高二数学同步测试:圆锥曲线综合

合集下载

高二数学综合训练题一圆锥曲线 (更新)

高二数学综合训练题一圆锥曲线 (更新)

圆锥曲线综合训练题一选择题:每小题5分,共60分1.椭圆221259xy+=上有一点P 到左准线的距离是5,则点P 到右焦点的距离是( ) A .4 B .5 C .6 D .72. 3k >是方裎22131xyk k +=--表示双曲线的( )条件。

A .充分但不必要B .充要C .必要但不充分D .既不充分也不必要3.抛物线24(0)y ax a =<的焦点坐标是( ) A . 1(,0)4aB . 1(0,)16aC . 1(0,)16a-D . 1(,0)16a4.过点(0,2)与抛物线28y x =只有一个公共点的直线有( ) A .1条 B .2条 C .3条 D .无数多条5.设12,F F 为双曲线2214xy -=的两个焦点,点P 在双曲线上,且满足120PF PF ⋅=,则12F P F ∆的面积是( ) A .1 B .C .D .26.椭圆221m x ny +=与直线10x y +-=相交于,A B 两点,过A B 中点M 与坐标原点的直线的斜率为2,则m n的值为( )A .2B .3C .1D .27.过抛物线24y x =的焦点作直线交抛物线于1122(,),(,)A x y B x y 两点,若12y y +=则A B 的值为( ) A .6 B .8 C .10 D .128. 直线143x y+=与椭圆221169xy+=相交于A 、B 两点,该椭圆上点P 使P A B ∆的面积等于6,这样的点P 共有( ) A .1个 B .2个 C .3个 D .4个9.直线l 是双曲线22221(0,0)xya b a b-=>>的右准线,以原点为圆心且过双曲线的焦点的圆,被直线l 分成弧长为2:1的两段圆弧,则该双曲线的离心率是 ( )A .B .C .D . 10.E 、F 是椭圆22142xy+=的左、右焦点, l 是椭圆的一条准线,点P 在l 上, 则E P F ∠的最大值是( ) A . 15B . 30C . 45D . 6011. 1F 、2F 为椭圆的两个焦点,Q 为椭圆上任一点,从任一焦点向12F Q F ∆的顶点Q 的外 角平分线引垂线,垂足为P , 则P 点轨迹是( )A .圆B .椭圆C .双曲线D .抛物线 12.A 、B 分别是椭圆22221x y ab+=的左、右顶点, F 是右焦点,P 是异于A 、B 的一点,直线AP 与BP 分别交右准线于M 、N, 则 M F N ∠= ( ) A . 60 B . 75 C . 90 D . 120二填空题:本大题共4小题;每小题4分,共16分,把答案填在题中的横线上. 13.设(,)P x y 是椭圆22194xy+=上的一点,则2x y -的最大值是14.抛物线24y x =的经过焦点弦的中点轨迹方程是15.x m =+无解,则实数m 的取值范围是16.抛物线C :28y x =,一直线:(2)l y k x =-与抛物线C 相交于A 、B 两点,设,m AB = 则m 的取值范围是三解答题:本大题共6小题,共74分。

高二数学圆锥曲线综合测试题(选修1-1&2-1)含答案!

高二数学圆锥曲线综合测试题(选修1-1&2-1)含答案!

高二数学圆锥曲线综合测试题(选修1-1&2-1)(考试时间:120分钟,共150分)说明:本试题分有试卷Ⅰ和试卷Ⅱ,试卷Ⅰ分值为36分,试卷Ⅱ分值为64分。

第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.抛物线y 2=ax (a ≠0)的焦点到其准线的距离是 ( ) A.|a |4 B.|a |2 C .|a | D .-a 22.过点A (4,a )与B (5,b )的直线与直线y =x +m 平行,则|AB |= ( )A .6 B.2 C .2 D .不确定3.已知双曲线x 24-y 212=1的离心率为e ,抛物线x =2py 2的焦点为(e,0),则p 的值为( )A .2B .1 C.14 D.1164.若直线ax +2by -2=0(a >0,b >0)始终平分圆x 2+y 2-4x -2y -8=0的周长,则1a +2b的最小值为 ( ) A .1 B .5 C .4 2 D .3+2 2 5.若双曲线x 2a2-y 2=1的一个焦点为(2,0),则它的离心率为 ( )A.255B.32C.233D .26.△ABC 的顶点A (-5,0),B (5,0),△ABC 的内切圆圆心在直线x =3上,则顶点C 的轨迹方程是 ( )A.x 29-y 216=1B.x 216-y 29=1 C.x 29-y 216=1(x >3) D.x 216-y 29=1(x >4)7.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =5e5x (e 为双曲线离心率),则有( )A .b =2aB .b =5aC .a =2bD .a =5b8.抛物线y =-4x 2上的一点M 到焦点的距离为1,则点M 的纵坐标是 ( )A.1716B.1516 C .-1516 D .-17169.已知点A 、B 是双曲线x 2-y 22=1上的两点,O 为坐标原点,且满足OA ·OB =0,则点O 到直线AB 的距离等于 ( ) A. 2 B.3 C .2 D .2 210.(2009·全国卷Ⅱ)双曲线x 26-y 23=1的渐近线与圆(x -3)2+y 2=r 2(r >0)相切,则r =( )A. 3 B .2 C .3 D .611.(2009·四川高考)已知双曲线x 22-y 2b 2=1(b >0)的左、右焦点分别为F 1、F 2,其一条渐近线方程为y=x ,点P (3,y 0)在该双曲线上,则1PF ·2PF = ( ) A .-12 B .-2 C .0 D .412.(2009·天津高考)设抛物线y 2=2x 的焦点为F ,过点M (3,0)的直线与抛物线相交于A 、B 两点,与抛物线的准线相交于点C ,|BF |=2,则△BCF 与△ACF 的面积之比S △BCF S △ACF = ( )A.45B.23C.47D.12第Ⅰ卷二、填空题(本大题共4小题,每小题4分,共16分.请把正确答案填在题中横线上)13.已知点(x 0,y 0)在直线ax +by =0(a ,b 为常数)上,则(x 0-a )2+(y 0-b )2的最小值为________. 14.(2009·福建高考)过抛物线y 2=2px (p >0)的焦点F 作倾斜角为45°的直线交抛物线于A 、B 两点,若线段AB 的长为8,则p =________.15.直线l 的方程为y =x +3,在l 上任取一点P ,若过点P 且以双曲线12x 2-4y 2=3的焦点为椭圆的焦点作椭圆,那么具有最短长轴的椭圆方程为______________.16.过抛物线y 2=2px (p >0)的焦点F 的直线l 与抛物线在第一象限的交点为A ,与抛物线准线的交点为B ,点A 在抛物线准线上的射影为C ,若AF =FB ,BA ·BC =48,则抛物线的方程为______________.三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤) 17.(本小题满分12分)已知:圆C:x2+y2-8y+12=0,直线l:ax+y+2a=0.(1)当a为何值时,直线l与圆C相切;(2)当直线l与圆C相交于A、B两点,且AB=22时,求直线l的方程.18.(本小题满分12分)过点P(2,4)作两条互相垂直的直线l1、l2,若l1交x轴于A点,l2交y轴于B 点,求线段AB的中点M的轨迹方程.19.(本小题满分12分)(2010·南通模拟)已知动圆过定点F (0,2),且与定直线L :y =-2相切.(1)求动圆圆心的轨迹C 的方程;(2)若AB 是轨迹C 的动弦,且AB 过F (0,2),分别以A 、B 为切点作轨迹C 的切线,设两切线交点为Q ,证明:AQ ⊥BQ .20.[理](本小题满分12分)给定抛物线C :y 2=4x ,F 是C 的焦点,过点F 的直线l 与C 相交于A ,B 两点,记O 为坐标原点.(1)求OA ·OB 的值; (2)设AF =λFB ,当△OAB 的面积S ∈[2, 5 ]时,求λ的取值范围.20.[文](本小题满分12分)已知圆(x -2)2+(y -1)2=203,椭圆b 2x 2+a 2y 2=a 2b 2(a >b >0)的离心率为22,若圆与椭圆相交于A 、B ,且线段AB 是圆的直径,求椭圆的方程.21.(本小题满分12分)已知A 、B 、D 三点不在一条直线上,且A (-2,0),B (2,0),|AD |=2,AE =12(AB +AD ). (1)求E 点的轨迹方程;(2)过A 作直线交以A 、B 为焦点的椭圆于M ,N 两点,线段MN 的中点到y 轴的距离为45,且直线MN 与E 点的轨迹相切,求椭圆的方程.22.[理](本小题满分14分)(2010·东北四市模拟)已知O 为坐标原点,点A 、B 分别在x 轴,y 轴上运动,且|AB |=8,动点P 满足AP =35PB ,设点P 的轨迹为曲线C ,定点为M (4,0),直线PM交曲线C 于另外一点Q . (1)求曲线C 的方程; (2)求△OPQ 面积的最大值.[文](本小题满分14分)设椭圆ax 2+by 2=1与直线x +y -1=0相交于A 、B 两点,点C 是AB 的中点,若|AB |=22,OC 的斜率为22,求椭圆的方程.高二数学圆锥曲线章节测试题(选修1-1&2-1)答案与解析:1、解析:由已知焦点到准线的距离为p =|a |2.答案:B2、解析:由题知b -a5-4=1,∴b -a =1.∴|AB |=(5-4)2+(b -a )2= 2.答案:B3、解析:依题意得e =2,抛物线方程为y 2=12p x ,故18p =2,得p =116.答案:D4、解析:由(x -2)2+(y -1)2=13,得圆心(2,1), ∵直线平分圆的周长,即直线过圆心. ∴a +b =1.∴1a +2b =(1a +2b )(a +b )=3+b a +2ab ≥3+22, 当且仅当b a =2ab ,即a =2-1,b =2-2时取等号,∴1a +2b 的最小值为3+2 2. 答案:D5、解析:由a 2+1=4,∴a =3, ∴e =23=233.答案:C6、解析:如图|AD |=|AE |=8,|BF |=|BE |=2,|CD |=|CF |, 所以|CA |-|CB |=8-2=6.根据双曲线定义,所求轨迹是以A 、B 为焦点,实轴长为6的双曲线的右支,方程为x 29-y 216=1(x>3). 答案:C7、解析:由已知b a =55e ,∴b a =55×ca ,∴c =5b ,又a 2+b 2=c 2, ∴a 2+b 2=5b 2,∴a =2b . 答案:C8、解析:准线方程为y =116,由定义知116-y M =1⇒y M =-1516.答案:C9、解析:本题是关于圆锥曲线中的点到线的距离问题,由OA ·OB =0⇒OA ⊥OB ,由于双曲线为中心对称图形,为此可考查特殊情况,令点A 为直线y =x 与双曲线在第一象限的交点,因此点B 为直线y =-x 与双曲线在第四象限的一个交点,因此直线AB 与x 轴垂直,点O 到AB 的距离就为点A 或点B 的横坐标的值,由⎩⎪⎨⎪⎧x 2-y 22=1y =x ⇒x = 2.答案:A10、解析:双曲线的渐近线方程为y =±12x 即x ±2y =0,圆心(3,0)到直线的距离d =|3|(2)2+1= 3. 答案:A11、解析:由渐近线方程y =x 得b =2, 点P (3,y 0)代入x 22-y 2b 2=1中得y 0=±1.不妨设P (3,1),∵F 1(2,0),F 2(-2,0), ∴1PF ·2PF =(2-3,-1)·(-2-3,-1) =3-4+1=0. 答案:C12、解析:如图过A 、B 作准线l :x =-12的垂线,垂足分别为A 1,B 1, 由于F 到直线AB 的距离为定值.∴S △BCF S △ACF =|BC ||CA |. 又∵△B 1BC ∽△A 1AC . ∴|BC ||CA |=|BB 1||AA 1|, 由拋物线定义|BB 1||AA 1|=|BF ||AF |=2|AF |.由|BF |=|BB 1|=2知x B =32,y B =-3,∴AB :y -0=33-32(x -3).把x =y 22代入上式,求得y A =2,x A =2,∴|AF |=|AA 1|=52.故S △BCF S △ACF =|BF ||AF |=252=45. 答案:A 13、解析:(x 0-a )2+(y 0-b )2可看作点(x 0,y 0)与点(a ,b )的距离.而点(x 0,y 0)在直线ax +by =0上,所以(x 0-a )2+(y 0-b )2的最小值为点(a ,b )到直线ax +by =0的距离|a ·a +b ·b |a 2+b 2=a 2+b 2. 答案:a 2+b 2 解析:由焦点弦|AB |=2p sin 2α得|AB |=2psin 245°, ∴2p =|AB |×12,∴p =2.答案:214、解析:所求椭圆的焦点为F 1(-1,0),F 2(1,0),2a =|PF 1|+|PF 2|.欲使2a 最小,只需在直线l 上找一点P ,使|PF 1|+|PF 2|最小,利用对称性可解. 答案:x 25+y 24=115、解析:设抛物线的准线与x 轴的交点为D ,依题意,F 为线段AB 的中点,故|AF |=|AC |=2|FD |=2p , |AB |=2|AF |=2|AC |=4p , ∴∠ABC =30°,|BC |=23p ,BA ·BC =4p ·23p ·cos30°=48, 解得p =2,∴抛物线的方程为y 2=4x . 答案:y 2=4x16、解:将圆C 的方程x 2+y 2-8y +12=0配方得标准方程为x 2+(y -4)2=4,则此圆的圆心为(0,4),半径为2.(1)若直线l 与圆C 相切,则有|4+2a |a 2+1=2.解得a =-34.(2)过圆心C 作CD ⊥AB ,则根据题意和圆的性质, 得⎩⎪⎨⎪⎧CD =|4+2a |a 2+1,CD 2+DA 2=AC 2=22,DA =12AB = 2.解得a =-7,或a =-1.故所求直线方程为7x -y +14=0或x -y +2=0. 17、解:法一:设点M 的坐标为(x ,y ), ∵M 为线段AB 的中点,∴A 的坐标为(2x,0),B 的坐标为(0,2y ). ∵l 1⊥l 2,且l 1、l 2过点P (2,4), ∴P A ⊥PB ,k P A ·k PB =-1.而k P A =4-02-2x ,k PB =4-2y 2-0,(x ≠1),∴21-x ·2-y 1=-1(x ≠1). 整理,得x +2y -5=0(x ≠1).∵当x =1时,A 、B 的坐标分别为(2,0),(0,4), ∴线段AB 的中点坐标是(1,2),它满足方程 x +2y -5=0.综上所述,点M 的轨迹方程是x +2y -5=0.法二:设M 的坐标为(x ,y),则A 、B 两点的坐标分别是(2x,0),(0,2y),连结PM , ∵l 1⊥l 2,∴2|PM |=|AB |.而|PM|22(2)(4)x y -+- |AB 22(2)(2)x y +, ∴2222(2)(4)44x y x y -+-=+化简,得x +2y -5=0即为所求的轨迹方程. 法三:设M 的坐标为(x ,y ),由l 1⊥l 2,BO ⊥OA ,知O 、A 、P 、B 四点共圆, ∴|MO |=|MP |,即点M 是线段OP 的垂直平分线上的点. ∵k OP =4020--=2,线段OP 的中点为(1,2), ∴y -2=-12(x -1), 即x +2y -5=0即为所求.18、解:(1)依题意,圆心的轨迹是以F (0,2)为焦点,L :y =-2为准线的抛物线. 因为抛物线焦点到准线距离等于4, 所以圆心的轨迹是x 2=8y .(2)证明:因为直线AB 与x 轴不垂直, 设AB :y =kx +2. A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y =kx +2,y =18x 2,可得x 2-8kx -16=0,x 1+x 2=8k ,x 1x 2=-16.抛物线方程为y =18x 2,求导得y ′=14x . 所以过抛物线上A 、B 两点的切线斜率分别是k 1=14x 1,k 2=14x 2,k 1k 2=14x 1·14x 2=116x 1·x 2=-1. 所以AQ ⊥BQ .19、解:(1)根据抛物线的方程可得焦点F (1,0),设直线l 的方程为x =my +1,将其与C 的方程联立,消去x 可得y 2-4my -4=0.设A ,B 点的坐标分别为(x 1,y 1),(x 2,y 2)(y 1>0>y 2),则y 1y 2=-4.因为y 21=4x 1,y 22=4x 2, 所以x 1x 2=116y 21y 22=1, 故OA ·OB =x 1x 2+y 1y 2=-3. (2)因为AF =λFB ,所以(1-x 1,-y 1)=λ(x 2-1,y 2),即⎩⎪⎨⎪⎧1-x 1=λx 2-λ, ①-y 1=λy 2, ②又y 21=4x 1, ③y 22=4x 2, ④由②③④消去y 1,y 2后,得到x 1=λ2x 2,将其代入①,注意到λ>0,解得x 2=1λ.从而可得y 2=-2λ,y 1=2λ,故△OAB 的面积S =12|OF |·|y 1-y 2|=λ+1λ, 因λ+1λ≥2恒成立,所以只要解λ+1λ≤5即可,解之得3-52≤λ≤3+52. 20、解:∵e =c a =a 2-b 2a 2=22,∴a 2=2b 2. 因此,所求椭圆的方程为x 2+2y 2=2b 2,又∵AB 为直径,(2,1)为圆心,即(2,1)是线段AB 的中点,设A (2-m,1-n ),B (2+m,1+n ),则⎩⎪⎨⎪⎧ (2-m )2+2(1-n )2=2b 2,(2+m )2+2(1+n )2=2b 2,|AB |=2 203⇒⎩⎪⎨⎪⎧ 8+2m 2+4+4n 2=4b 2,8m +8n =0,2m 2+n 2=2 203⇒⎩⎪⎨⎪⎧2b 2=6+m 2+2n 2,m 2=n 2=103,得2b 2=16. 故所求椭圆的方程为x 2+2y 2=16.21、解:(1)设E (x ,y ),由AE =12(AB +AD ),可知E 为线段BD 的中点, 又因为坐标原点O 为线段AB 的中点,所以OE 是△ABD 的中位线, 所以|OE |=12|AD |=1, 所以E 点在以O 为圆心,1为半径的圆上,又因为A ,B ,D 三点不在一条直线上,所以E 点不能在x 轴上,所以E 点的轨迹方程是x 2+y 2=1(y ≠0).(2)设M (x 1,y 1),N (x 2,y 2),中点为(x 0,y 0),椭圆的方程为x 2a 2+y 2a 2-4=1,直线MN 的方程为y =k (x +2)(当直线斜率不存在时不成立),由于直线MN 与圆x 2+y 2=1(y ≠0)相切,所以|2k |k 2+1=1,解得k =±33, 所以直线MN 的方程为y =±33(x +2), 将直线y =±33(x +2)代入方程x 2a 2+y 2a 2-4=1, 整理可得:4(a 2-3)x 2+4a 2x +16a 2-3a 4=0, 所以x 0=x 1+x 22=-a 22(a 2-3). 又线段MN 的中点到y 轴的距离为45, 即x 0=-a 22(a 2-3)=-45,解得a =2 2. 故所求的椭圆方程为x 28+y 24=1. 22、解:(1)设A (a,0),B (0,b ),P (x ,y ), 则AP =(x -a ,y ),PB =(-x ,b -y ),∵AP =35PB ,∴⎩⎨⎧ x -a =-35x ,y =35(b -y ).∴a =85x ,b =83y . 又|AB |=a 2+b 2=8,∴x 225+y 29=1. ∴曲线C 的方程为x 225+y 29=1. (2)由(1)可知,M (4,0)为椭圆x 225+y 29=1的右焦点, 设直线PM 方程为x =my +4, 由⎩⎪⎨⎪⎧ x 225+y 29=1,x =my +4,消去x 得 (9m 2+25)y 2+72my -81=0,∴|y P -y Q |=(72m )2+4×(9m 2+25)×819m 2+25。

