流程五框技巧在每种情况下,1加载环境下结构的加载必须考虑(加载历史框)。

2必须作出某种形式的几何因素描述,通常表现为疲劳强度缩减因子(Kf),一个服从函数(Y)或者有限元分析结果,取决于分析的类型。

3材料循环荷载的响应必须定义在材料数据框中作为S-N曲线、应变寿命曲线和应力应变循环曲线。

这里有三个输入合并在一个cycle-by-cycle fatigue analysis中,和一个后处理结果显示。

最初的结果应该是被最先考虑的,因为每个输入都遭受不同的变化和处理,由于模型或大或小的改变输入,初始疲劳分析结果影响后期处理灵敏度的结果。

放大:shift+中键框选,或者shift+左键拖动或者shift+右键自由图画旋转:ctrl+左键平移:ctrl+右键1、设置求解器属性2、设置材料属性(Edit Material Map) 本例恒载荷选PeakValley无影响3、赋材料参数4、编辑载荷(恒幅)即:最大3倍重力。

5、Run 完成2 介绍DesignLife:简单E-N疲劳E-N方法通常涉及到的一些循环载荷相对较大,大的塑性变形和与他们他们有关的,相对较短的寿命。

典型的是指低周疲劳和应变疲劳,即使对高周疲劳也很有效。

低周疲劳转化为高周疲劳通常发生104到105次循环。

不像S-N方法,通过提供时间历程文件作为载荷文件的输入,E-N方法更加量化了结构区域发生破坏的循环次数。

E-N分析流程因为E-N方法既可以用于高周疲劳也可以用于低周疲劳,它非常灵活。

也有可能用高周疲劳或者低周疲劳产生同样的结果。

1、编辑E-N分析属性PeakVally减少了时间历程点数目,Limit用于粗糙计算疲劳2、编辑材料属性3、指定分析载荷即默认配置。

疲劳分析计算的流程

疲劳分析计算的流程

疲劳分析,从零开始1 测量应变、应力谱图(1)衡量应力集中的区域,布置应变片可以通过模拟(有限元)或试验(原型上涂上一层油漆,待油漆干后施加载荷,油漆剥落的地方应力集中),确定应力集中的区域,然后按左下图在应力集中区域布置三个应变片:因为材料是各向同性,所以x,y方向并不一定是水平和竖直方向,但两者一定要垂直,中间一个一定要和x,y方向成45°角。

三个应变片也可以重叠在一起(见右上图)。

(2)根据测的应变和材料性能,计算应力测得的三个应变,分别记为εx , εy, εxy。

两个主应力(假设只有弹性变形):其中,E 为材料的杨氏模量,µ为泊松比。

根据这两个主应力,可以计算出有些方法可能需要的等效应力(主要目的是将多分量的应力状态转化为一个数值,以方便应用材料的疲劳数据),如米塞斯等效应力: ()()222122121σσσσσ++-=m 或最大剪应力: ()2121σσστ-=实际测量的是应变-时间谱图,应力(或等效应力)-时间谱图可由上述公式计算。

(3)分解谱图就是对上面测得的应力(应变)-时间谱图进行分解统计,计算出不同应力(包括幅度和平均值)循环下的次数,以便计算累积的损伤。

最常用的是雨流法(rainflow counting method )。

2 获取材料数据如果载荷频率不高,可以做一组简单的疲劳测试(正弦应力,拉压或弯曲均可,有国家标准):得到一条应力-寿命(即循环次数)曲线,即所谓的S-N 曲线:如果载荷频率较高或温度变化较大,还要测量不同平均应力和不同温度下的S-N载荷,以便进行插值计算,因为此时平均应力对寿命有影响。

也可以根据不同的经验公式(如Goodman准则,Gerber准则等),以及其他材料性能(如拉伸强度,破坏强度等),由普通的S-N曲线(即平均应力为0)来计算平均应力不为零时对应的疲劳寿命。

