试卷答案2016-2017武汉市洪山区七年级下期中数学试卷

合集下载

湖北省2016-2017学年度第二学期期中考试七年级数学试卷

湖北省2016-2017学年度第二学期期中考试七年级数学试卷

湖北省2016-2017学年度第二学期期中考试七年级数学试卷一、选择题(3分×10=30分) 下面每个小题给出的四个选项中,有且只有一个是正确的,请把正确选项前的字母代号填在答题卷中 1. 点()P 1,3- 在A . 第一象限B . 第二象限C . 第三象限D . 第四象限 2. 在同一平面内,不重合的两条直线的位置关系是A . 平行B . 相交C . 平行或相交D . 平行或垂直3. 在实数范围内有意义,则x 的取值范围是A . x 5>B . x 5≥C . x 5≠D .x 0≥4. 在实数:2,5π--中,无理数的个数有A .1 个B .2 个C .3 个D .4 个5. 如图,点E 在BC 的延长线上,则下列条件中,不能判定AB CD ∥ 的是A .3=4∠∠B .B=DCE ∠∠C .1=2∠∠D .D DAB=180∠+∠︒6. 点()M 4,2 关于x 轴对称的点的坐标是A .()42-,B .()4,2-C .()4,2--D .()2,47. 下列各式中正确的是A 4±BCD 348. 同一平面内的四条直线满足a b,b c,c d ⊥⊥⊥ ,则下列式子成立的是A .a b ∥B .b d ⊥C .a d ⊥D .b c ∥9. 下列四个命题:①两条直线被第三条直线所截,同位角相等;②0.1 的算术平方根是0.01 ;③计算=5;④如果点()P 32n,1- 到两坐标轴的距离相等,则n 1= ;其中是假命题的个数是A .1 个B .2 个C .3 个D .4 个10. 在直角坐标系中,我们把横、纵坐标都是整数的点叫做整点,且规定:正方形内部不包含边界上的点。

观察如图2所示的中心在原点、一边平行于x 轴的正方形:边长为1 的正方形内部有1 个整点,边长为2 的正方形内部有1 个整点,边长为3 的正方形内部有9 个整点,……,则边长为9 的正方形内的整点个数为A .64B .49C .36D .81二、填空题(3分×6=18分)11. 9 的平方根是____________; 12. 命题:两个角的和等于平角时,这两个角互为补角。

洪山区七年级下学期期中附答案

洪山区七年级下学期期中附答案

洪山区七年级下学期期中附答案集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]E D CBAα21c baFEC BA l 2l 121洪山区2015—2016学年度第二学期期中调考七年级数学试卷一、选择题(共10小题,每小题3分,共30分) 1.化简(-4)2 的结果为( )C. -4D.±42.如图,已知,直线l 1∥l 2,一块含30°角的直角三角板如图所示放置, ∠1=20°,则∠2=( )° ° °3.在平面直角坐标系中,点P (4,-5)在( )A.第一象限B.第二象限是C.第三象限D.第四象限 4.下列说法正确的是( )A.-5是25的平方根 的平方根是-5的立方根是±5 D.±5是的(-5)2算术平方根5.如图,能使AB ∥CD 成立的条件是( )A.∠B =∠DB.∠B +∠D =90°C.∠B +∠D +∠E =180°D.∠B +∠D =∠E6.下列各数:711,,π4,0.7,39,25中,其中无理数有( )个 A.1个 B.2个 C.3个 个 7.如图,直线a ∥b ∥c ,∠1=110°,∠2=125°,那么α等于( )°. ° ° °8.小强将平面直角坐标系中的△ABC 进行平移,得到三角形A ’B ’C ’,已知A (2,-1)的对应点A ’的坐标(a ,-4),点B (5,-2)对应点B ’的坐标为3(,b ),则点C (a ,b )的对应点C ’的坐标为( )A.(-2,-8)B.(3,-4)C.(0,-5)D.无法确定9.如图,AB ∥EF ,则下列关系中正确的是( )A.∠C =∠B +∠DB.∠D +∠E =180°+∠BC.∠B +∠D +∠E =180°+∠CD.∠E +∠B =∠C +∠D10.如图,点A (1,0)第一次跳动至点A 1(-1,1),第二次跳动至点A 2(2,1),第三次跳动至点A 3(-2,2),第四次跳动至点A 4(3,2),,依此规律跳动下去,A 第102次跳动至点A 102的坐标是( )A.(-50,50)B.(-51,51)C.(52,51)D.(51,50)二、填空题(共6小题,每小题3分,共18分)11.若点P (m +3,m +1),在x 轴上,则P 的坐标为____________.12.一个正数a 的平方根是3x -4与2-2x ,则这个正数a 是__________. 13.如图所示,若在某棋盘上建立直角坐标系,使“将”位于点(1,-2),“象”位于点(3,-2),则“炮“位于点___________.14.如图,AB ∥EF ,∠C =90°,写出α、β、γ之间的等量关系是___________.15.2=,有些数则不能直接1.293≈,2.785≈6≈=___________.16.如图,在平面直角坐标xoy 中,对正方形ABCD 及其内部的每个点进行如下操作:把每一个点的横,纵坐标都乘以同一个实数a ,将得到的点先向右平移m 个单位,再向上平移n 个单位(m >0,n >0),得到正方形A ’B ’C ’D ’及其内部的点,其中点A 、B 的对应点分别为A ’、B ’,已知正方形ABCD 内部的一个点F 经过上述操作后得到的对应点F ’与点F 重合,则点F 的坐标为___________.将炮象γβαFED CBA第13题图 第14题图 第16题图三、解答题(共7小题,共52分) 17.(本题8分)求值或计算:①求满足条件的x 值:① 211604x -= ②计算:18.(本题6分)完成下面推理过程:如图,已知DE 本题6分)如图,EFFEDCB A20.(本题6分)如图,在平面直角坐标系中,△ABC 的三个顶点的位置如图所示,现将△ABC 沿AA ’的方向平移,使得点A 移至图中的点A ’的位置. (1)在直角坐标系中,画出平移后所得△A ’B ’C ’(其中B ’、C ’分别是B 、C 的对应点).(2)(1)中所得的点B ’、C ’的坐标分别是 ; (3)直接写出平移过程中线段AB 扫过的面积 .21.(本题8分)如图1,在五边形ABCDE 中,AE (1)猜想AB 与CD 之间的位置关系,并说明理由;图1ABCDE(2)延长DE 至F ,连接BE ,如图2,若∠1=∠3,∠AEF =2∠2,求证∠AED =∠C .图2321F ED CBAF EDCBA22.(本题8分)某区进行课堂教学改革,将学生分成5个学习小组,采取团团坐的方式.如图,这是某校八(1)班教室简图,点A 、B 、C 、D 、E 分别代表五个学习小组的位置.已知A 点的坐标为(-1,3).(1)请按题意建立平面直角坐标系(横轴和纵轴均为小正方形的边所在直线,每个小正方形边长为1个单位长度),写出图中其他几个学习小组的坐标; (2)若(1)中建立的平面直角坐标系坐标原点为O ,点F 在DB 的延长线上,直接写出,∠FAB 、∠AFO 、∠FOD 之间的等量关系 .23.(本题10分)如图,对于长方形OABC ,AB (1)直接写出点B 的坐标 ;(2)如图,若点P 从C 点出发向CB 方向匀速运动(不超过点B ),点Q 从B 点出发向BA 方向匀速运动(不超过点A ),且点Q 的速度是P 的一半,P 、Q 两点同时出发,在点P 、Q 移动过程中,四边形PBQO 的面积是否发生变化若不变,求其值;若变化,求其变化范围.(3)如图,M 为x 轴负半轴上一点,且∠CBM =∠CMB ,N 是x 轴正半轴上一动点,∠MCN 的平分线CD 交BM 的延长线于点D ,在点N 运动的过程中,求∠∠D∠CNM的值.2014—2015学年度洪山区第二学期期中调考七年级数学参考答案一、选择题(共10小题,每小题3分,共30分)1. B2. C3. D4. A5. D 9. C 10. C二、填空题(共6小题,每小题3分,共18分)11. (2,0) 12. 4 13. (-2,1) 14. α+β-γ= 90° 15. 16. (1,4)三、解答题(共7小题,共52分)17. (本题8分) ①x的值为8-8或 ------------- 4′18(本题6分)完成下面推理过程:如图,已知DE∥BC,DF、BE分别平分∠ADE、∠ABC,可推得∠FDE=∠DEB的理由:∵DE∥BC(已知)∴∠ADE= ∠ABC(两直线平行,同位角相等)∵DF、BE分别平分∠ADE、∠ABC,∴∠ADF=12∠ADE,∠ABE=12∠ABC(角平分线定义)∴∠ADF=∠ABE∴DF∥ BE(同位角相等,两直线平行)∴∠FDE=∠DEB.(两直线平行,内错角相等)-------- 每空1′19. (本题6分) 解:∵EF∥AD,AD∥BC,∴EF∥BC,∴∠ACB+∠DAC=180°,∵∠DAC=100°,∴∠ACB=80°,又∵∠ACF=20°,∴∠FCB=∠ACB-∠ACF=60°,∵CE平分∠BCF,∴∠BCE=30°,∵EF∥BC,∴∠FEC=∠ECB,∴∠FEC=30°..---------- 4′(3) 8个平方单位------- 6′21. (本题8分)解:(1)猜想:AB∥CD,理由:∵AE∥BC,∴∠A+∠B=180°,∵∠A=∠C,∴∠C+∠B=180°,∴AB∥CD;-------------- 4′(2)∵AE∥BC,∴∠2=∠3,∠A+∠ABC=180°,∵∠1=∠3,∴∠1=∠2=∠3,∠ABC=2∠2, ∵∠AEF=2∠2,∴∠A+∠ABC=∠A+2∠2=∠A+∠AEF=180°, ∵∠AEF+∠AED=180°, ∴∠A=∠AED ,∵∠A=∠C ,∴∠AED=∠C .--------- 8′22. (本题8分)(1)正确画出坐标系--------------- 2′ B(3,3) C(-1,0) D(3,0) E(-2,5) -------------- 6′ (2)∠FOD =∠FAB+∠AFO ------ 8′ 23. (本题10分)(1)B(-8,-4) -------------- 2′(2)设点Q 的运动速度a,运动时间为t,则点P 的运动速度2a. CP=2at ,AQ=4-at ;∵四边形PBQO 的面积=长方形ABCO 的面积-三角形PCO 的面积-三角形AQO 的面积=8×4-12×4×2at-12×8×(4-at)=--- 6′(3)DCNM∠∠的值不会变化,理由如下:延长BC 至点F ,如图2, ∵四边形OABC 为长方形, ∴OA ∥BC .∴∠CBM=∠AMB ,∠AMC=∠MCF , ∵∠CBM=∠CMB , ∴∠MCF=2∠CMB ,过点M 作ME ∥CD 交BC 于点E , ∴∠EMC=∠MCD ,∠D=∠BME , 又∵CD 平分∠MCN , ∴∠NCM=2∠EMC ,∴∠D=∠BME=∠CMB-∠EMC ,∠CNM=∠NCF=∠MCF-∠NCM=2∠BMC-2∠DCM=2∠D , 1=2D CNM ∠∠-------------- 10′。

湖北省2016-2017学年七年级下学期期中考试数学试题

湖北省2016-2017学年七年级下学期期中考试数学试题

※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※学校班级姓名考号※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※湖北省2016-2017年期中七年级数学试卷考生注意: 闭卷考试试题共24小题满分:120分考试时间:120分钟一、选择题 (共45分)【】1、 4的算术平方根值等于(☆) A.2 B.-2 C.±2 D.2【】2、在下列点中,与点A(2-,4-)的连线平行于y轴的是(☆)A.(2,-4)B.(4,-2)C.(-2,4)D.(-4,2)【】3、如图所示,点E在AC的延长线上,下列条件中能判断...CDAB//(☆)A. 43∠=∠ B. 21∠=∠ C. DCED∠=∠ D. ο180=∠+∠ACDD【】4、如图,AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC的度数为(☆)A.30° B.60° C.90° D.120°【】5、A(―4,―5),B(―6,―5),则AB等于(☆)A、4B、2C、5D、3【】6、由点A(―5,3)到点B(3,―5)可以看作(☆)平移得到的。