高二数学圆锥曲线综合试题答案及解析

高二数学圆锥曲线综合试题答案及解析

高二数学圆锥曲线综合试题答案及解析1.点到图形上每一个点的距离的最小值称为点到图形的距离,那么平面内到定圆的距离与到定点的距离相等的点的轨迹不可能是()A.圆B.椭圆C.双曲线的一支D.直线【答案】D【解析】设动点为M,到圆C的距离记为MB,直线MB过圆心,当定点A是圆心C时,MB=MA,M为AB中点轨迹为圆;当定点A在圆内(圆心除外)时,MC+MA=r>AC,轨迹为椭圆;当定点A在圆外时,MC-MA=r<AC,轨迹为双曲线的一支,答案选D。

考点:圆锥曲线的定义2.已知、是椭圆的两个焦点,为椭圆上一点,且,若的面积为9,则的值为()A.1B.2C.3D.4【答案】【解析】根据椭圆定义知①,根据,知②,③,所以,可得.【考点】椭圆定义,直角三角形的面积及勾股定理.3.若存在过点的直线与曲线和都相切,则等于()A.或B.或C.或D.或【答案】A【解析】设直线与曲线相切的切点为,利用导数的几何意义得:, 解得或,当时,直线为轴,与相切,即,解得,当时,直线为,与抛物线联立,整理得:,因为相切,所以,解得,故选A.【考点】1.导数的几何意义;2.求切线方程.4.若是任意实数,则方程所表示的曲线一定不是()A.直线B.双曲线C.抛物线D.圆【答案】C【解析】当时,即时,曲线为直线,当时,曲线为圆,当时,曲线为双曲线.故选C.【考点】圆锥曲线的标准方程.5.若是2和8的等比中项,则圆锥曲线的离心率是()A.B.C.或D.【答案】C【解析】由题可知,则,当时,圆锥曲线为椭圆,则,离心率,当时,圆锥曲线为双曲线,则,离心率.所以选C.【考点】本题主要考查圆锥曲线的标准方程,离心率.6.已知椭圆:的离心率,原点到过点,的直线的距离是.(1)求椭圆的方程;(2)若椭圆上一动点关于直线的对称点为,求的取值范围;(3)如果直线交椭圆于不同的两点,,且,都在以为圆心的圆上,求的值.【答案】(1)(2)(3)【解析】(1)由截距式可得直线的方程,根据点到线的距离公式可得间的关系,又因为,解方程组可得的值。

高二数学圆锥曲线试题答案及解析

高二数学圆锥曲线试题答案及解析

高二数学圆锥曲线试题答案及解析1.点P在正方体ABCD﹣A1B1C1D1的底面ABCD所在平面上,E是A1A的中点,且∠EPA=∠D1PD,则点P的轨迹是()A.直线B.圆C.抛物线D.双曲线【答案】B【解析】由已知得即,在平面ABCD内以AD所在直线为x轴,AD中点为坐标原点建立直角坐标系,设A(1,0),B(-1,0),P(x,y),由建立等式化简得轨迹方程为,是圆的一般方程,所以答案选B。

【考点】1.直角三角形中的三角函数定义;2.轨迹方程的求解2.已知平面五边形关于直线对称(如图(1)),,,将此图形沿折叠成直二面角,连接、得到几何体(如图(2))(1)证明:平面;(2)求平面与平面的所成角的正切值.【答案】(1)证明详见解析;(2).【解析】(1)先以B为坐标原点,分别以射线BF、BC、BA为x轴、y轴、z轴的正方向建立空间直角坐标系,求出各点的坐标以及和的坐标,进而得到两向量共线,即可证明线面平行;(2)先根据条件求出两个半平面的法向量的坐标,再求出这两个法向量所成角的余弦值,再结合同角三角函数的基本关系式可求得结果.试题解析:(1)以B为坐标原点,分别以射线BF、BC、BA为x轴、y轴、z轴的正方向建立如图所示的坐标系.由已知与平面几何知识得,∴,∴,∴AF∥DE,又∥ 6分(2)由(1)得四点共面,,设平面,则不妨令,故,由已知易得平面ABCD的一个法向量为∴,设平面与平面的所成角为∴所求角的正切值为 13分.【考点】1.直线与平面平行的判定;2.用空间向量求二面角.3.抛物线的焦点到准线的距离是 .【答案】【解析】由抛物线的定义知抛物线的焦点到准线的距离是P,又由题可知P=.【考点】抛物线的几何性质.4.如图,已知椭圆:的离心率为,点为其下焦点,点为坐标原点,过的直线:(其中)与椭圆相交于两点,且满足:.(1)试用表示;(2)求的最大值;(3)若,求的取值范围.【答案】(1);(2)离心率的最大值为;(3)的取值范围是.【解析】(1)设,联立椭圆与直线的方程,消去得到,应用二次方程根与系数的关系得到,,然后计算得,将其代入化简即可得到;(2)利用(1)中得到的,即(注意),结合,化简求解即可得出的最大值;(3)利用与先求出的取值范围,最后根据(1)中,求出的取值范围即可.试题解析:(1)联立方程消去,化简得 1分设,则有, 3分∵∴ 5分∴即 6分(2)由(1)知∴,∴ 8分∴∴离心率的最大值为 10分(3)∵∴∴ 12分解得∴即∴的取值范围是 14分.【考点】1.椭圆的标准方程及其性质;2.二次方程根与系数的关系.5.求以椭圆的焦点为焦点,且过点的双曲线的标准方程.【答案】【解析】首先设出双曲线的标准方程,然后利用与椭圆的关系、双曲线过点建立组可求得a,b的值.试题解析:由椭圆的标准方程可知,椭圆的焦点在轴上.设双曲线的标准方程为.根据题意,解得或(不合题意舍去),∴双曲线的标准方程为.【考点】1、椭圆的几何性质;2、双曲线的方程求法.6.已知椭圆的离心率为,双曲线的渐近线与椭圆有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆的方程为()A.B.C.D.【答案】D【解析】根据题意,由于椭圆的离心率为,则可知b:a=1:2,双曲线的渐近线与椭圆有四个交点,以这四个交点为顶点的四边形的面积为16,可知为正方形边长为4,则可知(2,2)在椭圆上,可知椭圆的方程为,选D.【考点】椭圆和双曲线点评:主要是考查了椭圆与双曲线的性质的运用,属于基础题。