如果材料数据极为有限,或者公司很穷很懒不愿做疲劳试验,也可以由材料的强度估算疲劳性能。

Workbench中文讲义——疲劳分析

Workbench中文讲义——疲劳分析
相反,非比例载荷没有隐含各应力之间相互的关系,典型情 况包括:
σ1/σ2=constant
在两个不同载荷工况间的交替变化; 交变载荷叠加在静载荷上; 非线性边界条件。
应力定义
考虑在最大最小应力值σmin和σmax作用下的比例载荷、恒定 振幅的情况:
应力范围Δσ定义为(σmax-σmin) 平均应力σm定义为(σmax+σmin)/2 应力幅或交变应力σa是Δσ/2 应力比R是σmin/σmax 当施加的是大小相等且方向相反的载荷时,发生的是对称循 环载荷。这就是σm=0,R=-1的情况。 当施加载荷后又撤除该载荷,将发生脉动循环载荷。这就是 σm=σmax/2,R=0的情况。
S-N曲线是通过对试件做疲劳测试得到的弯曲或轴向测试反映的是单轴 的应力状态,影响S-N曲线的因素很多,其中的一些需要的注意,如下:
因此,记住以下几点:一个部件通常经受多轴应力状态。如果疲劳数据 (S-N 曲线)是从反映单轴应力状态的测试中得到的,那么在计算寿命时就要 注意:(1)如何把结果和S-N曲线相关联的选择,包括多轴应力的选择; (2)双轴应力结果有助于计算在给定位置的情况。
几何模型
指定材料特性,包括S-N曲线;
定义接触区域(若采用的话); 定义网格控制(可选的); 包括载荷和支撑;
(设定)需要的结果,包括Fatigue tool;
求解模型; 查看结果。
Workbench中S-N曲线 在WB中可以通过打开材料编辑器
来定义S-N曲线。(一般每种材料 都有软件设置好的S-N曲线)
Linear——线性 Semi-Log——半对数曲线 Log-Log——双对数曲线
一般常用平均应力
可选择单一的S-N曲线。亦 可添加多重曲线
Workbench中S-N曲线

ansys疲劳分析教程

ansys疲劳分析教程

1.1 疲劳概述结构失效的一个常见原因是疲劳,其造成破坏与重复加载有关。

疲劳通常分为两类:高周疲劳是当载荷的循环(重复)次数高(如1e4 -1e9)的情况下产生的。

因此,应力通常比材料的极限强度低,应力疲劳(Stress-based)用于高周疲劳;低周疲劳是在循环次数相对较低时发生的。

塑性变形常常伴随低周疲劳,其阐明了短疲劳寿命。

一般认为应变疲劳(strain-based)应该用于低周疲劳计算。

在设计仿真中,疲劳模块拓展程序(Fatigue Module add-on)采用的是基于应力疲劳(stress-based)理论,它适用于高周疲劳。

接下来,我们将对基于应力疲劳理论的处理方法进行讨论。

1.2 恒定振幅载荷在前面曾提到,疲劳是由于重复加载引起:当最大和最小的应力水平恒定时,称为恒定振幅载荷,我们将针对这种最简单的形式,首先进行讨论。

否则,则称为变化振幅或非恒定振幅载荷。

1.3 成比例载荷载荷可以是比例载荷,也可以非比例载荷:比例载荷,是指主应力的比例是恒定的,并且主应力的削减不随时间变化,这实质意味着由于载荷的增加或反作用的造成的响应很容易得到计算。

相反,非比例载荷没有隐含各应力之间相互的关系,典型情况包括:σ1/σ2=constant在两个不同载荷工况间的交替变化;交变载荷叠加在静载荷上;非线性边界条件。

1.4 应力定义考虑在最大最小应力值σmin和σmax作用下的比例载荷、恒定振幅的情况:应力范围Δσ定义为(σmax-σmin)平均应力σm定义为(σmax+σmin)/2应力幅或交变应力σa是Δσ/2应力比R是σmin/σmax当施加的是大小相等且方向相反的载荷时,发生的是对称循环载荷。