A、先向右平移8个单位,再向上平移8个单位B、先向左平移8个单位,再向下平移8个单位C、先向右平移8个单位,再向下平移8个单位D、先向左平移2个单位,再向上平移2个单位【】7、如图,已知AB∥CD,直线MN分别交AB、CD于点M、N,NG平分MND∠,若170∠=°,则2∠的度数为(☆)A、10° B、15° C、20° D、35°【】8、点p在第二象限,且到x轴的距离为2,到y轴的距离为3.点p坐标是(☆)A. (-2,3)B. (-2,3)C. (-3,2) D . (3,-2)【】9、下列命题中,真命题的个数有(☆)①同一平面内,两条直线一定互相平行;②有一条公共边的角叫邻补角;③内错角相等。

2016-2017学年七年级下数学期中试卷及答案

2016-2017学年七年级下数学期中试卷及答案

2016-2017学年度第二学期期中考试七年级数学试卷一、选择题(本题有10小题,每题4分,共40分) 1、下面四个图形中∠1与∠2是对顶角的是( )A. B. C. D.2、方程组的解为( ) A.B.C.D.3、在①+y=1;②3x ﹣2y=1;③5xy=1;④+y=1四个式子中,不是二元一次方程的有( ) A .1个B .2个C .3个D .4个4、如图所示,图中∠1与∠2是同位角的是( ) A 、1个B 、2个C 、3个D 、4个5.下列运动属于平移的是( )A .冷水加热过程中小气泡上升成为大气泡B .急刹车时汽车在地面上的滑动C .投篮时的篮球运动D .随风飘动的树叶在空中的运动 6、如图1,下列能判定AB ∥CD 的条件有( )个. (1) ︒=∠+∠180BCD B ; (2)21∠=∠; (3) 43∠=∠; (4) 5∠=∠B . A .1 B .2 C .3 D.47、下列语句是真命题的有( )①点到直线的垂线段叫做点到直线的距离; ②内错角相等;③两点之间线段最短; ④过一点有且只有一条直线与已知直线平行; ⑤在同一平面内,若两条直线都与第三条直线垂直,那么这两条直线互相平行. A .2个 B .3个 C .4个 D .5个54D3E21CBA图18、如图2,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D′、C′的位置,若∠EFB=65°,则∠AED′=( ) A 、50° B 、55° C 、60° D 、65° 9、如图3,直线21//l l ,∠A=125°,∠B=85°,则∠1+∠2=( )A .30°B .35°C .36°D .40°10、如图4,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B 到C 的方向平移到△DEF 的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为( )A.42B.96C.84D.48 二、填空题(本题有6小题,11题10分,其余每题4分,共30分) 11、﹣125的立方根是,的平方根是 ,如果=3,那么a=,的绝对值是 ,2的小数部分是_______12、命题“对顶角相等”的题设 ,结论13、(1)点P 在第二象限内,P 到x 轴的距离是4,到y 轴的距离是3,那么点P 的坐标为_______; (2)若,则.14、如图5,一艘船在A 处遇险后向相距50 海里位于B 处的救生船 报警.用方向和距离描述遇险船相对于救生船的位置15、∠A 的两边与∠B 的两边互相平行,且∠A 比∠B 的2倍少15°,则∠A 的度数为_______16、在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点P′(-y+1,x+1)叫做点P 的伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4,…,这样依次得到点A 1,A 2,A 3,…,A n ,….若点A 1的坐标为(3,1),则点A 3的坐标为 , 点A 2014的坐标为_________三、解答题(本题有10小题,共80分) 17、(本题有6小题,每小题3分,共18分)(一)计算:(1)322769----)( (2))13(28323-++-(3)2(2-2)+3(3+13). 图4图5FEDCB A 音乐台湖心亭牡丹园望春亭游乐园(2,-2)孔桥(二)解方程:(1)9x 2=16. (2)(x ﹣4)2=4 (3)18、(本小题5分)把下列各数分别填入相应的集合里:38,3,-3.14159,3π,722,32-,87-,0,-0.∙∙02,1.414,7-,1.2112111211112…(每两个相邻的2中间依次多1个1).(1)正有理数集合:{ …}; (2)负无理数集合:{ …}; 19、(本小题6分)王霞和爸爸、妈妈到人民公园游玩,回到家后,她利用平面直角坐标系画出了公园的景区地图,如图所示.可是她忘记了在图中标出原点和x 轴. y 轴. 只知道游乐园D 的坐标为(2,-2), 请你帮她画出坐标系,并写出其他各景点的坐标.20、(本小题5分)已知2是x 的立方根,且(y-2z+5)2+=0,求的值.21、(本小题8分)如图,直线AB 、CD 、EF 相交于点O . (1)写出∠COE 的邻补角;(2)分别写出∠COE 和∠BOE 的对顶角;(3)如果∠BOD=60°,EF AB ⊥,求∠DOF 和∠FOC 的度数.22、(本小题4分)某公路规定行驶汽车速度不得超过80千米/时,当发生交通事故时,交通警察通常根据刹车后车轮滑过的距离估计车辆的行驶速度,所用的经验公式是,其中v 表示车速(单位:千米/时),d 表示刹车后车轮滑过的距离(单位:米),f 表示摩擦系数.在一次交通事故中,经测量d=32米,f=2.请你判断一下,肇事汽车当时是否超出了规定的速度? 23、(本小题11分)完成下列推理说明:(1)如图,已知∠1=∠2,∠B=∠C ,可推出AB ∥CD .理由如下: 因为∠1=∠2(已知),且∠1=∠4( )所以∠2=∠4(等量代换) 所以CE ∥BF ( ) 所以∠ =∠3( )又因为∠B=∠C(已知)所以∠3=∠B(等量代换)所以AB∥CD()(2)如图,已知∠B+∠BCD=180°,∠B=∠D.求证:∠E=∠DFE.证明:∵∠B+∠BCD=180°(已知),∴AB∥CD ()∴∠B= ()又∵∠B=∠D(已知),∴∠= ∠(等量代换)∴AD∥BE()∴∠E=∠DFE()24、(本小题6分)如图,长方形OABC中,O为平面直角坐标系的原点,点A、C的坐标分别为A(3,0),C(0,2),点B在第一象限.(1)写出点B的坐标;(2)若过点C的直线交长方形的OA边于点D,且把长方形OABC的周长分成2:3的两部分,求点D的坐标;(3)如果将(2)中的线段CD向下平移3个单位长度,得到对应线段C′D′,在平面直角坐标系中画出△CD′C′,并求出它的面积.25、(本小题6分)如图,已知∠1+∠2=180°,∠B=∠3,你能判断∠C与∠AED的大小关系吗?并说明理由.26(本小题11分)如图,在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,CD.得平行四边形ABDC(1)直接写出点C,D的坐标;(2)若在y轴上存在点M,连接MA,MB,使S△MAB=S平行四边形ABDC,求出点M的坐标.(3)若点P在直线BD上运动,连接PC,PO.请画出图形,直接写出∠CPO、∠DCP、∠BOP的数量关系.2016-2017学年度第二学期期中联考数学科 评分标准一、选择题(本大题共10小题,每小题4分,共40分) 二、填空题(本大题共6小题,11题10分,其余每小题4分,共30分)11. -5 、 ±3 、 9 、﹣2 、 2 -112.题设 两个角是对顶角 . 结论 这两个角相等 13.(1) (-3,4) .(2) 7.160 14. 南偏西15°,50海里15. 15°或115° . (答出一种情况2分) 16. (-3,1) 、 (0,4) 三、解答题(本大题共11小题,共80分)17(18分)(一)(1)322769----)( (2))13(28323-++-解:原式=3-6-(-3) …2 解:原式=232223-++-……2 =0 ……………………3 =…233-……… 3 (3)2(2-2)+3(3+13).解:原式=13222++- (2)=222+ (3)(二)(1)9x 2=16. (2)(x ﹣4)2=4解:x 2=,......1 x ﹣4=2或x ﹣4=﹣2 (1)x=±,……3 x ═6或x=2……3 (求出一根给2分)(3),(x+3)3=27,......1 x+3=3, (2)题号1 2 3 4 5 6 7 8 9 10答案CDBCBCAAADx=0. (3)18(本小题5分)解:(1)正有理数集合:{38,722,1.414,…} ……3分 (2)负无理数集合:{32-,7-,…}.……5分19(本小题6分)解:(1)正确画出直角坐标系;……1分(2)各点的坐标为A(0,4),B (-3,2),C (﹣2,-1),E (3,3),F (0,0);……6分 20(本小题5分)解:∵2是x 的立方根, ∴x=8,……1 ∵(y ﹣2z+5)2+=0,∴,解得:, (3)∴==3. (5)21(本小题8分)解:(1)∠COF 和∠EOD (2)(2)∠COE 和∠BOE 的对顶角分别为∠DOF 和∠AOF .……4 (3)∵AB ⊥EF ∴∠AOF=∠BOF=90°∴∠DOF=∠BOF-∠BOD=90°-60°=30° (6)又∵∠AOC=∠BOD=60°∴∠FOC=∠AOF+∠AOC=90°+60°=150°. (8)22(本小题4分)解:把d=32,f=2代入v=16,v=16=128(km/h ) (2)∵128>80, (3)∴肇事汽车当时的速度超出了规定的速度. (4)23.(11分)(1)如图,已知∠1=∠2,∠B=∠C ,可推出AB ∥CD .理由如下: 因为∠1=∠2(已知),且∠1=∠4( 对顶角相等 ) (1)所以∠2=∠4(等量代换)所以CE ∥BF ( 同位角相等,两直线平行 )......2 所以∠ C =∠3( 两直线平行,同位角相等 ) (4)又因为∠B=∠C(已知)所以∠3=∠B(等量代换)所以AB∥CD(内错角相等,两直线平行) (5)(2)在括号内填写理由.如图,已知∠B+∠BCD=180°,∠B=∠D.求证:∠E=∠DFE.证明:∵∠B+∠BCD=180°(已知),∴AB∥CD (同旁内角互补,两直线平行) (1)∴∠B=∠DCE(两直线平行,同位角相等) (3)又∵∠B=∠D(已知),∴∠DCE=∠D (等量代换) (4)∴AD∥BE(内错角相等,两直线平行) (5)∴∠E=∠DFE(两直线平行,内错角相等) (6)24.(6分)解:(1)点B的坐标(3,2); (1)(2)长方形OABC周长=2×(2+3)=10,∵长方形OABC的周长分成2:3的两部分,∴两个部分的周长分别为4,6,∵OC+OA=5<6∴OC+OD=4∵OC=2,∴OD=2,∴点D的坐标为(2,0); (4)(3)如图所示,△CD′C′即为所求作的三角形, (5)CC′=3,点D′到CC′的距离为2,所以,△CD′C′的面积=×3×2=3. (6)25(6分)解:∠C与∠AED相等, (1)理由为:证明:∵∠1+∠2=180°,∠1+∠DFE=180°,∴∠2=∠DFE (2)∴AB∥EF∴∠3=∠ADE (3)又∠B=∠3∴∠B=∠ADE∴DE∥BC (5)∴∠C=∠AED (6)26、(本小题11分)解:(1)C(0,2),D(4,2); (2)(2)∵AB=4,CO=2,∴S平行四边形ABOC=AB•CO=4×2=8,设M坐标为(0,m),∴×4×|m|=8,解得m=±4∴M点的坐标为(0,4)或(0,﹣4);……5(求出一点给2分)(3)当点P在BD上,如图1,∠DCP+∠BOP=∠CPO; (7)当点P在线段BD的延长线上时,如图2,,∠BOP﹣∠DCP=∠CPO; (9)同理可得当点P在线段DB的延长线上时,∠DCP﹣∠BOP=∠CPO. (11)(每种情况正确画出图形给1分)。