高二数学圆锥曲线试题答案及解析

高二数学圆锥曲线试题答案及解析

高二数学圆锥曲线试题答案及解析1.已知椭圆的离心率,右焦点为,方程的两个实根,,则点()A.必在圆内B.必在圆上C.必在圆外D.以上三种情况都有可能【答案】A【解析】本题只要判断与2的大小,时,点在圆上;时,点在圆内;时,点在圆外.由已知,,椭圆离心率为,从而,点在圆内,故选A.【考点】1.点与圆的位置关系;2.二次方程根与系数的关系.2.若抛物线y2=4x上的点A到其焦点的距离是6,则点A的横坐标是( )A.5B.6C.7D.8【答案】A【解析】由抛物线的方程可知抛物线的准线为,根据抛物线的定义可知点到其准线的距离也为6,即,所以。

故A正确。

【考点】抛物线的定义。

3.设一个焦点为,且离心率的椭圆上下两顶点分别为,直线交椭圆于两点,直线与直线交于点.(1)求椭圆的方程;(2)求证:三点共线.【答案】(1)(2)详见解析.【解析】(1)利用椭圆的定义和几何性质;(2)直线与圆锥曲线相交问题,可以设而不求,联立直线与椭圆方程,利用韦达定理结合题目条件来证明.试题解析:(1)由题知,,∴,3分∴椭圆.4分(2) 设点,由(1)知∴直线的方程为,∴.5分∴,,8分由方程组化简得:,,.10分∴,∴三点共线.12分【考点】1.椭圆的标准方程;2.直线与圆锥曲线相交问题;3.韦达定理.4.已知双曲线的右焦点为,若过且倾斜角为的直线与双曲线的右支有且只有一个交点,则双曲线离心率的取值范围是( )A.B.C.D.【答案】A【解析】由渐进线的斜率.又因为过且倾斜角为的直线与双曲线的右支有且只有一个交点,所以.所以.故选A.本小题关键是对比渐近线与过焦点的直线的斜率的大小.【考点】1.双曲线的渐近线.2.离心率.3.双曲线中量的关系.5.点P是抛物线y2 = 4x上一动点,则点P到点(0,-1)的距离与到抛物线准线的距离之和的最小值是 .【答案】【解析】抛物线y2 = 4x的焦点,点P到准线的距离与点P到点F的距离相等,本题即求点P到点的距离与到点的距离之和的最小值,画图可知最小值即为点与点间的距离,最小值为.【考点】抛物线的定义.6.准线方程为x=1的抛物线的标准方程是()A.B.C.D.【答案】A【解析】由题意可知:=1,∴p=2且抛物线的标准方程的焦点在x轴的负半轴上故可设抛物线的标准方程为:y2=-2px,将p代入可得y2=-4x.选A.【考点】抛物线的性质点评:本题主要考查抛物线的基本性质以及计算能力.在涉及到求抛物线的标准方程问题时,一定要先判断出焦点所在位置,避免出错.7.动点到两定点,连线的斜率的乘积为(),则动点P在以下哪些曲线上()(写出所有可能的序号)①直线②椭圆③双曲线④抛物线⑤圆A.①⑤B.③④⑤C.①②③⑤D.①②③④⑤【答案】C【解析】由题设知直线PA与PB的斜率存在且均不为零所以kPA •kPB=,整理得,点P的轨迹方程为kx2-y2=ka2(x≠±a);①当k>0,点P的轨迹是焦点在x轴上的双曲线(除去A,B两点)②当k=0,点P的轨迹是x轴(除去A,B两点)③当-1<k<0时,点P的轨迹是焦点在x轴上的椭圆(除去A,B两点)④当k=-1时,点P的轨迹是圆(除去A,B两点)⑤当k<-1时,点P的轨迹是焦点在y轴上的椭圆(除去A,B两点).故选C.【考点】圆锥曲线的轨迹问题.点评:本题考查圆锥曲线的轨迹问题,解题时要认真审题,注意分类讨论思想的合理运用.8.已知F1,F2是椭圆 (a>b>0)的左,右焦点,点P是椭圆在y轴右侧上的点,且∠F1PF2=,记线段PF1与y轴的交点为Q,O为坐标原点,若△F1OQ与四边形OF2PQ的面积之比为1∶2,则该椭圆的离心率等于【答案】-1【解析】根据题意,由于F1,F2是椭圆 (a>b>0)的左,右焦点,点P是椭圆在y轴右侧上的点,且∠F1PF2=,且有△F1OQ与四边形OF2PQ的面积之比为1∶2,则可知为点P到x轴的距离是Q到x轴距离的3:2倍,那么结合勾股定理可知该椭圆的离心率等于-1 ,故答案为-1 。

高二数学圆锥曲线测试题以及详细答案

高二数学圆锥曲线测试题以及详细答案

圆锥曲线测试题一、选择题:1.已知动点M 的坐标满足方程|12512|1322-+=+y x y x ,则动点M 的轨迹是( ) A. 抛物线 B.双曲线 C. 椭圆 D.以上都不对2.设P 是双曲线19222=-y a x 上一点,双曲线的一条渐近线方程为1,023F y x =-、F2分别是双曲线的左、右焦点,若5||1=PF ,则=||2PF ( )A. 1或5B. 1或9C. 1D. 93、设椭圆的两个焦点分别为F1、、F2,过F2作椭圆长轴的垂线交椭圆于点P ,若△F1PF2为等腰直角三角形,则椭圆的离心率是( ).A. 2B. 12 C. 2 D.14.过点(2,-1)引直线与抛物线2x y =只有一个公共点,这样的直线共有( )条A. 1B.2C. 3D.45.已知点)0,2(-A 、)0,3(B ,动点2),(y y x P =⋅满足,则点P 的轨迹是 ( )A .圆B .椭圆C .双曲线D .抛物线6.如果椭圆193622=+y x 的弦被点(4,2)平分,则这条弦所在的直线方程是( )A 02=-y xB 042=-+y xC 01232=-+y xD 082=-+y x7、无论θ为何值,方程1sin 222=⋅+y x θ所表示的曲线必不是( ) A. 双曲线 B.抛物线 C. 椭圆 D.以上都不对8.方程02=+ny mx )0(122>>=+n m ny mx 的曲线在同一坐标系中的示意图应是( )B 二、填空9.对于椭圆191622=+y x 和双曲线19722=-y x 有下列命题:①椭圆的焦点恰好是双曲线的顶点; ②双曲线的焦点恰好是椭圆的顶点; ③ 双曲线与椭圆共焦点; ④椭圆与双曲线有两个顶点相同. 其中正确命题的序号是 .10.若直线01)1(=+++y x a 与圆0222=-+x y x 相切,则a 的值为 11、抛物线2x y -=上的点到直线0834=-+y x 的距离的最小值是 12、抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,则点Q 的坐标 。

高二数学圆锥曲线综合试题答案及解析

高二数学圆锥曲线综合试题答案及解析

高二数学圆锥曲线综合试题答案及解析1.已知曲线C上任意一点P到两定点F1(-1,0)与F2(1,0)的距离之和为4.(1)求曲线C的方程;(2)设曲线C与x轴负半轴交点为A,过点M(-4,0)作斜率为k的直线l交曲线C于B、C两点(B在M、C之间),N为BC中点.(ⅰ)证明:k·kON为定值;(ⅱ)是否存在实数k,使得F1N⊥AC?如果存在,求直线l的方程,如果不存在,请说明理由.【答案】(1);(2)(ⅰ);(ⅱ)不存在.【解析】(1)由于曲线C上任意一点P到两定点F1(-1,0)与F2(1,0)的距离之和为4,结合椭圆的定义可知曲线C是以两定点F1(-1,0)和F2(1,0)为焦点,长轴长为4的椭圆,从而可写出曲线C的方程;(2)由已知可设出过点直线l的方程,并设出直线l与曲线C所有交点的坐标;然后联立直线方程与曲线C的方程,消去y就可获得一个关于x的一元二次方程,应用韦达定理就可写出两交点模坐标的和与积;(ⅰ)应用上述结果就可以用k的代数式表示出弦的中点坐标,这样就可求出ON的斜率,再乘以k就可证明k·kON 为定值;(ⅱ)由F1N⊥AC,得kAC•kFN= -1,结合前边结果就可将此等式转化为关于k的一个方程,解此方程,若无解,则对应直线不存在,若有解,则存在且对应直线方程很易写出来.试题解析:(1)由已知可得:曲线C是以两定点F1(-1,0)和F2(1,0)为焦点,长轴长为4的椭圆,所以,故曲线C的方程为:. 4分(2)设过点M的直线l的方程为y=k(x+4),设B(x1, y1),C(x2, y2)(x2>y2).(ⅰ)联立方程组,得,则, 5分故,, 7分所以,所以k•kON=为定值. 8分(ⅱ)若F1N⊥AC,则kAC•kFN= -1,因为F1(-1,0),故, 10分代入y2=k(x2+4)得x2=-2-8k2,y2="2k" -8k3,而x2≥-2,故只能k=0,显然不成立,所以这样的直线不存在. 13分【考点】1.椭圆的方程;2.直线与椭圆的位置关系.2.双曲线+=1的离心率,则的值为.【答案】-32【解析】由题意可得,a=2,又∵e==3,∴c=3a=6,∴b2=c2-a2=36-4=32,而k=-b2,∴k=-32【考点】双曲线离心率的计算.3.已知椭圆,直线是直线上的线段,且是椭圆上一点,求面积的最小值。

高二数学圆锥曲线测试题以及详细答案(完整资料).doc

高二数学圆锥曲线测试题以及详细答案(完整资料).doc
(2)将k=1代入方程①得x2-2x-3=0,解出 x1=-1,x2=3,由y=x+1得y1=0,y2=4
即A、B的坐标分别为(-1,0)和(3,4)
由CD垂直平分AB,得直线CD的方程为y=-(x-1)+2,即 y=3-x ,代入双曲线方程,整理,
得 x2+6x-11=0②
记C(x3,y3),D(x4,y4),以及CD中点为M(x0,y0),则x3、x4是方程②的两个的实数根,所以
A. B. C. D.
6.双曲线 离心率为2,有一个焦点与抛物线 的焦点重合,则mn的值为()
A. B. C. D.
7.若双曲线 的左焦点在抛物线y2=2px的准线上,则p的值为 ()
(A)2(B)3(C)4(D)4
8.如果椭圆 的弦被点(4,2)平分,则这条弦所在的直线方程是( )
A B C D
9、无论 为何值,方程 所表示的曲线必不是( )
20在平面直角坐标系 中,点P到两点 , 的距离之和等于4,设点P的轨迹为 .(Ⅰ)写出C的方程;
(Ⅱ)设直线 与C交于A,B两点.k为何值时 ?此时 的值是多少?
21.A、B是双曲线x2- =1上的两点,点N(1,2)是线段AB的中点
(1)求直线AB的方程;
(2)如果线段AB的垂直平分线与双曲线相交于C、D两点,那么A、B、C、D四点是否共圆?为什么?
(Ⅱ)设 ,其坐标满足
消去y并整理得 , 故 .
,即 . 而 ,
于是 .
所以 时, ,故 .
当 时, , .