这就是σm=0,R=-1的情况。

当施加载荷后又撤除该载荷,将发生脉动循环载荷。

这就是σm=σmax/2,R=0的情况。

1.5 应力-寿命曲线载荷与疲劳失效的关系,采用的是应力-寿命曲线或S-N曲线来表示:(1)若某一部件在承受循环载荷, 经过一定的循环次数后,该部件裂纹或破坏将会发展,而且有可能导致失效;(2)如果同个部件作用在更高的载荷下,导致失效的载荷循环次数将减少;(3)应力-寿命曲线或S-N曲线,展示出应力幅与失效循环次数的关系。

ncode分析流程资料

ncode分析流程资料

1 介绍DesignLife:简单的S-N疲劳运用应力-寿命曲线(S-N)方法计算恒载荷下的疲劳寿命.S-N方法通常涉及名义应力失效和大量的循环失效的问题,例如循环次数大于103或者104或者长寿命问题。

S-N分析流程五框技巧在每种情况下,1加载环境下结构的加载必须考虑(加载历史框)。

2必须作出某种形式的几何因素描述,通常表现为疲劳强度缩减因子(Kf),一个服从函数(Y)或者有限元分析结果,取决于分析的类型。

3材料循环荷载的响应必须定义在材料数据框中作为S-N曲线、应变寿命曲线和应力应变循环曲线。

这里有三个输入合并在一个cycle-by-cycle fatigue analysis中,和一个后处理结果显示。

最初的结果应该是被最先考虑的,因为每个输入都遭受不同的变化和处理,由于模型或大或小的改变输入,初始疲劳分析结果影响后期处理灵敏度的结果。

放大:shift+中键框选,或者shift+左键拖动或者shift+右键自由图画旋转:ctrl+左键平移:ctrl+右键1、设置求解器属性2、设置材料属性(Edit Material Map) 本例恒载荷选PeakValley无影响3、赋材料参数4、编辑载荷(恒幅)即:最大3倍重力。