初级中学16—17学年下学期七年级期中考试数学试题(附答案)

初级中学16—17学年下学期七年级期中考试数学试题(附答案)

54D 3E21C B A2016-2017学年第二学期期中考试七年级数学试卷(问卷)(卷面分值:100分;考试时间:100分钟)同学们,半个学期的勤奋,今天将展现在试卷上,老师相信你一定会把诚信答满试卷,......................................也一定会让努力书写成功,答题时记住细心和耐心。

.......................注意事项:本卷由问卷和答卷两部分组成,其中问卷共4页,答卷共2页,在问卷上答题无效。

一.选择题(本大题共8小题,每小题3分,共24分)1. 4的平方根是( )A . ±2B .2C .±D .2.点P (-1,5)所在的象限是( )A .第一象限B .第二象限C.第三象限 D.第四象限3.下列各组图形,可由一个图形平移得到另一个图形的是( )A B C D4.如图,直线AB 、CD 相交于点O,若∠1+∠2=100°,则∠BOC 等于 ( )A.130°B.140°C.150°D.160 (第4题图)5.已知是二元一次方程4x+ay=7的一组解,则a 的值为( )A .﹣5B .5C .D .﹣6.如右图,下列能判定AB ∥CD 的条件有( )个. (第6题图) (1) ︒=∠+∠180BCD B (2)21∠=∠(3) 43∠=∠ (4) 5∠=∠B A . 1 B .2 C .3D.4 7.下列各组数中,互为相反数的组是( )A .﹣2与B .﹣2和C .﹣与2D .|﹣2|和28.下列命题:①两直线平行,内错角相等;②如果m 是无理数,那么m 是无限小数;③64的立方根是8;④同旁内角相等,两直线平行;⑤如果a 是实数,那么a 是无理数.其中正确的有( )A .1个B .2个C .3个D .4个二.填空(本大题共6小题,每小题3分,共18分)9.若32123=---n m y x 是二元一次方程,则m=____,n=____.10.计算:|3﹣π|+的结果是 .11.已知点P(0,a)在y 轴的负半轴上,则点Q(-2a -1,-a+1)在第 象限.12.已知a 、b 满足方程组2226a b a b -=⎧⎨+=⎩,则3a b +的值为 . (第13题图) 13.如图,一张宽度相等的纸条,折叠后,若∠ABC=120°,则∠1的度数为 .14.在平面直角坐标系中,点A 的坐标为(﹣1,3),线段AB ∥x 轴,且AB =4,则点B 的坐标为 .三、计算解答题 (每小题5分,共20分)15.计算:364+2)3(--31- 16.1+2)451(- .17.解二元一次方程组:18.已知2a-1的平方根是±3,3a-b+2的算术平方根是4,求a+3b的立方根.四、解答题:(19题6分,20题8分,21题6分,22题8分,23题10分共38分)19. 某工程队承包了修建隧道施工任务,甲、乙两个班组分别从东、西两端同时掘进.已知甲组比乙组平均每天多掘进0.6米,经过5天施工,两组共掘进了50米.求甲、乙两个班组平均每天各掘进多少米?20.已知:如图,∠1=∠2,∠3=∠E.求证:AD∥BE.证明:∵∠1=∠2 (已知)∴∥()∴∠E=∠()又∵∠E=∠3 (已知)∴∠3=∠()∴AD∥BE.()21.如图,直线AB∥CD,直线EF分别交AB、CD于点M、N,∠EMB=50°,MG平分∠BMF,MG交CD于G,求∠1的度数.22.如图,已知△ABC平移后得到△A1B1C1,点A(﹣1,3)平移后得到A1(﹣4,2),(1)写出B,C的坐标:B(,),C(,).(2)画出△ABC,并指出平移规律;(3)求△ABC的面积.A PB 1l 2l 3l 1 2 323如图,已知直线 1l ∥2l ,且 3l 和1l 、2l 分别交于A 、B 两点,点P 在直线AB 上.(1)试找出∠1、∠2、∠3之间的关系并说明理由;(2)当点P 在A 、B 两点间运动时,问∠1、∠2、∠3之间的关系是否发生变化?(只写结论)(3)如果点P 在A 、B 两点外侧运动时,试探究∠1、∠2、∠3 之间的关系。

洪山区2016-2017学年度第二学期期末调考七年级数学试题(PDF版)

洪山区2016-2017学年度第二学期期末调考七年级数学试题(PDF版)

∠DEB=10°时,∠F 的度数是(

A、70°
B、75°
C、80°
D、85°
5、《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架要。它
的代数成就主要包括了开方术、正负术和方程术。其中,方程术是《九章算术》最高的
数学成就。《九章算术》中记载:“今有牛五,羊二,直金十两;牛二,羊五,直金八两。
-4-
(1)、求证:DE∥BC (2)、在以上条件下,△ABC 及 D,E 两点的位置不变,点 F 在边 BC 上运动使得∠DEF 的大小发生变化,保证点 H 存在并不与 F 点重合,探究:要使∠1=∠BFH 成立,请说 明点 F 应满足的位置条件,在图 2 中画出符合条件的图形并说明理由。 (3)、在(2)的条件下,若∠C=a,直接写出∠BFH 的大小_______
)人
A、1200Βιβλιοθήκη B、1080C、900
D、108
9、已知实数 x,y 同时满足三个条件:①、3x−2y=4+p,②、4x−3y=2−p,③、x>y,
那么实数 p 的取值范围是(

A、p>-1
B、p<1
C、p<-1
D、p>1
10、如图△ABC 面积为 1,第一次操作:分别延长 AB,BC,CA 至点 A1,B1,C1,
-5-
23、(本题 8 分) 如图,在平面直角坐标系中,点 A 在 x 轴上,直线 OC 上所有点的 坐标(x,y)都是二元一次方程 4x−13y=0 的解,直线 AC 上所有点的坐标(x,y)都 是二元一次方程 2x+y=0 的解,过点 C 作 x 轴平行线,交 y 轴于 B 点。
(1)、求 A,B,C 的坐标 (2)、点 M,N 分别为线段 BC,OA 上的两个动点,点 M 从点 C 向左以 1.5 个单位长度 /秒运动,同时点 N 从 O 点向点 A 以 2 个单位长度/秒运动,如图②所示,设运动时间 为 t 秒(0<t<15) ①、当 CM<AN 时,求 t 的取值范围; ②、是否存在一段时间,使得 S 四边形 MNOB>S 四边形 MNCA?若存在,求出 t 的取值范围; 若不存在,请说明理由。

