发酵过程控制(概述)

合集下载

发酵过程控制发酵过程泡沫的形成和控制

发酵过程控制发酵过程泡沫的形成和控制

发酵过程控制发酵过程泡沫的形成和控制发酵过程中产生泡沫是由于发酵微生物产生的二氧化碳在液体中产生的气泡。

对于一些发酵工艺来说,泡沫的形成是正常的现象,但当泡沫过高时,会导致操作困难、影响发酵效果甚至引发事故。

因此,控制发酵过程中泡沫的形成和控制是非常重要的。

首先,我们来讨论一些常见的发酵过程中形成泡沫的原因。

发酵过程中产生的泡沫主要有以下几个原因:1.发酵微生物产生的二氧化碳气泡:在发酵过程中,微生物会通过代谢作用产生二氧化碳,这些气体会在液体中形成气泡。

2.搅拌:发酵过程中的搅拌会增加气体与液体的接触面积,从而促进气泡的形成。

3.添加剂:有些发酵过程中需要添加剂,如泡沫剂、表面活性剂等,这些添加剂会导致气泡的形成。

针对泡沫过高的情况,我们需要进行泡沫的控制。

以下是一些常见的泡沫控制方法:1.控制发酵微生物的种类和数量:选择合适的发酵微生物,使其不产生过多的二氧化碳气泡。

2.控制发酵温度:温度的控制对于发酵过程很重要,过高或过低的温度都会导致泡沫过高。

因此,要合理控制发酵过程中的温度。

3.控制搅拌的速度和时间:适当控制搅拌的速度和时间,避免过度搅拌,以减少气泡的形成。

4.添加抗泡剂:在发酵过程中添加抗泡剂,可以减少气泡的形成。

抗泡剂可以抑制气泡的集聚和稳定。

5.使用泡沫控制装置:在发酵过程中使用泡沫控制装置,如泡沫传感器和控制器,可以自动检测和控制泡沫的高度。

总之,控制发酵过程中泡沫的形成和控制是一项重要的工作。

通过合理选择发酵微生物、调节温度、控制搅拌速度和时间、添加抗泡剂以及使用泡沫控制装置等手段,可以有效地控制和管理发酵过程中的泡沫,确保发酵过程的顺利进行。

发酵工艺的泡沫控制需要结合具体的实际情况,进行合理的调整和控制,以满足生产过程的要求。

发酵工程发酵过程控制

发酵工程发酵过程控制

发酵工程发酵过程控制1. 引言发酵工程是利用微生物的生理代谢过程来生产有机化合物的一种工程技术。

而发酵过程控制则是在发酵工程中对发酵过程进行调控和监控,以确保发酵过程能够稳定进行,并获得高产率和良好的产品质量。

发酵过程控制通过对微生物与培养基、发酵设备和操作条件等方面进行控制,研究微生物的生长规律和代谢产物的生成规律,实现对发酵过程的调控,以实现最佳的发酵效果。

本文将介绍发酵工程发酵过程控制的主要内容和方法。

2. 发酵过程控制的目标发酵过程控制的主要目标是实现以下几个方面的调控:1.生物量的控制:调控微生物的生长速率和生物量,使其在适宜的培养基和环境条件下获得最佳生长,提高产酶或产物的产量;2.代谢产物的控制:调控微生物代谢过程中的关键反应步骤,实现选择性产物的生成,并提高产量;3.溶氧的控制:调控发酵过程中的溶氧浓度,提高氧传递效率,防止氧的限制性产物的堆积;4.pH的控制:调控发酵过程中的pH值,维持合适的酸碱环境,促进微生物的生长和代谢;5.温度的控制:调控发酵过程中的温度,提供适宜的环境条件,促进微生物的生长和代谢。

3. 发酵过程控制的方法发酵过程控制主要采用以下几种方法:3.1 反馈控制反馈控制是一种基于对发酵过程变量的测量和反馈,通过调节控制器输出量,实现对发酵过程的调控。

常见的反馈控制方法包括:•温度控制:通过测量发酵容器内的温度,控制加热或降温设备的输出,以维持适宜的温度;•pH控制:通过测量发酵液的pH值,控制酸碱调节器的输出,以维持适宜的酸碱环境;•溶氧控制:通过测量发酵液中的溶氧浓度,控制气体供应设备的输出,以维持适宜的溶氧浓度。

3.2 前馈控制前馈控制是一种基于对发酵过程中外部输入变量的预测,通过调节控制器输出量,实现对发酵过程的调控。

常见的前馈控制方法包括:•溶氧前馈控制:根据发酵微生物对溶氧需求的特性,通过对气体供应设备输出的调节,提前调整溶氧浓度,以满足微生物的需求;•pH前馈控制:根据发酵产物对酸碱环境的敏感性,通过对酸碱调节器输出的调节,提前调整pH值,以维持合适的酸碱环境。

