2020-2021九年级数学下期末模拟试卷含答案(2)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021九年级数学下期末模拟试卷含答案(2)
一、选择题
1.如图,在平面直角坐标中,正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比为13
,点A ,B ,E 在x 轴上,若正方形BEFG 的边长为12,则C 点坐标为( )
A .(6,4)
B .(6,2)
C .(4,4)
D .(8,4) 2.地球与月球的平均距离为384 000km ,将384 000这个数用科学记数法表示为( ) A .3.84×103 B .3.84×104 C .3.84×105 D .3.84×106
3.如图,若一次函数y =﹣2x +b 的图象与两坐标轴分别交于A ,B 两点,点A 的坐标为(0,3),则不等式﹣2x +b >0的解集为( )
A .x >32
B .x <32
C .x >3
D .x <3
4.下列命题正确的是( )
A .有一个角是直角的平行四边形是矩形
B .四条边相等的四边形是矩形
C .有一组邻边相等的平行四边形是矩形
D .对角线相等的四边形是矩形
5.下列命题中,其中正确命题的个数为( )个.
①方差是衡量一组数据波动大小的统计量;②影响超市进货决策的主要统计量是众数;③折线统计图反映一组数据的变化趋势;④水中捞月是必然事件.
A .1
B .2
C .3
D .4 6.若关于x 的一元二次方程()2110k x x -++=有两个实数根,则k 的取值范围是()
A .54k ≤
B .5
4k > C .5
14k k ≠<且 D .514
k k ≤≠且 7.下列计算正确的是( )
A .a 2•a=a 2
B .a 6÷a 2=a 3
C .a 2b ﹣2ba 2=﹣a 2b
D .(﹣32a )3=﹣398a
8.如图中的几何体是由一个圆柱和个长方体组成的,该几何体的俯视图是( )
A .
B .
C .
D .
9.如图,在平行四边形ABCD 中,M 、N 是BD 上两点,BM DN =,连接AM 、MC 、CN 、NA ,添加一个条件,使四边形AMCN 是矩形,这个条件是( )
A .12OM AC =
B .MB MO =
C .B
D AC ⊥ D .AMB CND ∠=∠ 10.如图,若锐角△ABC 内接于⊙O ,点D 在⊙O 外(与点C 在AB 同侧),则下列三个结论:①sin ∠C >sin ∠D ;②cos ∠C >cos ∠D ;③tan ∠C >tan ∠D 中,正确的结论为( )
A .①②
B .②③
C .①②③
D .①③ 11.黄金分割数512是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请51的值( ) A .在1.1和1.2之间 B .在1.2和1.3之间
C .在1.3和1.4之间
D .在1.4和1.5之间 12.已知实数a ,b ,若a >b ,则下列结论错误的是
A .a-7>b-7
B .6+a >b+6
C .55a
b > D .-3a >-3b
二、填空题
13.已知扇形的圆心角为120°,半径等于6,则用该扇形围成的圆锥的底面半径为_________.
14.如图:在△ABC 中,AB=13,BC=12,点D ,E 分别是AB ,BC 的中点,连接DE ,CD ,如果DE=2.5,那么△ACD 的周长是_____.
15.计算:2cos45°﹣(π+1)0+111()42
-+=______. 16.如图,一束平行太阳光线照射到正五边形上,则∠1= ______.
17.已知一组数据6,x ,3,3,5,1的众数是3和5,则这组数据的中位数是_____. 18.如图,矩形ABCD 中,AB=3,BC=4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点处,当△为直角三角形时,BE 的长为 .
19.分解因式:2x 2﹣18=_____.
20.二元一次方程组627
x y x y +=⎧⎨+=⎩的解为_____. 三、解答题
21.2x =600
答:甲公司有600人,乙公司有500人.
点睛:本题考查了分式方程的应用,关键是分析题意找出等量关系,通过设未知数并根据等量关系列出方程.
22.如图,抛物线y =ax 2+bx ﹣2与x 轴交于两点A (﹣1,0)和B (4,0),与Y 轴交于点C ,连接AC 、BC 、AB ,
(1)求抛物线的解析式;
(2)点D 是抛物线上一点,连接BD 、CD ,满足ABC 35DBC S S ∆=V ,求点D 的坐标; (3)点E 在线段AB 上(与A 、B 不重合),点F 在线段BC 上(与B 、C 不重合),是否存在以C 、E 、F 为顶点的三角形与△ABC 相似,若存在,请直接写出点F 的坐标,若不存在,请说明理由.