湖北省武汉市2016-2017学年七年级下学期期中数学试卷【解析版】15

湖北省武汉市2016-2017学年七年级下学期期中数学试卷【解析版】15

七年级下学期期中数学试卷一、选一选(本题共10小题,每小题3分,共30分)1.(3分)点P(﹣2,3)所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限2.(3分)在下图中,∠1,∠2是对顶角的图形是()A.B.C.D.3.(3分)计算的结果是()A.6 B.±6 C.﹣6 D. 364.(3分)下列各图中,∠1与∠2是内错角的是()A.B.C.D.5.(3分)将图所示的图案通过平移后可以得到的图案是()A.B.C.D.6.(3分)在下列实数中,无理数是()A.0.151515…B.πC.﹣4 D.7.(3分)下列命题中正确的是()A.如果两个角相等,则它们是对顶角B.实数包括有理数、无理数C.两直线被第三直线所截,内错角相等D.若a2=b2,则a=b8.(3分)平面直角坐标系内,点A(n,1﹣n)一定不在()A.第一象限B.第二象限C.第三象限D.第四象限9.(3分)在同一平面内,有三条直线a、b、c,下列说法:①若a与b相交,b与c相交,则a与c相交;②若a∥b,b与c相交(不重合),则a与c相交;③若a⊥b,b⊥c,则a⊥c,④若a∥b,b∥c,则a∥c,其中正确的结论的个数为()A.1个B.2个C.3个D. 4个10.(3分)△DEF是由△ABC平移得到的,点A(﹣2,﹣1)的对应点为D(1,﹣3),则点C (2,3)的对应点F的坐标为()A.(﹣1,5)B.(1,5)C.(5,1)D.(5,﹣4)二、仔细填一填,(每小题3分,共18分)11.(3分)如图一个弯形管道ABCD的拐角∠ABC=120°,∠BCD=60°,这时说管道AB∥CD,是根据.12.(3分)点P(﹣2,3)到y轴距离为.13.(3分)命题“邻补角是互补的角”,该命题为命题(填“真”或“假”).14.(3分)如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=15°,那么∠2的度数是°.15.(3分)同一平面内的任意三条直线a、b、c,其交点的个数有.16.(3分)定义:直线l1与l2相交于点O,对于平面内任意一点P1点P到直线l1与l2的距离分别为p、q则称有序实数对(p,q)是点P的“距离坐标”.根据上述定义,“距离坐标”是(3,2)的点的个数有个.三、解答题(本题共9小题,共72分)17.(6分)计算(1)3+2(2)﹣+.18.(6分)求下列各式中的x的值(1)2x2=50;(2)(x﹣1)3=0.027.19.(6分)如图:已知∠1=∠2,∠3=∠4,试探究AB与EF的位置关系.20.(7分)下图中标明了小红家附近的一些地方,建立平面直角坐标系如图.(1)写出游乐场和糖果店的坐标;(2)某星期日早晨,小红同学从家里出发,沿着(1,3),(3,﹣1),(0,﹣1),(﹣1,﹣2),(﹣3,﹣1)的路线转了一下,又回到家里,写出路上她经过的地方.21.(7分)完成下面推理过程:如图,已知DE∥BC,DF、BE分别平分∠ADE、∠ABC,可推得∠FDE=∠DEB的理由:∵DE∥BC(已知)∴∠ADE=.∵DF、BE分别平分∠ADE、∠ABC,∴∠ADF=,∠ABE=.∴∠ADF=∠ABE∴∥.∴∠FDE=∠DEB.()22.(8分)已知2是x的立方根,且(y﹣2z+5)2+=0,求的值.23.(10分)如图,∠1=∠2,∠A=∠C,求证:∠E=∠F.24.(10分)如图,在平面直角坐标系中,A(﹣2,2)、B(﹣3,﹣2)、C(3,﹣2)(1)求△ABC的面积;(2)如果在第一象限内有一点P(m,1),试用含m的式子表示四边形PABC 的面积;(3)是否存在一点P(m,1),使△PAC的面积与△ABC的面积相等?若存在,求P点的坐标;若不存在,请说明理由.25.(12分)已知,点E、F分别在直线AB,CD上,点P在AB、CD之间,连结EP、FP,如图1,过FP上的点G作GH∥EP,交CD于点H,且∠1=∠2.(1)求证:AB∥CD;(2)如图2,将射线FC沿FP折叠,交PE于点J,若JK平分∠EJF,且JK∥AB,则∠BEP与∠EPF之间有何数量关系,并证明你的结论;(3)如图3,将射线FC沿FP折叠,将射线EA沿EP折叠,折叠后的两射线交于点M,当EM⊥FM时,求∠EPF的度数.参考答案与试题解析一、选一选(本题共10小题,每小题3分,共30分)1.(3分)点P(﹣2,3)所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限考点:点的坐标.专题:常规题型.分析:应先判断出所求的点的横纵坐标的符号,进而判断点P所在的象限.解答:解:∵点P的横坐标为负,纵坐标为正,∴点P(﹣2,3)所在象限为第二象限.故选B.点评:本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.(3分)在下图中,∠1,∠2是对顶角的图形是()A.B.C.D.考点:对顶角、邻补角.分析:此题在于考查对顶角的定义,作为对顶角,首先是由两条直线相交形成的,其次才是对顶角相等.解答:解:根据两条直线相交,才能构成对顶角进行判断,A、B、D都不是由两条直线相交构成的图形,错误;C是由两条直线相交构成的图形,正确.故选C.点评:此类题目的正确解答,在于对对顶角定义的掌握.3.(3分)计算的结果是()A. 6 B.±6 C.﹣6 D.36考点:算术平方根.分析:根据算术平方根的定义计算即可.解答:解:=6,故选A点评:此题考查算术平方根,关键是根据算术平方根的定义计算.4.(3分)下列各图中,∠1与∠2是内错角的是()A.B.C.D.考点:同位角、内错角、同旁内角.分析:根据内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角进行分析即可.解答:解:A、∠1与∠2不是内错角,故此选项错误;B、∠1与∠2不是内错角,故此选项错误;C、∠1与∠2是内错角,故此选项正确;D、∠1与∠2是同旁内角,故此选项错误;故选:C.点评:此题主要考查了内错角,关键是掌握内错角的边构成“Z“形.5.(3分)将图所示的图案通过平移后可以得到的图案是()A.B.C.D.考点:利用平移设计图案.分析:根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为答案.解答:解:根据平移不改变图形的形状、大小和方向,将题图所示的图案通过平移后可以得到的图案是A,其它三项皆改变了方向,故错误.故选A.点评:本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状、大小和方向,学生易混淆图形的平移与旋转或翻转,而误选B、C、D.6.(3分)在下列实数中,无理数是()[来源:学+科+网]A.0.151515…B.πC.﹣4 D.考点:无理数.分析:有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数,据此判断出无理数有哪些即可.解答:解:因为﹣4是整数,所以﹣2是有理数;因为0.151515…=,,0.、2.都是循环小数,所以0.151515…、都是有理数;因为π=3.14159265…,3.14159265…是无限不循环小数,所以π是无理数.故选:B.点评:此题主要考查了无理数和有理数的特征和区别,要熟练掌握,解答此题的关键是要明确:有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数.7.(3分)下列命题中正确的是()A.如果两个角相等,则它们是对顶角B.实数包括有理数、无理数C.两直线被第三直线所截,内错角相等D.若a2=b2,则a=b考点:命题与定理.分析:根据对顶角的定义对A进行判断;根据实数的定义对B进行判断;根据平行线的性质对C进行判断;根据实数的性质对D进行判断.解答:解:A、相等的角不一定是对顶角,故此选项错误;B、根据实数的定义,故此选项正确;[来源:学.科.网Z.X.X.K]C、两平行直线被第三直线所截,内错角相等,故此选项错误;D、若a2=b2,则a=±b,故此选项错误.故选:B.点评:此题主要考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.(3分)平面直角坐标系内,点A(n,1﹣n)一定不在()A.第一象限B.第二象限C.第三象限D.第四象限考点:点的坐标.专题:压轴题.分析:本题可转化为解不等式组的问题,求出无解的不等式即可.解答:解:法1:由题意可得、、、,解这四组不等式可知无解,因而点A的横坐标是负数,纵坐标是负数,不能同时成立,即点A一定不在第三象限.法2:点A横纵坐标满足x+y=1,即点A(n,1﹣n)在直线y=1﹣x上,而y=1﹣x过一、二、四象限,故A(n,1﹣n)一定不在第三象限.故选:C.点评:本题主要考查平面直角坐标系中各象限内点的坐标的符号,把符号问题转化为解不等式组的问题.9.(3分)在同一平面内,有三条直线a、b、c,下列说法:①若a与b相交,b与c相交,则a与c相交;②若a∥b,b与c相交(不重合),则a与c相交;③若a⊥b,b⊥c,则a⊥c,④若a∥b,b∥c,则a∥c,其中正确的结论的个数为()A.1个B.2个 C.3个D.4个考点:平行公理及推论;相交线;垂线.分析:根据在同一平面内,垂直于同一条直线的两直线平行;如果两条直线都与第三条直线平行,那么这两条直线也互相平行进行分析即可.解答:解:①若a与b相交,b与c相交,则a与c相交,说法错误;②若a∥b,b与c相交(不重合),则a与c相交,说法正确;③若a⊥b,b⊥c,则a⊥c,说法错误;④若a∥b,b∥c,则a∥c,说法正确;其中正确的结论有2个,故选:B.点评:此题主要考查了平行公理和推论,关键是掌握同一平面内两直线的位置关系.10.(3分)△DEF是由△ABC平移得到的,点A(﹣2,﹣1)的对应点为D(1,﹣3),则点C (2,3)的对应点F的坐标为()A.(﹣1,5)B.(1,5)C.(5,1)D.(5,﹣4)考点:坐标与图形变化-平移.分析:先根据点A与D确定平移规律,再根据规律写出点C的对应点F的坐标即可.解答:解:∵△DEF是由△ABC平移得到的,点A(﹣2,﹣1)的对应点为D (1,﹣3),∴平移规律是:先向右平移3个单位,再向下平移2个单位,∵点C的坐标为(2,3),∴F的坐标为(5,1).故选C.点评:本题考查了平移与坐标与图形的变化,根据对应点A与D的坐标得到平移规律是解题的关键.二、仔细填一填,(每小题3分,共18分)11.(3分)如图一个弯形管道ABCD的拐角∠ABC=120°,∠BCD=60°,这时说管道AB∥CD,是根据同旁内角互补,两直线平行.考点:平行线的判定.专题:应用题.分析:由已知∠ABC=120°,∠BCD=60°,即∠ABC+∠BCD=120°+60°=180°,可得关于AB∥CD的判定条件:同旁内角互补,两直线平行.解答:解:∵∠ABC=120°,∠BCD=60°,∴∠ABC+∠BCD=120°+60°=180°,∴AB∥CD(同旁内角互补,两直线平行).点评:本题考查的是平行线的判定,即内错角相等,两直线平行;同位角相等两直线平行;同旁内角互补两直线平行.12.(3分)点P(﹣2,3)到y轴距离为2.考点:点的坐标.分析:求得﹣2的绝对值即可.解答:解:∵点到y轴的距离为点的横坐标的绝对值,|﹣2|=2,∴点P(﹣2,3)到y轴距离为2.故填:2.点评:本题考查的是点的坐标的几何意义,用到的知识点为:点到y轴的距离为点的横坐标的绝对值.13.(3分)命题“邻补角是互补的角”,该命题为真命题(填“真”或“假”).考点:命题与定理.分析:两条直线相交后所得的有一个公共顶点且有一条公共边的两个角叫邻补角;如果两个角的和为180°,那么这两个角互补.根据以上定义即可判断.解答:解:命题“邻补角是互补的角”,该命题为真命题.故答案为真.点评:此题主要考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.掌握邻补角互补是解题的关键.14.(3分)如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=15°,那么∠2的度数是75°.考点:平行线的性质.分析:由题意可求得∠3的度数,然后由两直线平行,同位角相等,求得∠2的度数.解答:解:如图,∵把一块直角三角板的直角顶点放在直尺的一边上,∴∠3=90°﹣∠1=90°﹣15°=75°,∵a∥b,∴∠2=∠3=75°.故答案为:75.点评:此题考查了平行线的性质.注意两直线平行,同位角相等定理的应用是解此题的关键.15.(3分)同一平面内的任意三条直线a、b、c,其交点的个数有0,1,2或3.考点:相交线;平行线.专题:分类讨论.分析:在同一平面内,两条直线的位置关系有两种,平行和相交,三条直线互相平行无交点,两条直线平行,第三条直线与它相交,有2个交点,三条直线两两相交,最多有3个交点,最少有1个交点.解答:解:由题意画出图形,如图所示:故答案为:0,1,2或3.[来源:学_科_网Z_X_X_K]点评:此题主要考查了直线的交点个数问题,利用分类讨论得出是解题关键.16.(3分)定义:直线l1与l2相交于点O,对于平面内任意一点P1点P到直线l1与l2的距离分别为p、q则称有序实数对(p,q)是点P的“距离坐标”.根据上述定义,“距离坐标”是(3,2)的点的个数有4个.考点:点的坐标.专题:新定义.分析:首先根据“距离坐标”的含义,可得“距离坐标”是(3,2)到直线l1与l2的距离分别为3、2,然后根据到直线l1的距离是3的点在与直线l1平行且与l1的距离是3的两条平行线上,到直线l2的距离是2的点在与直线l2平行且与l2的距离是2的两条平行线上,一共有4个交点,所以“距离坐标”是(3,2)的点的个数有4个,据此解答即可.解答:解:“距离坐标”是(3,2)到直线l1与l2的距离分别为3、2,[来源:学+科+网]因为到直线l1的距离是3的点在与直线l1平行且与l1的距离是3的两条平行线上,到直线l2的距离是2的点在与直线l2平行且与l2的距离是2的两条平行线上,一共有4个交点,所以“距离坐标”是(3,2)的点的个数有4个.故答案为:4.[来源:学*科*网]点评:此题主要考查了点的“距离坐标”的含义以及应用,考查了分析推理能力,考查了分类讨论思想的应用,要熟练掌握,解答此题的关键是要明确:“距离坐标”是(3,2)到直线l1与l2的距离分别为3、2.三、解答题(本题共9小题,共72分)17.(6分)计算(1)3+2(2)﹣+.考点:实数的运算.专题:计算题.分析:(1)原式合并同类二次根式即可得到结果;(2)原式利用立方根及算术平方根定义计算即可得到结果.解答:解:(1)原式=5;(2)原式=﹣2﹣2+0.2=﹣3.8.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(6分)求下列各式中的x的值(1)2x2=50;(2)(x﹣1)3=0.027.考点:立方根;平方根.分析:(1)将x的系数化为1,然后两边同时直接开平方求解;(2)方程两边同时开立方即可求解.解答:解:(1)2x2=50,∴x=±5;(2)∵(x﹣1)3=0.027,∴x﹣1=0.3,x=1.3.点评:本题考查了平方根和立方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,0的立方根是0.19.(6分)如图:已知∠1=∠2,∠3=∠4,试探究AB与EF的位置关系.考点:平行线的判定与性质.分析:根据同位角相等两直线平行、内错角相等两直线平行、平行公理即可得出AB∥EF.解答:解;∵∠1=∠2,∴AB∥CD,∵∠3=∠4,∴CD∥EF,∴AB∥EF.点评:此题考查了平行线的判定,用到的知识点是同位角相等两直线平行、内错角相等两直线平行、平行公理.20.(7分)下图中标明了小红家附近的一些地方,建立平面直角坐标系如图.(1)写出游乐场和糖果店的坐标;(2)某星期日早晨,小红同学从家里出发,沿着(1,3),(3,﹣1),(0,﹣1),(﹣1,﹣2),(﹣3,﹣1)的路线转了一下,又回到家里,写出路上她经过的地方.考点:坐标确定位置.分析:(1)根据点的坐标规律:横前纵后,中逗,可得答案;(2)根据点的坐标,可得点表示的地方,可得路线图.解答:解:(1)游乐场的坐标是(3,2),糖果店的坐标是(﹣1,2);(2)由小红同学从家里出发,沿着(1,3),(3,﹣1),(0,﹣1),(﹣1,﹣2),(﹣3,﹣1)的路线转了一下,得学校﹣公园﹣姥姥家﹣宠物店﹣邮局.点评:本题考查了坐标确定位置,利用了点的坐标规律:横前纵后,中逗,正确表示点的坐标是解题关键.21.(7分)完成下面推理过程:如图,已知DE∥BC,DF、BE分别平分∠ADE、∠ABC,可推得∠FDE=∠DEB的理由:∵DE∥BC(已知)∴∠ADE=∠ABC.两直线平行,同位角相等∵DF、BE分别平分∠ADE、∠ABC,∴∠ADF=∠ADE,∠ABE=∠ABC.角平分线的定义∴∠ADF=∠ABE∴DF∥BE.同位角相等,两直线平行∴∠FDE=∠DEB.()考点:平行线的判定与性质.专题:推理填空题.分析:根据平行线的性质由DE∥BC得∠ADE=∠ABC,再根据角平分线的定义得到∠ADF=∠ADE,∠ABE=∠ABC,则∠ADF=∠ABE,然后根据平行线的判定得到DF∥BE,最后利用平行线的性质得∠FDE=∠DEB.解答:解:∵DE∥BC,∴∠ADE=∠ABC,∵DF、BE分别平分∠ADE、∠ABC,∴∠ADF=∠ADE,∠ABE=∠ABC,∴∠ADF=∠ABE,∴DF∥BE,∴∠FDE=∠DEB.故答案为∠ABC,两直线平行,同位角相等;∠ADE,∠ABC,角平分线的定义;DF,BE,同位角相等,两直线平行;两直线平行,内错角相等.点评:本题考查了平行线的判定与性质:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.22.(8分)已知2是x的立方根,且(y﹣2z+5)2+=0,求的值.考点:非负数的性质:算术平方根;非负数的性质:偶次方;立方根.分析:首先利用立方根的定义以及偶次方的性质和二次根式的性质得出x,y,z的值,进而代入求出即可.解答:解:∵2是x的立方根,∴x=8,∵(y﹣2z+5)2+=0,∴,解得:,∴==3.点评:此题主要考查了立方根的定义以及偶次方的性质和二次根式的性质,得出x,y,z的值是解题关键.23.(10分)如图,∠1=∠2,∠A=∠C,求证:∠E=∠F.[来源:学科网ZXXK]考点:平行线的判定与性质.专题:证明题.分析:根据∠1=∠2,得到AB∥CD,所以∠A=∠EDC,因为∠A=∠C,得到∠EDC=∠C,所以AE∥CF,所以∠E=∠F.解答:证明:∵∠1=∠2,∴AB∥CD,∴∠A=∠EDC,∵∠A=∠C,∴∠EDC=∠C,∴AE∥CF,∴∠E=∠F.点评:本题考查了平行线的性质与判定,解决本题的关键是熟记平行线的性质与判定.24.(10分)如图,在平面直角坐标系中,A(﹣2,2)、B(﹣3,﹣2)、C(3,﹣2)(1)求△ABC的面积;(2)如果在第一象限内有一点P(m,1),试用含m的式子表示四边形PABC 的面积;(3)是否存在一点P(m,1),使△PAC的面积与△ABC的面积相等?若存在,求P点的坐标;若不存在,请说明理由.考点:坐标与图形性质;三角形的面积.分析:(1)根据三角形的面积公式,即可解答;(2)设直线AC的解析式为y=kx+b,利用A(﹣2,2)、C(3,﹣2),求得解析式y=,表示出点P(m,1)到直线AC的距离h、计算出AC,根据四边形PABC的面积=△ABC的面积+△APC的面积,即可解答;(3)存在,根据面积相等列出等式,即可解答.解答:解:(1)∵A(﹣2,2)、B(﹣3,﹣2)、C(3,﹣2)[来源:] ∴BC=|3﹣(﹣3)|=6,点A到边BC的距离为:2﹣(﹣2)=4,∴△ABC的面积为;=12.(2)如图,设直线AC的解析式为y=kx+b,把A(﹣2,2)、C(3,﹣2)代入得:,解得:,∴y=,点P(m,1)到直线AC的距离h=,AC=,∴四边形PABC的面积=S△ABC+S△APC==12.(3)存在,当△PAC的面积与△ABC的面积相等时,即12+=12|4m+3|=0解得:m=﹣,则点P(﹣,1).点评:本题考查了三角形的面积、坐标与图形性质,解决本题的关键是根据坐标表示出三角形的面积.25.(12分)已知,点E、F分别在直线AB,CD上,点P在AB、CD之间,连结EP、FP,如图1,过FP上的点G作GH∥EP,交CD于点H,且∠1=∠2.(1)求证:AB∥CD;(2)如图2,将射线FC沿FP折叠,交PE于点J,若JK平分∠EJF,且JK∥AB,则∠BEP与∠EPF之间有何数量关系,并证明你的结论;(3)如图3,将射线FC沿FP折叠,将射线EA沿EP折叠,折叠后的两射线交于点M,当EM⊥FM时,求∠EPF的度数.考点:平行线的判定与性质;翻折变换(折叠问题).分析:(1)延长FP交AB于点Q,根据三角形的外角性质和平行线性质证明即可;(2)延长FP交CD于点Q,根据折叠和平行线的性质解答即可;(3)延长FP交AB于点Q,根据折叠和四边形的内角和进行分析解答.解答:解:(1)延长FP交AB于点Q,如图1,∵PE∥HG,∴∠GPE=∠HGP,∵∠GPE=∠1+∠PQE,∠HGP=∠2+∠HFG,∵∠1=∠2,∴∠PQE=∠HFG,∴AB∥CD;(2)延长FP交CD于点Q,如图2,∠BEP+∠EPF=270°,理由如下:∵AB∥CD,∴∠BEP+∠FQP=180°,∵将射线FC沿FP折叠,∴∠QFP=∠PFJ,∵JK∥AB,∴JK∥CD,∴∠FJK=2∠CFP,∵∠EPF=∠EQF+∠QFP,∴∠EPF=180°﹣∠BEP+∠QFP,∵JK平分∠EJF,∴∠FJK=∠KJE,∵JK∥CD,[来源:学§科§网]∴∠KJE=∠FQP,∴∠EPF=180°﹣∠BEP+∠FJK,∴∠EPF=180°﹣∠BEP+,∴∠BEP+∠EPF=270°;(3)延长FP交AB于点Q,如图3,∵AB∥CD,∴∠CFQ=∠PQE,∵将射线FC沿FP折叠,将射线EA沿EP折叠,∴∠CFP=∠PFM,∠MEP=∠PEQ,∵∠FPE=∠PQE+∠PEQ,在四边形FPEM中,∠PFM+∠MEP+∠FPE=360°﹣90°=270°,可得:2∠FPE=270°,∴∠FPE=135°.点评:此题考查平行线的判定和性质,关键是构建平行线,利用三角形的外角和四边形的内角和进行解答.。