发酵过程的控制

发酵过程的控制

温度提高,合成四环素的比例也提高,温度到达 35 ℃
时,金霉素的合成几乎停顿,只产生四环素。
4、温度还影响基质溶解度
在发酵液中的溶解度也影响菌对某些基质的分解
吸收。因此对发酵过程中的温度要严格控制。
五、最适温度的控制
1、根据菌种及生长阶段来选择 微生物种类不同,所具有的酶系及其性质不同,所要求
在发酵30h,一次性参加0.1%、0.2%、0.3%、0.4%的次黄嘌呤 对鸟苷产量的影响
第五节 菌体浓度与基质对发酵的影响
一、菌体浓度对发酵的影响 菌体浓度与菌体生长速率直接相关 菌体浓度的大小影响产物的得率 控制培养基中营养物质的含量来控制菌体浓

二、基质对发酵的影响及控制
1、碳源对发酵的影响及控制
容易实现自动控制 1、化学消泡机理 消泡剂外表张力低,使气泡膜局部的外表张力降低,
使得平衡受到破坏
2、消泡剂选择的依据及常用的消泡剂种类 〔1〕选用依据: ①外表活性剂 ②对气-液界面的散布系数必须足够大 ③无毒害性,且不影响发酵菌体; ④不干扰各种测量仪表的使用; ⑤在水中的溶解度较小 ⑥来源方便,本钱低
二、发酵热的测量及计算
发酵热的测定可采用以下几种方法:
①利用热交换原理,测量一定时间内冷却水的流量和冷 却水进出口温度,根据
Q发酵 = qvC〔t2 – t1〕/V;
qv为冷却水体积流量,L/h;C为水的比热容,kJ/kg ℃;V为发酵液体积,m3
②利用温度变化率:先使罐温恒定,再关闭自控装置,测量温度 随时间上升的速率,根据
异亮氨酸发酵
不同pH控制方式对目的突变株ISw330异亮氨酸摇 瓶发酵的影响,结果如下图。 “1〞表示只加CaC03 控制pH值,“2〞表示只加尿素控制,“3〞表示 CaC03和尿素联合控制pH值。

发酵过程控制

发酵过程控制

(7) 排气氧、排气CO2
排气氧的浓度表征了进气的氧被微生物 利用以后还剩余的氧。
排气CO2反映了微生物代谢的情况,因为 微生物摄入的氧并不是全部变成CO2的,有的
进入代谢中间物分子,进入细胞或产物,因
此消耗的氧并不等于排出的CO2;此外,含氧 的有机物降解后会产生CO2,使排气CO2大于
消耗的氧。
• 指单位时间内单位体积发酵液通入空气的 体积。
• 它的大小与氧的传递和其它控制参数有关。 • 一般控制在0.1~1.0vvm之间
(6) 黏度
• 粘度大小可作为细胞生长或细胞形态的标 志之一。
• 在发酵过程中通常用表观粘度表示。 • 粘度的大小可改变氧传递的阻力。 • 粘度的大小可表示相对菌体浓度。
发酵后期氨基氮回升,这时就要放罐,否则 影响提取过程。
③ 磷含量
微生物体内磷含量较高,培养基中以磷酸 盐为主,发酵中用来计算磷含量的是磷酸根。
磷是核酸的组成部分,是高能化合物ATP的 组成部分,磷还能促进糖代谢。因此磷在培养 基中具有非常重要的作用,如果磷缺乏就要采 取补磷措施。
但是在某些次生代谢产物发酵过程中,磷 浓度过高会抑制产物的合成。
✓ 在培养过程中,产生菌的合成能力和产物ቤተ መጻሕፍቲ ባይዱ
积累情况都要通过产物量的测定来了解,产 物浓度直接反映了生产的状况,是发酵控制 的重要参数。而且通过计算还可以得到生产 速率和比生产速率,从而分析发酵条件如补 料、pH对产物形成的影响。
6.2 温度对发酵的影响及其控制
6.2.1 温度对发酵的影响
不同微生物的生长对温度的要求不同, 根据它们对温度的要求大致可分为四类:嗜 冷菌适应于0~26℃生长,嗜温菌适应于15 ~43 ℃生长,嗜热菌适应于37~65℃生长 ,嗜高温菌适应于65 ℃以上生长 。