5、Run 完成2 介绍DesignLife:简单E-N疲劳E-N方法通常涉及到的一些循环载荷相对较大,大的塑性变形和与他们他们有关的,相对较短的寿命。

典型的是指低周疲劳和应变疲劳,即使对高周疲劳也很有效。

低周疲劳转化为高周疲劳通常发生104到105次循环。

不像S-N方法,通过提供时间历程文件作为载荷文件的输入,E-N方法更加量化了结构区域发生破坏的循环次数。

E-N分析流程因为E-N方法既可以用于高周疲劳也可以用于低周疲劳,它非常灵活。

也有可能用高周疲劳或者低周疲劳产生同样的结果。

1、编辑E-N分析属性PeakVally减少了时间历程点数目,Limit用于粗糙计算疲劳2、编辑材料属性3、指定分析载荷即默认配置。

结构力学教案中的应力集中与疲劳揭示学生如何分析结构的应力集中和疲劳失效

结构力学教案中的应力集中与疲劳揭示学生如何分析结构的应力集中和疲劳失效

结构力学教案中的应力集中与疲劳揭示学生如何分析结构的应力集中和疲劳失效近年来,随着建筑和工程结构的不断发展,人们对结构的安全性和稳定性要求也越来越高。

在结构力学的教学中,应力集中与疲劳是一个十分重要的内容,它揭示了如何分析结构的应力集中和疲劳失效,为学生理解和应用结构力学提供了帮助。

一、应力集中的分析在实际工程中,结构往往存在应力集中的情况,如梁的支撑点、孔洞处等。

应力集中会导致结构的强度不均匀分布,局部应力过大可能会引起结构的破坏。

因此,学生需要学会分析和解决应力集中的问题。

1. 分析方法针对不同类型的结构,我们可以采用不同的分析方法。

对于简单的结构,可以利用受力平衡条件和刚体力学的原理进行分析;对于复杂的结构,可以采用应力分析的方法,如应力分布曲线法、静定与非静定结构的分析等。

2. 选择合适的材料在分析应力集中时,我们还需要选择合适的材料。

不同的材料有不同的强度和抗疲劳性能,因此需要学生了解各类材料的性能,选择最适合的材料,以提高结构的稳定性和安全性。

二、疲劳失效的分析疲劳失效是指结构在长期受到循环荷载作用下,由于材料的损伤和疲劳裂纹的扩展而导致的失效。

在结构力学教案中,我们需要教导学生如何分析和预防疲劳失效,保证结构的使用寿命和安全性。

1. 循环荷载的影响循环荷载对结构的影响是潜在的,经过一定次数的循环荷载作用,结构中的疲劳裂纹会逐渐扩展,导致结构的疲劳失效。

因此,学生需要学会分析循环荷载对结构的影响,预估疲劳寿命,制定合理的维护计划。

2. 疲劳裂纹的监测与预防为了避免结构的疲劳失效,我们需要学生学会监测和预防疲劳裂纹的扩展。

这可以通过分析结构的应力分布和结构的受力状态,合理设计结构以避免应力集中,使用合适的材料和加工工艺,以及定期检测和维护结构,及时处理疲劳裂纹,延长结构的使用寿命。

结构力学教案中的应力集中与疲劳揭示了学生如何分析结构的应力集中和疲劳失效。

通过学习这一内容,学生可以掌握分析应力集中的方法和技巧,了解疲劳失效的原因和预防措施,提高结构的安全性和稳定性。

WORKBENCH疲劳分析指南

WORKBENCH疲劳分析指南

1、1 疲劳概述结构失效的一个常见原因就是疲劳,其造成破坏与重复加载有关。

疲劳通常分为两类:高周疲劳就是当载荷的循环(重复)次数高(如1e4 -1e9)的情况下产生的。

因此,应力通常比材料的极限强度低,应力疲劳(Stress-based)用于高周疲劳;低周疲劳就是在循环次数相对较低时发生的。

塑性变形常常伴随低周疲劳,其阐明了短疲劳寿命。

一般认为应变疲劳(strain-based)应该用于低周疲劳计算。

在设计仿真中,疲劳模块拓展程序(Fatigue Module add-on)采用的就是基于应力疲劳(stress-based)理论,它适用于高周疲劳。

接下来,我们将对基于应力疲劳理论的处理方法进行讨论。

1、2 恒定振幅载荷在前面曾提到,疲劳就是由于重复加载引起:当最大与最小的应力水平恒定时,称为恒定振幅载荷,我们将针对这种最简单的形式,首先进行讨论。

否则,则称为变化振幅或非恒定振幅载荷。

1、3 成比例载荷载荷可以就是比例载荷,也可以非比例载荷:比例载荷,就是指主应力的比例就是恒定的,并且主应力的削减不随时间变化,这实质意味着由于载荷的增加或反作用的造成的响应很容易得到计算。

相反,非比例载荷没有隐含各应力之间相互的关系,典型情况包括:σ1/σ2=constant在两个不同载荷工况间的交替变化;交变载荷叠加在静载荷上;非线性边界条件。

1、4 应力定义考虑在最大最小应力值σmin与σmax作用下的比例载荷、恒定振幅的情况:应力范围Δσ定义为(σmax-σmin)平均应力σm定义为(σmax+σmin)/2应力幅或交变应力σa就是Δσ/2应力比R就是σmin/σmax当施加的就是大小相等且方向相反的载荷时,发生的就是对称循环载荷。

这就就是σm=0,R=-1的情况。

当施加载荷后又撤除该载荷,将发生脉动循环载荷。

这就就是σm=σmax/2,R=0的情况。

1、5 应力-寿命曲线载荷与疲劳失效的关系,采用的就是应力-寿命曲线或S-N曲线来表示:(1)若某一部件在承受循环载荷, 经过一定的循环次数后,该部件裂纹或破坏将会发展,而且有可能导致失效;(2)如果同个部件作用在更高的载荷下,导致失效的载荷循环次数将减少;(3)应力-寿命曲线或S-N曲线,展示出应力幅与失效循环次数的关系。