23.已知点A 在x 轴负半轴上,点B 在y 轴正半轴上,线段OB 的长是方程x 2﹣2x ﹣8=0
的解,tan ∠BAO=
12
. (1)求点A 的坐标; (2)点E 在y 轴负半轴上,直线EC ⊥AB ,交线段AB 于点C ,交x 轴于点D ,S △DOE =16.若反比例函数y=k x
的图象经过点C ,求k 的值; (3)在(2)条件下,点M 是DO 中点,点N ,P ,Q 在直线BD 或y 轴上,是否存在点P ,使四边形MNPQ 是矩形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.
24.两个全等的直角三角形 ABC 和 DEF 重叠在一起,其中∠A=60°,AC=1.固定△ABC 不动,将△DEF 进行如下操作:
(1)如图,△DEF 沿线段 AB 向右平移(即 D 点在线段 AB 内移动),连接 DC 、CF 、FB ,四边形 CDBF 的形状在不断的变化,但它的面积不变化,请求出其面积.
(2)如图,当 D 点移到 AB 的中点时,请你猜想四边形CDBF 的形状,并说明理由.
(3)如图,△DEF 的 D 点固定在 AB 的中点,然后绕 D 点按顺时针方向旋转△DEF,使DF 落在 AB 边上,此时 F 点恰好与 B 点重合,连接 AE,请你求出sinα的值.
25.先化简,再求代数式
35
(2)
242
a
a
a a
-
÷--
--
的值,其中a=tan60°﹣6sin30°.
26.甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.
甲公司方案:每月的养护费用y(元)与绿化面积x(平方米)是一次函数关系,如图所示.
乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500 元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元.
(1)求如图所示的y与x的函数解析式:(不要求写出定义域);
(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.A
解析:A
【解析】
【分析】
直接利用位似图形的性质结合相似比得出AD的长,进而得出△OAD∽△OBG,进而得出AO的长,即可得出答案.
【详解】
∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为1
3
,
∴
1
3 AD
BG
=,
∵BG=12,
∴AD=BC=4,
∵AD∥BG,
∴△OAD∽△OBG,
∴
1
3 OA OB
=
∴
0A1 4OA3
= +
解得:OA=2,
∴OB=6,
∴C点坐标为:(6,4),
故选A.
【点睛】
此题主要考查了位似变换以及相似三角形的判定与性质,正确得出AO的长是解题关键.2.C
解析:C
【解析】
试题分析:384 000=3.84×105.故选C.
考点:科学记数法—表示较大的数.
3.B
解析:B
【解析】
【分析】
根据点A的坐标找出b值,令一次函数解析式中y=0求出x值,从而找出点B的坐标,观察函数图象,找出在x轴上方的函数图象,由此即可得出结论.
【详解】
解:∵一次函数y=﹣2x+b的图象交y轴于点A(0,3),
∴b=3,
令y=﹣2x+3中y=0,则﹣2x+3=0,解得:x=3
2
,
∴点B(3
2
,0).
观察函数图象,发现:
当x<3
2
时,一次函数图象在x轴上方,
∴不等式﹣2x+b>0的解集为x<3
2
.
故选:B.
【点睛】
本题考查了一次函数与一元一次不等式,解题的关键是找出交点B的坐标.本题属于基础题,难度不大,解决该题型题目时,根据函数图象的上下位置关系解不等式是关键.4.A
解析:A
【解析】
【分析】
运用矩形的判定定理,即可快速确定答案.
【详解】
解:A.有一个角为直角的平行四边形是矩形满足判定条件;B四条边都相等的四边形是菱形,故B错误;C有一组邻边相等的平行四边形是菱形,故C错误;对角线相等且相互平分的四边形是矩形,则D错误;因此答案为A.
【点睛】
本题考查了矩形的判定,矩形的判定方法有:1.有三个角是直角的四边形是矩形;2.对角线互相平分且相等的四边形是矩形;3.有一个角为直角的平行四边形是矩形;4.对角线相等的平行四边形是矩形.
5.C
解析:C
【解析】
【分析】
利用方差的意义,众数的定义、折线图及随机事件分别判断后即可确定正确的选项.
