高二圆锥曲线知识点及典型例题
圆锥曲线十大题型全归纳
目录圆锥曲线十大题型全归纳题型一弦的垂直平分线问题 (2)题型二动弦过定点的问题 (3)题型三过已知曲线上定点的弦的问题 (4)题型四共线向量问题 (5)题型五面积问题 (7)题型六弦或弦长为定值、最值问题 (10)题型七直线问题 (14)题型八轨迹问题 (16)题型九对称问题 (19)题型十存在性问题 (21)圆锥曲线题型全归纳题型一:弦的垂直平分线问题例题1、过点T(-1,0)作直线l 与曲线N :2y x =交于A 、B 两点,在x 轴上是否存在一点E(0x ,0),使得ABE ∆是等边三角形,若存在,求出0x ;若不存在,请说明理由。
题型二:动弦过定点的问题例题2、已知椭圆C :22221(0)x y a b a b+=>>的离心率为32,且在x 轴上的顶点分别为A 1(-2,0),A 2(2,0)。
(I )求椭圆的方程;(II )若直线:(2)l x t t =>与x 轴交于点T,点P 为直线l 上异于点T 的任一点,直线PA 1,PA 2分别与椭圆交于M 、N 点,试问直线MN 是否通过椭圆的焦点?并证明你的结论题型三:过已知曲线上定点的弦的问题例题4、已知点A 、B 、C 是椭圆E :22221x y a b+= (0)a b >>上的三点,其中点A (23,0)是椭圆的右顶点,直线BC 过椭圆的中心O ,且0AC BC =,2BC AC =,如图。
(I)求点C 的坐标及椭圆E 的方程;(II)若椭圆E 上存在两点P 、Q ,使得直线PC 与直线QC 关于直线3x =对称,求直线PQ 的斜率。
题型四:共线向量问题1:如图所示,已知圆M A y x C ),0,1(,8)1(:22定点=++为圆上一动点,点P 在AM 上,点N 在CM 上,且满足N AM NP AP AM 点,0,2=⋅=的轨迹为曲线E.I )求曲线E 的方程;II )若过定点F (0,2)的直线交曲线E 于不同的两点G 、H (点G 在点F 、H 之间),且满足FH FG λ=,求λ的取值范围.2:已知椭圆C 的中心在坐标原点,焦点在x 轴上,它的一个顶点恰好是抛物线214y x =的焦点,离心率为5.(1)求椭圆C 的标准方程;(2)过椭圆C 的右焦点作直线l 交椭圆C 于A 、B 两点,交y 轴于M 点,若1MA AF λ=,2MB BF λ= ,求证:1210λλ+=-.题型五:面积问题例题1、已知椭圆C :12222=+by a x (a >b >0)的离心率为,36短轴一个端点到右焦点的距离为3。
高中数学圆锥曲线知识点梳理+例题解析
x0 x a2
y0 y b2
1.
7.
x2
椭圆
a2
y2 b2
1
(a>b>0)的左右焦点分别为 F1,F 2,点 P 为椭圆上任意一点 F1PF2
,则椭圆的焦点角形的面积
S 为 F1PF2
b2
tan 2
.
-4-
8.
椭圆 x2 y2 a2 b2
1(a>b>0)的焦半径公式 | MF1 | a ex0 , | MF2 | a ex0 ( F1(c, 0)
x0
中心 顶点 对称轴
原点 O(0,0)
(a,0), (─a,0), (0,b) , (0,─b)
x 轴,y 轴; 长轴长 2a,短轴长 2b
原点 O(0,0)
(a,0), (─a,0) x 轴,y 轴;
实轴长 2a, 虚轴长 2b.
(0,0) x轴
焦点
F1(c,0), F2(─c,0)
F1(c,0), F2(─c,0)
e=1
a
a
-2-
【备注 1】双曲线:
⑶等轴双曲线:双曲线 x 2 y 2 a 2 称为等轴双曲线,其渐近线方程为 y x ,离心率 e 2 .
⑷共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线. x 2 y 2 与 a2 b2
x 2 y 2 互为共轭双曲线,它们具有共同的渐近线: x 2 y 2 0 .
e 的点的轨迹.(e>1)
与定点和直线的距离相等的点的 轨迹.
-1-
轨迹条件
点集: ({M||MF1+|MF2|=2a,|F
高中数学选修圆锥曲线基本知识点与典型题举例
高中数学选修圆锥曲线基本知识点与典型题举例一、椭圆1.椭圆的定义:第一定义:平面内到 点的轨迹叫做椭圆,这两个定点叫做椭圆的 ,两焦点的距离叫做第二定义: 平面内到 的距离之比是常数 的点的轨迹是椭圆,定点叫做椭圆的焦点,定直线l 叫做椭圆的 ,常数e 叫做椭圆的离心率.2.椭圆的标准方程及其几何性质(如下表所示)标准方程图形顶点对称轴焦点焦距 离心率例1. F 1,F 2是定点,且|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则M 点的轨迹方程是( ) (A)椭圆 (B)直线 (C)圆 (D)线段例2. 已知ABC ∆的周长是16,)0,3(-A ,B )0,3(, 则动点的轨迹方程是( )(A)1162522=+y x (B))0(1162522≠=+y y x (C)1251622=+y x (D))0(1251622≠=+y y x例3. 若F (c ,0)是椭圆22221x y a b+=的右焦点,F 与椭圆上点的距离的最大值为M ,最小值为m ,则椭圆上与F点的距离等于2M m+的点的坐标是( ) (A)(c ,2b a ±) 2()(,)b B c a-± (C)(0,±b ) (D)不存在例4 设F 1(-c ,0)、F 2(c ,0)是椭圆22x a +22y b=1(a >b >0)的两个焦点,P 是以F 1F 2为直径的圆与椭圆的一个交点,若∠PF 1F 2=5∠PF 2F 1,则椭圆的离心率为( )(A)32 (B)63 (C)22 (D)23例5. P 点在椭圆1204522=+y x 上,F 1、F 2是两个焦点,若21PF PF ⊥,则P 点的坐标是 .例6. 写出满足下列条件的椭圆的标准方程:(1)长轴与短轴的和为18,焦距为6; .(2)焦点坐标为)0,3(-,)0,3(,并且经过点(2,1); . (3)椭圆的两个顶点坐标分别为)0,3(-,)0,3(,且短轴是长轴的31; ____. (4)离心率为23,经过点(2,0);二、双曲线1.双曲线的定义: 第一定义:平面内到 等于定值 的点的轨迹叫做双曲线,这两个定点叫做双曲线的 ,两焦点的距离叫做双曲线的第二定义: 平面内到 距离之比是常数 的点的轨迹是双曲线,定点叫做双曲线的焦点,定直线l 叫做双曲线的 ,常数e 叫做双曲线的离心率标准方程图形顶点对称轴焦点焦距 离心率例8 .命题甲:动点P 到两定点A 、B 的距离之差的绝对值等于2a (a >0);命题乙: 点P 的轨迹是双曲线。
圆锥曲线方程-抛物线(知识点、典型例题、考点、练习)
抛物线 典例剖析知识点一 抛物线概念的应用已知抛物线y 2=2x 的焦点是F ,点P 是抛物线上的动点,又有点A (3,2),求|P A |+|PF |的最小值,并求出取最小值时P 点的坐标.解将x=3代入抛物线方程 y 2=2x ,得y=〒6.6>2,∴点A 在抛物线内部.设抛物线上点P 到准线l : x=21的距离为d ,由定义知|PA|+|PF|=|PA|+d , 当PA ⊥l 时,|PA|+d 最小, 最小值为27,即|PA|+|PF|的最小值为27, 此时P 点纵坐标为2,代入y 2=2x ,得x=2, ∴点P 坐标为(2,2).知识点二 求抛物线的标准方程求适合下列条件的抛物线的标准方程:(1)过点(-3,2);(2)焦点在直线x -2y -4=0上.分析 设出抛物线的标准形式,依据条件求出p 的值.解 (1)设抛物线标准方程为y 2=-2px 或x 2=2py (p >0),则将点(-3,2)代入方程得2p =43,或2p =92,故抛物线的标准方程为y 2=-43x ,或x 2=92y .(2)①令x =0,由方程x -2y -4=0,得y =-2. ∴抛物线的焦点为F (0,-2).设抛物线方程为x 2=-2py ,则由p2=2,得2p =8.∴所求的抛物线方程为x 2=-8y .②令y =0,由x -2y -4=0,得x =4. ∴抛物线的焦点为F (4,0).设抛物线方程为y 2=2px ,由p2=4,得2p =16.∴所求抛物线方程为y 2=16x .知识点三 抛物线在实际中的应用汽车前灯反射镜与轴截面的交线是抛物线的一部分,灯口所在的圆面与反射镜的轴垂直,灯泡位于抛物线焦点处,已知灯口的直径是24 cm ,灯深10 cm ,那么灯泡与反射镜的顶点(即截得抛物线顶点)距离是多少?分析 确定抛物线方程,求出抛物线的焦点到其顶点的距离解 取反射镜的轴即抛物线的对称轴为x 轴,抛物线的顶点为坐标原点,建立直角坐标系xOy ,如图所示.因灯口直径|AB|=24.灯深|OP|=10, 所以点A 的坐标是(10,12).设抛物线的方程为y 2=2px(p>0).由点A(10,12)在抛物线上,得122=2p ×10, ∴p=7.2.抛物线的焦点F 的坐标为(3.6,0).因此灯泡与反射镜顶点的距离是3.6 cm.知识点四 抛物线几何性质的简单应用抛物线的顶点在原点,对称轴重合于椭圆9x 2+4y 2=36短轴所在的直线,抛物线焦点到顶点的距离为3,求抛物线的方程.分析 先确定抛物线方程的形式,再依条件求待定参数.解 椭圆9x 2+4y 2=36可化为x 24+y 29=1,得抛物线的对称轴为x 轴.设抛物线的方程为y 2=ax (a ≠0), 又抛物线的焦点到顶点的距离为3,则有|a4|=3,∴|a |=12,即a =±12.故所求抛物线方程为y 2=12x ,或y 2=-12x .知识点五 直线与抛物线已知过抛物线y 2=2px (p >0)的焦点的直线交抛物线于A 、B 两点,且|AB |=52p ,求AB 所在的直线方程.解 焦点F (p2,0),设A (x 1,y 1)、B (x 2,y 2),若AB ⊥Ox ,则|AB |=2p <52p ,不合题意.所以直线AB 的斜率存在,设为k ,则直线AB 的方程为y =k (x -p2),k ≠0.由⎩⎪⎨⎪⎧y =k (x -p 2),y 2=2px ,消去x ,整理得ky 2-2py -kp 2=0.韦达定理得,y 1+y 2=2pk,y 1y 2=-p 2.∴|AB |=(x 1-x 2)2+(y 1-y 2)2=(1+1k 2)·(y 1-y 2)2=1+1k2·(y 1+y 2)2-4y 1y 2=2p (1+1k 2)=52p .解得k =±2.∴AB 所在直线方程为y =2(x -p 2),或y =-2(x -p 2).知识点六 抛物线的焦点弦问题AB 是过抛物线y 2=2px (p >0)焦点F 的弦,M 是AB 的中点,l 是抛物线的准线,MN ⊥l ,N 为垂足.求证:(1)AN ⊥BN ; (2)FN ⊥AB ;(3)若MN 交抛物线于Q ,则Q 平分MN .证明 (1)作AC ⊥l ,垂足为C ,作BD ⊥l ,垂足为D ,在直角梯形ABDC 中, ∵|AF|=|AC|,|BF|=|BD|, ∴|MN|=21(|AC|+|BD|) =21(|AF|+|BF|) =21|AB|, 由平面几何知识可知△ANB 是直角三角形,即AN ⊥BN. (2)∵|AM|=|NM|, ∴∠MAN=∠MNA , ∵AC ∥MN ,∴∠CAN=∠MNA ,∴∠MAN=∠CAN.在△ACN 和△AFN 中,|AN|=|AN|,|AC|=|AF|, 且∠CAN=∠FAN ,∴△ACN ≌△AFN , ∴∠NFA=∠NCA=90°, 即FN ⊥AB.