线性或线性化应力寿命(S-N)和应变寿命(e-N)疲劳数据的统计分析

线性或线性化应力寿命(S-N)和应变寿命(e-N)疲劳数据的统计分析

5. Types of S-N and e-N Curves Considered
5.1 It is well known that the shape of S-N and e-N curves can depend markedly on the material and test conditions. This practice is restricted to linear or linearized S-N and e-N relationships, for example,
namic Forces in an Axial Fatigue Testing System E 468 Practice for Presentation of Constant Amplitude Fa-
tigue Test Results for Metallic Materials E 513 Definitions of Terms Relating to Constant-
Current edition approved May 1, 2004. Published June 2004. Originally approved in 1980. Last previous edition approved in 1998 as E 739 – 91 (1998).
2 For referenced ASTM standards, visitห้องสมุดไป่ตู้the ASTM website, , or contact ASTM Customer Service at service@. For Annual Book of ASTM Standards volume information, refer to the standard’s Document Summary page on the ASTM website.

车辆结构有限元疲劳分析

车辆结构有限元疲劳分析
Gerber法 None不进行修正
Mean Stress
Curves
定义有限寿命数值 疲劳强度系数 载荷缩放系数
恒幅,比例载荷 恒幅,非比例载荷 非恒幅,比例载荷 非恒幅,非比例载荷
X方向应力/Y/Z XY平面应力 YZ平面应力 XZ平面应力
Von Mises应力 带符号的Von Mises应力
最大剪应力 最大主应力 最大主应力最大值
Fully Reversed
Ratio
History
非恒定幅值比例 载荷
R=-1
指定应力比 R=X
指定载荷时 间历程
二、应力疲劳分析
6.平均应力对疲劳寿命的影响
平均应力对疲劳寿命的影响就是考虑应力 比R的变化对疲劳寿命会产生影响,从而需要 对S-N曲线进行修正。ANSYS WB提供了平均应 力修正的五个选项:
第九章 车辆结构有限元疲劳分析
结构疲劳分析基础 应力疲劳分析 典型材料试件应力疲劳分析 发动机连杆的应力疲劳分析
一、结构疲劳分析基础
车辆是运动并承载的机械,其结构承受 的载荷大部分都是交变载荷。零部件失效中, 由疲劳裂纹引起的结构失效断裂事故占总断 裂事故的70%--80%以上,约有50%--90%的 机械结构的破坏属于疲劳破坏。
实例2:连杆受载荷幅值为4500N,为恒幅载 荷,平均载荷为0(R=-1)。材料默认为 Structure Steel。求发动机连杆的安全系数。
四、发动机连杆的应力疲劳分析
直接打开Conrod-fatigue.wbpj文件,导 入ConRod.x_t,并对Geometry进行编辑。
四、发动机连杆的应力疲劳分析
得到的是多轴应力。但在试验过程中得到的 一般是单轴应力。在ANSYS WB应力疲劳分析 中可以选择X、Y、Z三个方向的应力分量, Von Mises应力,带符号Von Mises应力等。 在考虑压缩平均应力对疲劳寿命的影响中, 带符号Von Mises应力是非常有用的,

疲劳分析的各种方法

疲劳分析的各种方法

疲劳寿命预测方法很多。

按疲劳裂纹形成寿命预测的基本假定和控制参数,可分为名义应力法、局部应力一应变法、能量法、场强法等。

2.4.1.1名义应力法名义应力法是以结构的名义应力为试验和寿命估算的基础,采用雨流法取出一个个相互独立、互不相关的应力循环,结合材料的S -N 曲线,按线性累积损伤理论估算结构疲劳寿命的一种方法。

基本假定:对任一构件(或结构细节或元件),只要应力集中系数K T 相同,载荷谱相同,它们的寿命则相同。

此法中名义应力为控制参数。

该方法考虑到了载荷顺序和残余应力的影响,简单易行。

但该种方法有两个主要的不足之处:一是因其在弹性范围内研究疲劳问题,没有考虑缺口根部的局部塑性变形的影响,在计算有应力集中存在的结构疲劳寿命时,计算误差较大;二是标准试样和结构之间的等效关系的确定十分困难,这是由于这种关系与结构的几何形状、加载方式和结构的大小、材料等因素有关。