发酵工艺的过程控制

发酵工艺的过程控制

发酵工艺的过程控制引言发酵工艺是一种将有机物质通过微生物的作用转化为需要的产物的过程。

在发酵过程中,微生物通过吸收养分、产生代谢产物和释放能量,完成了物质的转化。

为了保证发酵过程的高效和稳定,控制发酵过程至关重要。

本文将介绍发酵工艺的过程控制,包括控制参数和控制策略。

1. 发酵过程的控制参数发酵过程的控制参数是指影响发酵过程的参数,包括温度、pH值、溶氧量、搅拌速度、发酵菌种等等。

这些控制参数对于发酵过程的高效和稳定起到了重要的作用。

1.温度:发酵过程中适宜的温度可以促进微生物的生长和代谢活动。

不同的发酵过程需要不同的温度,一般在微生物的最适生长温度附近,通常在25-42摄氏度之间。

2.pH值:发酵过程中的pH值对微生物的生长和代谢活动有重要影响。

不同的微生物对于pH值的需求不同,一般在微生物最适生长pH值的附近维持。

3.溶氧量:溶氧量是指发酵液中的氧气饱和度。

微生物在发酵过程中需要氧气进行呼吸和代谢活动。

合适的溶氧量可以提高发酵效率和产物质量。

4.搅拌速度:搅拌速度对于发酵液中的微生物的分散性和氧气气液传递有着重要影响。

适当的搅拌速度可以保证发酵液中的微生物充分接触营养物质和氧气。

5.发酵菌种:选择适宜的发酵菌种对于发酵过程的控制至关重要。

合适的发酵菌种应具备高发酵活力、产物合成能力和抗污染能力。

2. 发酵过程的控制策略为了实现对发酵过程的有效控制,需要采取相应的控制策略。

以下是几种常见的发酵过程控制策略。

1.反馈控制:反馈控制是根据实时的监测数据对发酵过程进行调节。

通过监测发酵过程中的温度、pH值、溶氧量等参数,将实际参数与设定值进行比较,根据误差进行反馈调整,以维持发酵过程的稳定性。

2.前馈控制:前馈控制是根据预期的发酵过程需求提前对控制参数进行调整。

通过事先设定好的控制策略,根据发酵过程中的状态进行预测和计算,提前对控制参数进行调整,以达到预期的控制效果。

3.比例积分控制:比例积分控制是通过调整控制器的比例参数和积分参数来改变控制器的工作方式。

第五章-发酵过程控制ppt课件(全)

第五章-发酵过程控制ppt课件(全)

第一节 发酵方式
一、概述
发酵:指在厌氧条件下葡萄糖通过酵解途径生成乳酸或乙醇 等的分解代谢过程。
广义发酵:微生物把一些原料养分在合适的发酵条件下经过 特定的代谢转变成所需产物的过程。
微生物培养:亦称微生物发酵,发酵生产按微生物培养工艺 不同可以分为固态发酵和液态发酵两种类型。两者在工艺过 程上大体相同,主要工艺过程为: 斜面菌种培养~菌体或孢子悬浮液制备~种子扩大培养~ 发酵培养~发酵产物与发酵基质分离~提纯与精制~成品。
分批培养的特点是操作简单,易于掌握,是最常见的操作方 式。
分批发酵过程一般可粗分为四期:即适应期(也有称停滞期 或延滞期的)、对数(指数)生长期、生长稳定期和死亡期;
也可细分为六期:即停滞期、加速期、对数期、减速期、静 止期和死亡(衰亡)期
分批培养中的微生物的典型生长曲线
停滞期(Ⅰ)
停滞期(Ⅰ): 刚接种后的一段时间内,细胞不生长,细胞 数目和菌量基本不变。
第五章 发酵过程及控制
学习目标
知识目标 能陈述发酵过程的影响因素(温度、溶氧、pH等); 能陈述不同发酵方式的理论及异同及优劣; 掌握发酵动力学的有关原理、发酵器的分类及发展趋势。 能力目标 能够找出发酵最适宜条件,并采取相应控制措施; 能够进行发酵终点判断; 能够进行发酵过程重要检测;
三、产物形成动力学
产物形成与生长的关系 细胞生长与代谢产物形成之间的动力学关系决定
于细胞代谢中间产物所起的作用。描述这种关系的 模式有三种,即生长联系型模式、非生长联系型模 式和复合型模式。 (1)生长联系型模式 (2)非生长联系型模式 (3)复合模式
四、生长得率与产物得率
1.生长得率和产物得率的定义 生长得率:消耗每单位数量的基质所得到的菌体,

发酵生产的过程及控制

发酵生产的过程及控制

死亡期
2、补料分批培养
在分批培养过程中补入新鲜的料液,以克服营养不足而导致 的发酵过早结束的缺点。 在此过程中只有料液的加入没有料液的取出,所以发酵结束 时发酵液体积比发酵开始时有所增加。在工厂的实际生产中 采用这种方法很多。
简单的过程,培养基中接入菌种以后,没有物料的加入和取出, 除了空气的通入和排气。整个过程中菌的浓度、营养成分的浓 度和产物浓度等参数都随时间变化。
优点: 操作简单,周期短,染菌机会少,生产过程和产品质量 容易掌握 缺点: 产率低,不适于测定动力学数据
分批培养中微生物的生长
迟滞期 对数生长期
稳 定期
发酵级数确定的依据
级数受发酵规模、菌体生长特性、接种量的影响。
级数大,难控制、易染菌、易变异,管理困难,一 般2-4级。
在发酵产品的放大中,反应级数的确定是非常重要 的一个方面。
3、接种量的确定
移入种子的体积 接种量= —————————
接种后培养液的体积
过大过小都不好,最终以实践定,如大多数抗生素为7-15%。 但是一般认为大一点好。
7 种子的质量标准
• 菌丝形态、菌体浓度和培养基外观(色素、颗粒等); • pH; • 糖氮代谢速度; • 其它参数,如接种前的抗生素含量、某种酶活等。
8 影响种子质量的因素:
1)原材料的质量:
一般选择一些有利于孢子发芽和菌丝生长的培养基,在营养 上容易被菌体直接吸收利用,营养成分要适当地丰富和完全, 氮源和维生素含量较高,这样可以使菌丝粗壮,并且具有较 强的活力。
另一方面,种子培养基中的营养成分要尽可能和发酵培养基 接近以适合发酵的需要,这样的种子移入发酵罐后能比较容 易适应发酵罐的培养条件如微量元素Mg、Ca、Ba能刺激孢子 的生长。 2)、培养温度:过低?过高?