而 ,
所以 .
21A、B是双曲线x2- =1上的两点,点N(1,2)是线段AB的中点
(1)求直线AB的方程;
(2)如果线段AB的垂直平分线与双曲线相交于C、D两点,那么A、B、C、D四点是否共圆?为什么?

高二数学同步测试(12)圆锥曲线

高二数学同步测试(12)圆锥曲线

高二数学同步测试(12)圆锥曲线高中学生学科素质训练高二数学同步测试(12)—圆锥曲线一.选择题(本大题共10小题,每小题5分,共50分)1.所表示的曲线是( )A.双曲线B.椭圆C.双曲线的一部分 D.椭圆的一部分2.椭圆短轴长是2,长轴是短轴的2倍,则椭圆中心到准线距离是( )A. B.C.D.3.已知椭圆上一点P到椭圆一个焦点的距离为3,则P到另一个焦点的距离为( )A.2 B.3 C.5D.74.连接双曲线与的四个顶点构成的四边形的面积为S1,连接它们的的四个焦点构成的四边形的面积为S2,则S1:S2的最大值是( )A.2 B. 1C.D.5.与椭圆共焦点,且两准线间的距离为的双曲线方程为 ( ) A. B.C. D.6.设k_gt;1,则关于_,y的方程(1-k) _2+ y 2=k2-1所表示的曲线是( )A.长轴在y轴上的椭圆B.长轴在_轴上的椭圆C.实轴在y轴上的双曲线 D.实轴在_轴上的双曲线7.双曲线的两条渐近线互相垂直,那么该双曲线的离心率是 ( )A.2B.C.D.8.动点P到直线_+4=0的距离减去它到M(2,0)的距离之差等于2,则点P的轨迹是( )A.直线B.椭圆 C.双曲线D.抛物线9.抛物线y =-_2 的焦点坐标为( )A.(0, ) B. (0, -) C.(, 0)D. (-, 0)10.过抛物线的焦点F作倾斜角为的弦AB,则AB的值为( )A. B. C.D.二.填空题(本大题共4小题,每小题6分,共24分)11.椭圆的一个焦点坐标是(0,1),则m=.12.双曲线_2-=1截直线y =_+1所得弦长是.13.已知抛物线y2=2_,则抛物线上的点P到直线l:_-y+4=0的最小距离是.14.已知直线_- y =2与抛物线交于A.B两点,那么线段AB的中点坐标是.三.解答题(本大题共6小题,共76分)15.求两焦点的坐标分别为(-2,0),(2,0),且经过点P(2,)的椭圆方程.(12分)16.已知抛物线C的准线为_ =(p_gt;0),顶点在原点,抛物线C与直线l:y=_-1相交所得弦的长为3,求的值和抛物线方程.(12分)17.已知椭圆:上的两点A(0,)和点B,若以AB为边作正△ABC,当B变动时,计算△ABC的最大面积及其条件.(12分)18.已知双曲线经过点M(),且以直线_= 1为右准线.(1)如果F(3,0)为此双曲线的右焦点,求双曲线方程;(2)如果离心率e=2,求双曲线方程.(12分)19.设F1,F2为椭圆的两个焦点,P为椭圆上的一点,已知P.F1.F2是一个直角三角形的三个顶点,且的值.(14分)20.已知动圆过定点P(1,0),且与定直线相切,点C在l上.(Ⅰ)求动圆圆心的轨迹M的方程;(Ⅱ)设过点P,且斜率为-的直线与曲线M相交于A.B两点.(i)问:△ABC能否为正三角形?若能,求点C的坐标;若不能,说明理由;(ii)当△ABC为钝角三角形时,求这种点C的纵坐标的取值范围. (14分)参考答案(12)一.选择题(本大题共10小题,每小题5分,共50分)题号12345678910答案DDDCACCDBB二.填空题(本大题共4小题,每小题6分,共24分)11.3 12.13.14.(4,2)三.解答题(本大题共6题,共76分)15.(12分)[解析]:由题意可知,c=2,设椭圆方程为,则①又点P(2,)在椭圆上,所以②,联立①②解得,或(舍去), 故所求椭圆方程是16.(12分)[解析]:由题意,可设C的方程为,C与直线l:y =_-1相交于A.B两点,由此可得,所以,== =因为p_gt;0,所以解得,故抛物线方程为.17.(12分)[解析]:由题意可设B(2cosθ, sinθ),则因为S△ABC=·=·=·所以当=-1时,即B点移动到(0,-)时,△ABC的面积最大,且最大值为3.18.(12分)[解析]:(1)设P(_,y)为所求曲线上任意一点,由双曲线定义得 =化简整理得(2)因此,不妨设双曲线方程为,因为点M()在双曲线上,所以,得,故所求双曲线方程为19.(14分)[解析]:由已知得.根据直角的不同位置,分两种情况若解得若解得.20.(14分)[解析]:(Ⅰ)依题意,曲线M是以点P为焦点,直线l为准线的抛物线, 所以曲线M的方程为.(Ⅱ)(i)由题意得,直线AB的方程为消y得所以A点坐标为,B点坐标为(3,),假设存在点C(-1,y),使△ABC为正三角形,则BC=AB且AC=AB,即①②由①-②得但不符合①,所以由①,②组成的方程组无解.因此,直线l上不存在点C,使得△ABC是正三角形.(ii)解法一:设C(-1,y)使△ABC成钝角三角形,由,即当点C的坐标为(-1,)时,A,B,C三点共线,故.又,, .当,即,即为钝角.当,即,即为钝角.又,即,即.该不等式无解,所以∠ACB不可能为钝角.因此,当△ABC为钝角三角形时,点C的纵坐标y的取值范围是.解法二:以AB为直径的圆的方程为.圆心到直线的距离为,所以,以AB为直径的圆与直线l相切于点G.当直线l上的C点与G重合时,∠ACB为直角,当C与G点不重合,且A,B,C三点不共线时, ∠ACB为锐角,即△ABC中∠ACB不可能是钝角.因此,要使△ABC为钝角三角形,只可能是∠CAB或∠CBA为钝角.过点A且与AB垂直的直线方程为.过点B且与AB垂直的直线方程为.令.又由,所以,当点C的坐标为(-1,)时,A,B,C三点共线,不构成三角形.因此,当△ABC为钝角三角形时,点C的纵y的取值范围是。

高二数学圆锥曲线测试题以及详细答案

高二数学圆锥曲线测试题以及详细答案

圆锥曲线测试题一、选择题:1.已知动点M 的坐标满足方程|12512|1322-+=+y x y x ,则动点M 的轨迹是( )A. 抛物线B.双曲线C. 椭圆D.以上都不对2.设P 是双曲线19222=-y a x 上一点,双曲线的一条渐近线方程为1,023F y x =-、F2分别是双曲线的左、右焦点,若5||1=PF ,则=||2PF ( )A. 1或5B. 1或9C. 1D. 93、设椭圆的两个焦点分别为F1、、F2,过F2作椭圆长轴的垂线交椭圆于点P ,若△F1PF2为等腰直角三角形,则椭圆的离心率是( ).A. B. C. 2- D.14.过点(2,-1)引直线与抛物线2x y =只有一个公共点,这样的直线共有( )条A. 1B.2C. 3D.45.已知点)0,2(-A 、)0,3(B ,动点2),(y y x P =⋅满足,则点P 的轨迹是 ( )A .圆B .椭圆C .双曲线D .抛物线6.如果椭圆193622=+y x 的弦被点(4,2)平分,则这条弦所在的直线方程是( )A 02=-y xB 042=-+y xC 01232=-+y xD 082=-+y x7、无论θ为何值,方程1sin 222=⋅+y x θ所表示的曲线必不是( ) A. 双曲线 B.抛物线 C. 椭圆 D.以上都不对8.方程02=+ny mx )0(122>>=+n m ny mx 的曲线在同一坐标系中的示意图应是( )B 二、填空9.对于椭圆191622=+y x 和双曲线19722=-y x 有下列命题:①椭圆的焦点恰好是双曲线的顶点; ②双曲线的焦点恰好是椭圆的顶点; ③ 双曲线与椭圆共焦点; ④椭圆与双曲线有两个顶点相同. 其中正确命题的序号是 .10.若直线01)1(=+++y x a 与圆0222=-+x y x 相切,则a 的值为 11、抛物线2x y -=上的点到直线0834=-+y x 的距离的最小值是 12、抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,则点Q 的坐标 。

高二数学圆锥曲线试题答案及解析

高二数学圆锥曲线试题答案及解析

高二数学圆锥曲线试题答案及解析1.已知点,,直线上有两个动点,始终使,三角形的外心轨迹为曲线为曲线在一象限内的动点,设,,,则()A.B.C.D.【答案】C【解析】依题意设,的外心为,则有即,又由得即,将代入化简得即,在中,由余弦定理可得即展开整理得即也就是,将、代入可得,整理可得,即的外心轨迹方程为设,则即,而又,所以所以,故选C.【考点】1.动点的轨迹;2.直线的斜率;3.两角和的正切公式.2.若点P到点的距离与它到直线y+3=0的距离相等,则P的轨迹方程为 () A.B.C.D.【答案】C【解析】根据抛物线的定义可知,条件为以为焦点的抛物线,所以轨迹为.【考点】抛物线的定义.3.过抛物线的焦点的直线交抛物线于两点,且在直线上的射影分别是,则的大小为 .【答案】.【解析】如图,由抛物线的定义可知:,∴;根据内错角相等知;同理可证而,∴.【考点】抛物线的定义.4.已知椭圆的一个焦点为,过点且垂直于长轴的直线被椭圆截得的弦长为;为椭圆上的四个点。

(Ⅰ)求椭圆的方程;(Ⅱ)若,且,求四边形的面积的最大值和最小值.【答案】(Ⅰ) ;(Ⅱ) 2,【解析】(Ⅰ)依题意可得椭圆C的一个焦点为知,在代入点即可得得到一个关于的等式从而可求出的值,即可得椭圆的标准方程.(Ⅱ) 由于,所以直线都过F点,从而又因为所以直线与直线相互垂直.所以四边形的面积为.故关键是求出线段的长度.首先要分类存在垂直于轴的情况,和不垂直于轴的情况两种.前者好求.后者通过假设一条直线联立椭圆方程写出弦长的式子,类似地写出另一条所得到的弦长.通过利用基本不等式即可求得面积的范围.从而再结合垂直于轴的情况,求出最大值与最小值.试题解析:(Ⅰ)由题椭圆C的一个焦点为知故可设椭圆方程为,过焦点且与长轴垂直的直线方程为,设此直线与椭圆交于A,B两点则,又,所以,又,联立求得,,故椭圆方程为.(Ⅱ)由,知,点共线,点共线,即直线经过椭圆焦点。

