圆锥曲线的综合经典例题(有答案)
(完整word版)圆锥曲线经典练习题及答案
一、选择题 1. 圆锥曲线经典练习题及解答大足二中 欧国绪直线I 经过椭圆的一个顶点和一个焦点,若椭圆中心到 1 l 的距离为其短轴长的丄,则该椭圆 4 的离心率为 1 (A ) ( B ) 3(C) I (D ) 2.设F 为抛物线 c : y 2=4x 的焦点, 曲线 ky= ( k>0)与C 交于点P , PF 丄x 轴,则k= x(B )1 3 (C)—2(D )23•双曲线 2 x C : Ta 2y_1(a 0,b 0)的离心率为2,焦点到渐近线的距离为'、3,贝U C的焦距等于 A. 2 B. 2、2 C.4D.4•已知椭圆 C :0)的左右焦点为 F i ,F 2,离心率为丄3,过F 2的直线l3交C 与A 、B 两点, 若厶AF i B 的周长为4、、3,则C 的方程为()2 A. x_3 B. 2x 2彳 xr y 1C.2 x 12 D. 2 x 12 5. y 2 b 2线的一个焦点在直线 2 A.— 5 6.已知 已知双曲线 2 x ~2a 1(a 0,b 0)的一条渐近线平行于直线 I :y 2x 10,双曲 2 B — 20 2为抛物线y 2 ' 1 20 F l 上, 2 y 5 则双曲线的方程为( 也1 100 A , B 在该抛物线上且位于x 轴的两侧, c 3x 21 C.— 25 占 八、、的焦点, uu uuuOA OB A 、2 (其中O 为坐标原点),则-1^/2 87.抛物线 =X 2的准线方程是4(A) y (B)2(C)) D M 辽.100 25 ABO 与 AFO 面积之和的最小值是( )x 1(D)8•已知点A( 2,3)在抛物线C:2px的准线上,记C的焦点为F,则直线AF的斜率为A. 4B. 13C.D.9.设F为抛物线C A, B两点,贝S AB =(A)旦3 2 c:y =3x(B)10.已知抛物线C: 的焦点,过F且倾斜角为30°的直线交于C于(C) 12 (D)7、、3x的焦点为F , A X o, y0是C上一点, AF 5 冲4X0,则X o ()A. 1B. 2C. 4x2 11.已知双曲线—a拆A. 2 B.- D. 82y3、5C. -D.121(a 0)的离心率为2,则a20)与C 交于点P , PF 丄x 轴,所以- 2,所以k=2 ,1选D.3.C4.A5.A••• - 2,0 2c 10, A c 5, a 2 5, b 2 20, a2 2A x- y_ 1.5206. B试卷答案 1.B试题分析:如图,在椭圆中, OF c, OB b, OD 2b -b2在 Rt OFB 中,| OF | |OB| |BF | |OD |,且 a 2 b 22c ,代入解得x2 2 a 4c ,所以椭圆的离心率为: e 1,故选B. k焦点F(1,0),又因为曲线y (k xy2= x ••• F(],0),设人(%2,%)弋(『22°2),%>0, y2<0, B=v OAOB>4OAOB= y^y^ + y』2 = 2 • (y』2+ 2)(%丫2-1) = 0,即yy = -21 1 1 1 - •…S从OF = ?- ?y1, S^A OB = ?OA?OB?sin 0= -?OAOB?tan 0= tan 0cos0=驴!. 4 22 4 2= < 222|OA||OB| W + y1 肛 + y2 2讥%+1)(y2 +1)1_______ = 1/2 2 2 2 - ,i'~2 2 - ■ y1 y2 + y1 + y2 + 1 , y1 + y2 +5i14 2 i14 2 2,— ----------- 川+4y1 +4 卩+4y1 +4 % + 2 2--tan 0= 比+ y2 + 4 = = = 一= y1 +y1 *y1 y1 + S 从OB =鲁+ %+ —= 98y1+ —8 y1 8 y17. A8. C【答SIC【解析】试題分析;由已知得,抛物柱於=2四的谁竝方程为兀=一彳,且过点故一彳=一2,则左二4,2 2-r 3-0 3戸(2卫>则直线AF的斜率肛=-- =—「选U-2-24【考点定位】1、抛物线的标准方程和简单几何性质;2、直线的斜率.9. C3设AF = 2m, BF = 2n, F(-,0).则由抛物线的定义和直角三角形知识可得,43 3 3 32m=2?—+ ..3m,2n=2?—- 3n,解得m= —(2+、3),n 二(2八3), • m+n =6.4 4 2 2AB= AF + BF = 2m+ 2n = 12故选C.10. A根据抛物线的定义可知AF1 5X0 - - X0,解之得X0 1 .选A4 411.D 注??:=3.选 BS AAOF2 3由双曲线的离心率可得7a------- 2,解得a 1,选D.a。
(完整版)圆锥曲线大题20道(含标准答案)
1.已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为)0,3( (1)求双曲线C 的方程; (2)若直线2:+=kx y l 与双曲线C 恒有两个不同的交点A 和B ,且2>⋅OB OA (其中O 为原点). 求k 的取值范围.解:(Ⅰ)设双曲线方程为12222=-by a x ).0,0(>>b a由已知得.1,2,2,32222==+==b b ac a 得再由故双曲线C 的方程为.1322=-y x (Ⅱ)将得代入13222=-+=y x kx y .0926)31(22=---kx x k 由直线l 与双曲线交于不同的两点得⎪⎩⎪⎨⎧>-=-+=∆≠-.0)1(36)31(36)26(,0312222k k k k即.13122<≠k k 且①设),(),,(B B A A y x B y x A ,则 ,22,319,312622>+>⋅--=-=+B A B A B A B A y y x x OB OA kx x k k x x 得由 而2)(2)1()2)(2(2++++=+++=+B A B A B A B A B A B A x x k x x k kx kx x x y y x x.1373231262319)1(22222-+=+-+--+=k k k k k k k于是解此不等式得即,01393,213732222>-+->-+k k k k .3312<<k ② 由①、②得.1312<<k故k 的取值范围为).1,33()33,1(⋃-- 2..已知椭圆C :22a x +22by =1(a >b >0)的左.右焦点为F 1、F 2,离心率为e. 直线l :y =e x +a 与x 轴.y 轴分别交于点A 、B ,M 是直线l 与椭圆C 的一个公共点,P 是点F 1关于直线l 的对称点,设=λ.(Ⅰ)证明:λ=1-e 2;(Ⅱ)确定λ的值,使得△PF 1F 2是等腰三角形.(Ⅰ)证法一:因为A 、B 分别是直线l :a ex y +=与x 轴、y 轴的交点,所以A 、B 的坐标分别是2222222.,,1,).,0(),0,(b a c c b y c x b y ax a ex y a e a +=⎪⎩⎪⎨⎧=-=⎪⎩⎪⎨⎧=++=-这里得由. 所以点M 的坐标是(a b c 2,-). 由).,(),(2a eaa b e a c AB AM λλ=+-=得即221e a ab e ac e a-=⎪⎪⎩⎪⎪⎨⎧==-λλλ解得证法二:因为A 、B 分别是直线l :a ex y +=与x 轴、y 轴的交点,所以A 、B 的坐标分别是).,0(),0,(a ea-设M 的坐标是00(,),x y00(,)(,),a aAM AB x y a e eλλ=+=u u u u r u u u r 由得所以⎪⎩⎪⎨⎧=-=.)1(00a y e a x λλ因为点M 在椭圆上,所以,122220=+by a x即.11)1(,1)()]1([22222222=-+-=+-e e b a a e aλλλλ所以 ,0)1()1(2224=-+--λλe e解得.1122e e -=-=λλ即(Ⅱ)解法一:因为PF 1⊥l ,所以∠PF 1F 2=90°+∠BAF 1为钝角,要使△PF 1F 2为等腰三角形,必有|PF 1|=|F 1F 2|,即.||211c PF = 设点F 1到l 的距离为d ,由,1||1|0)(|||21221c eec a e a c e d PF =+-=+++-==得.1122e ee =+-所以.321,3122=-==e e λ于是即当,32时=λ△PF 1F 2为等腰三角形. 解法二:因为PF 1⊥l ,所以∠PF 1F 2=90°+∠BAF 1为钝角,要使△PF 1F 2为等腰三角形,必有|PF 1|=|F 1F 2|, 设点P 的坐标是),(00y x ,则0000010.22y x ce y x c e a -⎧=-⎪+⎪⎨+-⎪=+⎪⎩,2022023,12(1).1e x c e e a y e ⎧-=⎪⎪+⎨-⎪=⎪+⎩解得由|PF 1|=|F 1F 2|得,4]1)1(2[]1)3([2222222c e a e c e c e =+-+++- 两边同时除以4a 2,化简得.1)1(2222e e e =+- 从而.312=e 于是32112=-=e λ 即当32=λ时,△PF 1F 2为等腰三角形. 3.设R y x ∈,,j i ρρ、为直角坐标平面内x 轴、y 轴正方向上的单位向量,若j y i x b j y i x a ρρρρϖρ)3( ,)3(-+=++=,且4=+b a ϖϖ.(Ⅰ)求点),(y x P 的轨迹C 的方程;(Ⅱ)若A 、B 为轨迹C 上的两点,满足MB AM =,其中M (0,3),求线段AB 的长. [启思]4.已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,OB OA +与)1,3(-=a 共线. (Ⅰ)求椭圆的离心率;(Ⅱ)设M 为椭圆上任意一点,且),( R ∈+=μλμλ,证明22μλ+为定值. 解:本小题主要考查直线方程、平面向量及椭圆的几何性质等基本知识,考查综合运用数学知识解决问题及推理的能力. 满分12分.(1)解:设椭圆方程为)0,(),0(12222c F b a by a x >>=+ 则直线AB 的方程为c x y -=,代入12222=+b y a x ,化简得02)(22222222=-+-+b a c a cx a x b a .令A (11,y x ),B 22,(y x ),则.,22222222122221b a b a c a x x b a c a x x +-=+=+ 由OB OA a y y x x OB OA +-=++=+),1,3(),,(2121与共线,得,0)()(32121=+++x x y y 又c x y c x y -=-=2211,,.23,0)()2(3212121c x x x x c x x =+∴=++-+∴ 即232222cba c a =+,所以36.32222a b a c b a =-=∴=, 故离心率.36==a c e (II )证明:(1)知223b a =,所以椭圆12222=+by a x 可化为.33222b y x =+设),(y x =,由已知得),,(),(),(2211y x y x y x μλ+=⎩⎨⎧+=+=∴.,2121x x y x x x μλμλ),(y x M Θ在椭圆上,.3)(3)(2221221b y y x x =+++∴μλμλ 即.3)3(2)3()3(221212222221212b y y x x y x y x =+++++λμμλ① 由(1)知.21,23,23222221c b c a c x x ===+ [变式新题型3]抛物线的顶点在原点,焦点在x 轴上,准线l 与x 轴相交于点A(–1,0),过点A 的直线与抛物线相交于P 、Q 两点.(1)求抛物线的方程;(2)若FP •FQ =0,求直线PQ 的方程;(3)设=λAQ (λ>1),点P 关于x 轴的对称点为M ,证明:FM =-λFQ ..6.已知在平面直角坐标系xoy 中,向量32),1,0(的面积为OFP ∆=,且,3OF FP t OM j ⋅==+u u u r u u u r u u u u r u u ur r .(I )设4t OF FP θ<<u u u r u u u r求向量与 的夹角的取值范围;(II )设以原点O 为中心,对称轴在坐标轴上,以F 为右焦点的椭圆经过点M ,且||,)13(,||2c t c 当-==取最小值时,求椭圆的方程.7.已知(0,2)M -,点A 在x 轴上,点B 在y 轴的正半轴,点P 在直线AB 上,且满足,AP PB =-u u u r u u u r ,0MA AP ⋅=u u ur u u u r . (Ⅰ)当点A 在x 轴上移动时,求动点P 的轨迹C 方程;(Ⅱ)过(2,0)-的直线l 与轨迹C 交于E 、F 两点,又过E 、F 作轨迹C 的切线1l 、2l ,当12l l ⊥,求直线l 的方程.8.已知点C 为圆8)1(22=++y x 的圆心,点A (1,0),P 是圆上的动点,点Q 在圆的半径CP 上,且.2,0AM AP AP MQ ==⋅(Ⅰ)当点P 在圆上运动时,求点Q 的轨迹方程; (Ⅱ)若直线12++=k kx y 与(Ⅰ)中所求点Q的轨迹交于不同两点F ,H ,O 是坐标原点,且4332≤⋅≤OH OF ,求△FOH 的面积已知椭圆E 的中心在坐标原点,焦点在坐标轴上,且经过()2,0A -、()2,0B 、31,2C ⎛⎫ ⎪⎝⎭三点.(Ⅰ)求椭圆E 的方程;(Ⅱ)若直线l :()1y k x =-(0k ≠)与椭圆E 交于M 、N 两点,证明直线AM 与直线BN 的交点在直线4x =上.10.如图,过抛物线x 2=4y 的对称轴上任一点P(0,m)(m>0)作直线与抛物线交于A 、B 两点,点Q 是点P 关于原点的对称点。
高三数学圆锥曲线综合试题答案及解析