(3)在Rt △MNF 中,连结QF , 由抛物线的定义及(2)的结论得 |QN|=|QF|⇒∠QNF=∠QFN ,且∠QFN=90°-∠QFM ,∠QMF=90°-∠QNF , ∴∠QFM=∠QMF ,∴|QF|=|QM|, ∴|QN|=|QM|,即Q 平分MN.知识点七 抛物线的综合问题过抛物线y 2=2px (p >0)的焦点F 作倾斜角为θ的直线交抛物线于A 、B 两点,设△AOB 的面积为S (O 为原点).(1)用θ、p 表示S ;(2)求S 的最小值;当最小值为4时,求抛物线的方程.解 (1)设直线y =k ⎝⎛⎭⎫x -p2,代入y 2=2px , 得y 2=2p ⎝⎛⎭⎫y k +p 2,即y 2-2pk y -p 2=0,∴y 1+y 2=2pk,y 1y 2=-p 2.∴|AB |= 1+1k2·(y 1+y 2)2-4y 1y 2= k 2+1k 2·4p 2k2+4p 2=(1+1k 2)2p =(1+1tan 2θ)2p=2p sin 2θ.① 当直线AB ⊥x 轴时,①也成立.∴S =12|OF ||AF |sin θ+12|OF ||BF |sin(π-θ)=12|OF ||AB |sin θ =12·p 22p sin 2θsin θ=p 22sin θ. (2)当θ=90°时,S min =12p 2.若S min =4,则12p 2=4.∴p =2 2.∴此时抛物线的方程为y 2=42x .考题赏析1.(辽宁高考)已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点(0,2)的距离与点P 到该抛物线准线的距离之和的最小值为( )A.172 B .3 C. 5 D.92解析 如图所示,由抛物线的定义知,点P 到准线x =-12的距离d 等于点P 到焦点的距离|PF |.因此点P 到点(0,2)的距离与点P 到准线的距离之和可转化为点P 到点(0,2)的距离与点P到点F 的距离之和,其最小值为点M (0,2)到点F ⎝⎛⎭⎫12,0的距离,则距离之和的最小值为4+14=172.答案 A2.(全国Ⅰ高考)已知抛物线y =ax 2-1的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为________.解析 ∵y =ax 2-1,∴y +1=ax 2.令y +1=y ′,x =x ′,则y ′=ax ′2,∴x ′2=2×12ay ′,∴x ′2=1a y ′的焦点坐标为⎝⎛⎭⎫0,14a ,即y +1=14a , ∴y =ax 2-1的焦点坐标为⎝⎛⎭⎫0,14a -1. 又y =ax 2-1的焦点是原点,∴14a =1,∴a =14.∴y =14x 2-1.令x =0,得y =-1,令y =0,得x =±2.故y =14x 2-1与两坐标轴的三个交点为(0,-1),(2,0),(-2,0),∴围成三角形面积为S =12×4×1=2.答案 23.(全国Ⅱ高考)已知F 是抛物线C :y 2=4x 的焦点,A 、B 是抛物线C 上的两个点,线段AB 的中点为M (2,2),则△ABF 的面积等于________.解析 设A (x 1,y 1),B (x 2,y 2),则y 21=4x 1,y 22=4x 2. ∴(y 1+y 2)(y 1-y 2)=4(x 1-x 2).∵x 1≠x 2,∴y 1-y 2x 1-x 2=4y 1+y 2=1.∴直线AB 的方程为y -2=x -2,即y =x . 将其代入y 2=4x ,得A (0,0)、B (4,4).∴|AB |=4 2.又F (1,0)到y =x 的距离为22,∴S △ABF =12×22×42=2.答案 21.抛物线y 2=ax (a ≠0)的焦点到其准线的距离是( ) A.|a |4 B.|a |2C .|a |D .-a2答案 B解析 因为y 2=ax ,所以p =|a |2,即该抛物线的焦点到其准线的距离为|a |2,故选B.2.抛物线y 2=2px (p >0)上一点M 到焦点的距离是a (a >p2),则点M 的横坐标是( )A .a +p 2B .a -p2C .a +pD .a -p 答案 B解析 由抛物线的定义知:点M 到焦点的距离a 等于点M 到抛物线的准线x =-p2的距离,所以点M 的横坐标即点M 到y 轴的距离为a -p2.3.已知抛物线的方程为标准方程,焦点在x 轴上,其上点P (-3,m )到焦点F 的距离为5,则抛物线方程为( )A .y 2=8xB .y 2=-8xC .y 2=4xD .y 2=-4x 答案 B解析 点P (-3,m )在抛物线上,焦点在x 轴上,所以抛物线的标准方程可设为y 2=-2px (p >0).由抛物线定义知|PF |=3+p2=5.所以p =4,所以抛物线的标准方程是y 2=-8x .应选B.4.抛物线y 2=ax 的焦点与双曲线x 23-y 2=1的左焦点重合,则这条抛物线的方程是( )A .y 2=4xB .y 2=-4xC .y 2=-42xD .y 2=-8x 答案 D解析 因为x 23-y 2=1的左焦点为(-2,0),所以抛物线开口向左,所以a <0,且p =|a |2=4,所以a =-8,所以抛物线方程为y 2=-8x ,故选D.5.已知F 为抛物线C :y 2=4x 的焦点,过F 且斜率为1的直线交抛物线C 于A 、B 两点.设|F A |>|FB |,则|F A |与|FB |的比值等于________.答案 3+2 2解析 ∵y 2=4x 的焦点坐标为 F (1,0),准线方程为x =-1,∴过F 且斜率为1的直线方程为y = x - 1.将其代入y 2= 4x 得 x 2 - 6x + 1=0.∴x 1, 2 =62± = 3〒22.∵|FA|>|FB|,∴x A =3+22,x B =3-22.又|FA|= x +1,|FB|= x B +1,∴|FA||FB|== 3+22. 答案 -36. 过抛物线y 2 = 4x 的焦点的直线交抛物线于A 、B 两点,O 为坐标原点,则· 的值是________.. 解析 当直线过焦点且垂直于x 轴时,直线方程为x =1,代入y 2=4x ,y 1,2=±2.A 、B 点的坐标分别为(1,2),(1,-2).∴·OB →=1-4=-3.当直线过焦点不垂直x 轴时,则直线的方程可设为y =k (x -1),设A ,B 坐标分别为(x 1,y 1)(x 2,y 2).则y 21·y 22=16x 1x 2.由⎩⎪⎨⎪⎧y 2=4x ,y =k (x -1),得k 2x 2-(2k +4)x +k 2=0, ·OB →=x 1x 2+y 1y 2=1-4=-3. 7.已知圆A :(x +2)2+y 2=1与定直线l :x =1,若动圆C 与圆A 相外切,且与直线l 相切,求动圆圆心C 的轨迹方程.解 设圆心C 到直线l 的距离为d ,则由题意知|CA |=d +1从而可知圆心C 到点(-2,0)的距离和到定直线x =2的距离相等.所以动圆圆心C 的轨迹是抛物线,其焦点为(-2,0),准线为x =2,故设动圆圆心C 的轨迹方程为y 2=-2px (p >0),由p2=2,得p =4.因此动圆圆心C 的轨迹方程为y 2=-8x .8.已知点M (-2,4)及焦点为F 的抛物线y =18x 2,在此抛物线上求一点P 使|PM |+|PF |的值最小.分析 先根据已知条件画出图形,由定义知,抛物线上的点P 到焦点F 的距离等于P 到准线l 的距离d ,所以求|PM |+|PF |的最小值问题可转化为求|PM |+d 的最小值问题,让点P 在抛物线上运动,容易发现当点P 运动到过点M 且与x 轴垂直的直线与抛物线的交点处时,|PM |+d 最小.解 如图,设MN ⊥x 轴,与准线交于N ,与抛物线交于点P ,在抛物线上任取一点P ′,连P ′M ,P ′F ,作P ′N 垂直于准线,垂足为N ′.由抛物线的定义,|PN|=|PF|,|P ′N ′|=|P ′F||P ′M|+|P ′N ′|=|P ′M|+|P ′F| |PN|+|PM|=|PM|+|PF|∵|P ′M|+|P ′N ′|≥|PN|+|PM| ∴|P ′M|+|P ′F|≥|PM|+|PF|这就是说,当P ′与P 重合时,|PM|+|PF|的值最小解方程组22,1,8x y x =-⎧⎪⎨=⎪⎩得P(-2,12). 9.已知抛物线y 2=2x ,过点Q (2,1)作一条直线交抛物线于A 、B 两点,试求弦AB 中点的轨迹方程.解 设弦AB 的中点M (x ,y ),A (x 1,y 1),B (x 2,y 2),则有y 21=2x 1,y 22=2x 2, ∴y 1-y 2x 1-x 2=2y 1+y 2,又y 1+y 2=2y ,∴y 1-y 2x 1-x 2=1y,即k AB =1y .又k MQ =y -1x -2,由题意知k MQ =k AB .∴y -1x -2=1y,整理, 得y 2-x -y +2=0.所以,弦AB 中点的轨迹方程为y 2-x -y +2=0.10.抛物线的顶点在原点,以x 轴为对称轴,经过焦点且倾斜角为135°的直线,被抛物线所截得的弦长为8,试求抛物线方程.解 如右图所示,依题意设抛物线方程为y 2=2px(p>0),则直线方程为y=-x+12p. 设直线交抛物线于A(x 1,y 1), B(x 2,y 2),则由抛物线定义得|AB|=|AF|+|FB|=|AC|+|BD| =x 1+2P + x 2 + 2P , 即x 1+x 2 +p=8.①又A (x 1,y 1)、B (x 2,y 2)是抛物线和直线的交点.由⎩⎪⎨⎪⎧y =-x +12p ,y 2=2px ,消去y 得x 2-3px +p 24=0,∴x 1+x 2=3p ,将其代入①得p =2. ∴所求抛物线方程为y 2=4x .当抛物线方程设为y 2=-2px (p >0)时,同理可求得抛物线方程为y 2=-4x . 故抛物线的方程为y 2=4x 或y 2=-4x .讲练学案部分2.4.1 抛物线及其标准方程.对点讲练知识点一 求抛物线的标准方程分别求出满足下列条件的抛物线的标准方程.(1)过点(3,-4).(2)焦点在直线x +3y +15=0上. 解 (1)∵点(3,-4)在第四象限,∴抛物线的标准方程为y 2=2px (p >0)或x 2=-2p 1y (p 1>0),把点(3,-4)的坐标分别代入得(-4)2=2p ×3,32=-2p 1×(-4)即2p =163,2p 1=94∴所求抛物线的方程为y 2=163x 或x 2=-94y .(2)令x =0得y =-5;令y =0得x =-15 ∴抛物线的焦点为(0,-5)或(-15,0)∴所求抛物线的标准方程为y 2=-60x 或x 2=-20y .【反思感悟】 求抛物线方程应首先确定焦点的位置,进而确定方程的形式,然后利用已知条件求p 的值.求满足下列条件的抛物线的方程.(1)以坐标轴为对称轴,且过点A (2,3);(2)以坐标轴为对称轴,焦点到准线的距离为52.解 (1)由题意,方程可设为y 2=mx 或x 2=ny , 将点A (2,3)的坐标代入,得32=m ·2或22=n ·3,∴m =92或n =43.∴所求的抛物线方程为y 2=92x 或x 2=43y .(2)由焦点到准线的距离为52,可知p =52.∴所求抛物线方程为y 2=5x 或y 2=-5x 或x 2=5y 或x 2=-5y .