【详解】
①方差是衡量一组数据波动大小的统计量,正确,是真命题;
②影响超市进货决策的主要统计量是众数,正确,是真命题;
③折线统计图反映一组数据的变化趋势,正确,是真命题;
④水中捞月是随机事件,故错误,是假命题,
真命题有3个,
故选C .
【点睛】
本题考查了命题与定理的知识,解题的关键是了解方差的意义,众数的定义、折线图及随机事件等知识,难度不大.
6.D
解析:D
【解析】
【分析】
运用根的判别式和一元二次方程的定义,组成不等式组即可解答
【详解】
解:∵关于x 的一元二次方程(k ﹣1)x 2+x +1=0有两个实数根,
∴210=1-41)10k k -⎧⎨∆⨯
-⨯≥⎩≠( , 解得:k ≤54
且k ≠1. 故选:D .
【点睛】
此题考查根的判别式和一元二次方程的定义,掌握根的情况与判别式的关系是解题关键
7.C
解析:C
【解析】
【分析】
根据同底数幂的乘法运算可判断A ;根据同底数幂的除法运算可判断B ;根据合并同类项可判断选项C ;根据分式的乘方可判断选项D.
【详解】
A 、原式=a 3,不符合题意;
B 、原式=a 4,不符合题意;
C 、原式=-a 2b ,符合题意;
D 、原式=-
278a
,不符合题意, 故选C .
【点睛】
此题考查了分式的乘除法,合并同类项,以及同底数幂的乘除法,熟练掌握运算法则是解本题的关键. 8.D
解析:D
【解析】
【分析】
根据从上边看得到的图形是俯视图,可得答案.
【详解】
解:从上边看是一个圆形,圆形内部是一个虚线的正方形.
故选:D .
【点睛】
本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.
9.A
解析:A
【解析】
【分析】
由平行四边形的性质可知:OA OC =,OB OD =,再证明OM ON =即可证明四边形AMCN 是平行四边形.
【详解】
∵四边形ABCD 是平行四边形,
∴OA OC =,OB OD =,
∵对角线BD 上的两点M 、N 满足BM DN =,
∴OB BM OD DN -=-,即OM ON =,
∴四边形AMCN 是平行四边形, ∵12
OM AC =, ∴MN AC =,
∴四边形AMCN 是矩形.
故选:A .
【点睛】
本题考查了矩形的判定,平行四边形的判定与性质,解题的关键是灵活运用所学知识解决问题.
10.D
解析:D
【解析】
如图,连接BE ,
根据圆周角定理,可得∠C=∠AEB ,
∵∠AEB=∠D+∠DBE ,
∴∠AEB>∠D ,
∴∠C>∠D ,
根据锐角三角形函数的增减性,可得,
sin ∠C>sin ∠D ,故①正确;
cos ∠C<cos ∠D ,故②错误;
tan ∠C>tan ∠D ,故③正确;
故选D .
11.B
解析:B
【解析】
【分析】
根据4.84<5<5.29,可得答案.
【详解】
∵4.84<5<5.29,
∴,
∴,
故选B .
【点睛】
是解题关键.
12.D
解析:D
【解析】
A.∵a >b ,∴a-7>b-7,∴选项A 正确;
B.∵a >b ,∴6+a >b+6,∴选项B 正确;
C.∵a >b ,∴55
a b >,∴选项C 正确;
D.∵a >b ,∴-3a <-3b ,∴选项D 错误.
故选D. 二、填空题
13.2【解析】分析:利用圆锥的底面周长等于侧面展开图的扇形弧长列出方程进行计算即可详解:扇形的圆心角是120°半径为6则扇形的弧长是:=4π所以圆锥的底面周长等于侧面展开图的扇形弧长是4π设圆锥的底面半
解析:2
【解析】
分析:利用圆锥的底面周长等于侧面展开图的扇形弧长,列出方程进行计算即可. 详解:扇形的圆心角是120°,半径为6, 则扇形的弧长是:1206180
π⋅=4π, 所以圆锥的底面周长等于侧面展开图的扇形弧长是4π,
设圆锥的底面半径是r,
则2πr=4π,
解得:r=2.
所以圆锥的底面半径是2.
故答案为2.