高三数学圆锥曲线综合试题答案及解析1.如图,已知椭圆,双曲线(a>0,b>0),若以C1的长轴为直径的圆与C2的一条渐近线交于A,B两点,且C1与该渐近线的两交点将线段AB三等分,则C2的离心率为()A.5B.C.D.【答案】C【解析】由已知,|OA|=a=设OA所在渐近线的方程为y=kx(k>0),于是A点坐标可表示为A(x0,kx)(x>0)于是,即A(),进而AB的一个三分点坐标为()该点在椭圆C1上,有,即,得k=2即=2,于是,所以离心率,选C【考点】圆的方程,椭圆的性质,双曲线的性质,双曲线的渐近线,直线与圆锥曲线的位置关系,双曲线的离心率.2.已知抛物线C:的焦点为F,准线为,P是上一点,Q是直线PF与C得一个焦点,若,则()A.B.C.D.【答案】B【解析】如图所示,因为,故,过点作,垂足为M,则轴,所以,所以,由抛物线定义知,,选B.【考点】1、抛物线的定义;2、抛物线的标准方程;3、向量共线.3.已知椭圆C:()的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C的标准方程;(2)设F为椭圆C的左焦点,T为直线上任意一点,过F作TF的垂线交椭圆C于点P,Q.(i)证明:OT平分线段PQ(其中O为坐标原点);(ii)当最小时,求点T的坐标.【答案】(1) ;(2)【解析】(1)因为焦距为4,所以,又,由此可求出的值,从而求得椭圆的方程.(2)椭圆方程化为.设PQ的方程为,代入椭圆方程得:.(ⅰ)设PQ的中点为,求出,只要,即证得OT 平分线段PQ.(ⅱ)可用表示出PQ,TF可得:.再根据取等号的条件,可得T的坐标.试题解答:(1),又.(2)椭圆方程化为.(ⅰ)设PQ的方程为,代入椭圆方程得:.设PQ的中点为,则又TF的方程为,则得,所以,即OT过PQ的中点,即OT平分线段PQ.(ⅱ),又,所以.当时取等号,此时T的坐标为.【考点】1、椭圆的方程;2、直线与圆锥曲线;3、最值问题.4.已知的三个顶点在抛物线:上,为抛物线的焦点,点为的中点,;(1)若,求点的坐标;(2)求面积的最大值.【答案】(1)或;(2).【解析】(1)根据抛物线方程为,写出焦点为,准线方程为,设,由抛物线的定义知,,把代入求得点的坐标,再由求得点的坐标;(2)设直线的方程为,,,,联立方程组,整理得,先求出的中点的坐标,再由,得出,用弦长公式表示,构造函数,用导数法求的面积的最大值.(1)由题意知,焦点为,准线方程为,设,由抛物线的定义知,,得到,代入求得或,所以或,由得或,(2)设直线的方程为,,,,由得,于是,所以,,所以的中点的坐标,由,所以,所以,因为,所以,由,,所以,又因为,点到直线的距离为,所以,记,,令解得,,所以在上是增函数,在上是减函数,在上是增函数,又,所以当时,取得最大值,此时,所以的面积的最大值为.【考点】抛物线的几何性质,直线与抛物线的位置关系,三角形的面积公式,平面向量的坐标运算.5.如图为椭圆C:的左、右焦点,D,E是椭圆的两个顶点,椭圆的离心率,的面积为.若点在椭圆C上,则点称为点M的一个“椭圆”,直线与椭圆交于A,B两点,A,B两点的“椭圆”分别为P,Q.(1)求椭圆C的标准方程;(2)问是否存在过左焦点的直线,使得以PQ为直径的圆经过坐标原点?若存在,求出该直线的方程;若不存在,请说明理由.【答案】(1);(2)直线方程为或.【解析】本题主要考查椭圆的标准方程、直线的标准方程、圆的标准方程、韦达定理、向量垂直的充要条件等基础知识,考查学生的分析问题解决问题的能力、计算能力.第一问,利用椭圆的离心率和三角形面积公式列出表达式,解方程组,得到基本量a和b的值,从而得到椭圆的方程;第二问,直线l过左焦点,所以讨论直线的斜率是否存在,当斜率不存在时,可以直接写出直线方程,令直线与椭圆联立,得到交点坐标,验证以PQ为直径的圆不过坐标原点,当斜率存在时,直线与椭圆联立,消参,利用韦达定理,证明,解出k的值.(1)由题意,,即,,即 2分又得:∴椭圆的标准方程:. 5分(2)①当直线的斜率不存在时,直线的方程为联立,解得或,不妨令,,所以对应的“椭点”坐标,.而所以此时以为直径的圆不过坐标原点. 7分②当直线的斜率存在时,设直线的方程为消去得,设,则这两点的“椭点”坐标分别为由根与系数关系得: 9分若使得以为直径的圆过坐标原点,则而,∴即,即代入,解得:所以直线方程为或. 12分【考点】椭圆的标准方程、直线的标准方程、圆的标准方程、韦达定理、向量垂直的充要条件.6.在平面直角坐标系xOy中,已知椭圆C的中心在原点O,焦点在x轴上,短轴长为2,离心率为.(1)求椭圆C的方程;(2)设A,B是椭圆C上的两点,△AOB的面积为.若A、B两点关于x轴对称,E为线段AB 的中点,射线OE交椭圆C于点P.如果=t,求实数t的值.【答案】(1)+y2=1(2)t=2或t=【解析】(1)设椭圆C的方程为:(a>b>0),则,解得a=,b=1,故椭圆C的方程为+y2=1.(2)由于A、B两点关于x轴对称,可设直线AB的方程为x=m(-<x<,且m≠0).将x=m代入椭圆方程得|y|=,所以S△AOB=|m| =.解得m2=或m2=.①又=t=t(+)=t(2m,0)=(mt,0),又点P在椭圆上,所以=1.②由①②得t2=4或t2=.又因为t>0,所以t=2或t=.7.双曲线的左右焦点分别为,且恰为抛物线的焦点,设双曲线与该抛物线的一个交点为,若是以为底边的等腰三角形,则双曲线的离心率为()A.B.C.D.【答案】B【解析】∵,∴焦点为,即,∵,∴,即,∴,则,即,∴.【考点】抛物线的标准方程及几何性质.8.已知双曲线=1的左支上一点M到右焦点F2的距离为18,N是线段MF2的中点,O是坐标原点,则|ON|等于()A.4B.2C.1D.【答案】A【解析】设双曲线左焦点为F1,由双曲线的定义知,|MF2|-|MF1|=2a,即18-|MF1|=10,所以|MF1|=8.又ON为△MF1F2的中位线,所以|ON|=|MF1|=4,所以选A.9.已知F1、F2为双曲线=1(a>0,b>0)的左、右焦点,过点F2作此双曲线一条渐近线的垂线,垂足为M,且满足||=3||,则此双曲线的渐近线方程为________.【答案】y=±x【解析】由双曲线的性质可推得||=b,则||=3b,在△MF1O中,||=a,||=c,cos∠F1OM=-,由余弦定理可知=-,又c2=a2+b2,可得a2=2b2,即=,因此渐近线方程为y=±x.10.如图,已知,,,分别是椭圆的四个顶点,△是一个边长为2的等边三角形,其外接圆为圆.(1)求椭圆及圆的方程;(2)若点是圆劣弧上一动点(点异于端点,),直线分别交线段,椭圆于点,,直线与交于点.(ⅰ)求的最大值;(ⅱ)试问:,两点的横坐标之和是否为定值?若是,求出该定值;若不是,说明理由.【答案】(1),,(2)(ⅰ),(ⅱ).【解析】(1)求椭圆标准方程,只需两个独立条件. 由题意知,,,所以,,所以椭圆的方程为,求圆的方程,有两个选择,一是求圆的标准方程,确定圆心与半径,二是求圆的一般方程,只需代入圆上三个点的坐标.本题两个方法皆简单,如易得圆心,,所以圆的方程为(2)(ⅰ)本题关键分析出比值暗示的解题方向,由于点在轴上,所以,因此解题方向为利用斜率分别表示出点与点的横坐标. 设直线的方程为,与直线的方程联立,解得点,联立,消去并整理得,,解得点,因此当且仅当时,取“=”,所以的最大值为.(ⅱ)求出点的横坐标,分析与点的横坐标的和是否为常数. 直线的方程为,与直线的方程联立,解得点,所以、两点的横坐标之和为.试题解析:(1)由题意知,,,所以,,所以椭圆的方程为, 2分易得圆心,,所以圆的方程为.4分(2)解:设直线的方程为,与直线的方程联立,解得点, 6分联立,消去并整理得,,解得点,9分(ⅰ),当且仅当时,取“=”,所以的最大值为. 12分(ⅱ)直线的方程为,与直线的方程联立,解得点, 14分所以、两点的横坐标之和为.故、两点的横坐标之和为定值,该定值为. 16分【考点】椭圆与圆标准方程,直线与椭圆位置关系11. 如图,在平面直角坐标系xOy 中,已知椭圆=1的左、右顶点为A 、B ,右焦点为F.设过点T(t ,m)的直线TA 、TB 与椭圆分别交于点M(x 1,y 1)、N(x 2,y 2),其中m>0,y 1>0,y 2<0.(1)设动点P 满足PF 2-PB 2=4,求点P 的轨迹; (2)设x 1=2,x 2=,求点T 的坐标;(3)设t =9,求证:直线MN 必过x 轴上的一定点(其坐标与m 无关). 【答案】(1)x =(2)(3)见解析【解析】(1)解:设点P(x ,y),则F(2,0)、B(3,0)、A(-3,0).由PF 2-PB 2=4,得(x -2)2+y 2-[(x -3)2+y 2]=4,化简得x =,故所求点P 的轨迹为直线x =. (2)解:将x 1=2,x 2=分别代入椭圆方程,以及y 1>0,y 2<0得M 、N.直线MTA的方程为,即y =x +1.直线NTB 的方程为,即y =x -.联立方程组,解得所以点T 的坐标为.(3)证明:点T 的坐标为(9,m),直线MTA 的方程为,即y =(x +3).直线NTB 的方程为,即y =(x -3).分别与椭圆=1联立方程组,同时考虑到x 1≠-3,x 2≠3,解得 M、N(证法1)当x 1≠x 2时,直线MN 的方程为,令y =0,解得x=1,此时必过点D(1,0);当x 1=x 2时,直线MN 的方程为x =1,与x 轴交点为D(1,0),所以直线MN 必过x 轴上的一定点D(1,0). (证法2)若x 1=x 2,则由及m>0,得m =2,此时直线MN 的方程为x =1,过点D(1,0).若x 1≠x 2,则m≠2.直线MD 的斜率k MD =,直线ND 的斜率k ND =,得k MD =k ND ,所以直线MN 过D 点.因此,直线MN 必过x 轴上的点D(1,0).12.已知F是椭圆C:+=1(a>b>0)的右焦点,点P在椭圆C上,线段PF与圆(x-)2+y2=相切于点Q,且=2,则椭圆C的离心率等于()A.B.C.D.【答案】A【解析】记椭圆的左焦点为F′,圆(x-)2+y2=的圆心为E,连接PF′、QE.∵|EF|=|OF|-|OE|=c-=,=2,∴==,∴PF′∥QE,∴=,且PF′⊥PF.又∵|QE|=(圆的半径长),∴|PF′|=b.据椭圆的定义知:|PF′|+|PF|=2a,∴|PF|=2a-b.∵PF′⊥PF,∴|PF′|2+|PF|2=|F′F|2,∴b2+(2a-b)2=(2c)2,∴2(a2-c2)+b2=2ab,∴3b2=2ab,∴b=,c==a,=,∴椭圆的离心率为.13.设抛物线的焦点为,点,线段的中点在抛物线上.设动直线与抛物线相切于点,且与抛物线的准线相交于点,以为直径的圆记为圆.(1)求的值;(2)试判断圆与轴的位置关系;(3)在坐标平面上是否存在定点,使得圆恒过点?若存在,求出的坐标;若不存在,说明理由.【答案】(1)(2)见解析(3)存在【解析】(1)判断抛物线的焦点位置,得到焦点坐标,利用中点坐标公式得到FA的中点坐标带入抛物线即可求的P的值.(2)直线与抛物线相切,联立直线与抛物线,判别式为0即可得到k,m之间的关系,可以用k 来替代m,得到P点的坐标,抛物线准线与直线的方程可得到Q点的坐标,利用中点坐标公式可得到PQ中点坐标,通过讨论k的取值范围得到中点到x轴距离与圆半径(PQ为直径)的大小比较即可判断圆与x轴的位置关系.(3)由(2)可以得到PQ的坐标(用k表示),根据抛物线对称性知点在轴上,设点坐标为,则M点需满足,即向量内积为0,即可得到M点的坐标,M点的坐标如果为常数(不含k),即存在这样的定点,如若不然,则不存在.试题解析:解:(1)利用抛物线的定义得,故线段的中点的坐标为,代入方程得,解得。
圆锥曲线综合训练题(分专题-含答案)
圆锥曲线综合训练题一、求轨迹方程:1、(1)已知双曲线1C 与椭圆2C :2213649x y +=有公共的焦点,并且双曲线的离心率1e 与椭圆的离心率2e 之比为73,求双曲线1C 的方程.(2)以抛物线28y x =上的点M 与定点(6,0)A 为端点的线段MA 的中点为P ,求P 点的轨迹方程.(1)解:1C 的焦点坐标为(0,13).±213e =由1273e e =得113e =设双曲线的方程为22221(,0)y x a b a b -=>则2222213139a b a b a ⎧+=⎪⎨+=⎪⎩ 解得229,4a b == 双曲线的方程为22194y x -=(2)解:设点00(,),(,)M x y P x y ,则00622x x y y +⎧=⎪⎪⎨⎪=⎪⎩,∴00262x x y y =-⎧⎨=⎩.代入2008y x =得:2412y x =-.此即为点P 的轨迹方程. 2、(1)ABC ∆的底边16=BC ,AC 和AB 两边上中线长之和为30,建立适当的坐标系求此三角形重心G 的轨迹和顶点A 的轨迹.(2)△ABC 中,B(-5,0),C(5,0),且sinC-sinB=53sinA,求点A 的轨迹方程.解: (1)以BC 所在的直线为x 轴,BC 中点为原点建立直角坐标系.设G 点坐标为()y x ,,由20=+GB GC ,知G 点的轨迹是以B 、C 为焦点的椭圆,且除去轴上两点.因10=a ,8=c ,有6=b ,故其方程为()013610022≠=+y y x .设()y x A ,,()y x G '',,则()013610022≠'='+'y y x . ①由题意有⎪⎪⎩⎪⎪⎨⎧='='33y y x x ,代入①,得A 的轨迹方程为()0132490022≠=+y y x ,其轨迹是椭圆(除去x 轴上两点). (2)分析:由于sinA 、sinB 、sinC 的关系为一次齐次式,两边乘以2R (R 为外接圆半径),可转化为边长的关系. 】解:sinC-sinB=53sinA 2RsinC-2RsinB=53·2RsinA∴BC AC AB 53=- 即6=-AC AB (*)∴点A 的轨迹为双曲线的右支(去掉顶点) ∵2a=6,2c=10 ∴a=3, c=5, b=4所求轨迹方程为116922=-y x (x>3) 点评:要注意利用定义直接解题,这里由(*)式直接用定义说明了轨迹(双曲线右支)3、如图,两束光线从点M (-4,1)分别射向直线y = -2上两点P (x 1,y 1)和Q (x 2,y 2)后,反射光线恰好通过椭圆C :12222=+b y a x (a >b >0)的两焦点,已知椭圆的离心率为21,且x 2-x 1=56,求椭圆C 的方程.解:设a =2k ,c =k ,k ≠0,则b =3k ,其椭圆的方程为1342222=-k y k x . ,由题设条件得:114)2(120x x k ----=--+, ①224)2(120x x k ----=--+, ②x 2-x 1=56, ③由①、②、③解得:k =1,x 1=511-,x 2=-1,所求椭圆C 的方程为13422=+y x . 4、在面积为1的PMN ∆中,21tan =M ,2tan -=N ,建立适当的坐标系,求出以M 、N 为∴所求椭圆方程为1315422=+yx 解:以MN 的中点为原点,MN 所在直线为x 轴建立直角坐标系,设),(y x P .则⎪⎪⎪⎩⎪⎪⎪⎨⎧==+-=-.1,21,2cy c x yc x y∴⎪⎪⎩⎪⎪⎨⎧===233435c c y c x 且即(1)求线段PQ 的中点的轨迹方程;(2)设∠POQ 的平分线交PQ 于点R (O 为原点),求点R 的轨迹方程. — 解:(1)设线段PQ 的中点坐标为M (x ,y ),由Q (4,0)可得点P (2x -4,2y ),代入圆的方程x 2+y 2=4可得(2x -4)2+(2y )2=4,整理可得所求轨迹为(x -2)2+y 2=1. (2)设点R (x ,y ),P (m ,n ),由已知|OP |=2,|OQ |=4,∴21||||=OQ OP ,由角平分线性质可得||||||||RQ PR OQ OP ==21,又∵点R 在线段PQ 上,∴|PR |=21|RQ |,∴点R 分有向线段PQ 的比为21,由定比分点坐标公式可得⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+⨯+=+=+⨯+=32211021342211421n n y m m x ,即⎪⎪⎩⎪⎪⎨⎧=-=23243y n x m ,∴点P 的坐标为⎪⎭⎫ ⎝⎛-23 ,243y x ,代入圆的方程x 2+y 2=4可得42324322=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-y x , 即234⎪⎭⎫ ⎝⎛-x +y 2=916(y ≠0). ∴点R 的轨迹方程为234⎪⎭⎫ ⎝⎛-x +y 2=916(y ≠0).6、已知动圆过定点()1,0,且与直线1x =-相切.(1) 求动圆的圆心轨迹C 的方程;(2) 是否存在直线l ,使l 过点(0,1),并与轨迹C 交于,P Q 两点,且满足0OP OQ ⋅=若存在,求出直线l 的方程;若不存在,说明理由.