知识点二 抛物线定义的应用已知抛物线的顶点在原点,对称轴是x 轴,抛物线上的点M (-3,m )到焦点的距离等于5,求抛物线的方程和m 的值.解 设抛物线的方程为y 2=-2px (p >0),则准线方程为x =p2.∵点M (-3,m )是抛物线上的点,根据抛物线定义,M 点到焦点的距离等于M 点到准线的距离∴|-3|+p2=5 ∴p =4.∴抛物线方程为y 2=-8x .又点M (-3,m )在抛物线上故m 2=-8×(-3) ∴m =±2 6.【反思感悟】 涉及抛物线上一点与焦点的距离问题要注意用定义转化为该点到准线的距离,可简化计算.若动圆与圆(x -2)2+y 2=1相外切,又与直线x +1=0相切,则动圆圆心的轨迹是( )A .椭圆B .双曲线C .双曲线的一支D .抛物线答案 D解析 设动圆的圆心为M ,半径为r ,动圆与圆(x -2)2+y 2=1相外切,则M 到定点(2,0)的距离为r +1,动圆与直线x =-1相切,则点M 到定直线x =-1的距离为r ,所以M 到定点(2,0)和到定直线x =-2的距离相等,由抛物线定义知,答案选D.知识点三 抛物线知识在实际中的应用喷灌的喷头装在直立管柱OA 的顶点A 处,喷出水流的最高点B 高5 m ,且与OA 所在的直线相距4 m ,水流落在以O 为圆心,半径为9 m 的圆上,则管柱OA 的长是多少?解 如图所示,建立直角坐标系,设水流所形成的抛物线的方程为x 2= -2py(p>0),点C(5, -5)在抛物线上,所以25= -2p ·(-5),2p=5,所以抛物线的方程为x 2= -5y ,点A(-4,y 0)在抛物线上,所以16= -5y 0,y 0 = -165,所以OA 的长为5 - 165=1.8 (m).∴管柱OA 的长是1.8 m.【反思感悟】 根据题意,建立直角坐标系,用待定系数法求出抛物线方程,再利用抛物线方程解决实际问题.抛物线型拱桥顶距离水面2米,水面宽4米,当水下降1米后,水面宽________米.答案 2 6解析 可设抛物线方程为x 2=-2py ,则点(-2,-2)在抛物线上,则有:4=4p . ∴p =1,抛物线方程为x 2=-2y ,当y =-3时,x =±6. ∴水面宽为2 6. 课堂小结:1.四个标准方程的区分:焦点在一次项字母对应的坐标轴上,开口方向由一次项系数的符号确定.当系数为正时,开口方向为坐标轴的正方向;系数为负时,开口方向为坐标轴的负方向.2.焦点在y 轴上的抛物线的标准方程x 2=2py 通常又可以写成y=ax 2,这与以前学习的二次函数的解析式是完全一致的,但需要注意的是,由方程y=ax 2来求其焦点和准线时,必须先化成标准形式.3.经过抛物线的焦点的弦称为抛物线的焦点弦,它有以下特性:设焦点弦AB 的端点坐标分别为A (x 1 , y 1),B(x 2,y 2),则y 1y 2= - p 2, x 1x 2 = 24p ,|AB|= x 1 + x 2 + p.课时作业一、选择题1.已知抛物线的顶点在原点,对称轴为x 轴,焦点在曲线x 24-y 22=1上,则抛物线方程为( )A .y 2=8xB .y 2=4xC .y 2=2xD .y 2=±8x 答案 D解析 由题意知抛物线的焦点为双曲线x 24-y 22=1的顶点,即(-2,0)、(2,0),所以抛物线的方程为y 2=8x 或y 2=-8x .2.抛物线y =mx 2(m <0)的焦点坐标是( )A .(0,m 4)B .(0,14m )C .(0,-m 4)D .(0,-14m)答案 B解析 由于抛物线方程可化为x 2=1my (m <0),所以抛物线的焦点在y 轴的负半轴上,且2p =-1m ,所以p 2=-14m ,所以抛物线的焦点坐标是(0,14m),答案选B.3.过点M (2,4)作与抛物线y 2=8x 只有一个公共点的直线l 有( ) A .0条 B .1条 C .2条 D .3条 答案 C解析 容易发现点M (2,4)在抛物线y 2=8x 上,这样l 过M 点且与x 轴平行时,l 与抛物线有一个公共点,或者l 在M 点上与抛物线相切,故选C.4.已知P 1(x 1,y 1),P 2(x 2,y 2)是抛物线y 2=2px (p >0)上不同的两点,则y 1·y 2=-p 2是直线P 1P 2通过抛物线焦点的( )A .充分不必要条件B .充分必要条件C .必要不充分条件D .既不充分也不必要条件 答案 B解析 设直线P 1P 2的斜率为k ,在x 轴上的截距为x 0,则P 1P 2的方程为y =k (x -x 0), x =1ky +x 0(k =0时只有一个交点不合题意), 所以y 2=2p ⎝⎛⎭⎫1k y +x 0,即y 2-2pky -2px 0=0. 当直线P 1P 2过焦点时,x 0=p2,则y 1y 2=-p 2.当y 1y 2=-p 2时,即-2px 0=-p 2,则x 0=p2,直线过焦点.当斜率不存在时也可验证是充要条件.5.过抛物线y 2=4x 的焦点作直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点,如果x 1+x 2=6,那么|AB |等于( )A .10B .8C .6D .4 答案 B解析 方法一 由已知得抛物线焦点为(1,0),过焦点的直线设为y =k (x -1)(由x 1+x 2=6知,此直线不平行于y 轴,因而k 存在).由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x ,消去y 得k 2x 2-2(k 2+2)x +k 2=0. 由⎩⎪⎨⎪⎧x 1+x 2=2(k 2+2)k 2=6,x 1·x 2=1得k =±1.所以|AB |2=(1+k 2)(x 1-x 2)2=2(x 1-x 2)2=64,故|AB |=8.方法二 由焦半径公式|AB |=|AF |+|BF |=x 1+p 2+x 2+p2=8.二、填空题6.抛物线2y 2+5x =0的焦点坐标为____________,准线方程为______________.答案 ⎝⎛⎭⎫-58,0 x =58解析 化抛物线2y 2+5x =0为标准方程y 2=-52x,2p =52,p 2=58,所以焦点坐标为(-58,0),准线方程为x =58.7.设点M ⎝⎛⎭⎫3,103与抛物线y 2=2x 上的点P 之间的距离为d 1,P 到抛物线准线l 的距离为d 2,则当d 1+d 2取最小值时,P 点坐标为____________.答案 (2,2)解析 当P 点是M 与焦点F ⎝⎛⎭⎫12,0连线与抛物线交点时,d 1+d 2最小,MF 的方程为y =43x -23,与抛物线y 2=2x 联立得P (2,2). 三、解答题8.过点Q (4,1)作抛物线y 2=8x 的弦AB ,若弦恰被Q 平分,求AB 所在直线方程. 解 设A (x 1,y 1),B (x 2,y 2),因点Q (4,1)为A ,B 的中点则有⎩⎪⎨⎪⎧x 1+x 2=8y 1+y 2=2将A 、B 两点坐标代入y 2=8x .则有⎩⎪⎨⎪⎧y 21=8x 1 ①y 22=8x 2 ②①-②得:(y 1-y 2)(y 1+y 2)=8(x 1-x 2),由y 1+y 2=2,则有y 1-y 2x 1-x 2=4,∴k AB =4.∴所求直线方程为y -1=4(x -4),即4x -y -15=0.9.一抛物线拱桥跨度为52米,拱顶离水面6.5米,一竹排上有一宽4米、高6米的矩形大木箱,问能否安全通过?解建立坐标系如图,设抛物线方程为 x 2= -2py ,则点(26, -6.5)在抛物线上, ∴262= -2p ·(-6.5),∴p=52,抛物线的方程为x 2= -104y ,当y=-0.5时,x=〒213,则有413>4, 所以木箱能安全通过.10.已知过抛物线y 2=2px (p >0)的焦点F 的直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点. 求证:(1)x 1x 2为定值;(2)1|F A |+1|FB |为定值. 证明 (1)抛物线y 2=2px 的焦点为F ⎝⎛⎭⎫p 2,0,当AB 不垂直于x 轴时,设直线AB 的方程为y =k ⎝⎛⎭⎫x -p2 (k ≠0). 由⎩⎪⎨⎪⎧y =k ⎝⎛⎭⎫x -p 2y 2=2px消去y , 得k 2x 2-p (k 2+2)x +k 2p 24=0.由根与系数的关系得x 1x 2=p 24(定值).当AB ⊥x 轴时,x 1=x 2=p2,x 1x 2=p24也成立.(2)由抛物线的定义知,|F A |=x 1+p 2,|FB |=x 2+p2.又由(1)得x 1x 2=p24,所以1|F A |+1|FB |=1x 1+p 2+1x 2+p2=x 1+x 2+pp 2(x 1+x 2)+x 1x 2+p 24 =x 1+x 2+p p 2(x 1+x 2)+p 22=x 1+x 2+p p 2(x 1+x 2+p )=2p(定值). 2.4.2 抛物线的简单几何性质.对点讲练知识点一 由性质求方程已知抛物线的顶点为坐标原点,对称轴为x 轴,且与圆x 2+y 2=4相交的公共弦长等于23,求这条抛物线的方程.解 设所求抛物线方程为y 2=2px (p >0)或y 2=-2px (p >0),设交点A (x 1,y 1),B (x 2,y 2),(y 1>0,y 2<0),则|y 1|+|y 2|=23,即y 1-y 2=23,由对称性知,y 2=-y 1,代入上式得y 1=3,把y 1=3代入x 2+y 2=4得x =±1.所以点(1,3)在抛物线y 2=2px 上,点(-1,3)在抛物线y 2=-2px 上,所以3=2p 或3=-2p ×(-1).所以p =32,所以所求抛物线方程为y 2=3x 或y 2=-3x .【反思感悟】 (1)由已知的几何条件求抛物线方程,常用待定系数法.(2)由于抛物线是轴对称图形,所以与对称轴垂直的弦一定被对称轴平分.已知抛物线的焦点在x 轴上,直线y =2x +1被抛物线截得的线段长为15,求此抛物线的标准方程.解 ∵抛物线的焦点在x 轴上,∴设它的标准方程为y 2=2px由方程组⎩⎪⎨⎪⎧y 2=2pxy =2x +1得4x 2+(4-2p )x +1=0.∴|x 1-x 2|=(4-2p )2-164=p 2-4p2.∴1+22|x 1-x 2|=52p 2-4p .∴52p 2-4p =15.∴p =6或p =-2. ∴抛物线的方程为y 2=12x 或y 2=-4x .知识点二 与抛物线有关的证明问题过抛物线焦点F 的直线交抛物线于A ,B 两点,通过点A 和抛物线顶点的直线交抛物线的准线于点D ,求证:直线DB 平行于抛物线的对称轴.证明如图所示,以抛物线的对称轴为x 轴,它的顶点为原点,建立直角坐标系. 设抛物线的方程为y 2=2px ,①点A 的坐标为⎝⎛⎭⎫y 202p ,y 0,则直线OA 的方程为 y =2py 0x (y 0≠0),②抛物线的准线方程是x =-p2.③联立②③,可得点D 的纵坐标为y =-p 2y 0④因为点F 的坐标是⎝⎛⎭⎫p 2,0,当AB ⊥x 轴时,|y 0|=p 此时,|OA |=|OD |,∴DB ∥x 轴当AB 与x 轴不垂直时,即y 20≠p 2时,直线AF 的方程为y =2py 0y 20-p 2⎝⎛⎭⎫x -p 2,⑤ 联立①⑤,可得点B 的纵坐标为y =-p 2y 0.⑥由④⑥可知,DB ∥x 轴.