发酵工程第六章 发酵条件及过程控制

发酵工程第六章  发酵条件及过程控制

3、菌体浓度对产物的影响
♦ 在适当的比生长速率下,发酵产物的产率与菌浓成正比 关系,即
式中, P ——发酵产物的产率(产物最大生成速率或生率),g/(L· h); QPm ——产物最大比生成速率,h-1; ♦初级代谢产物的产率与菌体浓度成正比; c(X) ——菌体浓度,g/L.
P=QPmc(X)
♦次级代谢产物的生产中,控制菌体的比生长速率μ比μ临略高 一点的水平,即c(X) ≤c(X)临时,菌体浓度越大,产物的产量 才越大。 ♦c(X)过高,摄氧率增加,溶氧成为限制因素,使产量降低。
(三)磷酸盐浓度的影响及控制
☺ 磷是构成蛋白质、核酸和ATP的必要元素,是微生物 生长繁殖所必需的成分,合成产物所必需的营养。 控制方式: ☺ 在基础培养基中采用适量的浓度给予控制,以保证菌 体的正常生长所需;
代谢缓慢:补加磷酸盐。举例:在四环素发酵中,间歇,微量添加磷
酸二氢钾,有利于提高四环素的产量。
(二)氮源
2、不同种类氮源对发酵的影响及控制 ☺ 培养基中某些氮源的添加有利于该发酵过程中产物的积累, 这些主要是培养基中的有机氮源作为菌体生长繁殖的营养 外,还有作为产物的前体。 如:缬氨酸、半胱氨酸和ɑ-氨基己二酸等是合成青霉素和头 孢霉素的主要前体。
☺ 无机氮源利用会快于有机氮源,但是常会引pH值的变化, 这必须注意随时调整。如:
(三)磷酸盐浓度的影响及控制
☺ 微生物生长良好时,所允许的磷酸盐浓度为0.32~ 300mmol/L,但次级代谢产物合成良好时所允许的磷 酸盐最高水平浓度仅为1mmol/L。 ☺ 因此,在许多抗生素,如链霉素、新霉素、四环素、 土霉素、金霉素和万古霉素等的合成中要以亚适量添 加。
举例:四环素发酵:菌体生长最适的磷浓度为65~70

5. 发酵过程控制

5. 发酵过程控制
补糖的控制:时机、方式和指标; 补糖的控制:时机、方式和指标; 通氨及补氮:用于调节pH值和补充无机氮源 值和补充无机氮源, 通氨及补氮:用于调节pH值和补充无机氮源,多 采用少量间隙添加或少量自动流加。 采用少量间隙添加或少量自动流加。 补充无机元素和促进剂及前体。 补充无机元素和促进剂及前体。
五、发酵过程中泡沫的产生 和控制
影响生物热的因素
菌株的性能、接种量、菌丝浓度、 菌株的性能、接种量、菌丝浓度、培养基的成分和 发酵时间都直接影响着生物热的大小。 发酵时间都直接影响着生物热的大小。
最适发酵温度
指最适于产生菌生长或抗生素合成的温 度。 特点: 特点:
最适温度是一个相对的概念; 最适温度是一个相对的概念; 发酵过程中要控制几个不同的最适温度; 发酵过程中要控制几个不同的最适温度; 发酵温度的选择要参考其它发酵条件,如通 发酵温度的选择要参考其它发酵条件, 气条件、培养基的组成和浓度等。 气条件、培养基的组成和浓度等。
三、通气和搅拌
影响发酵过程中需氧的因素: 影响发酵过程中需氧的因素:
① 生产菌种:1)不同菌种;2)同一菌种的不同生 生产菌种: 不同菌种; 长代谢阶段,主要取决于下列两个主要因素: 长代谢阶段,主要取决于下列两个主要因素:单 位体积培养液中的菌液浓度和菌的呼吸强度。 位体积培养液中的菌液浓度和菌的呼吸强度。 呼吸强度:单位重量菌丝体(干重) 呼吸强度:单位重量菌丝体(干重)在单位时间 内的耗氧量。 内的耗氧量。 ② 培养基 ③ 菌丝浓度和形状 种子的质和量: ④ 种子的质和量:接种量和接种龄 ⑤ 泡沫和消泡剂 ⑥ 其它因素
菌丝形态与产量的关系
以产黄青霉生产青霉素为例: 以产黄青霉生产青霉素为例:
I. 分生孢子发芽,具有小空泡; 分生孢子发芽,具有小空泡; II. 菌丝增殖,出现类似脂肪的小颗粒; 菌丝增殖,出现类似脂肪的小颗粒; III. 菌丝分支旺盛,出现脂肪颗粒,没有空泡; 菌丝分支旺盛,出现脂肪颗粒,没有空泡; IV. 菌丝缓慢生长,脂肪颗粒减少,形成中小空泡, 菌丝缓慢生长,脂肪颗粒减少,形成中小空泡, 开始大量分泌青霉素; 开始大量分泌青霉素; V. 菌丝体出现大空泡,含1个中性红染色的大颗粒, 菌丝体出现大空泡, 个中性红染色的大颗粒, 脂肪粒消失,大量分泌青霉素; 脂肪粒消失,大量分泌青霉素; VI. 菌丝呈筒状,颗粒消失,空泡延长,少数菌丝自 菌丝呈筒状,颗粒消失,空泡延长, 青霉素分泌减少。 溶,青霉素分泌减少。