解:(1)如图,设M 为动圆圆心, F ()1,0,过点M 作直线1x =-的垂线,垂足为N ,由题意知:MF MN =, 即动点M 到定点F 与定直线1x =-的距离相等,由抛物线的定义知,点M 的轨迹为抛物线,其中()1,0F 为焦点,1x =-为准线, ∴ 动点R 的轨迹方程为x y 42=(2)由题可设直线l 的方程为(1)(0)x k y k =-≠, 由2(1)4x k y y x=-⎧⎨=⎩得2440y ky k -+=△216160k =->,11k k <->或设),(11y x P ,),(22y x Q ,则124y y k +=,124y y k =由0OP OQ ⋅=,即 ()11,OP x y =,()22,OQ x y =,于是12120x x y y +=,<即()()21212110k y y y y --+=,2221212(1)()0k y y k y y k +-++=, 2224(1)40k k k k k +-+=,解得4k =-或0k =(舍去), 又41k =-<-, ∴ 直线l 存在,其方程为440x y +-=7、设双曲线y ax 22231-=的两个焦点分别为F F 12、,离心率为2.(I )求此双曲线的渐近线l l 12、的方程;(II )若A 、B 分别为l l 12、上的点,且2512||||AB F F =,求线段AB 的中点M 的轨迹方程,并说明轨迹是什么曲线;(III )过点N ()10,能否作出直线l ,使l 与双曲线交于P 、Q 两点,且OP OQ →→=·0.若存在,求出直线l 的方程;若不存在,说明理由.解:(I ) e c a =∴=2422,c a a c 22312=+∴==,,∴-=双曲线方程为y x 2231,渐近线方程为y x =±33 4分(II )设A x y B x y ()()1122,,,,AB 的中点()M x y ,[]2552522101033332233333331012121221221122121212121212122122||||||||()()()()()()AB F F AB F F c x x y y y x y x x x x y y y y y x x y y x x y y x x =∴==⨯=∴-+-===-=+=+∴+=--=+∴+++⎡⎣⎢⎤⎦⎥=又,,,, ∴+=+=321321007532512222()()y x x y ,即;则M 的轨迹是中心在原点,焦点在x 轴上,长轴长为103,短轴长为1033的椭圆.(9分)(III )假设存在满足条件的直线l设l y k x l P x y Q x y :,与双曲线交于,、,=-()()()11122[] OP OQ x x y y x x k x x x x k x x x x i →→=∴+=∴+--=∴+-++=·00110101212122121221212()()()()由得则,y k x y x k x k x k x x k k x x k k ii =--=⎧⎨⎪⎩⎪--+-=+=-=--()()()13131633063133312222212221222由(i )(ii )得k 230+= ∴k 不存在,即不存在满足条件的直线l .8、设M 是椭圆22:1124x y C +=上的一点,P 、Q 、T 分别为M 关于y 轴、原点、x 轴的对称点,N 为椭圆C 上异于M 的另一点,且MN ⊥MQ ,QN 与PT 的交点为E ,当M 沿椭圆C 运动时,求动点E 的轨迹方程.解:设点的坐标112211(,),(,)(0),(,),M x y N x y x y E x y ≠则111111(,),(,),(,),P x y Q x y T x y ----……1分221122221,(1)124 1.(2)124x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩………3分 由(1)-(2)可得1.3MN QN k k •=-…6分又MN ⊥MQ ,111,,MN MQ MN x k k k y ⋅=-=-所以11.3QN y k x =直线QN 的方程为1111()3yy x x y x =+-,又直线PT 的方程为11.x y x y =-从而得1111,.22x x y y ==-所以112,2.x x y y ==-代入(1)可得221(0),3x y xy +=≠此即为所求的轨迹方程. ,9、已知:直线L 过原点,抛物线C 的顶点在原点,焦点在x 轴正半轴上。
圆锥曲线综合练习及答案
圆锥曲线综合练习及答案 Last updated on the afternoon of January 3, 2021圆锥曲线综合练习例1、椭圆12322=+y x 内有一点P (1,1),一直线过点P 与椭圆相交于P 1、P 2两点,弦P 1P 2被点P 平分,求直线P 1P 2的方程。
(2x+3y-5=0)备份:1.过椭圆141622=+y x 内一点M (2,1)引一条弦,使弦被M 平分,求此弦所在直线方程。
2.椭圆1449422=+y x 内有一点P (3,2)过点P 的弦恰好以P 为中点,求这弦所在直线的方程.变式1、若椭圆122=+by ax 与直线1=+y x 交于A 、B 两点,且22||=AB ,又M 为AB 的中点,若O 为坐标原点,直线OM 的斜率为22,求该椭圆的方程。
(132322=+y x ) 变式2、斜率为1的直线与双曲线1222=-y x 相交于A 、B 两点,又AB 中点的横坐标为1。
(1)求直线的方程 (2)求线段AB 的长(1)y=x+1(2)AB=62变式3、已知抛物线x y C 42=:的焦点为F ,过点F 的直线l 与C 相交于A 、B 两点。
(1)若的方程;求直线l ,316|AB |=(2)求|AB|的最小值 变式4、已知椭圆的中心在原点,焦点在x 轴上,离心率为23,且经过点()4,1M ,直线m x y l +=:交椭圆于不同的两点A ,B.(1)求椭圆的方程;(2)求m 的取值范围。
例2、已知椭圆C :22221(0)x y a b a b+=>>的一个顶点为(2,0)A ,离心率为2.直线(1y k x =-)与椭圆C 交于不同的两点M,N.(Ⅰ)求椭圆C 的方程;(Ⅱ)当△AMN 得面积为103时,求k 的值.解:(1)由题意得222222a ca abc =⎧⎪⎪=⎨⎪=+⎪⎩解得2b =.所以椭圆C 的方程为22142x y +=. (2)由22(1)142y k x x y =-⎧⎪⎨+=⎪⎩得2222(12)4240k x k x k +-+-=.设点M,N 的坐标分别为11(,)x y ,22(,)x y ,则11(1)y k x =-,22(1)y k x =-,2122412k x x k +=+,21222412k x x k -=+.所以|MN|=222121()()x x y y -+-=221212(1)[()4]k x x x x ++-=2222(1)(46)12k k k +++.由因为点A(2,0)到直线(1y k x =-)的距离212d k=+,所以△AMN 的面积为21||46||2k k S MN d +=⋅=.由22||4610123k k k +=+,解得1k =±. 变式1、已知21F F 分别是椭圆C :22a x +22by =1(0>>b a )的左、右焦点,A 是椭圆C 的上顶点,B 是直线2AF 与椭圆C 的另一个交点,1260F AF ο∠=.(Ⅰ)求椭圆C 的离心率;(Ⅱ)已知1AF B ∆面积为403,求,a b 的值 【解析】(I)1216022c F AF a c e a ο∠=⇔=⇔== (Ⅱ)设2BF m =;则12BF a m =-在12BF F ∆中,22212122122cos120BF BF F F BF F F ο=+-⨯⨯2223(2)5a m m a am m a ⇔-=++⇔=[来源:学|科|网Z|X|X|K]1AF B ∆面积211133sin 60()40310,5,53225S F F AB a a a a c b ο=⨯⨯⨯⇔⨯⨯+=⇔===变式2、已知抛物线C :22y x =,直线2y kx =+交C 于A B ,两点,M 是线段AB 的中点,过M作x 轴的垂线交C 于点N .(Ⅰ)证明:抛物线C 在点N 处的切线与AB 平行;(Ⅱ)是否存在实数k 使0NA NB =,若存在,求k 的值;若不存在,说明理由.解、(Ⅰ)如图,设211(2)A x x ,,222(2)B x x ,,把2y kx =+代入22y x =得2220x kx --=, 由韦达定理得122kx x +=,121x x =-, ∴1224N M x x kx x +===,∴N 点的坐标为248k k ⎛⎫ ⎪⎝⎭,.设抛物线在点N 处的切线l 的方程为284k k y m x ⎛⎫-=- ⎪⎝⎭,将22y x =代入上式得222048mk k x mx -+-=, 直线l 与抛物线C 相切,2222282()048mk k m m mk k m k ⎛⎫∴∆=--=-+=-= ⎪⎝⎭,m k ∴=.即l AB ∥.(Ⅱ)假设存在实数k ,使0NA NB =,则NA NB ⊥,又M 是AB 的中点,1||||2MN AB ∴=. 由(Ⅰ)知121212111()(22)[()4]222M y y y kx kx k x x =+=+++=++22142224k k ⎛⎫=+=+ ⎪⎝⎭. MN ⊥x 轴,22216||||2488M N k k k MN y y +∴=-=+-=.又2212121||||1()4AB x x k x x x x =-=++-222214(1)11622k k k ⎛⎫=-⨯-=++ ⎪⎝⎭.22161168k k +∴=+,解得2k =±.即存在2k =±,使0NA NB =.例3、已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为)0,3(。
圆锥曲线综合练习及答案
圆锥曲线综合练习例1、椭圆12322=+y x 内有一点P (1,1),一直线过点P 与椭圆相交于P 1、P 2两点,弦P 1P 2被点P 平分,求直线P 1P 2的方程。
(2x+3y-5=0)备份:1.过椭圆141622=+y x 内一点M (2,1)引一条弦,使弦被M 平分,求此弦所在直线方程。
2.椭圆1449422=+y x 内有一点P (3,2)过点P 的弦恰好以P 为中点,求这弦所在直线的方程.变式1、若椭圆122=+by ax 与直线1=+y x 交于A 、B 两点,且22||=AB ,又M 为AB 的中点,若O 为坐标原点,直线OM 的斜率为22,求该椭圆的方程。
(132322=+y x )变式2、斜率为1的直线与双曲线1222=-y x 相交于A 、B 两点,又AB 中点的横坐标为1。
(1)求直线的方程 (2)求线段AB 的长 (1)y=x+1 (2)AB=62…变式3、已知抛物线x y C 42=:的焦点为F ,过点F 的直线l 与C 相交于A 、B 两点。
(1)若的方程;求直线l ,316|AB |=(2)求|AB|的最小值变式4、已知椭圆的中心在原点,焦点在x 轴上,离心率为23,且经过点()4,1M ,直线m x y l +=:交椭圆于不同的两点A ,B.(1)求椭圆的方程; (2)求m 的取值范围。
例2、已知椭圆C :22221(0)x y a b a b+=>>的一个顶点为(2,0)A ,离心率为22.直线(1y k x =-)与椭圆C 交于不同的两点M,N.(Ⅰ)求椭圆C 的方程; (Ⅱ)当△AMN 得面积为103时,求k 的值.解:(1)由题意得222222a ca abc =⎧⎪⎪=⎨⎪=+⎪⎩解得2b =.所以椭圆C 的方程为22142x y +=. (2)由22(1)142y k x x y =-⎧⎪⎨+=⎪⎩得2222(12)4240k x k x k +-+-=.`设点M,N 的坐标分别为11(,)x y ,22(,)x y ,则11(1)y k x =-,22(1)y k x =-,2122412k x x k +=+,21222412k x x k -=+.所以|MN|=222121()()x x y y -+-=221212(1)[()4]k x x x x ++-=2222(1)(46)12k k k +++.由因为点A(2,0)到直线(1y k x =-)的距离212d k=+,所以△AMN 的面积为221||46||212k k S MN d k +=⋅=+. 由2||4610k k +=,解得1k =±. 变式1、1已知21F F 分别是椭圆C :22a x +22by =1(0>>b a )的左、右焦点,A 是椭圆C 的上顶点,B 是直线2AF 与椭圆C 的另一个交点,1260F AF ο∠=.(Ⅰ)求椭圆C 的离心率; (Ⅱ)已知1AF B ∆面积为403,求,a b 的值 【解析】(I)1216022c F AF a c e a ο∠=⇔=⇔== (Ⅱ)设2BF m =;则12BF a m =-在12BF F ∆中,22212122122cos120BFBF F F BF F F ο=+-⨯⨯ 2223(2)5a m m a am m a ⇔-=++⇔= [来源:学|科|网Z|X|X|K])1AF B ∆面积211133sin 60()40310,5,53225S F F AB a a a a c b ο=⨯⨯⨯⇔⨯⨯+====变式2、已知抛物线C :22y x =,直线2y kx =+交C 于A B ,两点,M 是线段AB 的中点,过M 作x 轴的垂线交C 于点N .(Ⅰ)证明:抛物线C 在点N 处的切线与AB 平行;(Ⅱ)是否存在实数k 使0NA NB =,若存在,求k 的值;若不存在,说明理由.解、(Ⅰ)如图,设211(2)A x x ,,222(2)B x x ,,把2y kx =+代入22y x =得2220x kx --=, 由韦达定理得122kx x +=,121x x =-, ∴1224N M x x kx x +===,∴N 点的坐标为248k k ⎛⎫ ⎪⎝⎭,.设抛物线在点N 处的切线l 的方程为284k k y m x ⎛⎫-=- ⎪⎝⎭, 将22y x =代入上式得222048mk k x mx -+-=, 直线l 与抛物线C 相切,`2222282()048mk k m m mk k m k ⎛⎫∴∆=--=-+=-= ⎪⎝⎭,m k ∴=.即l AB ∥.(Ⅱ)假设存在实数k ,使0NA NB =,则NA NB ⊥,又M 是AB 的中点,1||||2MN AB ∴=. 由(Ⅰ)知121212111()(22)[()4]222M y y y kx kx k x x =+=+++=++22142224k k ⎛⎫=+=+ ⎪⎝⎭. MN ⊥x 轴,22216||||2488M N k k k MN y y +∴=-=+-=.又2212121||||1()4AB x x kx x x x =-=++-222214(1)11622k k k ⎛⎫=-⨯-=++ ⎪⎝⎭.22161168k k +∴=+,解得2k =±.…即存在2k =±,使0NA NB =.例3、已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为)0,3(。
圆锥曲线经典题目(含答案解析)