又知,(i)当斜率为零或不存在时,(ii)当直线存在且不为零时,可设斜率为,则由知,的斜率为所以:直线方程为:。

高二数学同步测试—圆锥曲线综合

高二数学同步测试—圆锥曲线综合

高二数学同步测试—圆锥曲线综合一、选择题(本大题共10小题,每小题5分,共50分)1.椭圆(a>b>0)离心率为,则双曲线的离心率为()A.B.C.D.2.抛物线顶点在原点,焦点在y轴上,其上一点P(m,1)到焦点距离为5,则抛物线方程为()A.B.C.D.3.圆的方程是(x-cosθ)2+(y-sinθ)2= 12,当θ从0变化到2π时,动圆所扫过的面积是()A.B.πC.D.4.若过原点的直线与圆+++3=0相切,若切点在第三象限,则该直线的方程是()A.B.C.D.5.椭圆的焦点为F1和F2,点P在椭圆上,如果线段PF1中点在y轴上,那么|PF1|是|PF2|的()A.7倍B.5倍C.4倍D.3倍6.以原点为圆心,且截直线所得弦长为8的圆的方程是()A.B.C.D.7.曲线(为参数)上的点到原点的最大距离为()A.1 B.C.2 D.8.如果实数x、y满足等式,则最大值()A.B.C.D.9.过双曲线x2-=1的右焦点F作直线l交双曲线于A, B两点,若|AB|=4,则这样的直线l 有()A.1条B.2条C.3条D.4条10.如图,过抛物线的焦点F的直线交抛物线于点A.B,交其准线于点C,若,且,则此抛物线的方程为()A.B.C.D.二、填空题(本大题共4小题,每小题6分,共24分)11.椭圆的焦点是F1(-3,0)F2(3,0),P为椭圆上一点,且|F1F2|是|PF1|与|PF2|的等差中项,则椭圆的方程为_____________________________.12.若直线与圆没有公共点,则满足的关系式为.以(为点P的坐标,过点P的一条直线与椭圆的公共点有个.13.设点P是双曲线上一点,焦点F(2,0),点A(3,2),使|PA|+|PF|有最小值时,则点P的坐标是________________________________.14.AB是抛物线y=x2的一条弦,若AB的中点到x轴的距离为1,则弦AB的长度的最大值为.三、解答题(本大题共6小题,共76分)15.P为椭圆上一点,、为左右焦点,若(1)求△的面积;(2)求P点的坐标.(12分)16.已知抛物线,焦点为F,顶点为O,点P在抛物线上移动,Q是OP的中点,M是FQ的中点,求点M的轨迹方程.(12分)17.已知焦点在轴上的双曲线C的两条渐近线过坐标原点,且两条渐近线与以点为圆心,1为半径的圆相切,又知C的一个焦点与A关于直线对称.(1)求双曲线C的方程;(2)设直线与双曲线C的左支交于A,B两点,另一直线经过M(-2,0)及AB的中点,求直线在轴上的截距b的取值范围.(12分)18.如图,过抛物线上一定点P()(),作两条直线分别交抛物线于A(),B().(1)求该抛物线上纵坐标为的点到其焦点F的距离;(2)当PA与PB的斜率存在且倾斜角互补时,求的值,并证明直线AB的斜率是非零常数.(12分)yPO xAB19.如图,给出定点A(, 0) (>0)和直线: x = –1 . B是直线l上的动点, BOA的角平分线交AB 于点C. 求点C的轨迹方程,并讨论方程表示的曲线类型与值的关系.(14分)20.椭圆C1:=1(a>b>0)的左右顶点分别为A、B.点P双曲线C2:=1在第一象限内的图象上一点,直线AP、BP与椭圆C1分别交于C、D点.若△ACD与△PCD的面积相等.(1)求P点的坐标;(2)能否使直线CD过椭圆C1的右焦点,若能,求出此时双曲线C2的离心率,若不能,请说明理由.(14分)参考答案一、选择题(本大题共10小题,每小题5分,共50分)二、填空题(本大题共4小题,每小题6分,共24分)11.12., 213.14.三、解答题(本大题共6题,共76分)15.(12分)[解析]:∵a=5,b=3c=4 (1)设,,则①②,由①2-②得(2)设P,由得4,将代入椭圆方程解得,或或或16.(12分)[解析]:设M(),P(),Q(),易求的焦点F的坐标为(1,0)∵M是FQ的中点,∴,又Q是OP的中点∴,∵P在抛物线上,∴,所以M点的轨迹方程为.17.(12分)[解析]:(1)当表示焦点为的抛物线;(2)当时,,表示焦点在x轴上的椭圆;(3)当a>1时,,表示焦点在x轴上的双曲线. (1设双曲线C的渐近线方程为y=kx,则kx-y=0∵该直线与圆相切,∴双曲线C 的两条渐近线方程为y=±x.故设双曲线C的方程为.又双曲线C的一个焦点为,∴,.∴双曲线C的方程为:.(2)由得.令∵直线与双曲线左支交于两点,等价于方程f(x)=0在上有两个不等实根.因此,解得.又AB中点为,∴直线l的方程为:.令x=0,得.∵,∴,∴.18.(12分)[解析]:(I)当时,又抛物线的准线方程为由抛物线定义得,所求距离为(2)设直线PA的斜率为,直线PB的斜率为由,相减得,故同理可得,由PA,PB倾斜角互补知即,所以, 故设直线AB的斜率为,由,,相减得所以, 将代入得,所以是非零常数.19.(14分)[解析]:设B(-1,b),:y=0,:y=-bx,设C(x,y),则有<a,由OC平分 BOA,知点C到OA,OB距离相等,①及C在直线AB:②上,由①②及得,得若y=0,则b=0 满足.20.(14分)[解析]:(1)设P(x0,y0)(x0>0,y0>0),又有点A(-a,0),B(a,0).,又,,.(2)代入,∴CD垂直于x轴.若CD过椭圆C的右焦点,则故可使CD过椭圆C1的右焦点,此时C2的离心率为.1。

高二数学圆锥曲线测试题及参考答案

高二数学圆锥曲线测试题及参考答案

高二数学圆锥曲线测试题一.选择题:本大题共10小题,每小题5分,共50分.1.椭圆22146x y +=的长轴长为( )A .2BC .4D .622. 设椭圆1422=+m y x 的离心率为21,则m 的值是( ) A .3 B .316或3 C .316 D .316或2 3.抛物线24y x =的焦点坐标是( ) A .(1,0) B .(0,1) C .1(,0)16 D .1(0,)164.双曲线221916x y -=右支上一点P 到右焦点的距离是4,则点P 到左焦点的距离为( ) A.10 B.16 C.9 D.155. 顶点在原点,焦点在对称轴上的抛物线过圆096222=++-+y x y x 的圆心,则其方程为( ) A .23x y =或23x y -= B .23x y = C .x y 92-=或23x y = D .23x y -=或x y 92=6.已知双曲线)0,0(12222>>=-b a by a x 的离心率为2 )A .2y x =±B .x y 2±=C .x y 22±= D .12y x =± 7.曲线21x xy +=的图像关于( )A .x 轴对称B .y 轴对称C . 坐标原点对称D . 直线x y =对称8.若点A 的坐标为(3,2),F 是抛物线x y 22=的焦点,点M 在抛物线上移动时,使MA MF +取得最小值的M 的坐标为( )A .()0,0B .⎪⎭⎫⎝⎛1,21 C .()2,1 D .()2,2 二.填空题:本大题共4小题,每小题5分,满分20分.9.双曲线22x y k -=的一个焦点为,则k 的值为_________.10.如果方程224kx y +=表示焦点在x 轴上的椭圆,那么实数k 的取值范围是 .11.与椭圆2216x y +=共焦点且过点Q 的双曲线方程是 .12.双曲线221169x y -=的左、右焦点分别为F 1,F 2,在左支上过点F 1的弦AB 的长为5,那么△ABF 2的周长是 .13.椭圆192522=+y x 的焦点1F 、2F ,P 为椭圆上的一点,已知21PF PF ⊥,则△21PF F 的面积为________.14.若直线l 与抛物线216y x =交于点A ,B ,且弦AB 的中点为(2,2),则直线l 的方程为__________. 三.解答题:本大题共6小题,满分80分.15.(本小题满分12分)已知顶点在原点,焦点在x 轴上的抛物线被直线21y x =+截得的弦长为15,求抛物线的方程。

数学北师大版高中选修2-1高二数学同步测试—圆锥曲线综合

数学北师大版高中选修2-1高二数学同步测试—圆锥曲线综合

高二数学同步测试—圆锥曲线综合一、选择题(本大题共10小题,每小题5分,共50分)1.椭圆12222=+b y a x (a >b>0)离心率为23,则双曲线12222=-by a x 的离心率为 ( )A .45B .25C .32D .452.抛物线顶点在原点,焦点在y 轴上,其上一点P(m ,1)到焦点距离为5,则抛物线方程为( ) A .y x 82= B .y x 82-= C .y x 162= D .y x 162-=3.圆的方程是(x -cos θ)2+(y -sin θ)2= 12 ,当θ从0变化到2π时,动圆所扫过的面积是 ( )A .π22B .πC .π)21(+D .π2221(+4.若过原点的直线与圆2x +2y +x 4+3=0相切,若切点在第三象限,则该直线的方程是 ( )A .x y 3=B .x y 3-=C .x y 33=D .x y 33-= 5.椭圆131222=+y x 的焦点为F 1和F 2,点P 在椭圆上,如果线段PF 1中点在y 轴上,那么|PF 1|是|PF 2|的 ( ) A .7倍 B .5倍 C .4倍 D .3倍 6.以原点为圆心,且截直线01543=++y x 所得弦长为8的圆的方程是 ( )A .522=+y xB .2522=+y xC .422=+y xD .1622=+y x7.曲线⎩⎨⎧==θθsin cos 2y x (θ为参数)上的点到原点的最大距离为 ( )A . 1B .2C .2D .38.如果实数x 、y 满足等式3)2(22=+-y x ,则xy最大值 ( )A .21B .33C .23D .39.过双曲线x 2-22y =1的右焦点F 作直线l 交双曲线于A , B 两点,若|AB |=4,则这样的直线l 有 ( ) A .1条 B .2条 C .3条 D .4条10.如图,过抛物线)(022>=p px y 的焦点F 的直线l 交抛物线于点A .B ,交其准线于点C ,若BF BC 2=,且3=AF ,则此抛物线的方程为 ) A .x y 232=B .x y 32=C .x y 292=D .x y 92=二、填空题(本大题共4小题,每小题6分,共24分)11.椭圆的焦点是F 1(-3,0)F 2(3,0),P 为椭圆上一点,且|F 1F 2|是|PF 1|与|PF 2|的等差中项,则椭圆的方程为_____________________________. 12.若直线03=-+ny mx 与圆322=+y x 没有公共点,则n m ,满足的关系式为 .以(),n m 为点P 的坐标,过点P 的一条直线与椭圆13722=+y x 的公共点有 个. 13.设点P 是双曲线1322=-y x 上一点,焦点F (2,0),点A (3,2),使|P A |+21|PF |有最小值时,则点P 的坐标是________________________________.14.AB 是抛物线y =x 2的一条弦,若AB 的中点到x 轴的距离为1,则弦AB 的长度的最大值为 .三、解答题(本大题共6小题,共76分)15.P 为椭圆192522=+y x 上一点,1F 、2F 为左右焦点,若︒=∠6021PF F(1) 求△21PF F 的面积;(2) 求P 点的坐标.(12分)16.已知抛物线x y 42=,焦点为F ,顶点为O ,点P 在抛物线上移动,Q 是OP 的中点,M 是FQ 的中点,求点M 的轨迹方程.(12分)17.已知焦点在x 轴上的双曲线C 的两条渐近线过坐标原点,且两条渐近线与以点)2,0(A为圆心,1为半径的圆相切,又知C 的一个焦点与A 关于直线x y =对称. (1)求双曲线C 的方程;(2)设直线1+=mx y 与双曲线C 的左支交于A ,B 两点,另一直线l 经过M (-2,0)yPO xA B 及AB 的中点,求直线l 在y 轴上的截距b 的取值范围.(12分)18.如图,过抛物线)0(22>=p px y 上一定点P (x y 00,)(y 00>),作两条直线分别交抛物线于A (x y 11,),B (22,y x ). (1)求该抛物线上纵坐标为p2的点到其焦点F 的距离; (2)当PA 与PB 的斜率存在且倾斜角互补时,求021y y y +的值,并证明直线AB 的斜率是非零常数.(12分)19.如图,给出定点A(a , 0) (a >0)和直线: x = –1 . B 是直线l 上的动点,∠BOA 的角平分线交AB 于点C . 求点C 的轨迹方程,并讨论方程表示的曲线类型与a 值的关系.(14分)20.椭圆C 1:2222by a x +=1(a >b>0)的左右顶点分别为A 、B.点P 双曲线C 2:2222b y a x -=1在第一象限内的图象上一点,直线AP 、BP 与椭圆C 1分别交于C 、D 点.若△ACD 与△PCD的面积相等.(1)求P 点的坐标;(2)能否使直线CD 过椭圆C 1的右焦点,若能,求出此时双曲线C 2的离心率,若不能,请说明理由.(14分)参考答案一、选择题(本大题共10小题,每小题5分,共50分)二、填空题(本大题共4小题,每小题6分,共24分)11.1273622=+y x 12.3022<+<n m , 2 13.)2,321(14. 25 三、解答题(本大题共6题,共76分) 15.(12分)[解析]:∵a =5,b =3∴c =4 (1)设11||t PF =,22||t PF =,则1021=+t t ①2212221860cos 2=︒⋅-+t t t t ②,由①2-②得1221=t t3323122160sin 212121=⨯⨯=︒⋅=∴∆t t S PF F (2)设P ),(y x ,由||4||22121y y c S PF F ⋅=⋅⋅=∆得 433||=y 433||=∴y 433±=⇒y ,将433±=y 代入椭圆方程解得4135±=x ,)433,4135(P ∴或)433,4135(-P 或)433,4135(-P 或)433,4135(--P 16.(12分)[解析]:设M (y x ,),P (11,y x ),Q (22,y x ),易求x y 42=的焦点F 的坐标为(1,0)∵M 是FQ 的中点,∴ 22122y y x x =+=⇒yy x x 21222=-=,又Q 是OP 的中点∴221212y y x x ==⇒yy y x x x 422422121==-==,∵P 在抛物线x y 42=上,∴)24(4)4(2-=x y ,所以M 点的轨迹方程为212-=x y .17.(12分)[解析]:(1)当时,1=a ,2x y =表示焦点为)0,41(的抛物线;(2)当10<<a 时,11)1()1(22222=-+---a a y aa a ax ,表示焦点在x 轴上的椭圆;(3)当a>1时,11)1()1(22222=-----a a y a a a a x ,表示焦点在x 轴上的双曲线. (1设双曲线C 的渐近线方程为y=kx ,则kx-y=0∵该直线与圆1)2(22=-+y x 相切,∴双曲线C 的两条渐近线方程为y=±x .故设双曲线C 的方程为12222=-ay a x .又双曲线C 的一个焦点为)0,2(,∴222=a ,12=a .∴双曲线C 的方程为:122=-y x .(2)由⎩⎨⎧=-+=1122y x mx y 得022)1(22=---mx x m .令22)1()(22---=mx x m x f∵直线与双曲线左支交于两点,等价于方程f(x)=0在)0,(-∞上有两个不等实根. 因此⎪⎩⎪⎨⎧>--<->∆012012022m m m且,解得21<<m .又AB 中点为)11,1(22m m m --,∴直线l 的方程为:)2(2212+++-=x m m y . 令x =0,得817)41(2222222+--=++-=m m m b . ∵)2,1(∈m ,∴)1,22(817)41(22+-∈+--m ,∴),2()22,(+∞---∞∈ b .18.(12分)[解析]:(I )当y p =2时,x p =8又抛物线y px 22=的准线方程为x p =-2由抛物线定义得,所求距离为p p p 8258--=()(2)设直线PA 的斜率为k PA ,直线PB 的斜率为k PB 由y px 1212=,y px 0202=相减得()()()y y y y p x x 1010102-+=-,故k y y x x py y x x PA =--=+≠101010102()同理可得k py y x x PB =+≠22020(),由PA ,PB 倾斜角互补知k k PA PB =-即221020p y y p y y +=-+,所以y y y 1202+=-, 故y y y 122+=- 设直线AB 的斜率为k AB ,由y px 2222=,y px 1212=,相减得()()()y y y y p x x 2121212-+=-所以k y y x x py y x x AB=--=+≠212112122(), 将y y y y 120020+=->()代入得k p y y py AB =+=-2120,所以k AB 是非零常数.19.(14分)[解析]:设B (-1,b ),OA l :y=0, OB l :y=-bx,设C (x ,y ),则有x ≤0<a ,由OC 平分∠BOA ,知点C 到OA ,OB 距离相等,21b bxy y ++=∴①及C 在直线AB: ()a x ab y -+-=1②上,由①②及ax ≠得,得[0)1(2)1(222=++--y a ax x a y 若y=0,则b=0 满足0)1(2)1(22=++--y a ax x a . 20.(14分)[解析]:(1)设P(x 0,y 0)(x 0>0,y 0>0),又有点A(-a ,0),B(a ,0). ,PCD ACD S S ∆∆=).2,2(,00y a x C AP C -∴∴的中点为得点坐标代入椭圆方程将,C 4)(220220=+-by a a x ,又1220220=-by a x 5)(220220=+-⇒a x a a x ,b y a x a x 3),(2000=∴-==∴舍去,)3,2(b a P ∴. (2),300a b a x y K K PB PD =-== :PD 直线)(3a x a b y -=代入12222=+b y a x 03222=+-⇒a ax x )(2舍去a x ax D D ==∴,)23,2(),2,2(00b a C y a x C 即-∴∴CD 垂直于x 轴.若CD 过椭圆C 1的右焦点,则.27,23,22222=+=∴=∴-=a b a e a b b a a 故可使CD 过椭圆C 1的右焦点,此时C 2的离心率为27.。