湖北省2016-2017学年七年级下学期期中考试数学试题 (2)

湖北省2016-2017学年七年级下学期期中考试数学试题 (2)

湖北省2016-2017学年第二学期期中联考七 年 级 数 学 试 题一、选择题(每小题3分,共30分) 1.点P (-2,-1)在( )A .第一象限B .第二象限C .第三象限D .第四象限 2.根式25)(-的值是( )A .-5B .5C .5或-5D .25 3.下列四个图中∠1=∠2一定成立的是( )4.下列各式无意义的是( )A .33-B . 22)(- C .23- D .323-5.直线a ∥b ,等腰直角三角形ABC 直角顶点C 在直线b 上,若∠1=20°,则∠2=( )A .25°B .30°C .20°D .35°6.点P 向上平移1个单位长度后,再向左平移2个单位长度得到对应点Q (-1,3),则P 点坐标是( ) A .(0,1) B .(-3,4) C .(2,1) D .(1,2) 7.一个正数的平方根为2x+1和x —7,则这个正数为是( )A .5B .10C .25D .±25 8.a 、b 为实数,则下列命题正确的是( )A .若b a =,则a=bB .若a<b ,则22b a <C .若33b a =,则b a = D .若a>b ,则33b a >9.如图,BD 为△ABC 角平分线,DE ∥AB ,EF 平分∠DEC ,下列结论:①∠BDE=∠FEC ;②EF ∥BD ; ③CD=CE ;④BDE BDF S S ∆∆=正确的有( ) A .①② B .①②③ C .②③④ D .①②④10.△ABC 三个顶点坐标A (-4,-3)B (0,-3)C (-2,1),将B 点向右平移2个单位长度后,再向上平移4个单位长度到D ,若设△ABC 面积为S 1,△ADC 的面积为S 2,则S 1、S 2大小关系为( ) A .S 1>S 2 B .S 1=S 2 C .S 1<S 2 D .不能确定 二、填空题(每小题3分,共18分) 11.81的平方根3125.0- = 2591-= 12.点P 在第四象限,且P 到x 轴距离为3,到y 轴距离为2,则点P 坐标为13.如图,在一次活动中,位于A 处的甲班准备前往相距5km 的B 处与乙班会合,用方向和距离描述乙班相对于甲班位置是1415.已知3=a ,22=b ,且ab<0,则________=+b a16.在直角坐标系中,A (-3,0)B (0,4)AB=5,对△ABO 作旋转变换,依次得三角形①、②、③、④、则三角形⑩的直角顶点坐标为 三、解答题(共72分) 17.(8分)计算: (1)9123127123+---)((2))(313234-18.(6分)如图,∠1=47°,∠2=133°,∠D=47°, 试说明BC ∥DE ,AB ∥CD 的理由BAC b a BCx2121A B C DE19.(6分)直线AB 、CD 交于O ,OD 平分∠AOF ,OE ⊥CD于O ,∠1=50°求证∠BOC 、∠BOF20.(7分)如图,△ABC 中,任意一点P(x o ,y 0),平移后对应点P 1(x o +2,y 0-3),将△ABC 作同样平移得到△A 1B 1C 1,(1)画出平移后的△A 1B 1C 1 (不写作法) (2)写出坐标A 1( , )B 1( , )C 1( , ) (3)直接写出△A 1B 1C 1的面积21.(7分)春天到了,七(2(图中小正方形边长代表100m )张明:“牡丹园坐标(300,300)” 李华:“牡丹园在中心广场东北方向约420m 处” 若他们二人所说的位置都正确(1)在图中建立适当的平面直角坐标系 (2)用坐标描述其它景点位置22.(9分)如图,E 为DF 上一点,B 在AC 上,∠1=∠2,∠C=∠D ,则DF ∥AC∵∠1=∠2 ( ) ∠2=∠3,∠1=∠4 ( ) ∴∠3=∠4∴∥ ( ) ∴∠C =∠ABD ( ) ∵ ∠C=∠D ( ) ∴∠D =∠ABD ( )∴DF ∥AC ( )23.(7分)如图,∠1+∠2=180°∠A =∠C ,DA 平分∠BDF (1)试说明:AE ∥CF (2)BC 平分∠DBE 吗?为什么?24.(10分)如图,EC ⊥CF 于C ,点A 在CE 上,点B 在CF BD 平分∠CBA ,AG 平分∠EAB ,且直线AG 交BD 于D (1)∠C 与∠D 的数量关系是 (直接写出关系式) (2)当点A 在射线CE 上运动(不与C 重合),其它条件不变,(1)中的结论还成立吗?说明理由25.(12分)如图,平面直角坐标系中A (-1,0),B (3,0),现同时将A 、B 分别向上平移2个单位,再向右平移1个单位,分别得到A 、B 的对应点C 、D ,连接AC 、BD(1)直接写出C 、D 的坐标:C D 及四边形ABCD 的面积:(2)在y 轴负半轴上是否存在点M ,连接MA 、MB 使得ABCD MAB S S 四边形>∆, 若存在,求出M 点纵坐标的取值范围;若不存在说明理由(3)点P 为线段BD 上一动点,连PC 、PO ,当点P 在BD 上移动(不含端点)现给出①CPO BOP DCP ∠∠+∠的值不变,② BOPCPODCP ∠∠+∠B A xAD E C FG A B。