【反思感悟】 因抛物线方程的独特形式,较之椭圆与双曲线,它上面的点便于用一个变量表示出来,如y 2=2px 上任一点,可表示为⎝ ⎛⎭⎪⎫y 22p ,y ,注意恰当运用.设抛物线y 2=2px (p >0)的焦点为F ,Q 是抛物线上除顶点外的任意一点,直线QO 交准线于P 点,过Q 且平行于抛物线对称轴的直线交准线于R 点,求证:PF ⊥RF .证明如图所示,设点Q ⎝⎛⎭⎫y 202p ,y 0,则R.(-2p,y 0 ) 直线OQ 的方程为y=02y p x , 当x=-2p 时,解得y=-02y p,∴P =2,20p p y ⎛⎫-- ⎪⎝⎭,又F (2p ,0),∴RF →=⎝⎛⎭⎫p ,p 2y 0,RF →=(p ,-y 0) ∴RF →·RF →=0,∴PF ⊥RF .知识点三 直线与抛物线的交点问题已知抛物线的方程为y 2=4x ,直线l 过定点P (-2,1),斜率为k .k 为何值时,直线l 与抛物线y 2=4x :只有一个公共点;有两个公共点;没有公共点?解 由题意,设直线l 的方程为y -1=k (x +2).由方程组⎩⎪⎨⎪⎧y -1=k (x +2)y 2=4x ,可得:ky 2-4y +4(2k +1)=0.① (1)当k =0时,由方程①得y =1.把y =1代入y 2=4x ,得x =14.这时,直线l 与抛物线只有一个公共点⎝⎛⎭⎫14,1. (2)当k ≠0时,方程①的判别式为 Δ=-16(2k 2+k -1). 1°由Δ=0,即2k 2+k -1=0,解得k =-1,或k =12.于是,当k =-1,或k =12时,方程①只有一个解,从而方程组(*)只有一个解.这时,直线l 与抛物线只有一个公共点.2°由Δ>0,即2k 2+k -1<0,解得-1<k <12.于是,当-1<k <12,且k ≠0时,方程①有两个解,从而方程组有两个解.这时,直线l与抛物线有两个公共点.3°由Δ<0,即2k 2+k -1>0,解得k <-1,或k >12.于是,当k <-1,或k >12时,方程①没有实数解,从而方程组(*)没有解.这时,直线l与抛物线没有公共点.综上,我们可得当k =-1,或k =12,或k =0时,直线l 与抛物线只有一个公共点;当-1<k <12,且k ≠0时,直线l 与抛物线有两个公共点;当k <-1,或k >12时,直线l 与抛物线没有公共点.【反思感悟】 当直线与抛物线的对称轴平行或重合时,抛物线和直线相交,只有一个交点.解决直线与抛物线位置关系问题时,不要忽视这一点,否则容易漏解.直线l :y =kx +1,抛物线C :y 2=4x ,当k 为何值时,l 与C 分别相切、相交、相离?解 将l 和C 的方程联立⎩⎪⎨⎪⎧y =kx +1, ①y 2=4x , ②①式代入②式,并整理,得 k 2x 2+(2k -4)x +1=0.当k ≠0时,是一元二次方程, ∴Δ=(2k -4)2-4k 2=16(1-k ).(1)当Δ=0时,即k =1时,l 与C 相切. (2)当Δ>0时,即k <1时,l 与C 相交. (3)当Δ<0时,即k >1时,l 与C 相离.当k =0时,直线l :y =1与曲线C :y 2=4x 相交.综上所述,当k =0或k <1时,l 与C 相交,当k =1时,l 与C 相切,当k >1时,l 与C 相离.课堂小结:1.在已知抛物线的顶点在坐标原点,对称轴为x 轴,求抛物线的标准方程时,为避免讨论张口的方向可设抛物线的方程为y 2=2ax (a ≠0).此时,不论a>0或a<0,焦点坐标都是(2a,0),准线方程都为x=-2a . 2.抛物线y 2= 2px (p>0)上任一点的坐标可用一个量y 1表示为21(1),2y y p;x 2 = 2py (p>0)上任一点坐标可设为(x 1 , 212x p).3.直线与抛物线的位置关系设直线l :y=kx+m ,抛物线:y 2=2px(p>0),将直线方程与抛物线方程联立整理成关于x 的方程:ax 2+bx+c=0,(1)若a ≠0,当Δ>0时,直线与抛物线相交,有两个交点; 当Δ=0时,直线与抛物线相切,有一个交点; 当Δ<0时,直线与抛物线相离,无公共点.(2)若a=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合,因此直线与抛物线有一个交点是直线与抛物线相切的必要不充分条件.一、选择题1.P (x 0,y 0)是抛物线y 2=2px (p ≠0)上任一点,则P 到焦点的距离是( )A .|x 0-p 2|B .|x 0+p2|C .|x 0-p |D .|x 0+p | 答案 B解析 当p >0时,由抛物线定义得点P (x 0,y 0)到焦点的距离为x 0+p2,当p <0时由抛物线定义知P (x 0,y 0)到焦点的距离为-p 2-x 0,综上得所求距离为|x 0+p2|,故选B.2.过抛物线y 2=4x 的焦点作直线l 交抛物线于A 、B 两点,若线段AB 中点的横坐标为4,则|AB |等于( )A .10B .8C .6D .4 答案 A解析 设A 、B 两点的横坐标分别为x A 、x B ,则有x A +x B =8,|AB |=|AF |+|BF |=x A +p 2+x B +p2=8+p =8+2=10.3.抛物线y 2=2px 与直线ax +y -4=0的一个交点是(1,2),则抛物线的焦点到该直线的距离为( )A.32 3B.25 5C.710 5D.172 答案 B解析 由已知得抛物线方程为y 2=4x ,直线方程为2x +y -4=0,抛物线y 2=4x 的焦点坐标是F (1,0),到直线2x +y -4=0的距离d =|2+0-4|22+1=255.4.若抛物线y 2=2px (p >0)上三个点的纵坐标的平方成等差数列,那么这三个点到抛物线焦点的距离的关系是( )A .成等差数列B .既成等差数列又成等比数列C .成等比数列D .既不成等比数列也不成等差数列 答案 A解析 设三点为P 1(x 1,y 1),P 2(x 2,y 2),P 3(x 3,y 3),则y 21=2px 1,y 22=2px 2,y 23=2px 3,因为2y 22=y 21+y 23, 所以x 1+x 3=2x 2,即|P 1F |-p 2+|P 3F |-p2=2⎝⎛⎭⎫|P 2F |-p 2, 所以|P 1F |+|P 3F |=2|P 2F |. 二、填空题5.抛物线的顶点在原点,准线垂直于x 轴,且焦点到顶点的距离为4,则其方程为______________________.答案 y 2=16x 或y 2=-16x解析 焦点到顶点的距离即p2=4,p =8.6.抛物线y =x 2上的点到直线2x -y -4=0的距离最短的点的坐标是____________. 答案 (1,1)解析 设点A (x ,y )是符合题设条件的点,则由点到直线的距离公式,得d =55|2x -y -4|=55|2x -x 2-4| =55|-(x -1)2-3|≥355. 当且仅当x =1时,d 取得最小值,故所求点为(1,1).7.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是____________.答案 [-1,1]解析 Q 点坐标为(-2,0),直线l 的斜率不存在时,不满足题意,所以可设直线l 的斜率为k ,方程为y =k (x +2).当k =0时满足.当k ≠0时,x =1ky -2,代入y 2=8x ,得y 2-8k y +16=0.Δ=64k2-64≥0,k 2≤1,即-1≤k ≤1(k ≠0).综上,-1≤k ≤1.三、解答题8.过点(-3,2)的直线与抛物线y 2=4x 只有一个公共点,求此直线方程. 解 显然,直线存在斜率k , 设其方程为y -2=k (x +3), 由⎩⎪⎨⎪⎧y -2=k (x +3)y 2=4x 消去x ,整理得ky 2-4y +8+12k =0①(1)当k =0时,方程①化为-4y +8=0,即y =2, 此时过(-3,2)的直线方程为y =2,满足条件. (2)当k ≠0时,方程①应有两个相等实根. 由⎩⎪⎨⎪⎧ k ≠0Δ=0即⎩⎪⎨⎪⎧k ≠016-4k (8+12k )=0,得k =13或k =-1.∴直线方程为y -2=13(x +3)或y -2=-(x +3),即x -3y +9=0或x +y +1=0.故所求直线有三条,其方程分别为: y =2,x -3y +9=0或x +y +1=0.9.A ,B 是抛物线y 2=2px (p >0)上两点,满足OA ⊥OB ,其中O 为抛物线顶点.求证: (1)A ,B 两点的纵坐标乘积为定值; (2)直线AB 恒过一定点. 证明(1)设A(x 1,y 1),B(x 2,y 2),x 1≠0,x 2≠0,则y 12=2px 1, y 22=2px 2. ∵OA ⊥OB ,∴x 1x 2 + y 1y 2=0.∴y 12y 22、= 4p 2 x 1x 2 = 24p -y 1y 2.∴y 1y 2 =24p -为定值, x 1x 2=-y 1y 2=4p 2也为定值.∴A 、B 两点的纵坐标乘积为定值.(2)若AB ⊥x 轴,则易知直线AB 方程为x = 2p , 过点(2p,0);若AB 与x 轴不垂直,则x 1≠x 2,y 1+y 2≠0.由y 12-y 22=2p(x 1-x 2),得1212122y y px x y y -++=. ∴直线AB 的方程是y= 122py y + (x -x 1)+y 1,即y = 211121222px px y y y y y ++-+。
高二圆锥曲线知识点总结与例题
高二圆锥曲线知识点总结与例题分析一、椭圆 1、椭圆概念平面内与两个定点1F 、2F 的距离的和等于常数2a (大于21||F F )的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点的距离2c 叫椭圆的焦距。
若M 为椭圆上任意一点,则有21||||2MF MF a +=。
椭圆的标准方程为:22221x y a b +=(0a b >>)(焦点在x 轴上)或12222=+bx a y (0a b >>)(焦点在y 轴上)。
注:①以上方程中,a b 的大小0a b >>,其中222b a c =-;②在22221x y a b +=和22221y x a b+=两个方程中都有0a b >>的条件,要分清焦点的位置,只要看2x 和2y 的分母的大小。
例如椭圆221x y m n+=(0m >,0n >,m n ≠)当m n >时表示焦点在x 轴上的椭圆;当m n <时表示焦点在y 轴上的椭圆。
2、椭圆的性质 ①范围:由标准方程22221x y a b+=知||x a ≤,||y b ≤,说明椭圆位于直线x a =±,y b =±所围成的矩形里;②对称性:椭圆关于x 轴、y 轴和原点对称。
这时,坐标轴是椭圆的对称轴,原点是对称中心,椭圆的对称中心叫椭圆的中心;③四个顶点:1(,0)A a -,2(,0)A a ,1(0,)B b -,2(0,)B b线段21A A 、21B B 分别叫做椭圆的长轴和短轴,它们的长分别为2a 和2b ,a 和b 分别叫做椭圆的长半轴长和短半轴长。
由椭圆的对称性知:椭圆的短轴端点到焦点的距离为a ;在22Rt OB F ∆中,2||OB b =,2||OF c =,22||B F a =,且2222222||||||OF B F OB =-,即222c a b =-;④离心率:椭圆的焦距与长轴的比ce a=叫椭圆的离心率。
圆锥曲线知识点总结