第七章 发酵过程的控制

第七章    发酵过程的控制
• 1温度对微生物的影响 各种微生物都有自己最适的生长温度范围,在此范围 内,微生物的生长最快。同一种微生物的不同生长阶 段对温度的敏感性不同 • 2温度对微生物酶的影响 温度越高,酶反应速度越快,但酶的失活也越快,表 现出微生物细胞容易衰老,使发酵周期缩短,从而影 响发酵过程最终产物的产量。
1、发酵温度
4、CO2和呼吸商的影响及控制
• 三.发酵过程中CO2的控制 • CO2浓度受到许多因素的影响,如细胞的 呼吸强度、通气搅拌程度、设备规模、罐 压大小、温度等。通气搅拌程度越大,体 系中CO2浓度越低。 • 工业发酵中,CO2的影响远比溶解氧的影 响要小得多,因此,一般不单独进行控制。
5、基质浓度的影响及补料控 制
压力法
覆膜氧电极 法
极普法
4、CO2和呼吸商的影响及控制
• 一.二氧化碳对发酵过程的影响 CO2影响发酵液的酸碱平衡,使发酵液的 pH值下降,或与其他化学物质发生化学反 应,或与生长必需金属离子形成碳酸盐沉 淀等原因,造成间接作用而影响菌体生长 和产物合成。
4、CO2和呼吸商的影响及控制
• 二.呼吸商与发酵的关系 • 微生物的耗氧速度常用单位质量的细胞(干 重)在单位时间内消耗氧的量,即呼吸商或 比耗氧速率(或呼吸强度)。单位体积培养液, 在单位时间内消耗的氧量称为摄氧率。 • Q氧气 = γ/ Cc 在菌体浓度一定的情况下,摄氧率越大, 呼吸商越大,发酵就越旺盛。
主要内容
由于发酵过程的复杂性,使得发酵过程的控制较为复杂, 目前生产中较常见的参数主要包括:温度、pH值、溶解氧、 空气流量、基质浓度、泡沫、搅拌速率、罐压、效价等。
9 发酵参数和发酵终点的监测与控制 10 发酵过程的计算机控制 设备及管道清洗与消毒的控制

第五章 发酵过程控制

第五章 发酵过程控制

发酵罐:夹套(10M3以下) 盘管(蛇管) (10M3以上)
二、 pH对发酵的影响及控制
发酵过程中培养液的pH值是微生物在一定环 境条件下代谢活动的综合指标,是一项重要的 发酵参数。它对菌体的生长和产品的积累有很 大的影响。因此,必须掌握发酵过程中pH的 变化规律,及时监测并加以控制,使它处于最 佳的状态。尽管多数微生物能在3~4个pH单位 的pH范围内生长,但是在发酵工艺中,为了 达到高生长速率和最佳产物形成,必须使pH 在很窄的范围内保持恒定。
第五章 发酵过程控制
本章讲述内容
发酵过程代谢变化规律 发酵条件的影响及其控制
第一节 发酵过程的代谢变化规律 发酵过程即细胞的生物反应过程, 是指由生长繁殖的细胞所引起的生 物反应过程。它不仅包括了以往 “发酵”的全部领域,而且还包括 固定化细胞的反应过程、生物法废 水处理过程和细菌采矿等过程。
为什么要研究发酵过程
µ与 α与温度有关
根据Arrenhnius公式 µ = Ae-E/RT α = A’e-E’/RT 通常E’大于E,所以 α比 µ对温度变化更为敏感 。
例:青霉菌生产青霉素 青霉菌生长活化能E=34kJ/mol 青霉素合成活化能E=112kJ/mol 青霉素合成速率对温度较敏感,温度控制相当 重要。
第二节 发酵条件的影响及其控制
工艺条件控制的目的:就是要为生产菌 创造一个最适的环境,使我们所需要的 代谢活动得以最充分的表达。
一、温度对发酵的影响及控制
1,影响发酵温度的因素 产热因素:生物热 搅拌热 散热因素:蒸发热 辐射热
发酵热
发酵热就是发酵过程中释放出来的净热量。 Q发酵=Q生物+Q搅拌-Q蒸发-Q辐射
3、分批发酵的优缺点