2016-2017学年七年级下数学期中试卷及答案

2016-2017学年七年级下数学期中试卷及答案

2016-2017学年度第二学期期中考试七年级数学试卷一、选择题(本题有10小题,每题4分,共40分) 1、下面四个图形中∠1与∠2是对顶角的是( )A. B. C. D.2、方程组的解为( ) A.B.C.D.3、在①+y=1;②3x ﹣2y=1;③5xy=1;④+y=1四个式子中,不是二元一次方程的有( ) A .1个B .2个C .3个D .4个4、如图所示,图中∠1与∠2是同位角的是( )2(1)1(2)1212(3)12(4)A 、1个B 、2个C 、3个D 、4个5.下列运动属于平移的是( )A .冷水加热过程中小气泡上升成为大气泡B .急刹车时汽车在地面上的滑动C .投篮时的篮球运动D .随风飘动的树叶在空中的运动 6、如图1,下列能判定AB ∥CD 的条件有( )个. (1) ︒=∠+∠180BCD B ; (2)21∠=∠; (3) 43∠=∠; (4) 5∠=∠B . A .1 B .2 C .3 D.47、下列语句是真命题的有( )①点到直线的垂线段叫做点到直线的距离; ②内错角相等;③两点之间线段最短; ④过一点有且只有一条直线与已知直线平行; ⑤在同一平面内,若两条直线都与第三条直线垂直,那么这两条直线互相平行. A .2个 B .3个 C .4个 D .5个8、如图2,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D′、C′的位置,若∠EFB=65°,则54D3E21CB A图1∠AED′=( )A 、50°B 、55°C 、60°D 、65°9、如图3,直线21//l l ,∠A=125°,∠B=85°,则∠1+∠2=( )A .30°B .35°C .36°D .40°10、如图4,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B 到C 的方向平移到△DEF 的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为( )A.42B.96C.84D.48 二、填空题(本题有6小题,11题10分,其余每题4分,共30分) 11、﹣125的立方根是,的平方根是 ,如果=3,那么a=,的绝对值是 ,2的小数部分是_______12、命题“对顶角相等”的题设 ,结论13、(1)点P 在第二象限内,P 到x 轴的距离是4,到y 轴的距离是3,那么点P 的坐标为_______; (2)若,则.14、如图5,一艘船在A 处遇险后向相距50 海里位于B 处的救生船 报警.用方向和距离描述遇险船相对于救生船的位置15、∠A 的两边与∠B 的两边互相平行,且∠A 比∠B 的2倍少15°,则∠A 的度数为_______16、在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点P′(-y+1,x+1)叫做点P 的伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4,…,这样依次得到点A 1,A 2,A 3,…,A n ,….若点A 1的坐标为(3,1),则点A 3的坐标为 , 点A 2014的坐标为_________三、解答题(本题有10小题,共80分) 17、(本题有6小题,每小题3分,共18分)(一)计算:(1)322769----)( (2))13(28323-++-图4图5FEDCB A 音乐台湖心亭牡丹园望春亭游乐园(2,-2)孔桥(3)2(2-2)+3(3+13). (二)解方程:(1)9x 2=16. (2)(x ﹣4)2=4 (3)18、(本小题5分)把下列各数分别填入相应的集合里:38,3,-3.14159,3π,722,32-,87-,0,-0.∙∙02,1.414,7-,1.2112111211112…(每两个相邻的2中间依次多1个1).(1)正有理数集合:{ …}; (2)负无理数集合:{ …}; 19、(本小题6分)王霞和爸爸、妈妈到人民公园游玩,回到家后,她利用平面直角坐标系画出了公园的景区 地图,如图所示.可是她忘记了在图中标出原点和x 轴. y 轴. 只知道游乐园D 的坐标为(2,-2), 请你帮她画出坐标系,并写出其他各景点的坐标.20、(本小题5分)已知2是x 的立方根,且(y-2z+5)2+=0,求的值.21、(本小题8分)如图,直线AB 、CD 、EF 相交于点O . (1)写出∠COE 的邻补角;(2)分别写出∠COE 和∠BOE 的对顶角;(3)如果∠BOD=60°,EF AB ⊥,求∠DOF 和∠FOC 的度数.22、(本小题4分)某公路规定行驶汽车速度不得超过80千米/时,当发生交通事故时,交通警察通常根据刹车后车轮滑过的距离估计车辆的行驶速度,所用的经验公式是,其中v 表示车速(单位:千米/时),d 表示刹车后车轮滑过的距离(单位:米),f 表示摩擦系数.在一次交通事故中,经测量d=32米,f=2.请你判断一下,肇事汽车当时是否超出了规定的速度?23、(本小题11分)完成下列推理说明:(1)如图,已知∠1=∠2,∠B=∠C ,可推出AB ∥CD .理由如下:因为∠1=∠2(已知),且∠1=∠4()所以∠2=∠4(等量代换)所以CE∥BF()所以∠=∠3()又因为∠B=∠C(已知)所以∠3=∠B(等量代换)所以AB∥CD()(2)如图,已知∠B+∠BCD=180°,∠B=∠D.求证:∠E=∠DFE.证明:∵∠B+∠BCD=180°(已知),∴AB∥CD ()∴∠B= ()又∵∠B=∠D(已知),∴∠= ∠(等量代换)∴AD∥BE()∴∠E=∠DFE()24、(本小题6分)如图,长方形OABC中,O为平面直角坐标系的原点,点A、C的坐标分别为A(3,0),C(0,2),点B在第一象限.(1)写出点B的坐标;(2)若过点C的直线交长方形的OA边于点D,且把长方形OABC的周长分成2:3的两部分,求点D的坐标;(3)如果将(2)中的线段CD向下平移3个单位长度,得到对应线段C′D′,在平面直角坐标系中画出△CD′C′,并求出它的面积.25、(本小题6分)如图,已知∠1+∠2=180°,∠B=∠3,你能判断∠C与∠AED的大小关系吗?并说明理由.26(本小题11分)如图,在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,CD.得平行四边形ABDC(1)直接写出点C,D的坐标;(2)若在y轴上存在点M,连接MA,MB,使S△MAB=S平行四边形ABDC,求出点M的坐标.(3)若点P在直线BD上运动,连接PC,PO.请画出图形,直接写出∠CPO、∠DCP、∠BOP的数量关系.2016-2017学年度第二学期期中联考数学科 评分标准一、选择题(本大题共10小题,每小题4分,共40分)二、填空题(本大题共6小题,11题10分,其余每小题4分,共30分) 11. -5 、 ±3 、 9 、﹣2 、 2 -112.题设 两个角是对顶角 . 结论 这两个角相等 13.(1) (-3,4) .(2) 7.160 14. 南偏西15°,50海里15. 15°或115° . (答出一种情况2分) 16. (-3,1) 、 (0,4)三、解答题(本大题共11小题,共80分)17(18分)(一)(1)322769----)( (2))13(28323-++-解:原式=3-6-(-3) ...2 解:原式=232223-++-......2 =0 ........................3 =...233- (3)(3)2(2-2)+3(3+13).解:原式=13222++- (2)=222+ (3)(二)(1)9x 2=16. (2)(x ﹣4)2=4解:x 2=,......1 x ﹣4=2或x ﹣4=﹣2 (1)x=±,......3 x ═6或x=2 (3)题号 12345678910答案CDBCBCAAAD(求出一根给2分)(3),(x+3)3=27,......1 x+3=3,......2 x=0. (3)18(本小题5分)解:(1)正有理数集合:{38,722,1.414,…} ……3分 (2)负无理数集合:{32-,7-,…}.……5分 19(本小题6分)解:(1)正确画出直角坐标系;……1分(2)各点的坐标为A(0,4),B (-3,2),C (﹣2,-1),E (3,3),F (0,0);……6分 20(本小题5分)解:∵2是x 的立方根, ∴x=8,……1 ∵(y ﹣2z+5)2+=0,∴, 解得:, (3)∴==3. (5)21(本小题8分)解:(1)∠COF 和∠EOD (2)(2)∠COE 和∠BOE 的对顶角分别为∠DOF 和∠AOF .……4 (3)∵AB ⊥EF ∴∠AOF=∠BOF=90°∴∠DOF=∠BOF-∠BOD=90°-60°=30° (6)又∵∠AOC=∠BOD=60°∴∠FOC=∠AOF+∠AOC=90°+60°=150°. (8)22(本小题4分)解:把d=32,f=2代入v=16,v=16=128(km/h ) (2)∵128>80, (3)∴肇事汽车当时的速度超出了规定的速度. (4)23.(11分)(1)如图,已知∠1=∠2,∠B=∠C ,可推出AB ∥CD .理由如下:因为∠1=∠2(已知),且∠1=∠4(对顶角相等) (1)所以∠2=∠4(等量代换)所以CE∥BF(同位角相等,两直线平行) (2)所以∠ C =∠3(两直线平行,同位角相等) (4)又因为∠B=∠C(已知)所以∠3=∠B(等量代换)所以AB∥CD(内错角相等,两直线平行) (5)(2)在括号内填写理由.如图,已知∠B+∠BCD=180°,∠B=∠D.求证:∠E=∠DFE.证明:∵∠B+∠BCD=180°(已知),∴AB∥CD (同旁内角互补,两直线平行) (1)∴∠B=∠DCE(两直线平行,同位角相等) (3)又∵∠B=∠D(已知),∴∠DCE=∠D (等量代换) (4)∴AD∥BE(内错角相等,两直线平行) (5)∴∠E=∠DFE(两直线平行,内错角相等) (6)24.(6分)解:(1)点B的坐标(3,2); (1)(2)长方形OABC周长=2×(2+3)=10,∵长方形OABC的周长分成2:3的两部分,∴两个部分的周长分别为4,6,∵OC+OA=5<6∴OC+OD=4∵OC=2,∴OD=2,∴点D的坐标为(2,0); (4)(3)如图所示,△CD′C′即为所求作的三角形, (5)CC′=3,点D′到CC′的距离为2,所以,△CD′C′的面积=×3×2=3. (6)25(6分)解:∠C与∠AED相等, (1)理由为:证明:∵∠1+∠2=180°,∠1+∠DFE=180°,∴∠2=∠DFE (2)∴AB∥EF∴∠3=∠ADE (3)又∠B=∠3∴∠B=∠ADE∴DE∥BC (5)∴∠C=∠AED (6)26、(本小题11分)解:(1)C(0,2),D(4,2); (2)(2)∵AB=4,CO=2,∴S平行四边形ABOC=AB•CO=4×2=8,设M坐标为(0,m),∴×4×|m|=8,解得m=±4∴M点的坐标为(0,4)或(0,﹣4);……5(求出一点给2分)(3)当点P在BD上,如图1,∠DCP+∠BOP=∠CPO; (7)当点P在线段BD的延长线上时,如图2,,∠BOP﹣∠DCP=∠CPO; (9)同理可得当点P在线段DB的延长线上时,∠DCP﹣∠BOP=∠CPO. (11)(每种情况正确画出图形给1分)。