圆锥曲线经典题型一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.27.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=110.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求的值.14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点若直线l存在,请求直线l的方程;若不存在,说明理由.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且=0,求△PEF的面积.一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)【解答】解:∵直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,∴1>b>0或b>1.∴e==>1且e≠.故选:D.2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.【解答】解:由题意,=(﹣﹣x0,﹣y0)(﹣x0,﹣y0)=x02﹣3+y02=3y02﹣1<0,所以﹣<y0<.故选:A.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.【解答】解:取PF2的中点A,则∵,∴⊥∵O是F1F2的中点∴OA∥PF1,∴PF1⊥PF2,∵|PF1|=3|PF2|,∴2a=|PF1|﹣|PF2|=2|PF2|,∵|PF1|2+|PF2|2=4c2,∴10a2=4c2,∴e=故选C.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.【解答】解:设F(c,0),则直线AB的方程为y=(x﹣c)代入双曲线渐近线方程y=﹣x得A(,﹣),由=2,可得B(﹣,﹣),把B点坐标代入双曲线方程﹣=1,即=1,整理可得c=a,即离心率e==.故选:C.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)【解答】解:∵双曲线渐近线为bx±ay=0,与圆(x﹣2)2+y2=2相交∴圆心到渐近线的距离小于半径,即∴b2<a2,∴c2=a2+b2<2a2,∴e=<∵e>1∴1<e<故选C.6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.2【解答】解:设F(c,0),渐近线方程为y=x,可得F到渐近线的距离为=b,即有圆F的半径为b,令x=c,可得y=±b=±,由题意可得=b,即a=b,c==a,即离心率e==,故选C.7.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x【解答】解:由双曲线的定义可得|PF1|﹣|PF2|=2a,又|PF1|=2|PF2|,得|PF2|=2a,|PF1|=4a;在RT△PF1F2中,|F1F2|2=|PF1|2+|PF2|2,∴4c2=16a2+4a2,即c2=5a2,则b2=4a2.即b=2a,双曲线=1一条渐近线方程:y=2x;故选:C.8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)【解答】解:∵双曲线渐近线为bx±ay=0,与圆x2+(y﹣2)2=1相交∴圆心到渐近线的距离小于半径,即<1∴3a2<b2,∴c2=a2+b2>4a2,∴e=>2故选:C.9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=1【解答】解:由双曲线的一条渐近线方程为y=x,可设双曲线的方程为x2﹣y2=λ(λ≠0),代入点P(2,),可得λ=4﹣2=2,可得双曲线的方程为x2﹣y2=2,即为﹣=1.故选:B.10.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.【解答】解:由双曲线C:x2﹣=1的右焦点F(2,0),PF与x轴垂直,设(2,y),y>0,则y=3,则P(2,3),∴AP⊥PF,则丨AP丨=1,丨PF丨=3,∴△APF的面积S=×丨AP丨×丨PF丨=,同理当y<0时,则△APF的面积S=,故选D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是20.【解答】解:∵|PF1|+|QF1|=|PQ|=8∵双曲线x2﹣=1的通径为==8∵PQ=8∴PQ是双曲线的通径∴PQ⊥F1F2,且PF1=QF1=PQ=4∵由题意,|PF2|﹣|PF1|=2,|QF2|﹣|QF1|=2∴|PF2|+|QF2|=|PF1|+|QF1|+4=4+4+4=12∴△PF2Q的周长=|PF2|+|QF2|+|PQ|=12+8=20,故答案为20.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.【解答】解:取PF2的中点A,则∵,∴2=0,∴,∵OA是△PF1F2的中位线,∴PF1⊥PF2,OA=PF1.由双曲线的定义得|PF1|﹣|PF2|=2a,∵|PF1|=|PF2|,∴|PF2|=,|PF1|=.△PF1F2中,由勾股定理得|PF1|2+|PF2|2=4c2,∴()2+()2=4c2,∴e=.故答案为:.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求的值.【解答】解:(1)设F2,M的坐标分别为,因为点M在双曲线C上,所以,即,所以,在Rt△MF2F1中,∠MF1F2=30°,,所以…(3分)由双曲线的定义可知:故双曲线C的方程为:…(6分)(2)由条件可知:两条渐近线分别为…(8分)设双曲线C上的点Q(x0,y0),设两渐近线的夹角为θ,则点Q到两条渐近线的距离分别为,…(11分)因为Q(x0,y0)在双曲线C:上,所以,又cosθ=,所以=﹣…(14分)14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.【解答】(Ⅰ)解:由题知:a2+b2=2,曲线C2的离心率为…(2分)∵曲线C1的离心率是曲线C2的离心率的倍,∴=即a2=b2,…(3分)∴a=b=1,∴曲线C1的方程为x2﹣y2=1;…(4分)(Ⅱ)证明:由直线AB的斜率不能为零知可设直线AB的方程为:x=ny+…(5分)与双曲线方程x2﹣y2=1联立,可得(n2﹣1)y2+2ny+1=0设A(x1,y1),B(x2,y2),则y1+y2=﹣,y1y2=,…(7分)由题可设点C(,y2),由点斜式得直线AC的方程:y﹣y2=(x﹣)…(9分)令y=0,可得x===…(11分)∴直线AC过定点(,0).…(12分)15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点若直线l存在,请求直线l的方程;若不存在,说明理由.【解答】解:(Ⅰ)由题意可得e==,当P为右顶点时,可得PF取得最小值,即有c﹣a=﹣1,解得a=1,c=,b==,可得双曲线的方程为x2﹣=1;(Ⅱ)过点P(1,1)假设存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点.设R(x1,y1),T(x2,y2),可得x12﹣=1,x22﹣=1,两式相减可得(x1﹣x2)(x1+x2)=(y1﹣y2)(y1+y2),由中点坐标公式可得x1+x2=2,y1+y2=2,可得直线l的斜率为k===2,即有直线l的方程为y﹣1=2(x﹣1),即为y=2x﹣1,代入双曲线的方程,可得2x2﹣4x+3=0,由判别式为16﹣4×2×3=﹣8<0,可得二次方程无实数解.故这样的直线l不存在.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且=0,求△PEF的面积.【解答】解:(Ⅰ)∵C:的离心率e=,且b=,∴=,且b=,∴a=1,c=∴双曲线C的方程;(Ⅱ)令|PE|=p,|PF|=q由双曲线定义:|p﹣q|=2a=2平方得:p2﹣2pq+q2=4=0,∠EPF=90°,由勾股定理得:p2+q2=|EF|2=12所以pq=4即S=|PE||PF|=2.。
圆锥曲线经典好题目(带答案)
圆锥曲线练习题一、填空题1. 一个动点到两个定点A ,B 的距离的差为定值(小于两个定点A ,B 的距离),则动点的轨迹为________.2. (2011·海安中学模拟)若椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,线段F 1F 2被抛物线y 2=2bx 的焦点F 分成5∶3的两段,则此椭圆的离心率为________.3. 已知动圆过定点(0,-1),且与定直线y =1相切,则动圆圆心的轨迹方程为________.4. (2010·天津)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线方程是y =3x ,它的一个焦点与抛物线y 2=16x 的焦点相同,则双曲线的方程为________.5. 已知P 为抛物线y 2=4x 的焦点,过P 的直线l 与抛物线交于A ,B 两点,若Q 在直线l 上,且满足|AP →|·|QB →|=|AQ →|·|PB →|,则点Q 总在定直线x =-1上.试猜测:如果P 为椭圆x 225+y 29=1的左焦点,过P 的直线l 与椭圆交于A ,B 两点,若Q 在直线l 上,且满足|AP →|·|QB →|=|AQ →|·|PB →|,则点Q 总在定直线________上.6. 过抛物线y 2=2px (p >0)的焦点F 作倾斜角为45°的直线交抛物线于A 、B 两点,若线段AB 的长为8,则p =________.7. (2010·重庆)已知以F 为焦点的抛物线y 2=4x 上的两点A 、B 满足AF →=3FB →,则弦AB 的中点到准线的距离为________.8. 已知过椭圆的左焦点F 1且倾斜角为60°的直线交椭圆于A 、B 两点,若F 1A =2F 1B ,则椭圆的离心率为________.二、解答题9. 抛物线的顶点在原点,它的准线过双曲线x 2a 2-y 2b2=1的一个焦点,且与双曲线实轴垂直,已知抛物线与双曲线的交点为⎝⎛⎭⎫32,6.求抛物线与双曲线的方程.10. 如图,已知过抛物线y 2=2px (p >0)的焦点的直线x -my +m =0与抛物线交于A 、B 两点,且△OAB (O 为坐标原点)的面积为22,求m 6+m 4的值.O lxyA B F ·M第17题 11. 如图,已知抛物线:C 22(0)y px p =>的准线为l ,焦点为F .⊙M 的圆心在x 轴的正半轴上,且与y 轴相切.过原点O 作倾斜角为3π的直线n ,交l 于点A , 交⊙M 于另一点B ,且2AO OB ==.(Ⅰ)求⊙M 和抛物线C 的方程;(Ⅱ)若P 为抛物线C 上的动点,求PM PF ⋅的最小值; (Ⅲ)过l 上的动点Q 向⊙M 作切线,切点为,S T ,求证:直线ST 恒过一个定点,并求该定点的坐标.12. 如图,已知椭圆x 2a 2+y 2b2=1(a >b >0)的长轴为AB ,过点B 的直线l 与x 轴垂直.直线(2-k )x -(1+2k )y +(1+2k )=0(k ∈R )所经过的定点恰好是椭圆的一个顶点,且椭圆的离心率e=32. (1)求椭圆的标准方程;(2)设P 是椭圆上异于A 、B 的任意一点,PH ⊥x 轴,H 为垂足,延长HP 到点Q 使得HP=PQ ,连结AQ 延长交直线l 于点M ,N 为MB 的中点.试求OQ →·NQ →的值,并由此判断直线QN 与以AB 为直径的圆O 的位置关系.参考答案1. 双曲线的一支 解析:由双曲线的定义可知是双曲线的一支,故填双曲线的一支.2. 255 解析:由题意可知FF 2=38F 1F 2,即c -b 2=38⨯2c ,化简得c =2b ,所以c 2=4(a 2-c 2),此椭圆的离心率e =c a =255.3. x 2=-4y 解析:圆心到定点(0,-1)的距离与到定直线y =1的距离相等,都等于圆的半径,由抛物线的定义可知,动圆圆心的轨迹是以定点为焦点,定直线为准线的抛物线,其方程为x 2=-4y .4. x 24-y 212=1 解析:由渐近线方程可知ba =3,① 因为抛物线的焦点为(4,0),所以c =4,② 又c 2=a 2+b 2,③联立①②③,解得a 2=4,b 2=12,所以双曲线的方程为x 24-y 212=1.5. x =-254解析:x =-1是抛物线的准线,应用类比推理可知点Q 所在的定直线为椭圆的左准线,其方程为x =-254.6. 2 解析:由题意可知过焦点的直线方程为y =x -p 2,联立有⎩⎪⎨⎪⎧y 2=2px ,y =x -p 2⇒x 2-3px +p 24=0, 由AB =x 1+x 2+p =8,得4p =8⇒p =2. 7. 83解析:如图,过点A 、B 作准线的垂线交准线于A 1B 1,过B 作BC ⊥AA 1于C ,设BF =m ,由抛物线的定义知AA 1=3m ,BB 1=m ,∴△ABC 中,AC =2m ,AB =4m ,k AB =3,直线AB 方程为y =3(x -1),与抛物线方程联立消y 得3x 2-10x +3=0,所以AB 中点到准线距离为x 1+x 22+1=53+1=83.8. 23解析:如图,过B 作AC 的垂线,垂足为E ,由题意和椭圆第二定义可知E 为AC 的中点,cos 60︒=AE AB =DB 3BF 1=13e ,故e =23.9. 由题意知,抛物线焦点在x 轴上,开口方向向右,可设抛物线方程为y 2=2px (p >0),将交点⎝⎛⎭⎫32,6代入得p =2,故抛物线方程为y 2=4x ,焦点坐标为(1,0),这也是双曲线的一个焦点,则c =1.又点⎝⎛⎭⎫32,6也在双曲线上,因此有94a 2-6b2=1.又a 2+b 2=1,解得a 2=14,b 2=34,因此,双曲线的方程为4x 2-4y 23=1.10. 设A (x 1,y 1),B (x 2,y 2),由题意可知,p2=-m ,将x =my -m 代入抛物线方程整理得y 2-2pmy +2pm =0,由韦达定理得y 1+y 2=2pm ,y 1y 2=2pm ,∴(y 1-y 2)2=(y 1+y 2)2-4y 1y 2=(2pm )2-8pm =16m 4+16m 2,又△OAB 的面积 S =12⨯p 2|y 1-y 2|=12⨯(-m )⨯4m 4+m 2=22,两边平方即可得m 6+m 4=2. 11.解:(Ⅰ)因为1cos602122p OA =⋅=⨯=,即2p =,所以抛物线C 的方程为24y x = 设⊙M 的半径为r ,则122cos 60OB r =⋅=, 所以M 的方程为22(2)4x y -+=(Ⅱ)设(,)(0)P x y x ≥,则(2,)(1,)PM PF x y x y ⋅=----=222322x x y x x -++=++ 所以当0x =时, PM PF ⋅有最小值为2(Ⅲ)以点Q 为圆心,QS 为半径作⊙Q,则线段ST 即为⊙Q 与⊙M 的公共弦设点(1,)Q t -,则22245QS QM t =-=+,所以⊙Q 的方程为222(1)()5x y t t ++-=+ 从而直线TS 的方程为320x ty --=(*)因为230x y ⎧=⎪⎨⎪=⎩一定是方程(*)的解,所以直线TS 恒过一个定点,且该定点坐标为2(,0)312. (1)将(2-k )x -(1+2k )y +(1+2k )=0整理得 (-x -2y +2)k +2x -y +1=0.解方程组⎩⎪⎨⎪⎧-x -2y +2=0,2x -y +1=0,得直线所经过的定点(0,1),所以b =1.由离心率e =32得a =2,所以椭圆的标准方程为x 24+y 2=1.。
圆锥曲线23道经典题(含答案)
= 1(a > b > 0)左、右焦点为 F1、 F2离心率为
3 3
过
F2
的直线
l交C于A、
B两点,若 Δ AF1B的周长为 4 3则C的方程为( )
A.