圆锥曲线知识点总结(一)——椭圆2、典型题型题型1:椭圆的定义的应用例1、命题甲:动点P 到两定点A 、B 的距离之和常数),0(2 a a PB PA ;命题乙:P 点轨迹是椭圆,则命题甲是命题乙的 ( ) A 、充分不必要条件 B 、必要不充分条件 C 、充分且必要条件 D 、既不充分也不必要条件 规律总结:变式训练1、已知两定点21F F 、,且1021 F F ,动点P 分别满足下列条件时的轨迹是什么?(1)1021 PF PF (2)1621 PF PF (3)621 PF PF变式训练2、已知动圆P 过定点A (-3,0),并且在定圆B :64)3(22y x 的内部与定圆相切,则动圆的圆心P 的轨迹是( )A 、线段B 、直线C 、圆D 、椭圆变式训练3、已知椭圆1162522 y x 上一点P 到某一焦点的距离为3,则点P 到另一个焦点的距离为 。
变式训练4、椭圆1162522 y x 的左右焦点分别为21F F 、,经过右焦点的直线交椭圆于A 、B 两点,则三角形AB 1F 的周长为 。
题型2:求椭圆的标准方程(方法 ) 例2、求满足下列条件下的椭圆的标准方程(1)满足方程22)2(y x +22)2(y x =10的点的轨迹。
(2)以坐标轴为对称轴,且长轴是短轴的3倍,并且过点P (3,0);(3)两个焦点的坐标分别为(-4,0)和(4,0),且椭圆经过点(5,0);(4)焦点在y 轴上,且经过两个点(0,2)和(1,0);(5)焦点在坐标轴上,且经过点A (3,-2)和B (-23,1);(6)与椭圆92x +42y =36有共同焦点,且经过点(2,-3);(7)在x 轴上的一个焦点,与短轴两个端点的连线互相垂直,且焦距为8。
规律与方法:题型3:椭圆标准方程的形式特征例3、设曲线方程为15222 my m x ,求曲线为椭圆时,m 的取值范围是 。
变式训练1:已知方程192522 m y m x 表示焦点在y 轴上的椭圆,则m 的取值范围是 。
高二数学选修2-1第二章圆锥曲线知识点+习题+答案
第二章圆锥曲线与方程1、平面内与两个定点F i , F2的距离之和等于常数(大于| F,F2| )的点的轨迹称为椭圆.这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距.2、椭圆的几何性质:3、设是椭圆上任一点,点到F,对应准线的距离为d,,点到F2对应准线的距离为d2,则丄丄d i d24、平面内与两个定点F i , F2的距离之差的绝对值等于常数(小于|F i F2 )的点的轨迹称为双曲线.这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距.5、双曲线的几何性质:b 6实轴和虚轴等长的双曲线称为等轴双曲线.7、设 是双曲线上任一点,点 到F i 对应准线的距离为d i ,点 到F 2对应准线的距离为8、平面内与一个定点F 和一条定直线丨的距离相等的点的轨迹称为抛物线.定点 F 称为抛物线的焦点,定直线I 称为抛物线的准线. 9、 过抛物线的焦点作垂直于对称轴且交抛物线于 、两点的线段,称为抛物线的“通径”即|| 2p .10、 焦半径公式: 若点 x °,y 。
在抛物线 2y 2px p 0上,焦点为F ,则 Fx 卫 X 。
27若点 x °,y ° 在抛物线 2y2px p 0上,焦点为F ,贝H Fp 7;若点 x °,y 。
在抛物线 2X 2py p 0上,焦点为F ,则 F y0号若点 X o ,y o 在抛物线 2X2py p0上,焦点为F ,贝 JI Fy 。
p2 .11、抛物线的几何性质:d 2,则F iF2d 1d 2圆锥曲线测试题一、选择题:1 •已知动点M的坐标满足方程13「x2—y2|12x 5y 12|,则动点M的轨迹是()A.抛物线B. 双曲线C. 椭圆D. 以上都不对2 22•设P是双曲线笃L 1上一点,双曲线的一条渐近线方程为3x 2y 0, R、F2分别a 9是双曲线的左、右焦点,若IPFJ 5,则|PF2 | ()A. 1 或5B. 1 或9C. 1D. 93. 设椭圆的两个焦点分别为只、、F2,过F2作椭圆长轴的垂线交椭圆于点巳若厶F1PF2为等腰直角三角形,则椭圆的离心率是()•A. B. 辽1C. 2 ,2 D. .2 12 24. 过点(2,-1)引直线与抛物线y x2只有一个公共点,这样的直线共有()条A. 1 C. 35. 已知点A( 2,0)、B(3,0),动点P(x,y)满足PA PB y2,则点P的轨迹是()A.圆 B .椭圆 C.双曲线 D.抛物线2 26. 如果椭圆——1的弦被点(4,2)平分,则这条弦所在的直线方程是()36 9A x 2y 0B x 2y 4 0C ■ 2x 3y 12 0D x 2y 8 0214x7、无论 为何值,方程x 2 2sin y 21所表示的曲线必不是( )二、填空题:22 2 29、 对于椭圆— ' 1和双曲线— ' 1有下列命题:16979①椭圆的焦点恰好是双曲线的顶点;②双曲线的焦点恰好是椭圆的顶点; ③双曲线与椭圆共焦点; ④椭圆与双曲线有两个顶点相同•其中正确命题的序号是10、 若直线(1 a)x y 1 0与圆x 2 y 2 2x 0相切,贝U a 的值为 _______________________ 11、 抛物线y x 2上的点到直线4x 3y 8 0的距离的最小值是 _______________12、 抛物线 C: y 2=4x 上一点Q 到点B(4,1)与到焦点 F 的距离和最小,则点Q 的坐 标 。
高中数学圆锥曲线知识点梳理+例题解析
高考数学圆锥曲线部分知识点梳理一、方程的曲线:在平面直角坐标系中,如果某曲线C(看作适合某种条件的点的集合或轨迹 )上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:(1)曲线上的点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点,那么这个方程叫做曲线的方程;这条曲线叫做方程的曲线。
点与曲线的关系:若曲线C 的方程是f(x,y)=0,则点P 0(x 0,y 0)在曲线C 上⇔f(x 0,y 0)=0;点P 0(x 0,y 0)不在曲线C 上⇔f(x 0,y 0)≠0。
两条曲线的交点:若曲线C 1,C 2的方程分别为f 1(x,y)=0,f 2(x,y)=0,则点P 0(x 0,y 0)是C 1,C 2的交点⇔{0),(0),(002001==y x f y x f 方程组有n个不同的实数解,两条曲线就有n 个不同的交点;方程组没有实数解,曲线就没有交点。
二、圆:1、定义:点集{M ||OM |=r },其中定点O 为圆心,定长r 为半径.2、方程:(1)标准方程:圆心在c(a,b),半径为r 的圆方程是(x-a)2+(y-b)2=r 2圆心在坐标原点,半径为r 的圆方程是x 2+y 2=r 2(2)一般方程:①当D 2+E 2-4F >0时,一元二次方程x 2+y 2+Dx+Ey+F=0叫做圆的一般方程,圆心为)2,2(ED --半径是2422F E D -+。
配方,将方程x 2+y 2+Dx+Ey+F=0化为(x+2D )2+(y+2E )2=44F -E D 22+②当D 2+E 2-4F=0时,方程表示一个点(-2D ,-2E );③当D 2+E 2-4F <0时,方程不表示任何图形.(3)点与圆的位置关系 已知圆心C(a,b),半径为r,点M 的坐标为(x 0,y 0),则|MC |<r ⇔点M 在圆C 内,|MC |=r ⇔点M 在圆C 上,|MC |>r ⇔点M 在圆C 内,其中|MC |=2020b)-(y a)-(x +。
高中数学圆锥曲线经典考点及例题专题讲解
圆锥曲线的综合问题考纲解读 1.求圆锥曲线过定点问题;2.利用圆锥曲线求定值、常数值;3.利用圆锥曲线求变量的取值范围,最值问题;4.利用圆锥曲线求解探索性、存在性问题.考点一 圆锥曲线过定点问题|方法突破[例1] (2018·淄博模拟)椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,其左焦点到点P (2,1)的距离为10.(1)求椭圆C 的标准方程.(2)若直线l :y =kx +m 与椭圆C 相交于A ,B 两点(A ,B 不是左、右顶点),且以AB 为直径的圆过椭圆C 的右顶点.求证:直线l 过定点,并求出该定点的坐标.[解析] (1)因为左焦点(-c,0)到点P (2,1)的距离为10,所以(2+c )2+1=10,解得c =1.又e =c a =12,解得a =2,所以b 2=a 2-c 2=3.所以所求椭圆C 的方程为x 24+y 23=1.(2)证明:设A (x 1,y 1),B (x 2,y 2), 由⎩⎪⎨⎪⎧y =kx +m ,x 24+y 23=1,消去y 得(3+4k 2)x 2+8mkx +4(m 2-3)=0, Δ=64m 2k 2-16(3+4k 2)(m 2-3)>0, 化为3+4k 2>m 2.所以x 1+x 2=-8mk 3+4k 2,x 1x 2=4(m 2-3)3+4k 2.y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+mk (x 1+x 2)+m 2=3(m 2-4k 2)3+4k 2.因为以AB 为直径的圆过椭圆右顶点D (2,0),k AD ·k BD =-1, 所以y 1x 1-2·y 2x 2-2=-1,所以y 1y 2+x 1x 2-2(x 1+x 2)+4=0, 所以3(m 2-4k 2)3+4k 2+4(m 2-3)3+4k 2+16mk 3+4k 2+4=0.化为7m 2+16mk +4k 2=0, 解得m 1=-2k ,m 2=-2k7.且满足3+4k 2-m 2>0.当m =-2k 时,l :y =k (x -2),直线过定点(2,0)与已知矛盾; 当m =-2k7时,l :y =k ⎝⎛⎭⎫x -27,直线过定点⎝⎛⎭⎫27,0. 综上可知,直线l 过定点⎝⎛⎭⎫27,0 .[方法提升][母题变式]若本例的条件“以AB 为直径的圆过椭圆C 的右顶点”,改为“以AB 为直径的圆过椭圆C 的左顶点”.则直线l 是否还过定点?若过定点,求出该定点的坐标;若不过定点,说明理由.解析:设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx +m ,x 24+y 23=1,消去y 得(3+4k 2)x 2+8mkx +4(m 2-3)=0, Δ=64m 2k 2-16(3+4k 2)(m 2-3)>0,化为3+4k 2>m 2. 所以x 1+x 2=-8mk 3+4k 2,x 1x 2=4(m 2-3)3+4k 2.y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+mk (x 1+x 2)+m 2=3(m 2-4k 2)3+4k 2.因为以AB 为直径的圆过椭圆左顶点D (-2,0),k AD ·k BD =-1,所以y 1x 1+2·y 2x 2+2=-1,所以y 1y 2+x 1x 2+2(x 1+x 2)+4=0,所以3(m 2-4k 2)3+4k 2+4(m 2-3)3+4k 2-16mk 3+4k 2+4=0.化为7m 2-16mk +4k 2=0,解得m 1=2k ,m 2=2k 7.且满足3+4k 2-m 2>0.