非线性流形降维方法结合近红外光谱技术快速鉴别不同海拔的茶叶

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. College of Engineering, Jiangxi Agricultural University, Nanchang 330045, China; 2. Sericulture and Tea Research Institute of Jiangxi Province, Nanchang 330203, China; 3. College of Software, Jiangxi Agricultural University, Nanchang 330045, China
方面 LE 方法好于 LLE 方法。模型性能表明,LE_LSSVM 模型性能最佳,预测集总体判别率、Kappa 系数分
别为 100%和 1.00;相比于 PCA_LSSVM、KPCA_LSSVM 和 LLE_LSSVM,模型预测集总体判别率分别提高
1.7%、1.7%、3.3%;Kappa 系数分别提高 0.025、0.03、0.05。研究表明,LE 等非线性流形学习降维方法在近
作者简介:刘鹏,男,硕士研究生,主要从事农产品质量安全检测与模式识别方面的研究。*通信作者:aisrong@
716
茶叶科学
39 卷
altitude based on different dimensional reduction methods and least squares support vector machine (LSSVM) algorithm. Visualization of different dimensionality reduction results show that data processed by KPCA and PCA methods were more discrete. In particular, there were more overlaps between 400-800 m and 800-1 200 m samples. However, the same kind of sample points could be gathered well in three-dimensional space by the nonlinear manifold dimensionality reduction methods can. Tea at different altitude could be easily separated and the aggregation effect of the LE was better than that of the LLE. The results of models indicate the LE_LSSVM model had the best performance, with the prediction set accuracy and Kappa value of 100% and 1.00 respectively. Compared with PCA_LSSVM, KPCA_LSSVM and LLE_LSSVM models, the accuracy of prediction set was improved by 1.7%, 1.7%, 3.3% and Kappa values increased by 0.025, 0.03, and 0.05. The results show that LE and other nonlinear manifold dimensionality reduction methods were effective in reducing dimension of near infrared spectral data, simplifying model complexity, and improving model precision. The study provides a new means for rapid detecting for tea quality research. Keywords: tea, near infrared spectroscopy, nonlinear manifold dimensionality reduction methods, laplacian eigenmaps
for Quick Discrimination of Tea at Different Altitude
by Near Infrared Spectroscopy
LIU Peng1, AI Shirong3, YANG Puxiang2, LI Wenjin2, XIONG Aihua1, TONG Yang3, HU Xiao3, WU Ruimei1*
茶叶科学 2019,39(6):715~722 Journal of Tea Science
投稿平台:
非线性流形降维方法结合近红外光谱技术 快速鉴别不同海拔的茶叶
刘鹏 1,艾施荣 3,杨普香 2,李文金 2,熊爱华 1,童阳 3,胡潇 3,吴瑞梅 1*
红外光谱数据降维、简化模型复杂度、提高模型精度方面效果很好,为茶叶品质快速检测方法研究提供了一种
新思路。
关键词:茶叶;近红外光谱;非线性流形降维方法;拉普拉斯特征映射
中图分类号:S517.1
文献标识码:A
文章编号:1000-369X(2019)06-715-08
Nonlinear Manifold Dimensionality Reduction Methods
及线性(PCA)降维方法比较,建立不同海拔茶叶品质的近红外光谱 LSSVM 鉴别模型。不同降维方法可视化
结果表明,KPCA 和 PCA 方法的数据点离散性较大,400~800 m 和 800~1 200 m 的样本点重叠较多,而非线性
流形学习方法能将同一类样本点在三维空间很好地聚集在一起,不同海拔的茶叶能较好地区分开,且聚集效果
收稿日期:2018-10-19Biblioteka 修订日期:2019-06-12
基 金 项 目 : 国 家 自 然 科 学 基 金 项 目 ( 31460315 )、 江 西 省 重 点 研 发 计 划 项 目 ( 20171ACF60004 )、 江 西 省 现 代 农 业 产 业 技 术 体 系 专
项资金(JXARS-02)
Abstract: In order to improve the accuracy of near infrared (NIR) spectroscopy identification methods for tea at different altitude, the non-linear manifold dimensionality reduction methods of locally linear embedding (LLE) and laplacian eigenmaps (LE) were used to reduce the dimension of NIR spectral data, and compared with non-linear (KPCA) and linear (PCA) dimensional reduction methods. Discrimination models were established for tea at different
1. 江西农业大学工学院,江西 南昌 330045;2. 江西省蚕桑茶叶研究所,江西 南昌 330203; 3. 江西农业大学软件学院,江西 南昌 330045
摘要:为提高不同海拔茶叶品质近红外光谱技术鉴别方法的精度,提出采用局部线性嵌入法(LLE)和拉普拉
斯特征映射法(LE)非线性流形学习方法对近红外光谱数据进行降维处理,并与基于核函数的非线性(KPCA)
相关文档
最新文档