x2 3
+
y2 2
=1
B.
x2 3
+ y2
=1
C.
x2 12
+
y2 8
=1
D.
x2 12
+
y2 4
=1
3(2014重庆8,5分)
设
F1
F2 分别为双曲线
11
12
13
14 抛物线的标准方程为 x2 = -12y ,由此可以判断焦点在 y 轴上且开口向下且 p=6, 所以其准线方程为 y=3 15
16
17 18
19
20 21
22
23
24
− y0y
=
1与直线AF相交于点M,与直线
x
=
3 2
相交于点N。证明:当点P在C上移动时,
∣N
F
∣ 恒为定值,并求出此定值。
19(2014陕西,20,13分)
2
如图,曲线C
由上半椭圆
C1
y2 a2
+
x2 b2
= 1(a > b > 0, y ⩾ 0)和部分抛物线
C2 : y = −x2 + 1(y ⩽ 0)连接而成, C1与 C2的公共点为A,B,其中 C1的离心率为
1)作斜率为
−
1 2
的直线与椭圆
C
:
x2 a2
+பைடு நூலகம்
高考经典圆锥曲线习题(含答案)
高考圆锥曲线试题精选一、选择题:(每小题5分,计50分)1、(2008海南、宁夏文)双曲线22110x y -=的焦距为( )2.(2004全国卷Ⅰ文、理)椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的 直线与椭圆相交,一个交点为P ,则||2PF = ( )A .23 B .3 C .27D .4 3.(2006辽宁文)方程22520x x -+=的两个根可分别作为( )A.一椭圆和一双曲线的离心率B.两抛物线的离心率 C.一椭圆和一抛物线的离心率D.两椭圆的离心率4.(2006四川文、理)直线y=x-3与抛物线x y 42=交于A 、B 两点,过A 、B 两点向 抛物线的准线作垂线,垂足分别为P 、Q ,则梯形APQB 的面积为( ) (A )48. (B )56 (C )64 (D )72.5.(2007福建理)以双曲线116922=-y x 的右焦点为圆心,且与其渐近线相切的圆的方程是( )A .B.C .D.6.(2004全国卷Ⅳ理)已知椭圆的中心在原点,离心率21=e ,且它的一个焦点与抛物线 x y 42-=的焦点重合,则此椭圆方程为( )A .13422=+y xB .16822=+y xC .1222=+y x D .1422=+y x 7.(2005湖北文、理)双曲线)0(122≠=-mn ny m x 离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为( )A .163B .83C .316D .388. (2008重庆文)若双曲线2221613x y p-=的左焦点在抛物线y 2=2px 的准线上,则p 的值为 ( )(A)2(B)3(C)4(D)429.(2002北京文)已知椭圆1532222=+n y m x 和双曲线1322222=-n y m x 有公共的焦点,那么 双曲线的渐近线方程是( ) A .y x 215±= B .x y 215±= C .y x 43±= D .x y 43±= 二、填空题:(每小题5分,计20分)11. (2005上海文)若椭圆长轴长与短轴长之比为2,它的一个焦点是()0,152,则椭圆的标准方程是_________________________12.(2008江西文)已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线方程为y x =, 若顶点到渐近线的距离为1,则双曲线方程为 .13.(2007上海文)以双曲线15422=-y x 的中心为顶点,且以该双曲线的右焦点为焦点的 抛物线方程是 .三、解答题:(15—18题各13分,19、20题各14分)15.(2006北京文)椭圆C:22221(0)x y a b a b +=>>的两个焦点为F 1,F 2,点P 在椭圆C 上,且11212414,||,||.33PF F F PF PF ⊥== (Ⅰ)求椭圆C 的方程;(Ⅱ)若直线l 过圆x 2+y 2+4x-2y=0的圆心M , 交椭圆C 于,A B 两点, 且A 、B 关于点M 对称,求直线l 的方程..16.(2005重庆文)已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为)0,3( (1)求双曲线C 的方程; (2)若直线2:+=kx y l 与双曲线C 恒有两个不同的交点A 和B ,且2>⋅OB OA (其中O 为原点). 求k 的取值范围.17.(2007安徽文)设F 是抛物线G :x 2=4y 的焦点.(Ⅰ)过点P (0,-4)作抛物线G 的切线,求切线方程:(Ⅱ)设A 、B 为抛物线G 上异于原点的两点,且满足0·=FB FA ,延长AF 、BF 分别交抛物线G 于点C ,D ,求四边形ABCD 面积的最小值.18.(2008辽宁文) 在平面直角坐标系xOy 中,点P 到两点(0-,,(0的距离之和等于4,设点P 的轨迹为C . (Ⅰ)写出C 的方程;(Ⅱ)设直线1y kx =+与C 交于A ,B 两点.k 为何值时OA ⊥OB ?此时AB 的值是多少?19. (2002广东、河南、江苏)A 、B 是双曲线x 2-y22=1上的两点,点N(1,2)是线段AB 的中点(1)求直线AB 的方程;(2)如果线段AB 的垂直平分线与双曲线相交于C 、D 两点,那么A 、B 、C 、D 四点是否共圆?为什么?20.(2007福建理)如图,已知点F (1,0),直线l :x =-1,P 为平面上的动点,过P 作直线l 的垂线,垂足为点Q ,且=。
(完整版)圆锥曲线经典题目(含答案)
圆锥曲线经典题型一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.27.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=110.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求•的值.14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点?若直线l存在,请求直线l的方程;若不存在,说明理由.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且•=0,求△PEF的面积.一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)【解答】解:∵直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,∴1>b>0或b>1.∴e==>1且e≠.故选:D.2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.【解答】解:由题意,=(﹣﹣x0,﹣y0)•(﹣x0,﹣y0)=x02﹣3+y02=3y02﹣1<0,所以﹣<y0<.故选:A.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.【解答】解:取PF2的中点A,则∵,∴⊥∵O是F1F2的中点∴OA∥PF1,∴PF1⊥PF2,∵|PF1|=3|PF2|,∴2a=|PF1|﹣|PF2|=2|PF2|,∵|PF1|2+|PF2|2=4c2,∴10a2=4c2,∴e=故选C.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.【解答】解:设F(c,0),则直线AB的方程为y=(x﹣c)代入双曲线渐近线方程y=﹣x得A(,﹣),由=2,可得B(﹣,﹣),把B点坐标代入双曲线方程﹣=1,即=1,整理可得c=a,即离心率e==.故选:C.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)【解答】解:∵双曲线渐近线为bx±ay=0,与圆(x﹣2)2+y2=2相交∴圆心到渐近线的距离小于半径,即∴b2<a2,∴c2=a2+b2<2a2,∴e=<∵e>1∴1<e<故选C.6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.2【解答】解:设F(c,0),渐近线方程为y=x,可得F到渐近线的距离为=b,即有圆F的半径为b,令x=c,可得y=±b=±,由题意可得=b,即a=b,c==a,即离心率e==,故选C.7.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x【解答】解:由双曲线的定义可得|PF1|﹣|PF2|=2a,又|PF1|=2|PF2|,得|PF2|=2a,|PF1|=4a;在RT△PF1F2中,|F1F2|2=|PF1|2+|PF2|2,∴4c2=16a2+4a2,即c2=5a2,则b2=4a2.即b=2a,双曲线=1一条渐近线方程:y=2x;故选:C.8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)【解答】解:∵双曲线渐近线为bx±ay=0,与圆x2+(y﹣2)2=1相交∴圆心到渐近线的距离小于半径,即<1∴3a2<b2,∴c2=a2+b2>4a2,∴e=>2故选:C.9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=1【解答】解:由双曲线的一条渐近线方程为y=x,可设双曲线的方程为x2﹣y2=λ(λ≠0),代入点P(2,),可得λ=4﹣2=2,可得双曲线的方程为x2﹣y2=2,即为﹣=1.故选:B.10.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.【解答】解:由双曲线C:x2﹣=1的右焦点F(2,0),PF与x轴垂直,设(2,y),y>0,则y=3,则P(2,3),∴AP⊥PF,则丨AP丨=1,丨PF丨=3,∴△APF的面积S=×丨AP丨×丨PF丨=,同理当y<0时,则△APF的面积S=,故选D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是20.【解答】解:∵|PF1|+|QF1|=|PQ|=8∵双曲线x2﹣=1的通径为==8∵PQ=8∴PQ是双曲线的通径∴PQ⊥F1F2,且PF1=QF1=PQ=4∵由题意,|PF2|﹣|PF1|=2,|QF2|﹣|QF1|=2∴|PF2|+|QF2|=|PF1|+|QF1|+4=4+4+4=12∴△PF2Q的周长=|PF2|+|QF2|+|PQ|=12+8=20,故答案为20.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.【解答】解:取PF2的中点A,则∵,∴2•=0,∴,∵OA是△PF1F2的中位线,∴PF1⊥PF2,OA=PF1.由双曲线的定义得|PF1|﹣|PF2|=2a,∵|PF1|=|PF2|,∴|PF2|=,|PF1|=.△PF1F2中,由勾股定理得|PF1|2+|PF2|2=4c2,∴()2+()2=4c2,∴e=.故答案为:.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求•的值.【解答】解:(1)设F2,M的坐标分别为,因为点M在双曲线C上,所以,即,所以,在Rt△MF2F1中,∠MF1F2=30°,,所以…(3分)由双曲线的定义可知:故双曲线C的方程为:…(6分)(2)由条件可知:两条渐近线分别为…(8分)设双曲线C上的点Q(x0,y0),设两渐近线的夹角为θ,则点Q到两条渐近线的距离分别为,…(11分)因为Q(x0,y0)在双曲线C:上,所以,又cosθ=,所以=﹣…(14分)14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.【解答】(Ⅰ)解:由题知:a2+b2=2,曲线C2的离心率为…(2分)∵曲线C1的离心率是曲线C2的离心率的倍,∴=即a2=b2,…(3分)∴a=b=1,∴曲线C1的方程为x2﹣y2=1;…(4分)(Ⅱ)证明:由直线AB的斜率不能为零知可设直线AB的方程为:x=ny+…(5分)与双曲线方程x2﹣y2=1联立,可得(n2﹣1)y2+2ny+1=0设A(x1,y1),B(x2,y2),则y1+y2=﹣,y1y2=,…(7分)由题可设点C(,y2),由点斜式得直线AC的方程:y﹣y2=(x﹣)…(9分)令y=0,可得x===…(11分)∴直线AC过定点(,0).…(12分)15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点?若直线l存在,请求直线l的方程;若不存在,说明理由.【解答】解:(Ⅰ)由题意可得e==,当P为右顶点时,可得PF取得最小值,即有c﹣a=﹣1,解得a=1,c=,b==,可得双曲线的方程为x2﹣=1;(Ⅱ)过点P(1,1)假设存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点.设R(x1,y1),T(x2,y2),可得x12﹣=1,x22﹣=1,两式相减可得(x1﹣x2)(x1+x2)=(y1﹣y2)(y1+y2),由中点坐标公式可得x1+x2=2,y1+y2=2,可得直线l的斜率为k===2,即有直线l的方程为y﹣1=2(x﹣1),即为y=2x﹣1,代入双曲线的方程,可得2x2﹣4x+3=0,由判别式为16﹣4×2×3=﹣8<0,可得二次方程无实数解.故这样的直线l不存在.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且•=0,求△PEF的面积.【解答】解:(Ⅰ)∵C:的离心率e=,且b=,∴=,且b=,∴a=1,c=∴双曲线C的方程;(Ⅱ)令|PE|=p,|PF|=q由双曲线定义:|p﹣q|=2a=2平方得:p2﹣2pq+q2=4•=0,∠EPF=90°,由勾股定理得:p2+q2=|EF|2=12所以pq=4即S=|PE|•|PF|=2.。
(完整版)圆锥曲线综合练习题(有答案)