湖北省武汉市洪山区七年级(下)期中数学试卷

湖北省武汉市洪山区七年级(下)期中数学试卷

七年级(下)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.4的平方根是()A. -2B. 2C. ±2D. 42.如图,已知AB∥CD,能判断BE∥CF的条件是()A. ∠1=∠3B. ∠2=∠4C. ∠1=∠4D. ∠1=∠23.下列说法正确的是()A. 1的平方根是它本身B. 是分数C. 负数没有立方根D. 如果实数x、y满足条件y=,那么x和y都是非负实数4.下列各数中无理数有()个.,3.141,-,,π,0,4.2,2.2020020002…A. 2B. 3C. 4D. 55.如图,直线AB与CD相交于点O,∠COE=2∠BOE.若∠AOC=120°,则∠DOE等于()A. 135°B. 140°C. 145°D. 150°6.已知点P位于y轴右侧,距y轴3个单位长度,位于x轴上方,距离x轴4个单位长度,则点P坐标是()A. (-3,4)B. (3,4)C. (-4,3)D. (4,3)7.如图,在长方形网格中,每个小长方形的长为2,宽为1,A、B两点在网格格点上,若点C也在网格格点上,以A、B、C为顶点的三角形面积为1,则满足条件的点C个数是()A. 5B. 6C. 7D. 88.如图,在七边形ABCDEFG中,AB∥DE,BC∥EF,则下列关系式中错误的是()A. ∠C=∠B+∠DB. ∠C=∠E+∠DC. ∠A+∠E+∠G=180°+∠FD. ∠C+∠E=∠F+180°9.如图,在平面直角坐标系中,有若干个横坐标,纵坐标均为整数的点,其顺序按图中“→”方向依次排列:(1,0)→(2,0)→(2,1)→(1,1)→(1,2)→(2,2)→…根据这个规律,第2020个点的坐标为()A. (45,5)B. (45,6)C. (45,7)D. (45,8)10.如图,AB∥DE,∠ABC的角平分线BP和∠CDE的角平分线DK的反向延长线交于点P且∠P-2∠C=57°,则∠C等于()A. 24°B. 34°C. 26°D. 22°二、填空题(本大题共6小题,共18.0分)11.计算:=______;=______;的立方根是______.12.某正数的平方根为a+1和2a-7,则这个数为______.13.比较实数-2,-,-的大小______(用“<”号连接)14.已知△ABC的三个顶点的坐标分别为A(-2,3),B(0,-6),C(0,-1),当AD∥BC且AD=BC时,D点的坐标为______.15.如图,有三条两两相交的公路AB、BC、CA,从A地测得公路AB的走向是北偏东52°,从B地测得公路BC的走向是北偏西38°.若AB、BC、CA的长分别为8千米、6千米、10千米,点P是直线AC上任意一点,则线段BP的最小值为______千米.16.已知:在平面直角坐标系中,△ABC的三个顶点A(-1,0)、B(-5,0)、C(-3,4),点P(0,m)为y轴上一动点.若△ABC的面积小于△ABP的面积,则m的取值范围为______.三、计算题(本大题共1小题,共8.0分)17.已知x为实数,且-=0,求x2+x-3的平方根.四、解答题(本大题共7小题,共64.0分)18.计算:(1)-8=0(2)219.完成下面的推理填空如图,已知AD⊥BC,EF⊥BC,垂足分别为D、F,∠2+∠3=180°,求证:∠GDC=∠B.证明:∵AD⊥BC,EF⊥BC(已知)∴∠ADB=______=90°(垂直的定义)∴AD∥EF(______)∴______(______)又∵∠2+∠3=180°(已知)∴∠1=∠3 (______)∴AB∥______(______)∴∠GDC=∠B(______)20.已知AB∥CD,AD∥BC,E为CB延长线上一点,∠EAF=∠EFA.(1)求证:AF平分∠EAD;(2)若AG平分∠EAB,∠D=70°,求∠GAF的度数.21.如图在平面直角坐标系中,每个小正方形的边长为一个单位长度,将△ABC向右平移2个单位长度,再向下平移3个单位长度,得到对应的△A'B'C'(1)画出△A'B'C'并写出点B'、C'的坐标;B'(______,______)C'(______,______)(2)若BC与y轴交于点D,求D点坐标;(3)线段BC在整个平移的过程中在坐标平面上扫过的面积为______,若点M(m,n)为线段BD上的一点,则m、n满足的关系式是______.22.如图1,四边形ABCD中,AD∥BC,DE平分∠ADB,∠BDC=∠BCD,(1)求证:∠DEC+∠DCE=90°;(2)如图2,若∠ABD的平分线与CD的延长线交于F,且∠F=58°,求∠ABC.23.“一带一路”让中国和世界更紧密,“中欧铁路”为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图1所示,灯A射线从AM开始顺时针旋转至AN便立即回转,灯B射线从BP开始顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是每秒2度,灯B转动的速度是每秒1度.假定主道路是平行的,即PQ∥MN,且∠BAM:∠BAN=2:1.(1)填空:∠BAN=______°;(2)若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)如图2,若两灯同时转动,在灯A射线到达AN之前.若射出的光束交于点C,过C作∠ACD交PQ于点D,且∠ACD=120°,则在转动过程中,请探究∠BAC与∠BCD 的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由.24.如图,在平面直角坐标系中,A、B两点的坐标分别为(-2,2)、(1,8)(1)求三角形ABO的面积;(2)若点M(-4,n),且三角形MAB的面积为10,求M点的坐标;(3)如图,把直线AB以每秒1个单位的速度向右平移,问经过多少秒后,该直线与y轴交于点(0,-1)?答案和解析1.【答案】C【解析】【分析】此题主要考查了平方根的定义和性质,根据平方根的定义得出是解决问题的关键.首先根据平方根的定义求出4的平方根,然后就可以解决问题.【解答】解:∵±2的平方等于4,∴4的平方根是:±2.故选C.2.【答案】C【解析】解:能判断BE∥CF的条件是∠1=∠4,理由:∵AB∥CD,∴∠CBA=∠BCD,而∠1=∠4,∴∠CBA-∠1=∠BCD-∠4,即∠2=∠3,∴BE∥CF.故选:C.根据平行线的性质,由AB∥CD得∠CBA=∠BCD,结合∠1=∠4,利用等式的性质可得到∠2=∠3,然后根据平行线的判定即可得到BE∥CF.本题考查了平行线的判定与性质:内错角相等,两直线平行;两直线平行,内错角相等.3.【答案】D【解析】解:A、1的平方根是±1,错误;B、是无理数,错误;C、负数有立方根,错误;D、如果实数x、y满足条件y=,那么x和y都是非负实数,正确;故选:D.根据平方根、分数、立方根和实数的概念解答即可.此题考查实数问题,关键是根据平方根、分数、立方根和实数的概念解答.4.【答案】A【解析】解:,3.141,-,,0,4.2是有理数,π,2.2020020002…是无理数,故选:A.分别根据无理数、有理数的定义即可判定选择项.此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.5.【答案】B【解析】解:∵∠AOC=120°,∴∠BOC=60°,∵∠COE=2∠BOE,∴∠BOE=20°,∵∠DOB=∠AOC=120°,∴∠DOE=∠BOD+∠BOE=140°,故选:B.根据邻补角的定义得到∠BOC=60°,求得∠BOE=20°,根据对顶角的性质得到∠DOB=∠AOC=120°,于是得到结论.本题考查了对顶角相等的性质,邻补角的定义,熟记概念与性质并准确识图是解题的关键.6.【答案】B【解析】解:∵P点位于y轴右侧,x轴上方,∴P点在第一象限,又∵P点距y轴3个单位长度,距x轴4个单位长度,∴P点横坐标为3,纵坐标为4,即点P的坐标为(3,4).故选B.根据题意,P点应在第一象限,横、纵坐标为正,再根据P点到坐标轴的距离确定点的坐标.本题考查了点的位置判断方法及点的坐标几何意义.7.【答案】B【解析】解:C点所有的情况如图所示:故选:B.据三角形ABC的面积为1,可知三角形的底边长为2,高为1,或者底边为1,高为2,可通过在正方形网格中画图得出结果.本题考查了三角形的面积的求法,此类题应选取分类的标准,才能做到不遗不漏,难度适中.8.【答案】D【解析】解:如图,延长EF交AB于点P、延长BC交DE于点Q,∵AB∥DE,∴∠B=∠2,∵∠BCD=∠D+∠2,∴∠BCD=∠B+∠D,故A选项正确;∵EF∥BC,∴∠2=∠E,∵∠BCD=∠2+∠D,∴∠BCD=∠E+∠D,故B选项正确;∵AB∥DE,∴∠E=∠1,∵∠A+∠G+∠1+∠PFG=360°,∴∠A+∠G+∠E+180°-∠EFG=360°,∴∠A+∠G+∠E=180°+∠EFG,故C选项正确;故选:D.延长EF交AB于点P、延长BC交DE于点Q,由AB∥DE知∠B=∠2,根据∠BCD=∠D+∠2得∠BCD=∠B+∠D可判断A;由EF∥BC知∠2=∠E,再根据∠BCD=∠2+∠D得∠BCD=∠E+∠D 可判断B;由AB∥DE知∠E=∠1,根据∠A+∠G+∠1+∠PFG=360°可得∠A+∠G+∠E+180°-∠EFG=360°,据此可判断C,从而得出答案.本题主要考查多边形的内角与外角,解题的关键是掌握平行线的性质及三角形的外角性质、四边形的内角和等知识点.9.【答案】A【解析】解:由图形可知,图中各点分别组成了正方形点阵,每个正方形点阵的整点数量依次为最右下角点横坐标的平方且当正方形最右下角点的横坐标为奇数时,这个点可以看做按照运动方向到达x轴,当正方形最右下角点的横坐标为偶数时,这个点可以看做按照运动方向离开x轴∵452=2025∴第2025个点在x轴上坐标为(45,0)则第2020个点在(45,5)故选:A.以正方形最外边上的点为准考虑,点的总个数等于最右边下角的点横坐标的平方,且横坐标为奇数时最后一个点在x轴上,为偶数时,从x轴上的点开始排列,求出与2020最接近的平方数为2025,然后写出第2020个点的坐标即可.本题为平面直角坐标系下的点坐标规律探究题,解答时除了注意点坐标的变化外,还要注意点的运动方向.10.【答案】D【解析】解:如图,延长KP交AB于F,∵AB∥DE,DK平分∠CDE,∴∠BPF=∠EDK=∠CDK,设∠C=α,则∠BPG=2α+57°,∵∠BPG是△BPF的外角,∠CDK是△CDG的外角,∴∠BFP=∠BPG-∠ABP=2α+57°-∠ABP,∠CDK=∠C+∠CGD=α+∠BGP=α+(180°-∠BPG-∠CBP),∴2α+57°-∠ABP=α+180°-(2α+57°)-∠CBP,∵PB平分∠ABC,∴∠ABP=∠CBP,∴2α+57°=α+180°-(2α+57°),解得α=22°,故选:D.延长KP交AB于F,设∠C=α,则∠BPG=2α+57°,利用三角形的外角性质,即可得到2α+57°-∠ABP=α+180°-(2α+57°)-∠CBP,再根据∠ABP=∠CBP,即可得出2α+57°=α+180°-(2α+57°),进而得到∠C的度数.本题考查的是平行线的性质及三角形外角的性质,解答此题的关键是熟知以下知识:①三角形的外角等于与之不相邻的两个内角的和;②三角形的内角和是180°.11.【答案】2- 3 2【解析】解:=2-;=3;=8的立方根是:2.故答案为:2-,3,2.直接利用绝对值的性质以及立方根、算术平方根的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.12.【答案】9【解析】【分析】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数.由于一个正数有两个平方根,它们互为相反数,由此即可得到关于a的方程,解方程即可解决问题.【解答】解:由题意得:a+1+2a-7=0,∴a=2,∴a+1=3,∴(a+1)2=9.故答案为:9.13.【答案】-<-2<-【解析】解:∵2>,2,∴-<-2<-,故答案为:-<-2<-.先估算出和的范围,即可得出答案.本题考查了实数的大小比较和估算无理数的大小,能估算出和的范围是解此题的关键.14.【答案】(-2,8)或(-2,-2)【解析】解:如图所示:∵AD∥BC且AD=BC,∴D点的坐标为:(-2,8)或(-2,-2).故答案为:(-2,8)或(-2,-2).根据题意直接画出图形,进而分类讨论得出答案.此题主要考查了坐标与图形的性质,正确分类讨论是解题关键.15.【答案】4.8【解析】解:∵AB、BC、CA的长分别为8千米、6千米、10千米,∴AB2+BC2=AC2,∴△ABC为直角三角形,∠ABC=90°,∵点P是直线AC上任意一点,∴当BP⊥AC时,线段BP有最小值.∴10×BP×=6×8×,∴BP=4.8.故答案为:4.8.根据AB、BC、CA的长可得∠ABC为90°,由点P是直线AC上任意一点,则当BP⊥AC 时,线段BP有最小值.此题主要考查的是方向角问题,将解三角形的相关知识有机结合,体现了数学应用于实际生活的思想.16.【答案】m>4或m<-4【解析】解:如图:因为△ABC的面积=×4×4,△ABP的面积=×4×|m|,若△ABC的面积小于△ABP的面积,可得:|m|>4,所以m的取值范围为:m>4或m<-4;故答案为:m>4或m<-4.画出图形,根据三角形的面积公式解答即可.本题考查了三角形的面积,关键是根据坐标与图形的性质画出图形解答.17.【答案】解:∵-=0,∴x-3-2x-1=0,解得x=-4,∴x2+x-3=16-4-3=9,9的平方根是±3.故x2+x-3的平方根是±3.【解析】根据立方根的定义得到x-3-2x-1=0,求出x的值,再代入求出x2+x-3的值,再根据平方根的定义即可求解.本题考查了立方根的定义及平方根的定义.需注意的是一个正数有两个平方根,它们互为相反数,不要漏解.18.【答案】解:(1)-8=0,则(x-1)2=8,故(x-1)2=16,解得:x=5或-3;(2)2=6-6+2=2.【解析】(1)直接利用平方根的定义化简得出答案;(2)直接利用算术平方根以及立方根的定义化简得出答案.此题主要考查了实数运算以及平方根,正确化简各数是解题关键.19.【答案】∠EFB同位角相等,两直线平行∠2+∠1=180°两直线平行,同旁内角互补同角的补角相等DG内错角相等,两直线平行两直线平行,同位角相等【解析】证明:∵AD⊥BC,EF⊥BC(已知)∴∠ADB=∠EFB=90°(垂直的定义)∴AD∥EF(同位角相等,两直线平行)∴∠2+∠1=180°(两直线平行,同旁内角互补)又∵∠2+∠3=180°(已知)∴∠1=∠3 (同角的补角相等)∴AB∥DG(内错角相等,两直线平行)∴∠GDC=∠B(两直线平行,同位角相等)故答案为:∠EFB,同位角相等,两直线平行,∠2+∠1=180°,两直线平行,同旁内角互补,同角的补角相等,DG,内错角相等,两直线平行,两直线平行,同位角相等.求出AD∥EF,根据平行线的性质得出∠2+∠1=180°,求出∠1=∠3,根据平行线的判定得出DG∥AB,根据平行线的性质得出∠GDC=∠B即可.本题考查了平行线的性质和判定,垂直定义,补角定义的应用,能综合运用定理进行推理是解此题的关键.20.【答案】解:(1)∵AD∥BC,∴∠DAF=∠EFA,又∵∠EAF=∠EFA.∴∠EAF=∠DAF,∴AF平分∠EAD;(2)∵AG平分∠EAB,∴∠EAG=∠EAB,∵AF平分∠EAD;∴∠EAF=∠DAE,∴∠GAF=∠EAF-∠EAG=∠DAE-∠EAB=(∠DAE-∠EAB)=∠BAD,又∵AB∥CD,∠D=70°,∴∠BAD=110°,∴∠GAF=55°.【解析】(1)依据AD∥BC,可得∠DAF=∠EFA,依据∠EAF=∠EFA.即可得到AF平分∠EAD;(2)依据角平分线,即可得到∠EAG=∠EAB,∠EAF=∠DAE,根据∠GAF=∠EAF-∠EAG=∠DAE-∠EAB=(∠DAE-∠EAB)=∠BAD,即可得到结论.本题考查了平行线的性质和判定以及角平分线的定义的运用,能正确根据平行线的性质和判定进行推理是解此题的关键.21.【答案】(1)如图所示,△A'B'C'即为所求,B'(-2,-4),C'(4,0);(2)由图象知,B(-4,-1),C(2,3),设直线BC的解析式为y=kx+b,∴,解得:,∴直线BC的解析式为y=x+,当x=0时,y=,∴D(0,).(3)26,n=m+.【解析】解:(1)见答案;(2)见答案;(3)线段BC在整个平移的过程中在坐标平面上扫过的面积为:2×4+3×6=26;把M(m,n)代入y=x+,可得n=m+.故答案为:26,n=m+.(1)根据题意作出图象,即可得到B'(-2,-4),C'(4,0);(2)待定系数法求得直线BC的解析式为y=x+,于是得到D点坐标;(3)依据平移的方向和距离,即可得到线段BC在整个平移的过程中在坐标平面上扫过的面积;根据点M(m,n)为线段BD上的一点,可得m、n满足的关系式.本题考查了作图-平移变换,正确的作出图象是解题的关键.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.22.【答案】(1)证明:AD∥BC,∠ADC+∠BCD=180,∵DE平分∠ADB,∠BDC=∠BCD,∴∠ADE=∠EDB,∠BDC=∠BCD,∵∠ADC+∠BCD=180°,∴∠EDB+∠BDC=90°,∴∠DEC+∠DCE=90°.(2)解:∵∠FBD+∠BDE=90°-∠F=32°,DE平分∠ADB,BF平分∠ABD,∴∠ADB+∠ABD=2(∠FBD+∠BDE)=64°,又∵四边形ABCD中,AD∥BC,∴∠DBC=∠ADB,∴∠ABC=∠ABD+∠DBC=∠ABD+∠ADB,即∠ABC=64°.【解析】(1)由AD∥BC,DE平分∠ADB,得∠ADC+∠BCD=180,∠BDC=∠BCD,得出∠DEC+∠DCE=90°;(2)由DE平分∠ADB,CD平分∠ABD,四边形ABCD中,AD∥BC,∠F=58°,得出∠ABC=∠ABD+∠DBC=∠ABD+∠ADB,即∠ABC=64°.本题考查的是平行线的性质、角平分线的性质,解决问题的关键在于熟悉掌握知识要点,并且善于运用角与角之间的联系进行传递.23.【答案】(1)60;(2)设A灯转动t秒,两灯的光束互相平行,①当0<t<90时,如图1,∵PQ∥MN,∴∠PBD=∠BDA,∵AC∥BD,∴∠CAM=∠BDA,∴∠CAM=∠PBD∴2t=1•(30+t),解得t=30;②当90<t<150时,如图2,∵PQ∥MN,∴∠PBD+∠BDA=180°,∵AC∥BD,∴∠CAN=∠BDA∴∠PBD+∠CAN=180°∴1•(30+t)+(2t-180)=180,解得t=110,综上所述,当t=30秒或110秒时,两灯的光束互相平行;(3)∠BAC和∠BCD关系不会变化.理由:设灯A射线转动时间为t秒,∵∠CAN=180°-2t,∴∠BAC=60°-(180°-2t)=2t-120°,又∵∠ABC=120°-t,∴∠BCA=180°-∠ABC-∠BAC=180°-t,而∠ACD=120°,∴∠BCD=120°-∠BCA=120°-(180°-t)=t-60°,∴∠BAC:∠BCD=2:1,即∠BAC=2∠BCD,∴∠BAC和∠BCD关系不会变化.【解析】解:(1)∵∠BAM+∠BAN=180°,∠BAM:∠BAN=2:1,∴∠BAN=180°×=60°,故答案为:60;(2)见答案;(3)见答案.(1)根据∠BAM+∠BAN=180°,∠BAM:∠BAN=2:1,即可得到∠BAN的度数;(2)设A灯转动t秒,两灯的光束互相平行,分两种情况进行讨论:当0<t<90时,根据2t=1•(30+t),可得t=30;当90<t<150时,根据1•(30+t)+(2t-180)=180,可得t=110;(3)设灯A射线转动时间为t秒,根据∠BAC=2t-120°,∠BCD=120°-∠BCD=t-60°,即可得出∠BAC:∠BCD=2:1,据此可得∠BAC和∠BCD关系不会变化.本题主要考查了平行线的性质以及角的和差关系的运用,解决问题的关键是运用分类思想进行求解,解题时注意:两直线平行,内错角相等;两直线平行,同旁内角互补.24.【答案】解:(1)设直线AB的解析式为y=kx+b,把A(-2,2)、B(1,8)代入得:,解得,∴直线AB的解析式为y=2x+6,∴直线AB与y轴的交点D为(0,6),∴S△AOB=S△AOD+S△BOD=×6×2+×6×1=9;(2)如图1,∵M(-4,n),B(1,8),∴线BM的解析式为y=x+,过点A作AE∥y轴交BM于E,∴E(-2,),∵三角形MAB的面积为10,∴S△MAB=S△AME+S△ABE=AE×(1+4)=×|-2|=10,∴n=8或n=-∴M(-4,8)或(-4,-);(3)设经过t秒后,该直线与y轴交于点(0,-1),则平移后的解析式为y=2(x-2t)+6,∴-1=2(0-2t)+6,解得t=,故经过秒后,该直线与y轴交于点(0,-1).【解析】(1)根据待定系数法求得直线AB的解析式,即可求得直线AB与y轴的交点D为(0,6),然后根据S△AOB=S△AOD+S△BOD求得即可;(2)先求出直线BM解析式,进而求出点E的坐标,最后用△ABM的面积建立方程即可得出结论;(3)根据平行直线的解析式的k值相等设出平移后直线AB的解析式为y=2(x-2t)+6,然后把点点(0,-2)代入求出t,即可得解.此题是三角形综合题,主要考查待定系数法,三角形的面积公式,平移的性质,求出直线BM的解析式是解本题的关键.。