当m =2k 时,l :y =k (x +2),直线过定点(-2,0)与已知矛盾; 当m =2k7时,l :y =k ⎝⎛⎭⎫x +27,直线过定点⎝⎛⎭⎫-27,0. 综上可知,直线l 过定点⎝⎛⎭⎫-27,0.考点二 圆锥曲线的定值问题|方法突破[例2] 已知椭圆C :x 24+y 23=1.若直线l :y =kx +m 与椭圆C 相交于A ,B 两点,且k OA ·k OB=-34(O 为坐标原点),判断△AOB 的面积是否为定值,若为定值,求出定值;若不为定值,说明理由.[解析] 设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx +m ,x 24+y 23=1得(3+4k 2)x 2+8mkx +4(m 2-3)=0,则由Δ=64m 2k 2-16(3+4k 2)(m 2-3)>0,得3+4k 2-m 2>0.又x 1+x 2=-8mk3+4k 2,x 1x 2=4(m 2-3)3+4k 2,∴y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+mk (x 1+x 2)+m 2=3(m 2-4k 2)3+4k 2.又由k OA ·k OB =-34,得y 1y 2x 1x 2=-34,即y 1y 2=-34x 1x 2,∴3(m 2-4k 2)3+4k 2=-34·4(m 2-3)3+4k 2,即2m 2-4k 2=3. 又|AB |=1+k 2(x 1+x 2)2-4x 1x 2=24(1+k 2)3+4k 2.点O 到直线AB 的距离为d =|m |1+k2= 2-12(1+k 2)≥2-12=62. S △AOB =12|AB |d =1224(1+k 2)3+4k 2·|m |1+k 2=12 24(1+k 2)m 2(3+4k 2)(1+k 2)=12243+4k 2·3+4k 22= 3. [方法提升]已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点F 1(-1,0),长轴长与短轴长的比是2∶ 3.(1)求椭圆的方程;(2)过F 1作两直线m ,n 交椭圆于A ,B ,C ,D 四点,若m ⊥n ,求证:1|AB |+1|CD |为定值.解析:(1)由已知得⎩⎪⎨⎪⎧2a ∶2b =2∶3,c =1,a 2=b 2+c 2.解得a =2,b = 3.故所求椭圆方程为x 24+y 23=1.(2)证明:由已知F 1(-1,0),当直线m 不垂直于坐标轴时,可设直线m 的方程为y =k (x +1)(k ≠0).由⎩⎪⎨⎪⎧y =k (x +1),x 24+y 23=1,得(3+4k 2)x 2+8k 2x +4k 2-12=0. 由于Δ>0,设A (x 1,y 1),B (x 2,y 2), 则有x 1+x 2=-8k 23+4k 2,x 1x 2=4k 2-123+4k 2,|AB |=(1+k 2)[(x 1+x 2)2-4x 1x 2] =(1+k 2)⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫-8k 23+4k 22-4×4k 2-123+4k 2 =12(1+k 2)3+4k 2.同理|CD |=12(1+k 2)3k 2+4.所以1|AB |+1|CD |=3+4k 212(1+k 2)+3k 2+412(1+k 2)=7(1+k 2)12(1+k 2)=712.当直线m 垂直于坐标轴时,此时|AB |=3,|CD |=4;或|AB |=4,|CD |=3,1|AB |+1|CD |=13+14=712. 综上,1|AB |+1|CD |为定值712.考点三 圆锥曲线中的范围(最值)问题|模型突破[例3] (2018·聊城模拟)椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 是椭圆上的一点,l :x =-a 2c ,且PQ ⊥l ,垂足为Q ,若四边形PQF 1F 2为平行四边形,则椭圆的离心率的取值范围是( )A.⎝⎛⎭⎫12,1B.⎝⎛⎭⎫0,12 C.⎝⎛⎭⎫0,22 D.⎝⎛⎭⎫22,1[解析] 设点P (x 1,y 1),由于PQ ⊥l ,故|PQ |=x 1+a 2c ,因为四边形PQF 1F 2为平行四边形,所以|PQ |=|F 1F 2|=2c ,即x 1+a 2c =2c ,则有x 1=2c -a 2c >-a ,所以2c 2+ac -a 2>0,即2e 2+e -1>0,解得e <-1或e >12,由于0<e <1,所以12<e <1,即椭圆离心率的取值范围是⎝⎛⎭⎫12,1. [答案] A [模型解法][高考类题]1.(2015·高考重庆卷)设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,右顶点为A ,过F作AF 的垂线与双曲线交于B ,C 两点,过B ,C 分别作AC ,AB 的垂线,两垂线交于点D .若D 到直线BC 的距离小于a +a 2+b 2,则该双曲线的渐近线斜率的取值范围是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-2,0)∪(0,2)D .(-∞,-2)∪(2,+∞)解析:如图所示,由题意知BC 为双曲线的通径,所以|BC |=2b 2a ,则|BF |=b 2a .又|AF |=c -a ,因为BD ⊥AC ,DC ⊥AB ,所以点D 在x 轴上,由Rt △BF A ∽Rt △DFB ,得|BF |2=|AF |·|FD |,即(b 2a )2=(c -a )|FD |,所以|FD |=b 4a 2(c -a ),则由题意知b 4a 2(c -a )<a +a 2+b 2,即b 4a 2(c -a )<a +c ,所以b 4<a 2(c -a )(a +c ),即b 4<a 2(c 2-a 2),即b 4<a 2b 2,所以0<b 2a 2<1,解得0<b a <1,而双曲线的渐近线斜率为±ba ,所以双曲线的渐近线斜率的取值范围是(-1,0)∪(0,1),故选A.答案:A2.(2017·高考浙江卷)如图,已知抛物线x 2=y ,点A ⎝⎛⎭⎫-12,14,B ⎝⎛⎭⎫32,94,抛物线上的点P (x ,y )⎝⎛⎭⎫-12<x <32.过点B 作直线AP 的垂线,垂足为Q .(1)求直线AP 斜率的取值范围; (2)求|P A |·|PQ |的最大值.解析:(1)设直线AP 的斜率为k ,k =x 2-14x +12=x -12.因为-12<x <32,所以直线AP 斜率的取值范围是(-1,1).(2)联立直线AP 与BQ 的方程⎩⎨⎧kx -y +12k +14=0,x +ky -94k -32=0,解得点Q 的横坐标是x Q =-k 2+4k +32(k 2+1).因为|P A |=1+k 2⎝⎛⎭⎫x +12=1+k 2(k +1),|PQ |=1+k 2(x Q -x )=-(k -1)(k +1)2k 2+1,所以|P A |·|PQ |=-(k -1)(k +1)3, 令f (k )=-(k -1)(k +1)3. 因为f ′(k )=-(4k -2)(k +1)2,所以f (k )在区间⎝⎛⎭⎫-1,12上单调递增,⎝⎛⎭⎫12,1上单调递减,因此当k =12时,|P A |·|PQ |取得最大值2716.考点四 圆锥曲线的存在性问题|方法突破[例4] 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,点P (0,1)和点A (m ,n )(m ≠0)都在椭圆C 上,直线P A 交x 轴于点M .(1)求椭圆C 的方程,并求点M 的坐标(用m ,n 表示);(2)设O 为原点,点B 与点A 关于x 轴对称,直线PB 交x 轴于点N .问:y 轴上是否存在点Q ,使得∠OQM =∠ONQ ?若存在,求点Q 的坐标;若不存在,说明理由.[解析] (1)由题意得⎩⎪⎨⎪⎧b =1,c a =22,a 2=b 2+c 2.解得a 2=2.故椭圆C 的方程为x 22+y 2=1.设M (x M,0).因为m ≠0,所以-1<n <1. 直线P A 的方程为y -1=n -1m x ,所以x M =m 1-n ,即M (m1-n,0).(2)因为点B 与点A 关于x 轴对称,所以B (m ,-n ). 设N (x N,0),则x N =m1+n.“存在点Q (0,y Q )使得∠OQM =∠ONQ ”等价于“存在点Q (0,y Q )使得|OM ||OQ |=|OQ ||ON |”,即y Q 满足y 2Q =|x M ||x N |.因为x M =m 1-n ,x N =m 1+n ,m 22+n 2=1,所以y 2Q =|x M ||x N |=m 21-n 2=2. 所以 y Q =2或y Q =- 2.故在y 轴上存在点Q ,使得∠OQM =∠ONQ , 点Q 的坐标为(0,2)或(0,-2). [方法提升][跟踪训练](2018·徐州模拟)在平面直角坐标系xOy 中,经过点(0,2)且斜率为k 的直线l 与椭圆x 22+y 2=1有两个不同的交点P 和Q .(1)求k 的取值范围.(2)设椭圆与x 轴正半轴、y 轴正半轴的交点分别为A ,B ,是否存在常数k ,使得向量OP →+OQ →与AB →垂直?如果存在,求k 值;如果不存在,请说明理由.解析:(1)由已知条件,直线l 的方程为y =kx +2, 代入椭圆方程得x 22+(kx +2)2=1,整理得⎝⎛⎭⎫12+k 2x 2+22kx +1=0.①直线l 与椭圆有两个不同的交点P 和Q 等价于①中 Δ=8k 2-4⎝⎛⎭⎫12+k 2 =4k 2-2>0, 解得k <-22或k >22. 即k 的取值范围为⎝⎛⎭⎫-∞,-22∪⎝⎛⎭⎫22,+∞.(2)不存在,理由如下:设P (x 1,y 1),Q (x 2,y 2), 则OP →+OQ →=(x 1+x 2,y 1+y 2), 由方程①得,x 1+x 2=-42k1+2k 2,y 1+y 2=k (x 1+x 2)+22=-42k 21+2k 2+2 2.因为(OP →+OQ →)⊥AB →,AB →=(-2,1),所以(x 1+x 2)·(-2)+y 1+y 2=0, 即:-42k 1+2k 2·(-2)-42k 21+2k 2+22=0.解得:k =-24, 由(1)知k 2>12,与此相矛盾,所以不存在常数k 使OP →+OQ →与AB →垂直.[考点二](2015·高考全国卷Ⅱ)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,点(2,2)在C 上.(1)求C 的方程;(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .证明:直线OM 的斜率与直线l 的斜率的乘积为定值.解析:(1)由题意有a 2-b 2a =22,4a 2+2b 2=1,解得a 2=8,b 2=4. 所以C 的方程为x 28+y 24=1.(2)证明:设直线l :y =kx +b (k ≠0,b ≠0),A (x 1,y 1),B (x 2,y 2),M (x M ,y M ).将y =kx +b 代入x 28+y 24=1得(2k 2+1)x 2+4kbx +2b 2-8=0. 故x M =x 1+x 22=-2kb2k 2+1,y M =k ·x M +b =b2k 2+1.于是直线OM 的斜率k OM =y M x M =-12k ,即k OM ·k =-12.所以直线OM 的斜率与直线l 的斜率的乘积为定值.。