2、选择题:圆锥曲线综合练习2已知椭圆—10 A. 4 直线x 2y设双曲线1的长轴在 2 0经过椭圆 B .C .72y y J 5y 轴上,若焦距为4,则m 等于(D . 8 1(a b0)的一个焦点和一个顶点,则该椭圆的离心率为(2y_9 B . 31 (a 0)的渐近线方程为 若m 是2和8的等比中项, 则圆锥曲线 x 23x 2y 0 ,则a 的值为(1的离心率是(已知双曲线 点.若OM A .」已知点 F 1 , 2 2x y 2 2 1(aa b ON ,则双曲线的离心率为( B .匚2 F 2是椭圆 2 x 25A . 22 或 2双曲线2P 为双曲线— 9的最大值为( A . 6 已知点 0 , b 0),过其右焦点且垂直于实轴的直线与双曲线交于 M , N 两点,O 为坐标原2 2 x 2y2的两个焦点,点P 是该椭圆上的一个动点, uur 那么| PF ! PF, i 的最小值是1上的点到一个焦点的距离为 12,则到另一个焦点的距离为( B . 2 y_ 16 7 C . 22 1的右支上一点, D . 2M , N 分别是圆(x 5)2 y 2 4 和(x 5)2 y 2 1上的点,则|PMIPN |2 P (8, a )在抛物线y 4px 上,且P 到焦点的距离为10,则焦点到准线的距离为 8 D . 16 uuur 1 uuu.在正△ ABC 中,D AB , E AC ,向量DE -BC ,则以B ,C 为焦点,且过D , 2A 」 3 9 .两个正数a 'b的等差中项是 ,一个等比中项是2.5,且a b ,则抛物线y 2E 的双曲线离心率为-x 的焦点坐标是(a2 B . ( 7,0)52x .已知A 1 , A 分别为椭圆C: p aA .(16,0) 1C . ( -, 0)52每1(a b 0)的左右顶点,椭圆C 上异于A , b恒满足k PA k%9,则椭圆C 的离心率为(1. 2. 3. 4. 5. 6. 7. 8. 9.10 1112A . m pB . pm为Q , O 为坐标原点,若 △ FQQ 与四边形OF 2PQ 的面积之比为1:2,则该椭圆的离心率等于( )C . 4 2 3D . 3 1220. 已知双曲线方程为x 2 丁 1,过P (2 , 1)的直线L 与双曲线只有一个公共点,则直线 |的条数共有()A . 4条B . 3条C . 2条D . 1条21.已知以F 1( 2 , 0) , F 2(2 , 0)为焦点的椭圆与直线 x 3y 4 0有且仅有一个交点,则椭圆的长轴长为 ()D . 4 2b 0)的离心率互为倒数,那么以 a , b , m 为边长的三角形是13.已知R 、 C . 5 922F 2分别是椭圆笃占 a b1(a b0)的左、右焦点,A 是椭圆上位于第一象限内的一点, 点B 也在椭圆 上, 且满足 uur uunOA OB (O 为坐标原点),A - y fx B- y T xUUJU LULU — -2 AF 2 FF 2 0,若椭圆的离心率等于2,则直线AB 的方程是(2D 贞 D . y x214.已知点 P 是抛物线2x 上的一个动点, 则点 P 到点M (0 , 2)的距离与点 P 到该抛物线准线的距离之和的最A . 3C .9B ..5D .222 22215.若椭圆—y_ 1与双曲线— y_ 1(m , n , p , q 均为正数)有共冋的焦点m n p q小值为F 1, F 2, P 是两曲线的一个公共点,则 IPF 1IIPF 2I 等于 ()16.若 P(a , b)是双曲线 4x 216y 2m( m 0)上一点,且满足a 2b 0 , a 2b 0,则该点P 一定位于双曲线(A .右支上B .上支上C .右支上或上支上D .不能确定17.如图,在厶ABC 中,CABCBA 30o , AC , BC 边上的高分别为 BD , AE ,则以A , B 为焦点,且过D , E的椭圆与双曲线的离心率的倒数和为()B . 1C . 2,318方程2 xsin 2 sin .3 2——J 1表示的曲线是(cos 、2 cos < 3A .焦点在x 轴上的椭圆 C .焦点在y 轴上的椭圆2 219. 已知F 1, F 2是椭圆笃^2 1(a ba bB .焦点在x 轴上的双曲线 D .焦点在y 轴上的双曲线0)的左、右焦点,点 P 在椭圆上,且秆巳-记线段PF 1与y 轴的交点A . 3 2B .26 C . 2.7222 .双曲线务a 2丄 2 b21与椭圆x 2m2L2b 1 (a 0 , m()23 .已知点A ( 1 , 0), B (1, 0)及抛物线y 2 2x ,若抛物线上点P 满足PA mPB ,则m 的最大值为()实轴长为(A 是椭圆上一动点,圆 C 与F 1A 的延长线、F 1F 2的延长线以| AF | 3,则此抛物线方程为( A. y 2 9x B. y 2 6x2C. y 3x2 230.已知F 1 , F 2分别是椭圆 ——1的左、右焦点,4 332,3 c9、3 23A.——B.C.D. --------23227229 .若椭圆— 2—1(m 0, n 0)与曲线x 2 y 2 |mn|无焦点, 则椭圆的离心率 e 的取值范围是()m n3 A .(〒,1)B . (0 , 34 2) C . ( 2 川) D . (0,()及线段AF 2相切,若 M (t , 0)为一个切点,则(C . t 2D . t 与2的大小关系不确定 31.如图,过抛物线2px(p 0)的焦点F 的直线l 交抛物线于点A ,B ,交其准线于点C ,若|BC | 2| BF |,且A .锐角三角形B •直角三角形C •钝角三角形D .等边三角形24 .设 F i , 三角形, 1 A .- 2F 2是椭圆E.p ra bE 的离心率为(2 B.-31(a0)的左、右焦点, 3P 为直线x ^a 上一点,△ F 2PF 1是底角为30°的等腰25.等轴双曲线 C 的中心在原点, 焦点在 2x 轴上,C 与抛物线y16x 的准线交于A , B 两点,B . 2 2C . 4D . 826 .已知直线l 过抛物线C 的焦点,且与 则厶ABP 的面积为()C 的对称轴垂直,l 与C 交于A , B 两点, | AB| 12 , P 为C 准线上一点,A . 18B . 24C . 3627.中心在原点,焦点在 x 轴上的双曲线的一条渐近线经过点D . 48(4 , 2),则它的离心率为(C .込228 .椭圆ax2by 1与直线 x 交于A , B 两点, 过原点与线段 AB 中点的直线的斜率为D. y23x22uur uuu ,亠 2y 2的两个焦点,点P 是该椭圆上的一个动点,那么| PF , PF 2I 的最小值是(A . 2.2| PF 1 | 3| PF 2 |,则双曲线C 的离心率e 的取值范围为( )A . (1, 2]B . (2 ,2]C . (、一2 ,2)D . (1, 2)点,若AB // x 轴,且—1 X 2,则A NAB 的周长I 的取值范围为()32 •已知椭圆 iur 使得PF , 2X二uuuPF 2 y 1的焦点为F ,、 0的M 点的概率为F 2,在长轴入A 上任取一点M ,过M 作垂直于AA 的直线交椭圆于 P ,则C .D . 33 .以 O 为中心, F i ,uuuF 2为两个焦点的椭圆上存在一点M ,满足|MF , |uui Luur2|MO | 2 | MF 21,则该椭圆的离心率为A . ( 2 ,9)B . (0,5)C . (2 , 9)D . (1, 6)36.若点0和点F2X 分别为椭圆-4 2' 1的中心和左焦点, 3点P 为椭圆上的任意一点,uuu 则0P uuu FP 的最大值为()A . 2 B. 3 C . 6D . 837 .直线3x 4y4 0与抛物线 2 2x 4y 和圆x2(y 1)1从左到右的交点依次为 A , B , C ,D ,则I"!的值为条直线同时与抛物线和圆 5x 2 5y 2 36相切,则抛物线的顶点坐标为( )( )34.已知点F i , F 2是椭圆35.在抛物线yx 2 ax 5(a0)上取横坐标为X 4 , X 2 2的两点,过这两点引一条割线,有平行于该割线的一 A . 161638 .如图,双曲线的中心在坐标原点O , A , C 分别是双曲线虚轴的上、下端点, B 是双曲线的左顶点,F 是双曲线的左焦点, 直线 AB 与FC 相交于点 57 5 7 7工14 5 7 14239 .设双曲线 C : —2 a 2每1(a 0, b 0)的左、右焦点分别为 b F 2,若在双曲线的右支上存在一点P ,使得40 .已知A (X 1 , yj 是抛物线y 2 4x 上的一个动点,2 2B (X 2,祠是椭圆—乂 4 31上的一个动点,N (1, 0)是一个定D. F 1 ,BDF 的余弦是(2A . (10 ,5)B • (8 ,4)C • (!° ,4)D • (11 ,5)3 33 32 2XV241.设双曲线2y2 1(a 0 , b 0)的离心率e 2 ,右焦点F (c , 0),方程ax bx c 0的两个根分别为X i , x ,a b则点 P(X i , X 2)在()2 2 2 2A .圆x V 10内B .圆x V 10上C .圆x 2y 210外D .以上三种情况都有可能2 2X 42.过双曲线p a y 2 2 2詁 1(a 0,b 0)的右焦点F 作圆x y a 的切线FM (切点为M ),交y 轴于点P ,若M 为线段FP 的中点 ,则双曲线的离心率是()A . 2B . 3C . 2D . 5x 243 .若双曲线2a 2y 21 (a 0,b0)上不存在点 bP 使得右焦点 F 关于直线 O P ( O 为双曲线的中心)的对称点在y 轴上,则该双曲线离心率的取值范围为()A . (2,)B . [ 2,)C . (1, 2]D . (1, 2)2 244.已知以椭圆 一~ -V^ 1(a b 0)的右焦点F 为圆心, a b椭圆的离心率的取值范围是()2 245.椭圆C 1 :— — 1的左准线I ,左.右焦点分别为 F 1. F 2,抛物线C 2的准线为|,焦点是F 2, C 1与C 2的一4 3个交点为P ,则|PF 2|的值等于( )48A .B .C .4D . 83 32246.已知F 1、X F 是双曲线 y 1 (a > 0, b > 0)的两焦点,以线段 F 1F 2为边作正三角形 MF 1F 2,若边 MF 1a b 2的中点在双曲线上,则双曲线的离心率是()A . 4+ 2、3B. 3 +1C. 3 — 1C . 5 1247 .已知双曲线 1(a 0,b 则该双曲线离心率 e 的值为( 0)的左顶点、右焦点分别为) A 、F ,点 B (0, b ),若 BA BF BA BF48.直线l 是双曲线7 b 21(a 0,b 0)的右准线,以原点O 为圆心且过双曲线焦点的圆被直线l 分成弧长为a 为半径的圆与椭圆的右准线交于不同的两点,则该C . 5 1(丁 ,1)(0 ,D .2 2A .5B . . 3C .2 2D .22x 49 .从双曲线 2 a 2 y b 2 1(a 0,b 0)的左焦点 F 引圆x 22 2 y a2:1的两段,则双曲线的离心率为() 于P 点,若M 为线段FP 的中点,O 为坐标原点,的切线,切点为T ,延长FT 交双曲线右支 MO MT b a C . MO| |MT| b a 50 .点P 为双曲线C i : 2 2xy 1 a—21 aa b2 PF 1F 2 PF 2F 1,其中F i , F 2为双曲线 51.设圆锥曲线 r 的两个焦点分别为 F 1 , F 2 , 率等于 则 |M0| MT 与 M0| |MT| b D .不确定. 0,b 0和圆C 2 C i 的两个焦点,则双曲线 b a 的大小关系为 x 2 y 2 a 2 b 2C i 的离心率为( 若曲线r 上存在点P 满足|PF 1|:|F 1F2|:|PF 』 1或32 B . 或2C . 1 或 2D . 2或 32 23 2 3 2 A . 252 .已知点P 为双曲线 的一个交点,且 =4:3:2 0)右支上一点,F 1 , F 2分别为双曲线的左、右交点, ,则曲线r 的离心I PF 2F 2 的内心,若S |PF 1IPF%F1F 2成立,则的值为A .三 2aB .C . 二、填空题: 53 .已知R , F 2为椭圆 2 2 25 7 1的两个焦点, 过F 1的直线交椭圆于A , B 两点.若RAI |F 2B| 12 ,则|AB| 54.中心在原点,焦点在 x 轴上,且长轴长为 4,离心率为1的椭圆的方程为 255. 56 . 29.已知双曲线x 2工1 a 2 y_ 4 的一条渐近线与直线 x 2y 3 0垂直,则a 2x 已知P 为椭圆一91上的点,F 1 , F 2是椭圆的两个焦点,且 F 1PF 2 60° ,则厶F 1PF 2的面积2x 57.已知双曲线—a则双曲线的方程为2y_1(a 2 x0 , b 0)和椭圆一162才1有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,58 .若双曲线笃爲1(a 0 , b 0)的一条渐近线与椭圆—-1的焦点在x 轴上的射影恰为该椭圆的焦点,则 a b4 3双曲线的离心率为2x59.已知双曲线ra265 .已知抛物线 C:y 2px(p 0)过点A(1, 2).(I)求抛物线 C 的方程,并求其准线方程;(H)是否存在平行于 OA ( O 为坐标原点)的直线l ,使得直线l 与抛物线C 有公共点,且直线 OA 与L 的距离等 于一5 ?若存在,求直线l 的方程;若不存在,请说明理由.566 .已知抛物线x 22 py( p 0).1(a 0, b 0)的左、右焦点分别为F i , F 2 ,过点F 2做与x 轴垂直的直线与双曲线一个焦点P ,且 PF 1F 2 30°, 则双曲线的渐近线方程为 60.已知 F-i > F 2分别为椭圆 2x25 y2uuir umu£ 1的左、右焦点,P 为椭圆上一点,Q 是y 轴上的一个动点,若| PF | |PF 2 | 4 ,9umr 则PQ uur (PR ULUDPF ) 61 .已知圆 C :x 2 6x 8y 21 0,抛物线y 2 8x 的准线为I ,设抛物线上任意一点 P 到直线I 的距离为m ,则m |PC|的最小值为 _________________ . 2 262 .设双曲线—壬1的右顶点为A ,右焦点为F .过点 9 16则厶AFB 的面积为 F 平行双曲线的一条渐近线的直线与双曲线交于点63 .已知直线l i :4x 3y三、解答题:64 .已知椭圆 2y_ b 2(I)求椭圆 (n)若直线2 C :笃 a C 的方程;l 过点M (1(a b 0)的两个焦点为F i , F 2,414 点 P 在椭圆 C 上,且 PF 1 PF 2, IPF 1I, |PF 2| 332,1),交椭圆C 于A , B 两点,且点M 恰是线段AB 的中点,求直线l 的方程.2的距离之和的最小值6 0和直线l 2 :x 0 ,抛物线y 2(I)已知值是(i)(ii)P点为抛物线上的动点,点P在x轴上的射影是点M,点A的坐标是(4 , 2),且|PA| |PM |的最小4.求抛物线的方程;设抛物线的准线与y轴的交点为点(n)设过抛物线焦点F的动直线l交抛物线于求证:以CD为直径的圆过焦点F . E,过点E作抛物线的切线,求此切线方程;A , B两点,连接AO , BO并延长分别交抛物线的准线于C , D两点,2 2定点的坐标;如果不是,请说明理由.67.如图所示,已知椭圆 C:% 占1(a b 0), A i , A 2分别为椭圆C 的左、右顶点. a b(I)设F i , F 2分别为椭圆C 的左、右焦点,证明:当且仅当椭圆C 上的点P 在椭圆的左、右顶点时,|PF i |取得最小值与最大值;(H)若椭圆C 上的点到焦点距离的最大值为 (川)若直线l :y kx m 与(H)中所述椭圆证明:直线l 过定点,并求出该定点的坐标.2y是该椭圆的一个顶点. (I)求椭圆C 的方程; 2x68 .已知椭圆C : ja(H)已知圆o :x 2y 22的切线l 与椭圆相交于3B 两点,那么以 AB 为直径的圆是否经过定点?如果时,求出3,最小值为1,求椭圆C 的标准方程;1(a b 0)的离心率。