发酵过程控制

发酵过程控制

发酵过程控制和优化技术的有关知识发酵的生产水平高低除了取决于生产菌种本身的性能外,还要受到发酵条件、工艺的影响。

只有深入了解生产菌种在生长和合成产物的过程中的代谢和调控机制以及可能的代谢途径,弄清生产菌种对环境条件的要求,掌握菌种在发酵过程中的代谢变化规律,有效控制各种工艺条件和参数,使生产菌种始终处于生长和产物合成的优化环境中,从而最大限度地发挥生产菌种的生产能力,取得最大的经济效益。

一.发酵过程进行优化控制的意义随着生物和基因工程技术在各工业行业中的应用,发酵产品生产规模和品种不断增加,对发酵过程进行控制和优化也显得越来越重要。

作为发酵中游技术的发酵过程控制和优化技术,既关系到能否发挥菌种的最大生产能力,又会影响到下游处理的难易程度,在整个发酵过程中是一项承上启下的关键技术。

与物理和化学反应过程不同,生物过程的反应速率比较慢,目的产物的浓度、生产强度、反应物质(底物或基质)向目的产物的转化率也比较底。

工业微生物学从两个方面解决上述问题,一方面通过菌种选育和改良获得高产的发酵菌种;另一方面,通过控制培养条件使微生物最大限度地生产目标产物。

相对来讲,通过发酵过程控制和优化,将生物过程准确地控制在最优的环境或操作条件下,是提高整体生产水平的一个捷径或者说是一种更容易的方法,其重要性也绝不亚于利用分子生物学和基因工程进行菌种改良的方法。

二.生化过程的特征与物理和化学反应过程相比,生化反应过程有以下不同特征:①动力学模型高度非线性;②动力学模型参数的时变性;③除简单的物理和化学状态变量(温度、pH、压力、气体分压、DO 外,绝大多数生物状态变量(生物量、营养物浓度、代谢产物浓度、生物活性等)很难在线测量;④过程参数的滞后性,一个生物过程可能涉及成千上万个小的物理和化学反应,其相互间的作用和影响造成了生物过程的响应速率慢。

生物过程的控制和优化还具有以下特点:①不需要太高的控制精度;②各状态变量之间存在一定的连带关系;③由于没有合适的定量的数学模型可循,其控制与优化操作还必须完全依靠操作人员的经验和知识来进行。

第六章 发酵条件及过程控制

第六章 发酵条件及过程控制

第六章发酵条件及过程控制发酵是一个非常复杂的生物化学变化过程。

受很多环境条件的影响,除了培养基等化学因素影响外,还要受pH、温度、氧气、泡沫及杂菌(及噬菌体)污染等物理和生物因素的影响,而这些因素的影响往往是相互联系,相互影响,同时也是动态的。

人们就是通过观察和控制这些工艺条件,从而控制和完成发酵过程。

第一节发酵过程中PH的变化与控制第二节发酵过程中温度的影响与控制第三节发酵过程中溶解氧的影响与控制第四节发酵过程中泡沫的形成与控制第五节发酵过程中中间补料第一节发酵过程中PH的变化与控制不同种类的微生物对pH的要求是不同的。

不同的发酵阶段往往最适的pH也不同。

在不同的pH 培养基中,其代谢产物往往也不完全相同,在生产中通过调节pH值范围,也可以达到抑制杂菌的生长。

pH值在发酵过程中是一个很敏感的因素,因此,要严格控制和调节。

一、pH对发酵过程的影响pH对发酵过程的影响主要表现在下面几个方面:1、pH值影响酶的活性2、pH值影响微生物细胞膜可带电荷的状况3、pH值影响培养基中某些营养物质的分解或微生物中间产物的解离,从而影响微生物对这些物质的利用4、pH值可以改变培养基的氧化还原条件二、影响pH变化的因素1、菌种的特性2、培养基的配比3、发酵条件三、关于发酵过程中pH的调节在实际生产中,调节和控制发酵液pH值的方法应根据具体情况加以选择。

常用的方法:1、调节培养基的原始pH值;2、在发酵过程中加入弱酸或弱碱进行pH值的调节,从而合理地控制发酵条件;3、通过补料进行调节;4、通过加入碳酸钙进行调节(仅在用生理酸性铉盐做氮源时,现在用的不多。

);5、通过流加氨水方法调节(既调节pH又提供氮源。

通常采用自动控制连续流加);6、通过流加尿素调节pH值(有规律性可控制)。

味精厂普遍采用。

第二节发酵过程中温度的影响与控制温度是影响微生物生长和代谢活动的重要因素,严格保持菌种的生长繁殖和生物合成所需要的最适温度,对稳定发酵过程,缩短发酵周期,提高产量,有着重要的意义。