正是因为上述缺陷,使名义应力法预测疲劳裂纹的形成能力较低,且该种方法需求得在不同的应力比R和不同的应力集中因子K T下的S-N曲线,而获得这些材料数据需要大量的经费。

因而名义应力法只适用于计算应力水平较低的高周疲劳和无缺口结构的疲劳寿命。

近年来,名义应力法也在不断的发展中,相继出现了应力严重系数法(S. ST)、有效应力法、额定系数法(DRF)等。

2.1.2.2局部应力一应变法局部应力一应变法的基本思想是根据结构的名义应力历程,借助于局部应力-应变法分析缺口处的局部应力。

再根据缺口处的局部应力,结合构件的S-N 曲线、材料的循环。

一曲线、 E -N 曲线及线性累积损伤理论,估算结构的疲劳寿命。

基本假定:若一个构件的危险部位(点)的应力一应变历程与一个光滑小试件的应力一应变历程相同,则寿命相同。

此法中局部应力一应变是控制参数。

局部应力一应变法主要用于解决高应变的低周疲劳和带缺口结构的疲劳寿命问题。

该方法的特点是可以通过一定的分析、计算将结构上的名义应力转化为缺口处的局部应力和应变。

产品疲劳寿命评估

产品疲劳寿命评估

产品疲劳寿命评估一、疲劳及疲劳分析概述疲劳就是材料在循环应力和应变作用下“在一处或几处产生永久性累积损伤”经一定循环次数后产生裂纹或突然发生完全断裂的过程。

疲劳寿命的定义为发生疲劳破坏时的载荷循环次数,或从开始受载到发生断裂所经过的时间。

即材料或构件疲劳失效时所经受的规定应力或应变的循环次数,是设计人员和工程技术人员十分关注的课题,也是与广大用户切身相关的问题。

构件的疲劳是个复杂的过程"受多种因素的影响,要精确地预估构件的疲劳寿命,需要选择合适的模型,这就需要宏观力学方面的研究,包括疲劳裂纹发生、发展直至破坏的机理,还需要微观力学方面的研究包括位错理论等。

此外,还涉及到金属材料科学、材料力学、振动力学、疲劳理论、断裂力学和计算方法等多门学科。

只有更深刻地认识了疲劳破坏的机理,将宏观和微观研究结合起来,才能更精确地预测寿命。

归纳疲劳寿命预测的各种理论与方法,可看出疲劳分析具有以下优势和问题:1.预测疲劳裂纹形成寿命的方法很多,但是仍有很多问题需要不断深入探讨,例如裂纹形成寿命的定义、更能反映实际损伤历程的疲劳损伤累积理论、循环应力应变曲线的描述等,更为重要的是需要深入了解疲劳裂纹形成阶段的损伤机理。

目前在疲劳裂纹形成寿命预测方法中,局部应力应变法最有效,使用也最为广泛;场强法发展迅速,具有发展潜力,但是其分析计算方法较为复杂。

2.由于很多工程构件都含有尖锐缺口或裂纹,疲劳寿命往往主要消耗于裂纹的扩展阶段,因此根据断裂力学的相关理论所建立的疲劳裂纹扩展寿命的相关预测方法在寿命预测中具有越来越重要的地位。

断裂力学在近20年来已经较为深刻地揭示了疲劳裂纹扩展的机理,因而利用其相关知识建立一个描述裂纹扩展过程的真实模型非常必要,这也是目前疲劳裂纹扩展寿命预测研究的重点之一。

3.将疲劳破坏过程分为形成与扩展两个阶段进行处理,分别估算出两部分的疲劳寿命,从而能够更为准确地预测整个疲劳寿命。

二、基于有限元的疲劳仿真分析思路用有限元法进行疲劳分析,其基本思路是:首先进行静或动强度分析,然后进入到后处理器取出相关的应力应变结果,在后处理器中再定义载荷事件,循环材料特性,接着根据所需要的疲劳准则对每一个载荷事件进行寿命计算,最后根据累计损伤理论判断是否开始破坏。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档