圆锥曲线知识点例题练习含答案
圆锥曲线一、椭圆:(1)椭圆的定义:平面内与两个定点21,F F 的距离的和等于常数(大于||21F F )的点的轨迹。
其中:两个定点叫做椭圆的焦点,焦点间的距离叫做焦距。
注意:||221F F a >表示椭圆;||221F F a =表示线段21F F ;||221F F a <没有轨迹; (2)椭圆的标准方程、图象及几何性质:中心在原点,焦点在x 轴上中心在原点,焦点在y 轴上标准方程)0(12222>>=+b a by a x )0(12222>>=+b a b x a y 图 形顶 点 ),0(),,0()0,(),0,(2121b B b B a A a A -- ),0(),,0()0,(),0,(2121a B a B b A b A -- 对称轴 x 轴,y 轴;短轴为b 2,长轴为a 2焦 点 )0,(),0,(21c F c F - ),0(),,0(21c F c F -焦 距 )0(2||21>=c c F F 222b a c -=离心率)10(<<=e ace (离心率越大,椭圆越扁) 通 径 22b a(过焦点且垂直于对称轴的直线夹在椭圆内的线段)3.常用结论:(1)椭圆)0(12222>>=+b a by a x 的两个焦点为21,F F ,过1F 的直线交椭圆于B A ,两点,则2ABF ∆的周长=(2)设椭圆)0(12222>>=+b a by a x 左、右两个焦点为21,F F ,过1F 且垂直于对称轴的直线交椭圆于Q P ,两点,则Q P ,的坐标分别是 =||PQ二、双曲线:xO F 1 F 2 P y A 2 B 2 B 1xO F 1F 2 Py A 2A 1B 1B 2 A 1(1)双曲线的定义:平面内与两个定点21,F F 的距离的差的绝对值等于常数(小于||21F F )的点的轨迹。
圆锥曲线的知识点、结论、易错点、真题
圆锥曲线的知识点、结论、易错点、真题(⼀)椭圆及其标准⽅程1. 椭圆的定义:椭圆的定义中,平⾯内动点与两定点1F 、2F 的距离的和⼤于|1F 2F |这个条件不可忽视.若这个距离之和⼩于|1F 2F |,则这样的点不存在;若距离之和等于|1F 2F |,则动点的轨迹是线段1F 2F .2.椭圆的标准⽅程:12222=+b y a x (a >b >0),12222=+bx a y (a >b >0).3.椭圆的标准⽅程判别⽅法:判别焦点在哪个轴只要看分母的⼤⼩:如果2x 项的分母⼤于2y 项的分母,则椭圆的焦点在x 轴上,反之,焦点在y 轴上.4.求椭圆的标准⽅程的⽅法:⑴正确判断焦点的位置;⑵设出标准⽅程后,运⽤待定系数法求解. (⼆)椭圆的简单⼏何性质1. 椭圆的⼏何性质:设椭圆⽅程为12222=+by a x (a >b >0).⑴范围: -a ≤x ≤a ,-b ≤x ≤b ,所以椭圆位于直线x=a ±和y=b ±所围成的矩形⾥.⑵对称性:分别关于x 轴、y 轴成轴对称,关于原点中⼼对称.椭圆的对称中⼼叫做椭圆的中⼼. ⑶顶点:有四个1A (-a,0)、2A (a ,0)1B (0,-b )、2B (0,b ).线段1A 2A 、1B 2B 分别叫做椭圆的长轴和短轴.它们的长分别等于2a 和2b ,a 和b 分别叫做椭圆的长半轴长和短半轴长. 所以椭圆和它的对称轴有四个交点,称为椭圆的顶点.⑷离⼼率:椭圆的焦距与长轴长的⽐ace =叫做椭圆的离⼼率.它的值表⽰椭圆的扁平程度.0<e <1.e 越接近于1时,椭圆越扁;反之,e 越接近于0时,椭圆就越接近于圆. 2.椭圆的第⼆定义⑴定义:平⾯内动点M 与⼀个顶点的距离和它到⼀条定直线的距离的⽐是常数ace =(e <1=时,这个动点的轨迹是椭圆.⑵准线:根据椭圆的对称性,12222=+by a x (a >b >0)的准线有两条,它们的⽅程为c a x 2±=.对于椭圆12222=+b x a y (a >b >0)的准线⽅程,只要把x 换成y 就可以了,即c a y 2±=.3.椭圆的焦半径:由椭圆上任意⼀点与其焦点所连的线段叫做这点的焦半径.设1F (-c ,0),2F (c ,0)分别为椭圆12222=+by a x (a >b >0)的左、右两焦点,M (x ,y )是椭圆上任⼀点,则两条焦半径长分别为ex a MF +=1,ex a MF -=2.椭圆中涉及焦半径时运⽤焦半径知识解题往往⽐较简便.椭圆的四个主要元素a 、b 、c 、e 中有2a =2b +2c 、ac e =两个关系,因此确定椭圆的标准⽅程只需两个独⽴条件.4.椭圆的参数⽅程椭圆12222=+b y a x (a >b >0)的参数⽅程为cos sin x a y b θθ=??=?(θ为参数).说明: ⑴这⾥参数θ叫做椭圆的离⼼⾓.椭圆上点P 的离⼼⾓θ与直线OP 的倾斜⾓α不同:θαtan tan ab=;⑵椭圆的参数⽅程可以由⽅程12222=+by a x 与三⾓恒等式1sin cos 22=+θθ相⽐较⽽得到,所以椭圆的参数⽅程的实质是三⾓代换. 椭圆22221(0)x y a b a b +=>>的参数⽅程是cos sin x a y b θθ=??=?. 5.椭圆的的内外部(1)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的内部2200221x y a b ?+<. (2)点00(,)P x y 在椭圆22221(0)x y a b a b+=>>的外部2200221x y a b+>. 6. 椭圆的切线⽅程(1)椭圆22221(0)x y a b a b+=>>上⼀点00(,)P x y 处的切线⽅程是00221x x y y a b +=.(2)过椭圆22221(0)x y a b a b+=>>外⼀点00(,)P x y 所引两条切线的切点弦⽅程是00221x x y y a b +=.(3)椭圆22221(0)x y a b a b+=>>与直线0Ax By C ++=相切的条件是22222A aB b c +=(三)双曲线及其标准⽅程1.双曲线的定义:平⾯内与两个定点1F 、2F 的距离的差的绝对值等于常数2a (⼩于|1F 2F |)的动点M 的轨迹叫做双曲线.在这个定义中,要注意条件2a <|1F 2F |,这⼀条件可以⽤“三⾓形的两边之差⼩于第三边”加以理解.若2a=|1F 2F |,则动点的轨迹是两条射线;若2a >|1F 2F |,则⽆轨迹.若1MF <2MF 时,动点M 的轨迹仅为双曲线的⼀个分⽀,⼜若1MF >2MF 时,轨迹为双曲线的另⼀⽀.⽽双曲线是由两个分⽀组成的,故在定义中应为“差的绝对值”.2. 双曲线的标准⽅程:12222=-b y a x 和12222=-bx a y (a >0,b >0).这⾥222a c b -=,其中|1F 2F |=2c.要注意这⾥的a 、b 、c 及它们之间的关系与椭圆中的异同.3.双曲线的标准⽅程判别⽅法是:如果2x 项的系数是正数,则焦点在x 轴上;如果2y 项的系数是正数,则焦点在y 轴上.对于双曲线,a 不⼀定⼤于b ,因此不能像椭圆那样,通过⽐较分母的⼤⼩来判断焦点在哪⼀条坐标轴上.4.求双曲线的标准⽅程,应注意两个问题:⑴正确判断焦点的位置;⑵设出标准⽅程后,运⽤待定系数法求解.(四)双曲线的简单⼏何性质1.双曲线12222=-by a x 的实轴长为2a ,虚轴长为2b ,离⼼率a c e =>1,离⼼率e 越⼤,双曲线的开⼝越⼤.2. 双曲线12222=-by a x 的渐近线⽅程为x a b y ±=或表⽰为02222=-b y a x .若已知双曲线的渐近线⽅程是x nmy ±=,即0=±ny mx ,那么双曲线的⽅程具有以下形式:k y n x m =-2222,其中k 是⼀个不为零的常数.3.双曲线的第⼆定义:平⾯内到定点(焦点)与到定直线(准线)距离的⽐是⼀个⼤于1的常数(离⼼率)的点的轨迹叫做双曲线.对于双曲线12222=-by a x ,它的焦点坐标是(-c ,0)和(c ,0),与它们对应的准线⽅程分别是ca x 2-=和c a x 2=.双曲线22221(0,0)x y ab a b -=>>的焦半径公式21|()|a PF e x c =+,22|()|a PF e x c=-.4.双曲线的内外部(1)点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部2200221x y a b ?->. (2)点00(,)P x y 在双曲线22221(0,0)x y a b a b-=>>的外部2200221x y a b ?-<. 5.双曲线的⽅程与渐近线⽅程的关系(1)若双曲线⽅程为12222=-by a x ?渐近线⽅程:22220x y a b -=?x a by ±=.(2)若渐近线⽅程为x a by ±=?0=±b y a x ?双曲线可设为λ=-2222by a x .(3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222by a x (0>λ,焦点在x 轴上,0<λ,焦点在y 轴上).6. 双曲线的切线⽅程(1)双曲线22221(0,0)x y a b a b-=>>上⼀点00(,)P x y 处的切线⽅程是00221x x y y a b -=.(2)过双曲线22221(0,0)x y a b a b-=>>外⼀点00(,)P x y 所引两条切线的切点弦⽅程是00221x x y y a b -=.(3)双曲线22221(0,0)x y a b a b-=>>与直线0Ax By C ++=相切的条件是22222A aB b c -=.(五)抛物线的标准⽅程和⼏何性质1.抛物线的定义:平⾯内到⼀定点(F )和⼀条定直线(l )的距离相等的点的轨迹叫抛物线。
(完整版)圆锥曲线知识点+例题+练习含答案(整理).docx
(完整版)圆锥曲线知识点+例题+练习含答案(整理).docx圆锥曲线⼀、椭圆:( 1)椭圆的定义:平⾯内与两个定点F1 , F2的距离的和等于常数(⼤于| F1 F2 |)的点的轨迹。
其中:两个定点叫做椭圆的焦点,焦点间的距离叫做焦距。
注意: 2a | F1F2 | 表⽰椭圆;2a | F1F2|表⽰线段F1F2; 2a| F1F 2 |没有轨迹;(2)椭圆的标准⽅程、图象及⼏何性质:中⼼在原点,焦点在x 轴上中⼼在原点,焦点在y 轴上标准⽅程图形x2y2y2x2a2b 21( a b 0)a 2b21(ab 0)yB 2yB 2P F2 PA 1 A 2x A 1xA 2OF1O F21B 1FB 1顶点对称轴焦点焦距离⼼率通径2b2aA1 (a,0), A2 (a,0)A1( b,0), A2 (b,0)B1 (0, b), B2(0, b)B1( 0,a), B2 (0, a) x 轴,y轴;短轴为2b,长轴为2aF1 (c,0), F2(c,0)F1 ( 0,c), F2 (0,c)| F1 F2 | 2c(c 0)c2 a 2 b 2(0 e 1) (离⼼率越⼤,椭圆越扁)a(过焦点且垂直于对称轴的直线夹在椭圆内的线段)3.常⽤结论:(1)椭圆x2y21(a b 0) 的两个焦点为F1, F2,过F1的直线交椭圆于A, B两a2 b 2点,则ABF 2的周长=(2)设椭圆x2y2221( a b 0)左、右两个焦点为 F1, F2,过 F1且垂直于对称轴的直线a b交椭圆于 P, Q 两点,则 P, Q 的坐标分别是| PQ |⼆、双曲线:( 1)双曲线的定义:平⾯内与两个定点F1 , F2的距离的差的绝对值等于常数(⼩于| F1F2 | )的点的轨迹。