点睛:本题考查了弧长计算公式及圆锥的相关知识.理解圆锥的底面周长等于侧面展开图的扇形弧长是解题的关键.
14.18【解析】【分析】根据三角形中位线定理得到AC=2DE=5AC∥DE根据勾股定理的逆定理得到∠ACB=90°根据线段垂直平分线的性质得到DC=BD根据三角形的周长公式计算即可【详解】∵DE分别是A
解析:18
【解析】
【分析】
根据三角形中位线定理得到AC=2DE=5,AC∥DE,根据勾股定理的逆定理得到
∠ACB=90°,根据线段垂直平分线的性质得到DC=BD,根据三角形的周长公式计算即可.
【详解】
∵D,E分别是AB,BC的中点,
∴AC=2DE=5,AC∥DE,
AC2+BC2=52+122=169,
AB2=132=169,
∴AC2+BC2=AB2,
∴∠ACB=90°,
∵AC∥DE,
∴∠DEB=90°,又∵E是BC的中点,
∴直线DE是线段BC的垂直平分线,
∴DC=BD,
∴△ACD的周长=AC+AD+CD=AC+AD+BD=AC+AB=18,
故答案为18.
【点睛】
本题考查的是三角形中位线定理、线段垂直平分线的判定和性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.
15.【解析】解:原式==故答案为:
3
2
.
【解析】
解:原式=
1
212
22
⨯-++
3
2
3
2
.
16.30°【解析】【分析】【详解】解:∵AB//CD∴∠BAC+∠ACD=180°即∠1+
∠EAC+∠ACD=180°∵五边形是正五边形∴∠EAC=108°∵∠ACD=42°∴∠1=180°-42°-1
解析:30°.
【解析】
【分析】
【详解】
解:∵AB//CD,∴∠BAC+∠ACD=180°,即∠1+∠EAC+∠ACD=180°,
∵五边形是正五边形,∴∠EAC=108°,
∵∠ACD=42°,∴∠1=180°-42°-108°=30°
故答案为:30°.
17.4【解析】【分析】先根据众数的定义求出x=5再根据中位数的定义进行求解即可得【详解】∵数据6x3351的众数是3和5∴x=5则这组数据为133556∴这组数据的中位数为=4故答案为:4【点睛】本题主
解析:4
【解析】
【分析】先根据众数的定义求出x=5,再根据中位数的定义进行求解即可得.
【详解】∵数据6,x,3,3,5,1的众数是3和5,
∴x=5,
则这组数据为1、3、3、5、5、6,
∴这组数据的中位数为35
2
=4,
故答案为:4.
【点睛】本题主要考查众数和中位数,熟练掌握众数和中位数的定义以及求解方法是解题的关键.
18.3或32【解析】【分析】当△CEB′为直角三角形时有两种情况:①当点B′落在矩形内部时如答图1所示连结AC先利用勾股定理计算出AC=5根据折叠的性质得∠AB′E=∠B=90°而当△CEB′为直角三角
解析:3或.
【解析】
【分析】
当△CEB′为直角三角形时,有两种情况:
①当点B′落在矩形内部时,如答图1所示.
连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当
△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.
②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.
【详解】
当△CEB′为直角三角形时,有两种情况:
①当点B′落在矩形内部时,如答图1所示.
连结AC,
在Rt△ABC中,AB=3,BC=4,
∴AC==5,
∵∠B沿AE折叠,使点B落在点B′处,
∴∠AB′E=∠B=90°,
当△CEB′为直角三角形时,只能得到∠EB′C=90°,
∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,
∴EB=EB′,AB=AB′=3,
∴CB′=5-3=2,
设BE=x,则EB′=x,CE=4-x,
在Rt△CEB′中,
∵EB′2+CB′2=CE2,
∴x2+22=(4-x)2,解得,
∴BE=;
②当点B′落在AD边上时,如答图2所示.
此时ABEB′为正方形,∴BE=AB=3.
综上所述,BE的长为或3.
故答案为:或3.
19.2(x+3)(x﹣3)【解析】【分析】原式提取2再利用平方差公式分解即可【详解】原式=2(x2﹣9)=2(x+3)(x﹣3)故答案为:2(x+3)(x﹣3)【点睛】此题考查了提公因式法与公式法的综合
解析:2(x +3)(x ﹣3)
【解析】
【分析】
原式提取2,再利用平方差公式分解即可.