高二数学圆锥曲线同步练习题

高二数学圆锥曲线同步练习题

高二(理科)数学(圆锥曲线)同步练习题一、选择题1.下面双曲线中有相同离心率,相同渐近线的是( )A.x 23-y 2=1,x 29-y 23=1B.x 23-y 2=1,y 2-x 23=1 C .y 2-x 23=1,x 2-y 23=1D.x 23-y 2=1,y 23-x 29=12.椭圆x 29+y 225=1的焦点为F 1、F 2,AB 是椭圆过焦点F 1的弦,则△ABF 2的周长是( ) A .20 B .12C .10 D .63.已知椭圆x 210-m +y 2m -2=1的长轴在y 轴上,若焦距为4,则m 等于( )A .4B .5C .7D .84.椭圆的中心在坐标原点,焦点在坐标轴上,两顶点分别是(4,0),(0,2),则此椭圆的方程是( )A.x 24+y 216=1或x 216+y 24=1B.x 24+y 216=1C.x 216+y 24=1D.x 216+y 220=1 5.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是( )A.45B.35C.25D.156、 双曲线与椭圆4x 2+y 2=64有公共的焦点,它们的离心率互为倒数,则双曲线方程为( )A .y 2-3x 2=36B .x 2-3y 2=36C .3y 2-x 2=36D .3x 2-y 2=367、双曲线mx 2+y 2=1的虚轴长是实轴长的2倍,则m 的值为( )A .-14B .-4C .4 D.148.双曲线的实轴长与虚轴长之和等于其焦距的2倍,且一个顶点的坐标为(0,2),则双曲线的标准方程为( )A.y 24-x 24=1B.x 24-y 24=1C.y 24-x 29=1D.x 28-y 24=1 9.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的实轴长、虚轴长、焦距成等差数列,则双曲线的离心率e 为( )A .2B .3C.43 D.5310、已知P (8,a )在抛物线y 2=4px 上,且P 到焦点的距离为10,则焦点到准线的距离为( )A .2B .4C .8D .16 11、方程22)1()1(-+-=+y x y x 所表示的曲线是( )A . 双曲线B . 抛物线C . 椭圆D .不能确定12、给出下列结论,其中正确的是( ) A .渐近线方程为()0,0>>±=b a x a by 的双曲线的标准方程一定是12222=-by a xB .抛物线221x y -=的准线方程是21=x C .等轴双曲线的离心率是2D .椭圆()0,012222>>=+n m ny m x 的焦点坐标是()(),,0,222221n mF n m F ---二、填空题13.椭圆的焦点在y 轴上,其上任意一点到两焦点的距离和为8,焦距为215,则此椭圆的标准方程为________.14.在平面直角坐标系xOy 中,已知△ABC 顶点A (-4,0)和C (4,0),顶点B 在椭圆x 225+y 29=1上,则sin A +sin Csin B =________.15.若方程x 25-k +y 2k -3=1表示椭圆,则k 的取值范围是________.16.抛物线y 2=4x 的弦AB ⊥x 轴,若|AB |=43,则焦点F 到直线AB 的距离为________. 三、解答题17、已知椭圆8x 281+y236=1上一点M 的纵坐标为2.(1)求M 的横坐标;(2)求过M 且与x 29+y 24=1共焦点的椭圆的方程.18、已知椭圆的中心在原点,两焦点F 1,F 2在x 轴上,且过点A (-4,3).若F 1A ⊥F 2A ,求椭圆的标准方程.19、已知椭圆的两焦点为F 1(-1,0)、F 2(1,0),P 为椭圆上一点,且2|F 1F 2|=|PF 1|+|PF 2|. (1)求此椭圆方程;(2)若点P 满足∠F 1PF 2=120°,求△PF 1F 2的面积.20、已知A 、B 、C 是长轴长为4的椭圆上的三点,点A 是长轴的一个顶点,BC 过椭圆中心O ,如图,且AC ·BC =0,|BC |=2|AC |,(1)求椭圆的方程; (2)如果椭圆上两点P 、Q 使∠PCQ 的平分线垂直AO ,则是否存在实数λ,使PQ =λAB ?21、已知定点(1,0)F ,动点P (异于原点)在y 轴上运动,连接PF ,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且0PM PF ⋅=,||||PN PM =.(1)求动点N 的轨迹C 的方程;(2)若直线l 与动点N 的轨迹交于A 、B 两点,若4OA OB ⋅=-且||AB ≤≤l 的斜率k 的取值范围.高二数学圆锥曲线基础练习题(含答案)一、选择题1.下面双曲线中有相同离心率,相同渐近线的是( )A.x 23-y 2=1,x 29-y 23=1B.x 23-y 2=1,y 2-x 23=1 C .y 2-x 23=1,x 2-y 23=1D.x 23-y 2=1,y 23-x 29=1解析:选A.B 中渐近线相同但e 不同;C 中e 相同,渐近线不同;D 中e 不同,渐近线相同.故选A.2.椭圆x 29+y 225=1的焦点为F 1、F 2,AB 是椭圆过焦点F 1的弦,则△ABF 2的周长是( )A .20B .12C .10D .6解析:选A.∵AB 过F 1,∴由椭圆定义知 ⎩⎪⎨⎪⎧|BF 1|+|BF 2|=2a ,|AF 1|+|AF 2|=2a , ∴|AB |+|AF 2|+|BF 2|=4a =20.3.已知椭圆x 210-m +y 2m -2=1的长轴在y 轴上,若焦距为4,则m 等于( )A .4B .5C .7D .8解析:选D.焦距为4,则m -2-(10-m )=⎝ ⎛⎭⎪⎫422,∴m =8.4.椭圆的中心在坐标原点,焦点在坐标轴上,两顶点分别是(4,0),(0,2),则此椭圆的方程是( )A.x 24+y 216=1或x 216+y 24=1B.x 24+y 216=1C.x 216+y 24=1D.x 216+y 220=1 解析:选C.由已知a =4,b =2,椭圆的焦点在x 轴上,所以椭圆方程是x 216+y 24=1.故选C.5、若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是( )A.45B.35C.25D.15解析:选B.由题意知2b =a +c ,又b 2=a 2-c 2,∴4(a 2-c 2)=a 2+c 2+2ac .∴3a 2-2ac -5c 2=0.∴5c 2+2ac -3a 2=0.∴5e 2+2e -3=0.∴e =35或e =-1(舍去).6.双曲线与椭圆4x 2+y 2=64有公共的焦点,它们的离心率互为倒数,则双曲线方程为( )A .y 2-3x 2=36B .x 2-3y 2=36C .3y 2-x 2=36D .3x 2-y 2=36解析:选A.椭圆4x 2+y 2=64即x 216+y 264=1,焦点为(0,±43),离心率为32,所以双曲线的焦点在y 轴上,c =43,e =23,所以a =6,b 2=12,所以双曲线方程为y 2-3x 2=36.7.双曲线mx 2+y 2=1的虚轴长是实轴长的2倍,则m 的值为( )A .-14B .-4C .4 D.14解析:选A.由双曲线方程mx 2+y 2=1,知m <0,则双曲线方程可化为y 2-x 2-1m=1,则a 2=1,a =1,又虚轴长是实轴长的2倍,∴b =2,∴-1m =b 2=4,∴m =-14,故选A.8.双曲线的实轴长与虚轴长之和等于其焦距的2倍,且一个顶点的坐标为(0,2),则双曲线的标准方程为( )A.y 24-x 24=1B.x 24-y 24=1C.y 24-x 29=1D.x 28-y 24=1 解析:选A.2a +2b =2·2c ,即a +b =2c , ∴a 2+2ab +b 2=2(a 2+b 2),∴(a -b )2=0,即a =b . ∵一个顶点坐标为(0,2),∴a 2=b 2=4,∴y 2-x 2=4,即y 24-x 24=1.9.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的实轴长、虚轴长、焦距成等差数列,则双曲线的离心率e 为( )A .2B .3C.43 D.53解析:选D.依题意,2a +2c =2·2b , ∴a 2+2ac +c 2=4(c 2-a 2),即3c 2-2ac -5a 2=0,∴3e 2-2e -5=0,∴e =53或e =-1(舍).10.已知P (8,a )在抛物线y 2=4px 上,且P 到焦点的距离为10,则焦点到准线的距离为( )A .2B .4C .8D .16解析:选B.准线方程为x =-p ,∴8+p =10,p =2.∴焦点到准线的距离为2p =4. 11、方程22)1()1(-+-=+y x y x 所表示的曲线是 ( A )A . 双曲线B . 抛物线C . 椭圆D .不能确定12、给出下列结论,其中正确的是( C )A .渐近线方程为()0,0>>±=b a x a by 的双曲线的标准方程一定是12222=-by a xB .抛物线221x y -=的准线方程是21=x C .等轴双曲线的离心率是2D .椭圆()0,012222>>=+n m ny m x 的焦点坐标是()(),,0,222221n mF n m F ---二、填空题13.椭圆的焦点在y 轴上,其上任意一点到两焦点的距离和为8,焦距为215,则此椭圆的标准方程为________. 解析:∵2a =8,∴a =4,∵2c =215,∴c =15,∴b 2=1. 即椭圆的标准方程为y 216+x 2=1.14.在平面直角坐标系xOy 中,已知△ABC 顶点A (-4,0)和C (4,0),顶点B 在椭圆x 225+y 29=1上,则sin A +sin Csin B=________.解析:由题意知,|AC |=8,|AB |+|BC |=10.所以,sin A +sin C sin B =|BC |+|AB ||AC |=108=54.15.若方程x 25-k +y 2k -3=1表示椭圆,则k 的取值范围是________.解析:由题意知⎩⎪⎨⎪⎧5-k >0,k -3>0,5-k ≠k -3,解得3<k <5且k ≠4. 16.抛物线y 2=4x 的弦AB ⊥x 轴,若|AB |=43,则焦点F 到直线AB 的距离为________.解析:由抛物线的方程可知F (1,0),由|AB |=43且AB ⊥x 轴得y 2A =(23)2=12,∴x A =y 2A4=3,∴所求距离为3-1=2. 三、解答题17.已知椭圆8x 281+y236=1上一点M 的纵坐标为2.(1)求M 的横坐标;(2)求过M 且与x 29+y 24=1共焦点的椭圆的方程.解:(1)把M 的纵坐标代入8x 281+y 236=1,得8x 281+436=1,即x 2=9.∴x =±3.即M 的横坐标为3或-3.(2)对于椭圆x 29+y 24=1,焦点在x 轴上且c 2=9-4=5,故设所求椭圆的方程为x 2a 2+y 2a 2-5=1(a 2>5),把M 点坐标代入得9a 2+4a 2-5=1,解得a 2=15.故所求椭圆的方程为x 215+y 210=1.18.已知椭圆的中心在原点,两焦点F 1,F 2在x 轴上,且过点A (-4,3).若F 1A ⊥F 2A ,求椭圆的标准方程.解:设所求椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0).设焦点F 1(-c,0),F 2(c,0).∵F 1A ⊥F 2A ,∴F 1A →·F 2A →=0, 而F 1A →=(-4+c,3), F 2A →=(-4-c,3),∴(-4+c )·(-4-c )+32=0, ∴c 2=25,即c =5.∴F 1(-5,0),F 2(5,0). ∴2a =|AF 1|+|AF 2|= -4+52+32+ -4-52+32=10+90=410. ∴a =210, ∴b 2=a 2-c 2=(210)2-52=15.∴所求椭圆的标准方程为x 240+y 215=1.19.已知椭圆的两焦点为F 1(-1,0)、F 2(1,0),P 为椭圆上一点,且2|F 1F 2|=|PF 1|+|PF 2|. (1)求此椭圆方程;(2)若点P 满足∠F 1PF 2=120°,求△PF 1F 2的面积. 解:(1)由已知得|F 1F 2|=2, ∴|PF 1|+|PF 2|=4=2a ,∴a =2.∴b 2=a 2-c 2=4-1=3,∴椭圆的标准方程为x 24+y 23=1.(2)在△PF 1F 2中,由余弦定理得|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos 120°,即4=(|PF 1|+|PF 2|)2-|PF 1||PF 2|,∴4=(2a )2-|PF 1||PF 2|=16-|PF 1||PF 2|, ∴|PF 1||PF 2|=12,∴=12|PF 1||PF 2|sin120°=12×12×32=3 3.20已知A 、B 、C 是长轴长为4的椭圆上的三点,点A 是长轴的一个顶点,BC 过椭圆中心O ,如图,且AC ·BC =0,|BC |=2|AC |,(1)求椭圆的方程;(2)如果椭圆上两点P 、Q 使∠PCQ 的平分线垂直AO ,则是否存在实数λ,使PQ =λAB ? 解(1)以O 为原点,OA 所在的直线为x 轴建立如图所示的直角坐标系则A (2,0),设所求椭圆的方程为:224b y x 2+=1(0<b <2), 由椭圆的对称性知|OC |=|OB |,由AC ·BC =0得AC ⊥BC , ∵|BC |=2|AC |,∴|OC |=|AC |,∴△AOC 是等腰直角三角形,∴C 的坐标为(1,1), ∵C 点在椭圆上∴22141b +=1,∴b 2=34,所求的椭圆方程为43422y x +=1 ……………5分 (2)由于∠PCQ 的平分线垂直OA (即垂直于x 轴),不妨设直线PC 的斜率为k ,则直线QC 的斜率为-k ,直线PC 的方程为:y =k (x -1)+1,直线QC 的方程为y =-k (x -1)+1,由⎩⎨⎧=-++-=0431)1(22y x x k y 得:(1+3k 2)x 2-6k (k -1)x +3k 2-6k -1=0(*) ……………8分∵点C (1,1)在椭圆上,∴x =1是方程(*)的一个根,则其另一根为2231163k k k +--,设P(x P ,y P ),Q (x Q ,y Q ),x P =2231163k k k +--, 同理x Q =2231163kk k +-+, k PQ =3131163311632)3116331163(2)(22222222=+-+-+---+-+++--⋅=--+=--k k k k k k k k k k k k k k x x k x x k x x y y Q P Q P Q P Q P ………10分而由对称性知B (-1,-1),又A (2,0) ∴k AB =31∴k PQ =k AB ,∴AB 与PQ 共线,且AB ≠0,即存在实数λ,使PQ =λAB . ……12分 21.已知定点(1,0)F ,动点P (异于原点)在y 轴上运动,连接PF ,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且0PM PF ⋅=,||||PN PM =.(1)求动点N 的轨迹C 的方程;(2)若直线l 与动点N 的轨迹交于A 、B 两点,若4OA OB ⋅=-且6||30AB ≤≤l 的斜率k 的取值范围.12F PF S21.解 (1)设动点N 的的坐标为(,)N x y ,则(,0),(0,),(0)2y M x P x ->,(,),(1,)22y yPM x PF =--=-,由0PM PF ⋅=得,204y x -+=, 因此,动点N 的轨迹C 的方程为24(0)y x x =>. …………5分(2)设直线l 的方程为y kx b =+,l 与抛物线交于点1122(,),(,)A x y B x y ,则由4OA OB ⋅=-,得12124x x y y +=-,又2211224,4y x y x ==,故128y y =-.又224440(0)y xky y b k y kx b⎧=⇒-+=≠⎨=+⎩, ∴216(12)048k b k⎧∆=+>⎪⎨=-⎪⎩,2222116||(32)k AB k k +∴=+,∴||AB ≤≤22211696(32)480k k k +≤+≤ 解得直线l 的斜率k 的取值范围是11[1,][,1]22--. ……………………12分你若许我此生缘, 陪我聆听清风,我愿回你这世情, 共赴天涯海角, 心守一人, 相伴一世, 择一城终,白首不相离!。