圆锥曲线综合试题(全部大题目)含答案
1. 平面上一点向二次曲线作切线得两切点,连结两切点的线段我们称切点弦.设过抛物线22x py =外一点00(,)P x y 的任一直线与抛物线的两个交点为C 、D ,与抛物线切点弦AB的交点为Q 。
(1)求证:抛物线切点弦的方程为00()x x p y y =+; (2)求证:112||||PC PD PQ +=.2. 已知定点F (1,0),动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且.||||,0PN PM PF PM ==⋅ (1)动点N 的轨迹方程;(2)线l 与动点N 的轨迹交于A ,B 两点,若304||64,4≤≤-=⋅AB OB OA 且,求直线l 的斜率k 的取值范围.3. 如图,椭圆134:221=+y x C 的左右顶点分别为A 、B ,P 为双曲线134:222=-y x C 右支上(x 轴上方)一点,连AP 交C 1于C ,连PB 并延长交C 1于D ,且△ACD 与△PCD 的面积相等,求直线PD 的斜率及直线CD 的倾斜角.4. 已知点(2,0),(2,0)M N -,动点P 满足条件||||22PM PN -=.记动点P 的轨迹为W .(Ⅰ)求W 的方程;(Ⅱ)若,A B 是W 上的不同两点,O 是坐标原点,求OA OB ⋅的最小值.5. 已知曲线C 的方程为:kx 2+(4-k )y 2=k +1,(k ∈R) (Ⅰ)若曲线C 是椭圆,求k 的取值范围;(Ⅱ)若曲线C 是双曲线,且有一条渐近线的倾斜角是60°,求此双曲线的方程; (Ⅲ)满足(Ⅱ)的双曲线上是否存在两点P ,Q 关于直线l :y=x -1对称,若存在,求出过P ,Q 的直线方程;若不存在,说明理由。
6. 如图(21)图,M (-2,0)和N (2,0)是平面上的两点,动点P 满足: 6.PM PN +=(1)求点P 的轨迹方程; (2)若2·1cos PM PN MPN-∠=,求点P 的坐标.7. 已知F 为椭圆22221x y a b +=(0)a b >>的右焦点,直线l 过点F 且与双曲线1222=-b y a x 的两条渐进线12,l l 分别交于点,M N ,与椭圆交于点,A B . (I )若3MON π∠=,双曲线的焦距为4。
(完整版)圆锥曲线大题综合测试(含详细答案)
圆锥曲线1.设椭圆222:12x y M a +=(a >的右焦点为1F ,直线2:22-=a a x l 与x 轴交于点A ,若112OF F A =u u u r u u u r(其中O为坐标原点).(1)求椭圆M 的方程;(2)设P 是椭圆M 上的任意一点,EF 为圆()12:22=-+y x N 的任意一条直径(E 、F 为直径的两个端点),求⋅的最大值.2 . 已知椭圆E :()222210x y a b a b +=>>的一个焦点为()1F ,而且过点12H ⎫⎪⎭.(Ⅰ)求椭圆E 的方程;(Ⅱ)设椭圆E 的上下顶点分别为12,A A ,P 是椭圆上异于12,A A 的任一点,直线12,PA PA 分别交x 轴于点,N M ,若直线OT 与过点,M N 的圆G 相切,切点为T .证明:线段OT 的长为定值,并求出该定值.3、已知圆O:222=+y x 交x 轴于A,B 两点,曲线C 是以AB 为长轴,离心率为22的椭圆,其左焦点为F,若P 是圆O上一点,连结PF,过原点O 作直线PF 的垂线交直线x=-2于点Q.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若点P 的坐标为(1,1),求证:直线PQ 与圆O 相切; (Ⅲ)试探究:当点P 在圆O 上运动时(不与A 、B 重合),直线PQ 与圆O 是否保持相切的位置关系?若是,请证明;若不是,请说明理由.4设)0(1),(),,(22222211>>=+b a b x x y y x B y x A 是椭圆上的两点,满足0),(),(2211=⋅a y b x a y b x ,椭圆的离心率,23=e 短轴长为2,0为坐标原点.(1)求椭圆的方程; (2)若直线AB 过椭圆的焦点F (0,c ),(c 为半焦距),求直线AB 的斜率k 的值;(3)试问:△AOB 的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.5 、直线l :y = mx + 1,双曲线C :3x 2 - y 2 = 1,问是否存在m 的值,使l 与C 相交于A , B 两点,且以AB 为直径的圆过原点6 已知双曲线C :22221(0,0)x y a b a b-=>>的两个焦点为F 1(-2,0),F 2(2,0),点P 在曲线C 上。
圆锥曲线大题综合测试(含详细答案)
.xy1A 2ATG PMON 圆锥曲线1.设椭圆222:12x y M a +=()2a >的右焦点为1F ,直线2:22-=a a x l 与x 轴交于点A ,若112OF F A =(其中O为坐标原点).(1)求椭圆M 的方程;(2)设P 是椭圆M 上的任意一点,EF 为圆()12:22=-+y x N 的任意一条直径(E 、F 为直径的两个端点),求PF PE ⋅的最大值.2 . 已知椭圆E :()222210x y a b a b +=>>的一个焦点为()13,0F -,而且过点13,2H ⎛⎫ ⎪⎝⎭.(Ⅰ)求椭圆E 的方程;(Ⅱ)设椭圆E 的上下顶点分别为12,A A ,P 是椭圆上异于12,A A 的任一点,直线12,PA PA 分别交x 轴于点,N M ,若直线OT 与过点,M N 的圆G 相切,切点为T .证明:线段OT 的长为定值,并求出该定值.3、已知圆O:222=+y x 交x 轴于A,B 两点,曲线C 是以AB 为长轴,离心率为22的椭圆,其左焦点为F,若P 是圆O上一点,连结PF,过原点O 作直线PF 的垂线交直线x=-2于点Q.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若点P 的坐标为(1,1),求证:直线PQ 与圆O 相切; (Ⅲ)试探究:当点P 在圆O 上运动时(不与A 、B 重合),直线PQ 与圆O 是否保持相切的位置关系?若是,请证明;若不是,请说明理由.4设)0(1),(),,(22222211>>=+b a b x x y y x B y x A 是椭圆上的两点,满足0),(),(2211=⋅a y b x a y b x ,椭圆的离心率,23=e 短轴长为2,0为坐标原点.(1)求椭圆的方程; (2)若直线AB 过椭圆的焦点F (0,c ),(c 为半焦距),求直线AB 的斜率k 的值;(3)试问:△AOB 的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.xy O PF QA B5 、直线l:y = mx + 1,双曲线C:3x2- y2 = 1,问是否存在m的值,使l与C相交于A , B两点,且以AB为直径的圆过原点6 已知双曲线C:22221(0,0)x ya ba b-=>>的两个焦点为F1(-2,0),F2(2,0),点P(3,7)在曲线C上。
圆锥曲线的综合经典例题(有答案)
经典例题精析种类一:求曲线的标准方程1. 求中心在原点 ,一个焦点为且被直线截得的弦AB的中点横坐标为的椭圆标准方程.思路点拨:先确立椭圆标准方程的焦点的地点(定位),选择相应的标准方程,再利用待定系数法确立、(定量).分析:方法一:因为有焦点为,因此设椭圆方程为,,由,消去得,因此解得故椭圆标准方程为方法二:设椭圆方程,,,因为弦 AB 中点,因此,由得,(点差法)因此又故椭圆标准方程为.贯通融会:【变式】已知椭圆在x 轴上的一个焦点与短轴两头点连线相互垂直,且该焦点与长轴上较近的端点的距离为.求该椭圆的标准方程.【答案】依题意设椭圆标准方程为(),并有,解之得∴椭圆标准方程为2.依据以下条件,求双曲线的标准方程.( 1)与双曲线有共同的渐近线,且过点( 2)与双曲线有公共焦点,且过点分析:,;,( 1)解法一:设双曲线的方程为由题意,得,解得,因此双曲线的方程为解法二:设所求双曲线方程为(),将点代入得,因此双曲线方程为即( 2)解法一:设双曲线方程为-=1由题意易求又双曲线过点,∴又∵,∴,故所求双曲线的方程为.解法二:设双曲线方程为,将点代入得,因此双曲线方程为.总结升华:先依据已知条件确立双曲线标准方程的焦点的地点(定位),选择相应的标准方程,再利用待定系数法确立、.在第( 1)小题中第一设出共渐近线的双曲线系方程.而后辈点坐标求得方法简易.第( 2)小题实轴、虚轴没有独一给出.故应答两个标准方程.(1)求双曲线的方程,重点是求、,在解题过程中应熟习各元素(、、、及准线)之间的关系,并注意方程思想的应用.(2) 若已知双曲线的渐近线方程,可设双曲线方程为() .贯通融会:【变式】求中心在原点,对称轴在座标轴上且分别知足以下条件的双曲线的标准方程.( 1)一渐近线方程为,且双曲线过点.( 2)虚轴长与实轴长的比为,焦距为10.【答案】( 1)依题意知双曲线两渐近线的方程是,故设双曲线方程为,∵点在双曲线上,∴,解得,∴所求双曲线方程为.( 2)由已知设,,则()依题意,解得.∴双曲线方程为或.3.求知足以下条件的抛物线的标准方程,并求对应抛物线的准线方程:( 1)过点;( 2)焦点在直线:上思路点拨:从方程形式看,求抛物线的标准方程仅需确立一次项系数;从实质剖析,一般需联合图形确立张口方向和一次项系数两个条件,不然,应睁开相应的议论分析:( 1)∵点在第二象限,∴抛物线张口方向上或许向左当抛物线张口方向左时,设所求的抛物线方程为(),∵过点,∴,∴,∴,当抛物线张口方向上时,设所求的抛物线方程为(),∵过点,∴,∴,∴,∴所求的抛物线的方程为或,对应的准线方程分别是,.(2)令得,令得,∴抛物线的焦点为或当焦点为时,,∴,此时抛物线方程;焦点为时,,∴,此时抛物线方程为∴所求的抛物线的方程为或,对应的准线方程分别是,.总结升华:这里易犯的错误就是缺乏对张口方向的议论,先入为主,设定一种形式的标准方程后求解,致使失掉一解.求抛物线的标准方程重点是依据图象确立抛物线张口方向,选择适合的方程形式,正确求出焦参数P.贯通融会:【变式 1】分别求知足以下条件的抛物线的标准方程.(1)焦点为 F(4,0);( 2)准线为;(3)焦点到原点的距离为 1;(4)过点( 1,- 2);(5)焦点在直线 x-3y+6=0 上 .【答案】(1)所求抛物线的方程为 y2=16x;(2)所求抛物线的标准方程为x2=2y;( 3)所求抛物线的方程y2=± 4x 或 x2=± 4y;( 4)所求抛物线的方程为或;( 5)所求抛物线的标准方程为y2=- 24x 或 x2=8y.【变式 2】已知抛物线的极点在原点,焦点在轴负半轴上,过极点且倾角为的弦长为,求抛物线的方程.【答案】设抛物线方程为(),又弦所在直线方程为由,解得两交点坐标,∴,解得.∴抛物线方程为.种类二:圆锥曲线的焦点三角形4.已知、是椭圆()的两焦点,P 是椭圆上一点,且,求的面积.思路点拨:如图求的面积应利用,即.重点是求.由椭圆第必定义有,由余弦定理有,易求之 .分析:设,,依题意有(1)2-(2)得,即.∴.贯通融会:【变式1】设为双曲线上的一点,是该双曲线的两个焦点,若,则的面积为()A.B.C.D.【答案】依照双曲线的定义有,由得、,又,则,即,因此,应选 A.【变式 2】已知双曲线实轴长6,过左焦点的弦交左半支于、两点,且,设右焦点,求的周长.【答案】:由双曲线的定义有:,,两式左、右分别相加得 (.即∴.故的周长.【变式 3】已知椭圆的焦点是,直线是椭圆的一条准线.① 求椭圆的方程;②设点 P在椭圆上 ,且,求.【答案】①.②设则,又.【变式 4】已知双曲线的方程是.( 1)求这双曲线的焦点坐标、离心率和渐近线方程;( 2)设和是双曲线的左、右焦点,点在双曲线上,且,求的大小【答案】(1)由得,∴,,.焦点、,离心率,渐近线方程为.(2),∴∴【变式5】中心在原点,焦点在x 轴上的一个椭圆与双曲线有共同焦点和,且,又椭圆长半轴与双曲线实半轴之差为4,离心率之比.( 1)求椭圆与双曲线的方程;( 2)若为这两曲线的一个交点,求的余弦值.【答案】( 1)设椭圆方程为(),双曲线方程,则,解得∵,∴,.故所求椭圆方程为,双曲线方程为.( 2)由对称性不如设交点在第一象限.设、.由椭圆、双曲线的定义有:解得由余弦定理有.种类三:离心率5.已知椭圆上的点和左焦点,椭圆的右极点和上极点,当,( O 为椭圆中心)时,求椭圆的离心率.思路点拨:因为,因此此题应成立、的齐次方程,使问题得以解决.分析:设椭圆方程为(),,,则,即.∵,∴,即,∴.又∵,∴.总结升华:求椭圆的离心率,即求的比值,则可由以下方法求.( 1)可直接求出、;( 2)在不好直接求出、的状况下,找到一个对于、的齐次等式或、用同一个量表示;( 3)若求的取值范围,则想方法找不等关系.贯通融会:【变式 1】如图,和分别是双曲线的两个焦点,和是以为圆心,以为半径的圆与该双曲线左支的两个交点,且是等边三角形,则双曲线的离心率为()A.B.C.D.【答案】连结,则是直角三角形,且,令,则,,即,,因此,应选 D.交于【变式 2】已知椭圆B 点, F 点是左焦点,且()与 x 轴正半轴交于,求椭圆的离心率.A 点,与y 轴正半轴法一:∵,,, ∴,又,,代入上式,得,利用代入,消得,即由,解得,∵,∴.法二:在ABF 中,∵,∴,即【变式 3】如图,椭圆的中心在原点, 焦点在椭圆于 A、 B 两点 , 若椭圆上存在一点C, 使,下略)x 轴上 , 过其右焦点 F 作斜率为. 求椭圆的离心率1 的直线 .,交【答案】设椭圆的方程为(),焦距为,则直线 l 的方程为:,由,消去得,设点、,则∵+, ∴C点坐标为.∵ C 点在椭圆上 ,∴.∴又∴∴∴【变式 4】设、为椭圆的两个焦点,点,则椭圆离心率为_____.