【详解】
原式=2(x 2﹣9)=2(x +3)(x ﹣3),
故答案为:2(x +3)(x ﹣3)
【点睛】
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
20.【解析】【分析】由加减消元法或代入消元法都可求解【详解】②﹣①得③将③代入①得∴故答案为:【点睛】本题考查的是二元一次方程组的基本解法本题属于基础题比较简单
解析:15x y =⎧⎨=⎩
【解析】
【分析】
由加减消元法或代入消元法都可求解.
【详解】
627x y x y +=⎧⎨+=⎩①②
, ②﹣①得1x =③
将③代入①得5y =
∴15x y =⎧⎨=⎩
故答案为:15x y =⎧⎨
=⎩ 【点睛】
本题考查的是二元一次方程组的基本解法,本题属于基础题,比较简单.
三、解答题
21.无
22.(1)213y x x 222=--;(2)D
的坐标为2⎛ ⎝⎭
,2⎛ ⎝⎭
,(1,﹣3)或(3,﹣2).(3)存在,F 的坐标为48,55⎛⎫- ⎪⎝⎭,(2,﹣1)或53,24⎛⎫- ⎪⎝⎭
.
【解析】
【分析】
(1)根据点A ,B 的坐标,利用待定系数法可求出抛物线的解析式;
(2)利用二次函数图象上点的坐标特征可求出点C 的坐标,结合点A ,B 的坐标可得出AB ,AC ,BC 的长度,由AC 2+BC 2=25=AB 2
可得出∠ACB=90°,过点D 作DM ∥BC,交x 轴于点M ,这样的M 有两个,分别记为M 1,M 2,由D 1M 1∥BC 可得出△AD 1M 1∽△ACB,利用相似
三角形的性质结合S △DBC =35S ABC ∆ ,可得出AM 1的长度,进而可得出点M 1的坐标,由BM 1=BM 2可得出点M 2的坐标,由点B ,C 的坐标利用待定系数法可求出直线BC 的解析式,进而可得出直线D 1M 1,D 2M 2的解析式,联立直线DM 和抛物线的解析式成方程组,通过解方程组即可求出点D 的坐标;
(3)分点E 与点O 重合及点E 与点O 不重合两种情况考虑:①当点E 与点O 重合时,过点O 作OF 1⊥BC 于点F 1,则△COF 1∽△ABC,由点A ,C 的坐标利用待定系数法可求出直线AC 的解析式,进而可得出直线OF 1的解析式,联立直线OF 1和直线BC 的解析式成方程组,通过解方程组可求出点F 1的坐标;②当点E 不和点O 重合时,在线段AB 上取点E ,使得EB =EC ,过点E 作EF 2⊥BC 于点F 2,过点E 作EF 3⊥CE,交直线BC 于点F 3,则
△CEF 2∽△BAC∽△CF 3E .由EC =EB 利用等腰三角形的性质可得出点F 2为线段BC 的中点,进而可得出点F 2的坐标;利用相似三角形的性质可求出CF 3的长度,设点F 3的坐标为(x ,12
x ﹣2),结合点C 的坐标可得出关于x 的方程,解之即可得出x 的值,将其正值代入点F 3的坐标中即可得出结论.综上,此题得解.
【详解】
(1)将A (﹣1,0),B (4,0)代入y =ax 2+bx ﹣2,得:
2016420a b a b --=⎧⎨+-=⎩ ,解得:123
2
a b ⎧=⎪⎪⎨⎪=-⎪⎩, ∴抛物线的解析式为y =
12 x 2﹣32x ﹣2. (2)当x =0时,y =12
x 2﹣32x ﹣2=﹣2, ∴点C 的坐标为(0,﹣2).
∵点A 的坐标为(﹣1,0),点B 的坐标为(4,0),
,BC
=
AB =5.
∵AC 2+BC 2=25=AB 2,
∴∠ACB=90°.
过点D 作DM∥BC,交x 轴于点M ,这样的M 有两个,分别记为M 1,M 2,如图1所示. ∵D 1M 1∥BC,
∴△AD 1M 1∽△ACB.
∵S △DBC =35
S ABC ∆, ∴125
AM AB =, ∴AM 1=2,
∴点M 1的坐标为(1,0),
∴BM 1=BM 2=3,
∴点M 2的坐标为(7,0).