其中:两个定点叫做双曲线的焦点,焦点间的距离叫做焦距。
注意: | PF1 || PF2 | 2a 与 | PF2 | | PF1 |2a ( 2a| F1F2 | )表⽰双曲线的⼀⽀。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学圆锥曲线知识整理及典型例题知识整理解析几何的基本问题之一:如何求曲线(点的轨迹)方程。
它一般分为两类基本题型:一是已知轨迹类型求其方程,常用待定系数法,如求直线及圆的方程就是典型例题;二是未知轨迹类型,此时除了用代入法、交轨法、参数法等求轨迹的方法外,通常设法利用已知轨迹的定义解题,化归为求已知轨迹类型的轨迹方程。
因此在求动点轨迹方程的过程中,寻找与动点坐标有关的方程(等量关系) ,侧重于数的运算,一是寻找与动点有关的几何条件,侧重于形,重视图形几何性质的运用。
在基本轨迹中,除了直线、圆外,还有三种圆锥曲线:椭圆、双曲线、抛物线。
1、三种圆锥曲线的研究(1 )统一定义,三种圆锥曲线均可看成是这样的点集:dPid-e’enO、、dF为定点,d为P到定直线的距离,FF ,如图。
因为三者有统一定义,所以,它们的一些性质,研究它们的一些方法都具有规律性。
当0<e<1时,点P轨迹是椭圆;当e>1时,点P轨迹是双曲线;当e=1时,点P轨迹是抛物线。
(2)椭圆及双曲线几何定义:椭圆:{P||PF i|+|PF 2|=2a , 2a>|F i F2|>0, F i、F2为定点}, 双曲线{P|||PF i|-|PF 2||=2a , |F i F z|>2a>0 , F i, F2为定点}。
(3 )圆锥曲线的几何性质:几何性质是圆锥曲线内在的,固有的性质,不因为位置的改变而改变。
①定性:焦点在与准线垂直的对称轴上椭圆及双曲线中:中心为两焦点中点,两准线关于中心对称;椭圆及双曲线关于长轴、短轴或实轴、虚轴成轴对称,关于中心成中心对称。
椭圆双曲线抛物线焦距2c长轴长2a实轴长2a短轴长2b焦点到对应准线距离2P=2^- c P通径长22 •丄a2p(4 )圆锥曲线的标准方程及解析量(随坐标改变而变)举焦点在x轴上的方程如下:总之研究圆锥曲线,一要重视定义,这是学好圆锥曲线最重要的思想方法,二要数形结合,既熟练掌握方程组理论,又关注图形的几何性质,以简化运算。
2、直线和圆锥曲线位置关系(1 )位置关系判断:△法(△适用对象是二次方程,二次项系数不为0)。
其中直线和曲线只有一个公共点,包括直线和双曲线相切及直线与双曲线渐近线平行两种情形;后一种情形下,消元后关于x或y方程的二次项系数为0。
直线和抛物线只有一个公共点包括直线和抛物线相切及直线与抛物线对称轴平行等两种情况;后一种情形下,消元后关于x或y方程的二次项系数为0。
(2 )直线和圆锥曲线相交时,交点坐标就是方程组的解。
当涉及到弦的中点时,通常有两种处理方法:一是韦达定理;二是点差法。
4 、圆锥曲线中参数取值范围问题通常从两个途径思考,一是建立函数,用求值域的方 法求范围;二是建立不等式,通过解不等式求范围。
例题研究例1、根据下列条件,求双曲线方程。
•双曲线方程为a 2b 2 (3、、2)2 2a2—=■(入工0)(2 )设双曲线方程为a 2b 2(a>0, b>0)解之得:2 a b 2=12=8•双曲线方程为2 y12 8x 2法二:(1)设双曲线方程为(1 )与双曲线 2 2jj 1有共同渐近线,且过点(-3,2,3);(2 )与双曲线2 21有公共焦点,且过点(3.2 ,1642)。
分析:2 2 法一:(1)双曲线xL 9 164 二1的渐近线为y 二—x3令 x=-3, y=± 4,因 2. 3 ::: 4,故点(-3,2.3 )在射线4y x (x w 0)及x 轴负半3轴之间,双曲线焦点在x 轴上2 y 2设双曲线方程为 笃-爲=1 ,a 2b 2(a>0, b>0)b _4 a 3 (-3)2 (2、3)2 才a 2b 2 解之得:a 2b 2 _9 4=4=20 22 =12 2Xy_ .14(3.2)2 _ 22=116 -k ~4 k "解之得:k=4(3 )设双曲线方程为2X16 -k=1(-3)2 9(2 3)2 16•••双曲线方程为•双曲线方程为2X122y-=i 8评注:与双曲线2X ~2a2-話/共渐近线的双曲线方程为2X~2a2与=& (入丰0),当入>0b时,焦点在x 轴上;当入<0时,焦点在y 轴上。
与双曲线x 2 ~2 a匚=1共焦点的双曲线为b 22 2X_ _ _ _1 2 2 -1 a 亠 k b -k2 2(a +k>0, b -k>0 )。
比较上述两种解法可知,引入适当的参数可以提高解题质量,特别是充分利用含参数方程的几何意义,可以更准确地理解解析几何的基本思想。
2 2例2、设F i 、F 2为椭圆 — y 1的两个焦点,P 为椭圆上一点,已知 P 、F i 、F 2是94个直角三角形的三个顶点,且|PF 1|>|PF 2|,求!^电!的值。
1 PF2 1解题思路分析:当题设涉及到焦半径这个信息时,通常联想到椭圆的两个定义。
IPF 1I+IPF 2 |=6 法一:当/PF 2F 1=900 时,由 qPF 1 |^|PF 2 |2 +(2c)2 得:c 2 =5 ■14 4 |PF 1 |, |PF 2 | = -33• EFJ _7 • |PF 2「2当/ F 1PF>=90°时,同理求得 |PF 1|=4 , |PF 2|=2 • |PF 1 | 22|PF 21法二:当/ PF 2F 1=90°, x P= 5将此式看成是 22m (1— m)关于X 的二次函数式,下求该二次函数值域,从而得到1 -5m 2取值范围。
根据双曲线有界性:|x|>m , x 2>mm 2(1 -m 2) 2-m21 -5m 2又 °<m<1 • 1-5m 2>°• | m |且 m M °5m(-彳,°)(°,¥)评注:利用双曲线的定义找到点P 轨迹是重要一步,当题目条件有等量关系时,般考X 2 +y 2 =&5)22 2得:X y194P (土)。
下略。
5 5评注:由|PF i |>|PF 2|的条件,直角顶点应有两种情况,需分类讨论。
求m 取值范围。
分析:根据题意,从点P 的轨迹着手•/ ||PM|-|PN||=2m2 y()①又 y=± 2x ( X M °)又 F 2 ( ,5 , 0) • |PF 2|= 4••• |PF i |=2a-|PF 2|=上3当/ F i PF>=90°,由丿例 3、设点 P 到 M ( -1,°),N ( 1,°) 的距离之差为2m 到x 轴、y 轴的距离之比为 2,2 Xm 21「m 2•••点P 轨迹为双曲线,方程为 ①②联立得:2 m 2(1「m 2) X虑利用函数思想,建立函数关系式。
例4、已知x 2+y 2=1,双曲线(x-1) 2-y 2=1,直线 同时满足下列两个条件:①与双曲线交 于不同两点;②与圆相切,且切点是直线与双曲线相交所得弦的中点。
求直线方程。
分析:选择适当的直线方程形式,把条件“ 是圆的切线” “切点M 是弦AB 中点”翻译为关于 参数的方程组。
法一:当 斜率不存在时,x=-1满足; 当 斜率存在时,设:y=kx+b•{与O 0相切,设切点为 M 则|OM|=1••• —|b|— =1J k 2 1 22••• b =k +1①y =kx +b 2 22由丿。
… 得:(1-k )x -2(1+kb)x-b=0(x _1)2 _y 2 =1当 k 工土 1 且厶 >0 时,设 A (X 1, yj , B (X 2, y 2),则中点 M (x °, y o ),• y o =kx o +b=———-21 —k•/ M 在O O 上2 2 .• x o +y o =1• (1+kb) 2+(k+b) 2=(1-k 2)2:y T x V"或 y代入(x-1) 2-y 2=1 得:(y o 2-x o 2)x 2+2(X o -y o ) 2x- 1=o2 2 “■/ y o +x o =1(1-2x o 2)x 2+2(x o 2+x o -1)x- 1=o2(1 kb) X 1 X 2 产,X o 二屮1 —k 1 —k由①②得:,V3 k =3 b = _2 J3 、 3k 」b叮3法二:设M (x o , y o ),则切线 AB 方程 x o x+y o y=1 当y o =O 时,x o =± 1,显然只有 x=-1满足;当 y o M o 时,y 二•—y oy o•可进一步化简方程为:即 2X O 3-X O 4-2X O +1=O1解之得:X 0=± 1(舍),X 0= —23y o =。
下略2评注:不管是设定何种参数,都必须将形的两个条件(“相切”和“中点”参数的方程组,所以提高阅读能力,准确领会题意,抓住关键信息是基础而又重要的 例5、A B 是抛物线y 2=2px ( p>0)上的两点,且 OM OB (1 )求A 、B 两点的横坐标之积和纵坐标之积; (2)(3) 求证:直线AB 过定点; (4)(4) 求弦AB 中点P 的轨迹方程; (6)(5) 求厶AOB 面积的最小值; (6) O 在AB 上的射影 M 轨迹方程。
分析:设 A (X 1,y 1) , B ( X 2,y 2),中点 P (x o ,y 0)•/ OA 丄 OB/• k o/k oB =-1/• X 1X 2+y 1y 2=0 2 2y 1 =2px 1, y 2 =2px 2272 2pT y 1工 0, y 2^ 0“ 2••• y 1y 2=-4p“ 2 X 1X 2=4p(2) T y 1 =2px 1, y 2 =2px 242由中点坐标公式及韦达定理得:2X o X o -11 -2X。
2)转化为关于rHzj>o(1) k OA 1, k oBX 1y 2 X 22y 1 2p(y i -y 2) (y i +y 2)=2p(x i _x 2) y i —y2 _ 2p x i —X2 y i y 2i(4) S AOB = S . AOM ' S BOM =~ I OM I (I y 11 ■ I y 2 D = p(| y i 丨 1 y 2|)A 2p _|y i y 2 | =4p 2kAB2p y i y 2直线 AB : y _y r =2p(x _x i )y i +y 22px y =y iy 2y i2px i y i y 22px y i y 22y i -2px i ym y i +『2y i 2 =2px i , y 〃2 - -4p 2 y= 2px •"P 2 y i 目2y i y 2• •• y 逹(x _2p)y i y 2• AB 过定点(2p , 0),设 M (2p , 0)(3)设 OA : y=kx ,代入 y 2=2px 得:x=0,x=-2ppk同理,以一丄代k 得B (2pk ,-2pk ) kx o =p(k 2 +冷) •r kiy o =P (「—k)•kk 2PTxo=(X °)2 2p即 y o 2=px o -2p 2•中点M 轨迹方程y 2=px-2p当且仅当|y i |=|y 2|=2p 时,等号成立 评注:充分利用(1)的结论。