高二数学圆锥曲线测试题以及详细答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆梦教育 高二圆锥曲线单元测试

姓名: 得分:

一、选择题:

1.已知动点M 的坐标满足方程|12512|1322-+=+y x y x ,则动点M 的轨迹是( ) A. 抛物线

B.双曲线

C. 椭圆

D.以上都不对

2.设P 是双曲线192

22=-y a

x 上一点,双曲线的一条渐近线方程为1,023F y x =-、F 2分别是双曲线的左、右焦点,若5||1=PF ,则=||2PF ( )

A. 1或5

B. 1或9

C. 1

D. 9

3、设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,

则椭圆的离心率是( ).

A.

B. C. 2 D. 1-

4.过点(2,-1)引直线与抛物线2

x y =只有一个公共点,这样的直线共有( )条 A. 1 B.2

C. 3

D.4

5.已知点)0,2(-A 、)0,3(B ,动点2),(y y x P =⋅满足,则点P 的轨迹是 ( ) A .圆 B .椭圆

C .双曲线

D .抛物线

6.如果椭圆

19

362

2=+y x 的弦被点(4,2)平分,则这条弦所在的直线方程是( ) 02=-y x B 042=-+y x C 01232=-+y x D 082=-+y x

7、无论θ为何值,方程1sin 22

2=⋅+y x θ所表示的曲线必不是( )

A. 双曲线

B.抛物线

C. 椭圆

D.以上都不对

8.方程02

=+ny mx 与)02+mx 的曲线在同一坐标系中的示意图应是( )

C

二、填空题:

9.对于椭圆191622=+y x 和双曲线19

72

2=-y x 有下列命题: ①椭圆的焦点恰好是双曲线的顶点; ②双曲线的焦点恰好是椭圆的顶点;

③ 双曲线与椭圆共焦点; ④椭圆与双曲线有两个顶点相同.其中正确命题的序号是 ; 10.若直线01)1(=+++y x a 与圆022

2

=-+x y x 相切,则a 的值为 ; 11、抛物线2

x y -=上的点到直线0834=-+y x 的距离的最小值是 ; 12、抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,则点Q 的坐标 ; 13、椭圆13

122

2=+y x 的焦点为F 1和F 2,点P 在椭圆上,如果线段PF 1中点在y 轴上,

那么|PF 1|是|PF 2|的 ;

14.若曲线

15

42

2=++-a y a x 的焦点为定点,则焦点坐标是 。 三、解答题:

15.已知双曲线与椭圆

125922=+y x 共焦点,它们的离心率之和为5

14,求双曲线方程.(12分) 16.P 为椭圆19

252

2=+y x 上一点,1F 、2F 为左右焦点,若︒=∠6021PF F (1)求△21PF F 的面积; (2)求P 点的坐标.(14分)

17、求两条渐近线为02=±y x 且截直线03=--y x 所得弦长为

3

3

8的双曲线方程.(14分) 18、知抛物线x y 42

=,焦点为F ,顶点为O ,点P 在抛物线上移动,Q 是OP 的中点,M 是FQ 的中点,求点M 的轨迹方程.(12分)

19、某工程要将直线公路l 一侧的土石,通过公路上的两个道口 A 和B ,沿着道路AP 、BP 运往公路另一侧的P 处,PA=100m ,PB=150m ,∠APB=60°,试说明怎样运土石最省工?

20、点A 、B 分别是椭圆

120

362

2=+y x 长轴的左、右端点,点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,PF PA ⊥。 (1)求点P 的坐标;

|MB,求椭圆上的点到M的距离d的最小值。(2)设M是椭圆长轴AB上的一点,M到直线AP的距离等于|

圆梦教育高二圆锥曲线测试题答题卡

二、填空题(5*6=30)

9. 10.

11. 12.

13. 14.

三、解答题:

16.(14分)

17、(14分)

18、(12分)

19、(14分)

20、(14分)

高二理科数学圆锥曲线测试题答案

一、选择题

ADDCD DBA

二、 填空题:

9.①② 10、-1 11、34 12. (1,4

1

) 13. 7倍 14.(0,±3) 三、解答题: 15.(12分)

解:由于椭圆焦点为F(0,±4),离心率为e=

4

5,所以双曲线的焦点为F(0,±4),离心率为2,从而

所以求双曲线方程为:

22

1412

y x -= 16.[解析]:∵a =5,b =3∴c =4 (1)设11||t PF =,22||t PF =,则1021=+t t ①

2212

221860cos 2=︒⋅-+t t t t ②,由①2-②得1221=t t

332

3

122160sin 212121=⨯⨯=︒⋅=

∴∆t t S PF F (2)设P ),(y x ,由||4||22

12

1

y y c S PF F ⋅=⋅⋅=∆得 433||=y 4

3

3||=∴y 4

3

=⇒y ,将4

33

±=y 代

入椭圆方程解得4

135

±=x ,)433,4135

(P ∴或)433,4135(-P 或)433,4135(-P 或)4

33,4135(--P 17、解:设双曲线方程为x 2

-4y 2

=λ.

联立方程组得: 22x -4y =30

x y λ⎧⎨--=⎩,消去y 得,3x 2

-24x+(36+λ)=0

设直线被双曲线截得的弦为AB ,且A(11,x y ),B(22,x y ),那么:12122

83632412(36)0

x x x x λλ+=⎧

⎪+⎪

=

⎨⎪∆=-+>⎪⎩ 那么:

==

解得: λ=4,所以,所求双曲线方程是:2

214

x y -= 18 [解析]:设M (y x ,),P (11,y x ),Q (22,y x ),易求x y 42=的焦点F 的坐标为(1,0)

∵M 是FQ 的中点,∴ ⎪⎪⎩⎪⎪⎨⎧=+=22122y y x x ⇒⎩⎨⎧=-=y y x x 21222,又Q 是OP 的中点∴ ⎪⎪⎩

⎪⎪⎨

⎧==221

212y y x x ⇒

相关文档
最新文档