设直线BC 的解析式为y =kx+c (k≠0),
将B (4,0),C (0,﹣2)代入y =kx+c ,得:
402k c c +=⎧⎨=-⎩ ,解得:122
k c ⎧=⎪⎨⎪=-⎩ , ∴直线BC 的解析式为y =12
x ﹣2. ∵D 1M 1∥BC∥D 2M 2,点M 1的坐标为(1,0),点M 2的坐标为(7,0), ∴直线D 1M 1的解析式为y =12 x ﹣12 ,直线D 2M 2的解析式为y =12
x ﹣72. 联立直线DM 和抛物线的解析式成方程组,得:2112213222y x y x x ⎧=-⎪⎪⎨⎪=--⎪⎩
或2172213222y x y x x ⎧=-⎪⎪⎨⎪=--⎪⎩,
解得:112x y ⎧=⎪⎨=⎪⎩
,222x y ⎧=⎪⎨=⎪⎩3313x y =⎧⎨=-⎩ ,4432x y =⎧⎨=-⎩, ∴点D 的坐标为(2
),(
),(1,﹣3)或(3,﹣2). (3)分两种情况考虑,如图2所示.
①当点E 与点O 重合时,过点O 作OF 1⊥BC 于点F 1,则△COF 1∽△ABC,
设直线AC 的解析设为y =mx+n (m≠0),
将A (﹣1,0),C (0,﹣2)代入y =mx+n ,得:
-02m n n +=⎧⎨=-⎩ ,解得:22
m n =-⎧⎨=-⎩ , ∴直线AC 的解析式为y =﹣2x ﹣2.
∵AC⊥BC,OF 1⊥BC,
∴直线OF 1的解析式为y =﹣2x .
连接直线OF 1和直线BC 的解析式成方程组,得:2122
y x y x =-⎧⎪⎨=-⎪⎩ ,
解得:
4
5
8
5
x
y
⎧
=
⎪⎪
⎨
⎪=
⎪⎩
,
∴点F1的坐标为(4 5
,﹣
8
5
);
②当点E不和点O重合时,在线段AB上取点E,使得EB=EC,过点E作EF2⊥BC于点F2,过点E作EF3⊥CE,交直线BC于点F3,则△CEF2∽△BAC∽△CF3E.
∵EC=EB,EF2⊥BC于点F2,
∴点F2为线段BC的中点,
∴点F2的坐标为(2,﹣1);
∵BC=25,
∴CF2=
1
2
BC=5,EF2=
1
2
CF2=
5
2
,F2F3=
1
2
EF2=
5
,
∴CF3=
55
4
.
设点F3的坐标为(x,
1
2
x﹣2),
∵CF3=
55
4
,点C的坐标为(0,﹣2),
∴x2+[
1
2
x﹣2﹣(﹣2)]2=
125
16
,
解得:x1=﹣
5
2
(舍去),x2=
5
2
,
∴点F3的坐标为(
5
2
,﹣
3
4
).
综上所述:存在以C、E、F为顶点的三角形与△ABC相似,点F的坐标为(
4
5
,﹣
8
5
),(2,﹣1)或(
5
2
,﹣
3
4
).
【点睛】
本题考查了待定系数法求二次函数解析式、二次函数图象上点的坐标特征、勾股定理的逆定理、待定系数法求一次函数解析式、一次函数图象上点的坐标特征、平行线的性质、相似三角形的性质以及两点间的距离公式,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)找出过点D且与直线BC平行的直线的解析式;(3)分点E与点O重合及点E与点O不重合两种情况,利用相似三角形的性质及等腰三角形的性质求出点F的坐标.
23.(1)(-8,0)(2)k=-192
25
(3)(﹣1,3)或(0,2)或(0,6)或(2,6)
【解析】
【分析】
(1)解方程求出OB的长,解直角三角形求出OA即可解决问题;(2)求出直线DE、AB的解析式,构建方程组求出点C坐标即可;(3)分四种情形分别求解即可解决问题;
【详解】
解:(1)∵线段OB的长是方程x2﹣2x﹣8=0的解,
∴OB=4,
在Rt△AOB中,tan∠BAO=
1
2 OB
OA
=,
∴OA=8,
∴A(﹣8,0).