高二数学同步测试(10)—圆锥曲线综合应用及光学性质

高二数学同步测试(10)—圆锥曲线综合应用及光学性质

高中学生学科素质训练高二数学同步测试(10)—圆锥曲线综合应用及光学性质共150分;考试用时120分钟一、选择题(本大题共12小题;每小题5分;共60分)1.二次曲线1422=+my x ;]1,2[--∈m 时;该曲线的离心率e 的取值范围是 ( )A .]23,22[B .]25,23[C .]26,25[D .]26,23[2.我国发射的“神舟3号”宇宙飞船的运行轨道是以地球的中心2F 为一个焦点的椭圆;近地点A 距地面为m 千米;远地点B 距地面为n 千米;地球半径为R 千米;则飞船运行轨道的短轴长为( )A .))((2R n R m ++B .))((R n R m ++C .mnD .2mn3.已知椭圆125222=+y ax )5(>a 的两个焦点为1F 、2F ;且8||21=F F ;弦AB 过点1F ;则△2ABF 的周长为( ) A .10B .20C .241D . 4144.已知椭圆的中心在原点;离心率21=e ;且它的一个焦点与抛物线x y 42-=的焦点重合; 则此椭圆方程为( )A .13422=+y x B .16822=+y xC .1222=+y xD .1422=+y x 5.设抛物线y 2=8x 的准线与x 轴交于点Q ;若过点Q 的直线l 与抛物线有公共点;则直线l 的斜率的取值范围( )A .[-21;21] B .[-2;2] C .[-1;1]D .[-4;4]6.以坐标轴为对称轴、渐近线互相垂直、两准线间距离为2的双曲线方程是( )A .222=-y xB .222=-x yC .422=-y x 或422=-x yD .222=-y x 或222=-x y7.椭圆有这样的光学性质:从椭圆的一个焦点出发的光线;经椭圆反射后;反射光线经过椭圆的另一个焦点;今有一个水平放置的椭圆形台球盘;点A 、B 是它的焦点;长轴长为2a ;焦距为2c ;静放在点A 的小球(小球的半径不计);从点A 沿直线出发;经椭圆壁反弹后第一次回到点A 时;小球经过的路程是 ( ) A .4a B .2()a c - C .2()a c + D .以上答案均有可能 8.过双曲线822=-y x 的右焦点F 2有一条弦PQ ;|PQ|=7;F 1是左焦点;那么△F 1PQ 的周长为 ( )A .28B .2814-C .2814+D .289.已知椭圆22221(0)x y a b a b +=>>与双曲线22221(0,0)x y m n m n-=>>有相同的焦点(,0)c -和(,0)c .若c 是,a m 的等比中项;2n 是22m 与2c 的等差中项;则椭圆的离心率是 ( )A .12B .14C .2D .310.过抛物线2y ax =(a >0)的焦点F 作一直线交抛物线于P 、Q 两点;若线段PF 与FQ 的长分别为p 、q ;则11p q+等于 ( )A .2aB .12aC .4aD .4a11.如果椭圆193622=+y x 的弦被点(4;2)平分;则这条弦所在的直线方程是 ( )A .02=-y xB .042=-+y xC .01232=-+y xD .082=-+y x 12.设P(x ; y) (x y ≠0)是曲线192522=+y x 上的点;F 1(-4;0 ) 、F 2(4;0); 则 ( )A .|F 1 P| + |F 2 P| <10B .|F 1 P| + |F 2 P| >10C .|F 1 P| + |F 2 P| ≥10D .|F 1 P| + |F 2 P| ≤10二、填空题(本大题共4小题;每小题4分;共16分)13.设中心在原点的椭圆与双曲线2222y x -=1有公共的焦点;且它们的离心率互为倒数;则该椭圆的方程是 .14.设P 是曲线)1(42-=x y 上的一个动点;则点P 到点)1,0(的距离与点P 到y 轴的距离之和的最小值为 .15.与椭圆22143x y +=具有相同的离心率且过点(2;的椭圆的标准方程是 . 16.设双曲线)0(12222b a by a x <<=-的半焦距为c ;直线过(a ;0)、(0;b )两点;已知原点到直线L 的距离为c 43;则双曲线的离心率为 .三、解答题(本大题共6题;共74分)17.(本题满分10分) 已知双曲线与椭圆125922=+y x 共焦点;它们的离心率之和为514; 求双曲线方程.18.(本题满分10分)、求两条渐近线为02=±y x 且截直线03=--y x 所得弦长为338 的双曲线方程.19.(本题满分13分).双曲线)0,1(12222>>=-b a by a x 的焦距为2c ;直线l 过点(a ;0)和(0;b );且点(1;0)到直线l 的距离与点(-1;0)到直线l 的距离之和.54c s ≥求双曲线的离心率e 的取值范围.20.(本题满分13分)设椭圆1122=++y m x 的两个焦点是)0,(1c F -与)0(),0,(2>c c F ;且椭圆上存在一点P ;使得直线1PF 与2PF 垂直. (1)求实数m 的取值范围;(2)设L 是相应于焦点2F 的准线;直线2PF 与L 相交于点Q ;若3222-=PF QF ;求直线2PF 的方程.21.(本题满分14分).给定抛物线C :y 2=4x ;F 是C 的焦点;过点F 的直线l 与C 相交于A 、B 两点.(Ⅰ)设l 的斜率为1;求OA 与OB 的夹角的大小;(Ⅱ)设AF FB λ=;若λ∈[4;9];求l 在y 轴上截距的变化范围..22.(本题满分14分)、抛物线有光学性质:由其焦点射出的光线经抛物线折射后;沿平行于抛物线对称轴的方向射出;今有抛物线y 2=2px (p >0).一光源在点M (441;4)处;由其发出的光线沿平行于抛物线的轴的方向射向抛物线上的点P ;折射后又射向抛物线上的点Q ;再折射后;又沿平行于抛物线的轴的方向射出;途中遇到直线l :2x -4y -17=0上的点N ;再折射后又射回点M (如下图所示) (1)设P 、Q 两点坐标分别为(x 1;y 1)、(x 2;y 2);证明:y 1·y 2=-p 2;(2)求抛物线的方程;(3)试判断在抛物线上是否存在一点;使该点与点M 关于PN 所在的直线对称?若存在;请求出 此点的坐标;若不存在;请说明理由.参考答案(10)一.选择题 (本大题共12小题; 每小题5分; 共60分)题号123456789101112答案 C A D A C D D C A C D D7【解】⑴静放在点A 的小球(小球的半径不计)从点A 沿直线出发;经椭圆壁右顶点反弹后第一次回到点A 时;小球经过的路程是2()a c -;则选B ;⑵静放在点A 的小球(小球的半径不计)从点A 沿直线出发;经椭圆壁左顶点反弹后第一次回到点A 时;小球经过的路程是2()a c +;则选C ;⑶静放在点A 的小球(小球的半径不计)从点A 沿直线出发;经椭圆壁非左右顶点反弹后第一次回到点A 时;小球经过的路程是4a ;则选A 。