8.发酵过程控制

8.发酵过程控制

发酵过程控制
五 CO2 和 呼 吸 商 对 发 酵 的 影 响 及 其 控 制
CO2对菌体具有抑制作用;通常,当排气中 CO2的浓度高于4%时,微生物的糖代谢和 呼吸速率下降。如,发酵液中CO2的浓度达 到1.6×10-1mol,就会严重抑制酵母的生长; 当迚气口CO2的含量占混合气体的80%时, 酵母活力与对照相比降低20%。
二 温 度 对 发 酵 的 影 响 及 其 控 制
发酵过程控制
发酵过程中,发酵液温度变化取决于上面 几个因素: Q发酵 = Q生物 + Q搅拌 - Q蒸发 - Q辐射
二 温 度 对 发 酵 的 影 响 及 其 控 制
发酵过程控制
发酵热的测量: ①利用热交换原理: 测量一定时间内冷却水的流量和冷却水迚 出口温度,根据 Q发酵 = G*C(t2 – t1)/V
八 泡 沫 对 发 酵 的 影 响 及 其 控 制
发酵过程控制
泡沫的消长规律
八 泡 沫 对 发 酵 的 影 响 及 其 控 制
操作情况 培养基原料
发酵周期
发酵过程控制
不同搅拌速度和通气量对泡沫影响
八 泡 沫 对 发 酵 的 影 响 及 其 控 制
发酵过程控制
不同浓度蛋白质原料的起泡作用
八 泡 沫 对 发 酵 的 影 响 及 其 控 制
二 温 度 对 发 酵 的 影 响 及 其 控 制
发酵过程控制
散热的情况:
二 温 度 对 发 酵 的 影 响 及 其 控 制
蒸发热:水汽化时带走的热量,用Q蒸发表示; 假设迚出口气体温度相同,则由通气带走的 热量为:Q蒸发= G(I出-I迚) G:空气流量;I:气体热焓;
发酵过程控制
辐射热:罐体表面向环境中发射红外线而 散失的热量;热量的大小决定于罐内外温 度差大小、罐的表面积等。

发酵过程控制

发酵过程控制
3〕菌体自溶,pH上升,发酵后期,pH上升。
引起发酵液pH值变化的常见因素 (1)下降 ①培养基中C/N不当,有机酸积累; ②消沫油加得过多; ③生理酸性物质过多; (2)上升 ①C/N比例不当,N过多,氨基氮释放; ②生理碱性物质过多; ③中间补料时碱性物参加量过大;
➢ 发酵液的pH值变化是菌体代谢反响的综合结果。
②利用温度变化率S〔℃/h〕:先使罐温恒定, 再关闭自控装置,测量S,根据
③热力学方法:
根据盖斯定律:“在恒压和横容条件下,一个反响 不管是一步完成或几步完成,其反响热是一样的〞。这 实际上是热力学第一定律的必然推论,因为焓〔H〕是 状态函数,过程的焓变与途径无关,只决定于过程的始 态和终态。发酵热可根据标准燃烧热或标准生成热来计 算。
2 影响pH值变化的因素
在发酵过程中,pH值的变化决定于所用的菌 种、培养基的成分和培养条件。在产生菌的代 谢过程中,菌体本身具有一定的调整周围环境 pH值,构建最适pH值的能力。
1〕基质代谢
〔1〕糖代谢 特别是快速利用的糖,分解成小分子 酸、醇,使pH下降。糖缺乏,pH上升,是补料的标 志之一。
发酵过程的主要控制参数
⑴ pH值: 显示发酵过程中各种生化反响的综合 结果。
⑵ 温度:不同的菌种,不同产品,发酵不同阶 段所维持的温度亦不同。
⑶ 溶氧浓度〔DO值,简称溶氧〕:一般用绝对 含量(mg/L)来表示,有时也用在一样条件下 氧在培养液中饱和度的百分数(%)来表示。
⑷ 基质含量:定时测定糖(复原糖和总糖)、氮 (氨基氮或铵氮)等基质的浓度。
后期产物合成能力降低,延长发酵周期没有必要, 就又提高温度,刺激产物合成到放罐。
2〕根据培养条件选择
➢温度选择还要根据培养条件综合考虑,灵活选择。 ➢通气条件差时可适当降低温度,使菌呼吸速率降低 些,溶氧浓度也可髙些。 ➢培养基稀薄时,温度也该低些。因为温度高营养利 用快,会使菌过早自溶。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数理统计学方法:运用统计学方法设计实验和分析
实验结果,得到最佳的实验条件。如正交设计、均匀设 计、响应面设计。 优点 同时进行多因子试验。用少量的实验,经过数 理分析得到单因子实验同样的结果,甚至更准确,大大 提高了实验效率。 但对于生物学实验要求准确性高,因为实验的最佳 条件是经过统计学方法算出来的,如果实验中存在较大 的误差就会得出错误的结果。

发酵过程工艺控制的目的
有一个好的菌种以后要有一个配合菌种生长的最佳条 件,使菌种的潜能发挥出来。 目标是得到最大的比生产速率和最大的生产率。
发挥菌种的最大生产潜力考虑之点
菌种本身的代谢特点 : 生长速率、呼吸强 度、营养要求(酶系统)、代谢速率
菌代谢与环境的相关性: 温度、pH、渗透 压、离子强度、溶氧浓度、剪切力等
本节重点内容