(2)∵EC⊥AB,
∴∠ACD=∠AOB=∠DOE=90°,
∴∠OAB+∠ADC=90°,∠DEO+∠ODE=90°,∵∠ADC=∠ODE,
∴∠OAB=∠DEO,
∴△AOB∽△EOD,
∴OA OB OE OD
=,
∴OE:OD=OA:OB=2,设OD=m,则OE=2m,
∵1
2
•m•2m=16,
∴m=4或﹣4(舍弃),
∴D(﹣4,0),E(0,﹣8),
∴直线DE的解析式为y=﹣2x﹣8,∵A(﹣8,0),B(0,4),
∴直线AB的解析式为y=1
2
x+4,
由
28
1
4
2
y x
y x
--
⎧
⎪
⎨
+
⎪⎩
=
=
,解得
24
5
8
5
x
y
⎧
-
⎪⎪
⎨
⎪
⎪⎩
=
=
,
∴C(
24
5
-,
8
5
),
∵若反比例函数y=k
x
的图象经过点C,
∴k=﹣192 25
.
(3)如图1中,当四边形MNPQ是矩形时,∵OD=OB=4,
∴∠OBD=∠ODB=45°,
∴∠PNB=∠ONM=45°,
∴OM=DM=ON=2,
∴BN=2,PB=PN=2,
∴P(﹣1,3).
如图2中,当四边形MNPQ是矩形时(点N与原点重合),易证△DMQ是等腰直角三角形,OP=MQ=DM=2,P(0,2);
如图3中,当四边形MNPQ是矩形时,设PM交BD于R,易知R(﹣1,3),可得P (0,6)
如图4中,当四边形MNPQ是矩形时,设PM交y轴于R,易知PR=MR,可得P(2,6).
综上所述,满足条件的点P坐标为(﹣1,3)或(0,2)或(0,6)或(2,6);
【点睛】
考查反比例函数综合题、一次函数的应用、矩形的判定和性质、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.
24.(1)过点C作CG⊥AB于G
在Rt△ACG中∵∠A=60°
∴sin60°=∴……………1分
在Rt△ABC中∠ACB=90°∠ABC=30°
∴AB=2 …………………………………………2分
∴………3分
(2)菱形………………………………………4分
∵D是AB的中点∴AD=DB=CF=1
在Rt△ABC中,CD是斜边中线∴CD=1……5分
同理 BF=1 ∴CD=DB=BF=CF
∴四边形CDBF是菱形…………………………6分
(3)在Rt△ABE中
∴……………………………7分
过点D作DH⊥AE 垂足为H
则△ADH∽△AEB ∴
即∴ DH=……8分
在Rt△DHE中
sinα==…=…………………9分
【解析】
(1)根据平移的性质得到AD=BE,再结合两条平行线间的距离相等,则三角形ACD的面积等于三角形BEF的面积,所以要求的梯形的面积等于三角形ABC的面积.根据60度的直角三角形ABC中AC=1,即可求得BC的长,从而求得其面积;
(2)根据直角三角形斜边上的中线等于斜边的一半和平移的性质,即可得到该四边形的四条边都相等,则它是一个菱形;
(3)过D点作DH⊥AE于H,可以把要求的角构造到直角三角形中,根据三角形ADE的面积的不同计算方法,可以求得DH的长,进而求解.
25.﹣
3
6
.
【解析】
【分析】
原式括号中两项通分并利用同分母分式的减法法则计算,再利用除法法则变形,约分得到最简结果,利用特殊角的三角函数值求出a 的值,代入计算即可求出值.
【详解】
原式()()()5223,222
a a a a a -+--=÷-- ()()()32,2233a a a a a --=-
⋅-+- 1,26
a =-+
当a =tan60°﹣6sin303时,原式
== 【点睛】 此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.
26.(1)y=5x+400.(2)乙.
【解析】
试题分析:(1)利用待定系数法即可解决问题;
(2)绿化面积是1200平方米时,求出两家的费用即可判断;
试题解析:(1)设y=kx+b ,则有400100900b k b =⎧⎨
+=⎩ ,解得5400k b =⎧⎨=⎩ , ∴y=5x+400.
(2)绿化面积是1200平方米时,甲公司的费用为6400元,乙公司的费用为
5500+4×200=6300元,
∵6300<6400
∴选择乙公司的服务,每月的绿化养护费用较少.。