【答案】如图,点知足,且是以为直径的圆与椭圆的交点,若.在∵中,有:,∴,令此椭圆方程为则由椭圆的定义有,,∴又∵,∴,,∴∴,∴,即.6.已知、为椭圆的两个焦点,为此椭圆上一点,且.求此椭圆离心率的取值范围;分析:如图,令,,,则在中,由正弦定理,∴,令此椭圆方程为(),则,,∴即(),∴, ∴,∵,且为三角形内角,∴,∴,∴, ∴即此椭圆离心率的取值范围为贯通融会:【变式 1】已知椭圆..,F1,F2是两个焦点,若椭圆上存在一点P,使,求其离心率的取值范围.【答案】△ F1PF2中,已知,|F1F2|=2c,|PF1|+|PF2|=2a,由余弦定理:4c2=|PF1| 2+|PF2| 2-2|PF 1||PF 2|cos120 °①又 |PF 1|+|PF 2|=2a②联立①②得4c2=4a2-|PF1||PF2|,∴【变式 2】椭圆为,若A.【答案】由B.的焦点为,,两条准线与,则该椭圆离心率的取值范围是()C.D.得,即,解得轴的交点分别,故离心率.因此选 D.【变式 3】椭圆中心在座标系原点,焦点在x 轴上,过椭圆左焦点 F 的直线交椭圆P、Q 两点,且OP⊥ OQ,求其离心率 e 的取值范围.【答案】 e∈ [,1)【变式 4】双曲线(a> 1,b> 0)的焦距为 2c,直线过点(a,0)和(0,b),且点(1,0)到直线的距离与点 (-1,0)到直线的距离之和s≥c.求双曲线的离心率 e 的取值范围.【答案】直线的方程为bx+ay-ab=0.由点到直线的距离公式,且 a> 1,获得点 (1,0)到直线的距离.同理获得点 (-1,0)到直线的距离.=.由 s≥c,得≥ c,即 5a≥ 2c2.于是得 5≥ 2e2.即 4e4-25e2+25≤0.解不等式 ,得≤ e2≤5.因为 e> 1,因此 e 的取值范围是.种类五:轨迹方程7.已知中,,,为动点,若和为定值 15.求动点的轨迹方程.思路点拨:充足利用定义直接写出方程是求轨迹的直接法之一解法一:设动点,且,、边上两中线长的.应给予重视则、边上两中点、的坐标分别为,.∵,∴,即.从上式知,动点到两定点故动点的轨迹是以,,的距离之和为常数为焦点且,30,,的椭圆,挖去点.∴动点解法二:设的轨迹方程是的重心,(,动点).,且,则∴点的轨迹是以且,,.,.为焦点的椭圆(挖去点),其方程为().又,代入上式,得()为所求.总结升华:求动点的轨迹,第一要剖析形成轨迹的点和已知条件的内在联系,选择最便于反应这类联系的坐标形式,成立等式,利用直接法或间接法获得轨迹方程.贯通融会:【变式 1】求过定点且和圆:相切的动圆圆心的轨迹方程 .【答案】设动圆圆心, 动圆半径为,.( 1)动圆与圆外切时,,( 2)动圆与圆内切时,,由( 1)、( 2)有.∴动圆圆心M 的轨迹是以、为焦点的双曲线,且,,.故动圆圆心的轨迹方程为.【变式 3】已知圆的圆心为 M 1,圆的圆心为 M 2,一动圆与这两个圆外切,求动圆圆心P 的轨迹方程 .【答案】设动圆圆心 P( x, y),动圆的半径为R,由两圆外切的条件可得:,.∴.∴动圆圆心 P 的轨迹是以M1、M 2为焦点的双曲线的右支,此中 c=4,a=2,∴b2=12,故所求轨迹方程为.【变式4】若动圆与圆:相外切,且与直线:相切,求动圆圆心的轨迹方程 .法一:设,动圆半径,动圆与直线切于点,点.依题意点在直线的左边,故∵,∴.化简得, 即为所求 .法二:设,作直线:.过作于,交于,依题意有, ∴,由抛物线定义可知,点的轨迹是以为极点,为焦点,:为准线的抛物线.故为所求 .。
完整版)圆锥曲线综合练习题(有答案)
完整版)圆锥曲线综合练习题(有答案)圆锥曲线综合练1.已知椭圆 $x^2/a^2+y^2/b^2=1$ 的长轴在 $y$ 轴上,焦距为 4,则 $m$ 等于()A。
4B。
5C。
7D。
82.直线 $x-2y+2=0$ 经过椭圆$x^2/a^2+y^2/b^2=1(a>b>0)$ 的一个焦点和一个顶点,则该椭圆的离心率为frac{\sqrt{5}}{2}3.设双曲线 $x^2/a^2-y^2/b^2=1(a>0)$ 的渐近线方程为$3x\pm 2y=0$,则 $a$ 的值为24.若 $m$ 是 2 和 8 的等比中项,则圆锥曲线$x^2/a^2+y^2/b^2=1$ 的离心率是frac{\sqrt{5}}{2}5.已知双曲线 $x^2/a^2-y^2/b^2=1(a>b>0)$,$N$ 两点,$O$ 为坐标原点,过其右焦点且垂直于实轴的直线与双曲线交于 $M$ 点。
若 $OM\perp ON$,则双曲线的离心率为frac{\sqrt{5}+1}{2}6.已知点$F_1,F_2$ 是椭圆$x^2/2+y^2/2=1$ 的两个焦点,点 $P$ 是该椭圆上的一个动点,则 $|PF_1+PF_2|$ 的最小值是sqrt{2}7.双曲线 $x^2/a^2-y^2/b^2=1$ 上的点到一个焦点的距离为 12,则到另一个焦点的距离为2\sqrt{5}8.$P$ 为双曲线 $x^2/a^2-y^2/b^2=1$ 的右支上一点,$M$,则 $|PM|-|PN|$ 分别是圆 $(x+5)^2+y^2=4$ 和 $(x-5)^2+y^2=1$ 上的点,的最大值为99.已知点 $P(8,a)$ 在抛物线 $y^2=4px$ 上,且 $P$ 到焦点的距离为 10,则焦点到准线的距离为210.在正三角形 $ABC$ 中,$D\in AB$,$E\in AC$,$\overrightarrow{DE}=\overrightarrow{BC}$,则以 $B$,$C$ 为焦点,且过 $D$,$E$ 的双曲线离心率为frac{3+\sqrt{5}}{2}11.两个正数 $a$,$b$ 的等差中项是 $5$,一个等比中项是 $25$,且 $a>b$,则抛物线 $y^2=-x$ 的焦点坐标是left(-\frac{5\sqrt{21}}{21},0\right)12.已知 $A_1$,$A_2$ 分别为椭圆$x^2/a^2+y^2/b^2=1(a>b>0)$ 的左右顶点,椭圆 $C$ 上异于$A_1$,$A_2$ 的点 $P$ 恒满足 $k\cdot PA_1\cdot k\cdotPA_2=-1$,则椭圆 $C$ 的离心率为frac{3}{5}13.已知椭圆 $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$ 的左、右焦点分别为 $F_1,F_2$,点 $A$ 在第一象限内且在椭圆上,点 $B$ 也在椭圆上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
经典例题精析类型一:求曲线的标准方程1. 求中心在原点,一个焦点为且被直线截得的弦AB的中点横坐标为的椭圆标准方程.思路点拨:先确定椭圆标准方程的焦点的位置(定位),选择相应的标准方程,再利用待定系数法确定、(定量).解析:方法一:因为有焦点为,所以设椭圆方程为,,由,消去得,所以解得故椭圆标准方程为方法二:设椭圆方程,,,因为弦AB中点,所以,由得,(点差法)所以又故椭圆标准方程为.举一反三:【变式】已知椭圆在x轴上的一个焦点与短轴两端点连线互相垂直,且该焦点与长轴上较近的端点的距离为.求该椭圆的标准方程.【答案】依题意设椭圆标准方程为(),并有,解之得,,∴椭圆标准方程为2.根据下列条件,求双曲线的标准方程.(1)与双曲线有共同的渐近线,且过点;(2)与双曲线有公共焦点,且过点解析:(1)解法一:设双曲线的方程为由题意,得,解得,所以双曲线的方程为解法二:设所求双曲线方程为(),将点代入得,所以双曲线方程为即(2)解法一:设双曲线方程为-=1由题意易求又双曲线过点,∴又∵,∴,故所求双曲线的方程为.解法二:设双曲线方程为,将点代入得,所以双曲线方程为.总结升华:先根据已知条件确定双曲线标准方程的焦点的位置(定位),选择相应的标准方程,再利用待定系数法确定、.在第(1)小题中首先设出共渐近线的双曲线系方程.然后代点坐标求得方法简便.第(2)小题实轴、虚轴没有唯一给出.故应答两个标准方程.(1)求双曲线的方程,关键是求、,在解题过程中应熟悉各元素(、、、及准线)之间的关系,并注意方程思想的应用.(2)若已知双曲线的渐近线方程,可设双曲线方程为().举一反三:【变式】求中心在原点,对称轴在坐标轴上且分别满足下列条件的双曲线的标准方程.(1)一渐近线方程为,且双曲线过点.(2)虚轴长与实轴长的比为,焦距为10.【答案】(1)依题意知双曲线两渐近线的方程是,故设双曲线方程为,∵点在双曲线上,∴,解得,∴所求双曲线方程为.(2)由已知设, ,则()依题意,解得.∴双曲线方程为或.3.求满足下列条件的抛物线的标准方程,并求对应抛物线的准线方程:(1)过点;(2)焦点在直线:上思路点拨:从方程形式看,求抛物线的标准方程仅需确定一次项系数;从实际分析,一般需结合图形确定开口方向和一次项系数两个条件,否则,应展开相应的讨论解析:(1)∵点在第二象限,∴抛物线开口方向上或者向左当抛物线开口方向左时,设所求的抛物线方程为(),∵过点,∴,∴,∴,当抛物线开口方向上时,设所求的抛物线方程为(),∵过点,∴,∴,∴,∴所求的抛物线的方程为或,对应的准线方程分别是,.(2)令得,令得,∴抛物线的焦点为或当焦点为时,,∴,此时抛物线方程;焦点为时,,∴,此时抛物线方程为∴所求的抛物线的方程为或,对应的准线方程分别是,.总结升华:这里易犯的错误就是缺少对开口方向的讨论,先入为主,设定一种形式的标准方程后求解,以致失去一解.求抛物线的标准方程关键是根据图象确定抛物线开口方向,选择适当的方程形式,准确求出焦参数P.举一反三:【变式1】分别求满足下列条件的抛物线的标准方程.(1)焦点为F(4,0);(2)准线为;(3)焦点到原点的距离为1;(4)过点(1,-2);(5)焦点在直线x-3y+6=0上.【答案】(1)所求抛物线的方程为y2=16x;(2)所求抛物线的标准方程为x2=2y;(3)所求抛物线的方程y2=±4x或x2=±4y;(4)所求抛物线的方程为或;(5)所求抛物线的标准方程为y2=-24x或x2=8y.【变式2】已知抛物线的顶点在原点,焦点在轴负半轴上,过顶点且倾角为的弦长为,求抛物线的方程.【答案】设抛物线方程为(),又弦所在直线方程为由,解得两交点坐标,∴,解得.∴抛物线方程为.类型二:圆锥曲线的焦点三角形4.已知、是椭圆()的两焦点,P是椭圆上一点,且,求的面积.思路点拨:如图求的面积应利用,即.关键是求.由椭圆第一定义有,由余弦定理有,易求之.解析:设,,依题意有(1)2-(2)得,即.∴.举一反三:【变式1】设为双曲线上的一点,是该双曲线的两个焦点,若,则的面积为()A.B.C.D.【答案】依据双曲线的定义有,由得、,又,则,即,所以,故选 A.【变式2】已知双曲线实轴长6,过左焦点的弦交左半支于、两点,且,设右焦点,求的周长.【答案】:由双曲线的定义有: ,,两式左、右分别相加得(.即∴.故的周长.【变式3】已知椭圆的焦点是,直线是椭圆的一条准线.①求椭圆的方程;②设点P在椭圆上,且,求.【答案】①.②设则,又.【变式4】已知双曲线的方程是.(1)求这双曲线的焦点坐标、离心率和渐近线方程;(2)设和是双曲线的左、右焦点,点在双曲线上,且,求的大小【答案】(1)由得,∴,,.焦点、,离心率,渐近线方程为.(2),∴∴【变式5】中心在原点,焦点在x轴上的一个椭圆与双曲线有共同焦点和,且,又椭圆长半轴与双曲线实半轴之差为4,离心率之比.(1)求椭圆与双曲线的方程;(2)若为这两曲线的一个交点,求的余弦值.【答案】(1)设椭圆方程为(),双曲线方程,则,解得∵,∴, .故所求椭圆方程为,双曲线方程为.(2)由对称性不妨设交点在第一象限.设、.由椭圆、双曲线的定义有:解得由余弦定理有.类型三:离心率5.已知椭圆上的点和左焦点,椭圆的右顶点和上顶点,当,(O为椭圆中心)时,求椭圆的离心率.思路点拨:因为,所以本题应建立、的齐次方程,使问题得以解决.解析:设椭圆方程为(),,,则,即.∵,∴,即,∴.又∵,∴.总结升华:求椭圆的离心率,即求的比值,则可由如下方法求.(1)可直接求出、;(2)在不好直接求出、的情况下,找到一个关于、的齐次等式或、用同一个量表示;(3)若求的取值范围,则想办法找不等关系.举一反三:【变式1】如图,和分别是双曲线的两个焦点,和是以为圆心,以为半径的圆与该双曲线左支的两个交点,且是等边三角形,则双曲线的离心率为()A.B.C.D.【答案】连接,则是直角三角形,且,令,则,,即,,所以,故选 D.【变式2】已知椭圆()与x轴正半轴交于A点,与y轴正半轴交于B点,F点是左焦点,且,求椭圆的离心率.法一:,,∵, ∴,又,,代入上式,得,利用代入,消得,即由,解得,∵,∴.法二:在ΔABF中,∵,,∴,即下略)【变式3】如图,椭圆的中心在原点, 焦点在x轴上, 过其右焦点F作斜率为1的直线, 交椭圆于A、B两点, 若椭圆上存在一点C, 使. 求椭圆的离心率.【答案】设椭圆的方程为(),焦距为,则直线l的方程为:,由,消去得,设点、,则∵+, ∴C点坐标为.∵C点在椭圆上,∴.∴∴又∴∴【变式4】设、为椭圆的两个焦点,点是以为直径的圆与椭圆的交点,若,则椭圆离心率为_____.【答案】如图,点满足,且.在中,有:∵,∴,令此椭圆方程为则由椭圆的定义有,,∴又∵,∴,,∴∴,∴,即.6.已知、为椭圆的两个焦点,为此椭圆上一点,且.求此椭圆离心率的取值范围;解析:如图,令, ,,则在中,由正弦定理,∴,令此椭圆方程为(),则,,∴即(),∴, ∴,∵,且为三角形内角,∴,∴,∴, ∴.即此椭圆离心率的取值范围为.举一反三:【变式1】已知椭圆,F1,F2是两个焦点,若椭圆上存在一点P,使,求其离心率的取值范围.【答案】△F1PF2中,已知,|F1F2|=2c,|PF1|+|PF2|=2a,由余弦定理:4c2=|PF1|2+|PF2|2-2|PF1||PF2|cos120°①又|PF1|+|PF2|=2a ②联立①②得4c2=4a2-|PF1||PF2|,∴【变式2】椭圆的焦点为,,两条准线与轴的交点分别为,若,则该椭圆离心率的取值范围是()A.B.C.D.【答案】由得,即,解得,故离心率.所以选 D.【变式3】椭圆中心在坐标系原点,焦点在x轴上,过椭圆左焦点F的直线交椭圆P、Q两点,且OP⊥OQ,求其离心率e的取值范围.【答案】e∈[,1)【变式4】双曲线(a>1,b>0)的焦距为2c,直线过点(a,0)和(0,b),且点(1,0)到直线的距离与点(-1,0)到直线的距离之和s≥c.求双曲线的离心率e的取值范围.【答案】直线的方程为bx+ay-ab=0.由点到直线的距离公式,且a>1,得到点(1,0)到直线的距离.同理得到点(-1,0)到直线的距离.=.由s≥c,得≥c,即5a≥2c2.于是得5≥2e2.即4e4-25e2+25≤0.解不等式,得≤e2≤5.由于e>1,所以e的取值范围是.。