根据发酵工艺,发酵分为哪几种类型? 各自有何优缺点?
微生物代谢是一个复杂的系统,它的代谢呈网络 形式,比如糖代谢产生的中间物可能用作合成菌体的 前体,可能用作合成产物的前体,也可能合成副产物, 而这些前体有可能流向不同的反应方向,环境条件的 差异会引发代谢朝不同的方向进行。
发酵过程受到多因素又相互交叉的影响如菌本身的遗传 特性、物质运输、能量平衡、工程因素、环境因素等等。 因此发酵过程的控制具有不确定性和复杂性。 为了全面的认识发酵过程,本章首先要告诉大家分 析发酵过程的基本方面,在此基础上再举一些例子,说
第一节 发酵过程工艺控制的 目的、研究的方法和层次
一 发酵过程的种类
分批培养
补料分批培养
半连续培养 连续培养
1、 分批发酵 简单的过程,培养基中接入菌种以后,没有 物料的加入和取出,除了空气的通入和排气。 整个过程中菌的浓度、营养成分的浓度和产 物浓度等参数都随时间变化。
分批培养中微生物的生长
3、半连续培养
在补料分批培养的基础上间歇放掉部分发酵液
(带放)称为半连续培养。某些品种采取这种方 式,如四环素发酵
优点 : 放掉部分发酵液,再补入部分料液,使代谢 有害物得以稀释有利于产物合成,提高了总产量。 缺点 : 代谢产生的前体物被稀释,提取的总体积增大。
4、连续培养
发酵过程中一边补入新鲜料液一边放出等量的发酵液,使 发酵罐内的体积维持恒定。
在反应器中微生物对各种营养成分的利用速率、生长速 率、产物合成速率及其它一些发酵过程参数的变化,找 出过程控制的最佳条件和方式。由于罐发酵中全程参数 的是连续的,所以得到的代谢情况比较可信。
生产规模放大:
在大型发酵罐规模进行试验。将小型发酵罐的优化 条件在大型反应器上得以实现,达到产业化的实现。 一般来说微生物在不同体积的反应器中的生长速率是 不同的,原因可能是,罐的深度造成氧的溶解度、空 气停留时间和分布不同,剪切力不同,灭菌时营养成 分破坏程度不同所致。
结束时发酵液体积比发酵开始时有所增加。在工厂的实
际生产中采用这种方法很多。
补料分批培养的优缺点
优点:
在这样一种系统中可以维持低的基质浓度,
避免快速利用碳源的阻遏效应;可以通过补料控制达 到最佳的生长和产物合成条件;还可以利用计算机控 制合理的补料速率,稳定最佳生产工艺。
缺点: 由于没有物料取出,产物的积累最终导致比生 产速率的下降。由于有物料的加入增加了染菌机会
明如何综合分析发酵过程及进行优化放大。

发酵过程研究的方法和层次
1、研究方法
单因子实验:对实验中要考察的因子逐个进行试 验,寻找每个因子的最佳条件。一般用摇瓶做实 验 优点 一次可以进行多种条件的实验,可以在较 快时间内得到的结果。 缺点 如果考察的条件多,实验时间会比较长
各因子之间可能会产生交互作用,影响的结果 确性
达到稳态后,整个过程中菌的浓度,产物浓度,限制性基 质浓度都是恒定的。
连续培养的优缺点
优点 : 控制稀释速率可以使发酵过程最优化。发酵 周期长,得到高的产量。由于μ=D,通过改变稀释速 率可以比较容易的研究菌生长的动力学
缺点 : 菌种不稳定的话,长期连续培养会引起菌种退 化,降低产量。长时间补料染菌机会大大增加。


发酵过程控制是发酵的重要部分
控制难点:过程的不确定性和参数的非线性
同样的菌种,同样的培养基在不同工厂,不同批 次会得到不同的结果,可见发酵过程的影响因素是 复杂的,比如设备的差别、水的差别、培养基灭菌 的差别,菌种保藏时间的长短,发酵过程的细微差 别都会引起微生物代谢的不同。了解和掌握分析发 酵过程的一般方法对于控制代谢是十分必要的
迟滞期
对数生长期

定 期
死亡期
对于初级代谢产物,在对数生长期初期就开始合成 并积累,而次级代谢产物则在对数生长期后期和稳定 期大量合成。
分批培养的优缺点
优点: 操作简单,周期短,染菌机会少,生产过程 和产品质量容易掌握 缺点: 产率低,不适于测定动力学数据
2、补料分批培养
在分批培养过程中补入新鲜的料液,以克服营养不足而 导致的发酵过早结束的缺点。 在此过程中只有料液的加入没有料液的取出,所以发酵
2、研究的层次
初级层次的研究:
一般在摇瓶规模进行试验。主要考察目的菌株生长和 代谢的一般条件,如培养基的组成、最适温度、最适 pH等要求。 摇瓶研究的优点是工作量大,可以一次试验几十种甚至 几百种条件,对于菌种培养条件的优化有较高的效率。
代谢及工程参数层次研究:
一般在小型反应器规模进行试验。在摇瓶试验的基 础上,考察溶氧、搅拌等摇瓶上无法考察的参数,以及
相关文档
最新文档