高二数学同步测试:圆锥曲线综合

高二数学同步测试:圆锥曲线综合

高二数学同步测试:圆锥曲线综合一、选择题(本大题共10小题,每小题5分,共50分)X2Y231。

椭圆2?2.1(a>b>0)偏心率是多少,然后是双曲线2?2.1的偏心率为()2abab52a.b.5c.d.543242.如果抛物线的顶点在原点,焦点在y轴上,且从上点P(m,1)到焦点的距离为5,则抛物线方程为()a.x2?8yb.x2??8yc.x2?16yd.x2??16y一3.圆的方程是(x-cos?)2+(y-sin?)2=,当?从0变化到2?时,动圆所扫过的面积是()222)? 224.如果通过原点的直线与圆x+Y2+4x+3=0相切,如果切点在第三象限,则直线方程为()a.22?b.?c.(1?2)?d.(1?a.y?3xb.y??3xc.y?3x3d.y??3x3x2y25.椭圆??1的焦点为f1和f2,点p在椭圆上,如果线段pf1中点在y轴上,那么|pf1|123是a.7乘以B.5乘以C.4乘以D.3乘以| PF2 | 6。

以原点为圆心,切线为3x?4y?15? 0,弦长为8的圆的方程为()a.x2?y2?5b.x2?y2?25c.x2?y2?47.曲线?d.x2?y2?16d.3()()x2cos(?为参数)上的点到原点的最大距离为Y罪c、二,a.1b.28.如果实数x和y满足方程(x?2)2?y2?3.那么a.一百二十二y最大值x33b.c.d.332y29。

在双曲线X-=1的右焦点F上画一条直线。

L在a点和B点与双曲线相交。

如果| ab |=4,则为这样一条直线2l有()a.1条b.2条c.3条d.4条10.如图所示,穿过抛物线Y2?2px(P?0)焦点F的直线L在点A.B处与抛物线相交,在点B处与其准直相交c,若bc?2bf,且af?3,则此抛物线的方程为y()a.y2?a3x29c.y2?x2b.y2?3xd.y2?9xcofbx二、填空题(本大题共4小题,每小题6分,共24分)11.椭圆的焦点是F1(-3,0)F2(3,0),P是椭圆上的点,|F1F2 |是|Pf1 |和|PF2之间的相等差|项,则椭圆的方程为_____________________________.一12.若直线mx?ny?3?0与圆x2?y2?3没有公共点,则m,n满足的关系式为.22xy以(m,n)为点P的坐标,以及一条穿过点P和椭圆??的直线??在1的共同点中有一个.73y22?1上一点,焦点f(2,0)13。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆锥曲线、简易逻辑综合
1.椭圆12222=+b y a x (a >b>0)离心率为23,则双曲线12222=-b
y a x 的离心率为 ( )
2.抛物线顶点在原点,焦点在y 轴上,其上一点P(m ,1)到焦点距离为5,则抛物线方程为______
3.圆的方程是(x -cos θ)2+(y -sin θ)2= 1
2
,当θ从0变化到2π时,动圆所扫过的面积是 ( )
4.若过原点的直线与圆2
x +2y +x 4+3=0相切,若切点在第三象限,则该直线的方程是 ( ) 5.椭圆13
122
2=+y x 的焦点为F 1和F 2,点P 在椭圆上,如果线段PF 1中点在y 轴上,那么|PF 1|是|PF 2|
的____倍
6.动点P (x , y
)满足|3410|x y =+-,且P 点的轨迹是椭圆,则a 的取值范围
是 .
7.双曲线两条渐进线方程为034=±y x ,一条准线方程为5
9
=
x ,则双曲线方程为___________ 8.已知命题p :若实数y x ,满足022=+y x ,则y x ,全为零。

命题q :若b a >,则
b
a 1
1<,给出下列四个复合命题:①p 且q ②p 或q ③非p ④非q ,其中真命题是 。

9.设点P 是双曲线132
2
=-y x 上一点,焦点F (2,0),点A (3,2),使|P A |+2
1|PF |有最小值时,则点P 的坐标是______________________________.
10. 已知p :| 2x -3 |>1;q :1
x 2+x -6>0,则┐p 是┐q 的_________条件
11.椭圆的焦点是F 1(-3,0)F 2(3,0),P 为椭圆上一点,且|F 1F 2|是|PF 1|与|PF 2|的等差中项,则椭
圆的方程为_____________________________. 12.若直线03=-+ny mx 与圆322=+y x 没有公共点,则n m ,满足的关系式为 .
以(),n m 为点P 的坐标,过点P 的一条直线与椭圆13
72
2=+y x 的公共点有 个.
13.设12,F F 分别是椭圆22
221(0,0)x y a b a b
+=>>的左右焦点,若在其右准线存在点P ,使线段1PF 的
中垂线过点2F ,则椭圆离心率的取值范围__________________.
14.AB 是抛物线y =x 2的一条弦,若AB 的中点到x 轴的距离为1,则弦AB 的长度的最大值
为 . 15.如图,F 1,F 2分别为椭圆122
22=+b y a x 的左、右焦点,
点P 在椭圆上,△POF 2是面积为3的正三角形, 则b 2的值是 。

16.如图,过抛物线)(022>=p px y 的焦点F 的直线l 交抛物线于点A .B ,交其准线于点C ,若
BF BC 2=,且3=AF ,则此抛物线的方程为______________
17已知命题p :方程022
2=-+ax x a 在[-1,1]上有解;命题q :只有一个实数x 满足不等式
2220x ax a ++≤,若命题“p 或q ”是假命题,求实数a 的取值范围.
18、双曲线C 的中心在原点,右焦点为⎪⎪


⎝⎛0,332F ,渐近线方程为x y 3±=. (1)求双曲线C 的方程;
(2)设直线l :1+=kx y 与双曲线C 交于A 、B 两点,问:当k 为何值时,以AB 为直径的圆
过原点
19. 已知焦点在x 轴上的双曲线C 的两条渐近线过坐标原点,且两条渐近线与以点)2,0(A 为圆心,
1为半径的圆相切,又知C 的一个焦点与A 关于直线x y =对称. (1)求双曲线C 的方程;
(2)设直线1+=mx y 与双曲线C 的左支交于A ,B 两点,另一直线l 经过M (-2,0)及AB 的中点,求直线l 在y 轴上的截距b 的取值范围.
20.已知中心在原点O ,焦点在x 轴上的椭圆C 的离心率为2
3
,点A 、B 分别是椭圆C 的长轴、短轴的端点,点O 到直线AB 的距离为5
5
6。

(1)求椭圆C 的标准方程;
(2)已知点E(3, 0),设点P 、Q 是椭圆C 上的两个动点,满足EP ⊥EQ ,求QP EP ⋅的取值范围。

参考答案
一、选择题(本大题共10小题,每小题5分,共50分)
二、填空题(本大题共4小题,每小题6分,共24分)
11.
127
362
2=+y x 12.3022<+<n m , 2 13. 14. 25
15. 16. x y 32=
17
]
22222:20(2)(1)021
021
1,1,||1||1,||1220.22480.02,""||10"""|100a x ax ax ax a x x a a x a a a
x ax a y x ax a x a a a p q a a P Q a a a a +-=+-=≠∴=-=
⎡∈-≤≤∴≥⎣++≤=++∴∆=-=∴=∴≥=∴-<<< 解由,得,
显然或故或“只有一个实数满足”即抛物线与轴只有一个交点,或命题或为真命题"时或命题或为假命题
的取值范围为或}
{1< 18(Ⅰ)设双曲线的方程是()001-2222>>=b a b
y a x ,,则332=c ,b a =
又2222,1c a b b =+∴= , 3
1
2
=
a , 所以双曲线的方程是1322=-y x .
(Ⅱ)① 由2
2
1,
31,
y kx x y =+⎧⎨-=⎩得()
02232
2
=---kx x k ,
由03,02≠->∆k 且,得,66<<-k 且 3±≠k . 设()11,y x A 、()22,y x B ,因为以AB 为直径的圆过原点,所以OB OA ⊥, 所以 12120x x y y +=. 又12223k x x k -+=
-,12
22
3
x x k =-, 所以 212121212(1)(1)()11y y kx kx k x x k x x =++=+++=, 所以
2
2
103
k +=-,解得1±=k . 19. [解析]:(1)当时,1=a ,2
x y =表示焦点为)0,4
1(的抛物线;(2)当10<<a 时,1
1)1(
)
1(2
2
22
2
=-+
---a a
y a
a a a
x ,表示
焦点在x 轴上的椭圆;(3)当a>1时,
11
)
1()1(22
22
=-----
a a y a a a a x ,表示焦点在x 轴上的双曲线. (1设双曲线C 的渐
近线方程为y=kx ,则kx-y=0∵该直线与圆1)2(22=-+y x 相切,∴双曲线C 的两条渐近线方程为y=±x .故
设双曲线C 的方程为12
2
22=-a
y a x .
又双曲线C 的一个焦点为)0,2(,∴222=a ,12=a .∴双曲线C 的方程为:122=-y x . (2)由⎩⎨⎧=-+=1
12
2y x mx y 得022)1(22=---mx x m .令22)1()(22---=mx x m x f
∵直线与双曲线左支交于两点,等价于方程f(x)=0在)0,(-∞上有两个不等实根. 因此⎪
⎩⎪
⎨⎧>--<->∆0120120
22
m m m
且,解得21<<m .又AB 中点为)11
,
1(2
2m
m m --, ∴直线l 的方程为:)2(2212+++-=
x m m y . 令x =0,得8)4(2222222+--=++-=m m m b . ∵)2,
1(∈m ,∴)1,22(8
17)4
1(22+-∈+--m ,∴),2()22,(+∞---∞∈ b .
20.解:(1)由离心率e =
2
3=
a c ,得2112
=-=e a b ,所以a = 2b ① 因为原点O 到直线AB 的距离为556,所以55
622=
+b
a a
b ② 由①代入②得b 2
=9,所以a 2
=36,则椭圆C 的标准方程是
19
362
2=+y x (2)因为EP ⊥EQ ,所以⋅=0,所以2
)(=-⋅=⋅
设P(x , y ),则
193622=+y x ,即y 2
=9–4
2x 所以⋅=6)4(4
3)49(96)3(222
222+-=-++-=+-=x x x x y x
因为–6≤x ≤6,所以6≤2
)4(4
3-x +6≤81,所以QP EP ⋅的取值范围为[6,81]。

相关文档
最新文档