湖北省2016-2017学年下学期期中考试七年级数学试题

湖北省2016-2017学年下学期期中考试七年级数学试题

湖北省2016-2017七年级下学期期中考试数学试题(一)一.选择题 (40分)1.已知点M(3a-9,1-a)在x 轴上,则a=( )A.1B.2 C .3 D .O 2.△ABC 中,∠A=13∠B=14∠C,则△ABC 是( )A.锐角三角形B.直角三角形;C.钝角三角形D.都有可能3.如图,在一张透明的纸上画一条直线l ,在l 外任取一点Q垂直的直线。

这样的直线能折出( )A 、0条B 、1条C 、2条D 、3条4.点P(a,b)在第四象限,则点P 到x 轴的距离是( ) A.a B.b C.-a D.-b5、等腰三角形一边等于5,另一边等于11,则周长是________ . A 21 B 27 C 21或27 D 166、若多边形的边数由3增加到n 时,其外角和的度数( ) A.增加 B.减少 C.不变 D.变为(n-2)180º7、下列命题错误的是( )。

A 、同位角相等,两直线平行。

B 、两直线平行,同旁内角互补。

C 、对顶角相等。

D 、点到直线的距离是直线外一点到这条直线的垂线段。

8.商店出售下列形状的地砖:①正方形;②长方形;③正五边形;@正六边形. 若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有.( ) A 1种 B 2种 C 3种 D 4种 9、如图,在△ABC 中,BE ⊥AC 于E ,CF ⊥AB 于F ,CF 、BE 相交于D ,∠ABC=48°,∠ACB=84°, 则∠FDB 的度数为( )A 48°B 46°C 50°D 52°10、如图,在4ⅹ4的正方格纸中,交点叫格点,以格点为顶点的三角形叫做格点三角形, 请你在图中再找格点C ,连接AC 、BC ,使格点三角形ABC 的面积为3。

这样的格点C 的 个数有___个A 1B 2C 3D 4 二.填空题(24分)11、如图,在△ABC 中,要使DE ∥CB ,你认为应该添加的一个条件是______________。

湖北省2016-2017七年级数学下册期中考试试题

湖北省2016-2017七年级数学下册期中考试试题

湖北省2016-2017七年级数学期中考试试题一、选择题(每题2分,共24分)1、若点P (x ,5)在第二象限内,则x 应是 ( ) A 、正数 B 、负数 C 、非负数 D 、有理数2、若y 轴上的点P 到x 轴的距离为3,则点P 的坐标是 ( ) A 、(3,0) B 、(0,3)C 、(3,0)或(-3,0)D 、(0,3)或(0,-3) 3、下列说法中,正确的是( ) A 64的平方根是8 B 的平方根是2和-2C 没有平方根D 16的平方根是4和-4 4、下列能判定AB ∥CD 的条件有( )个.(1) ∠B+∠BCD=180°(2) ∠1=∠2; (3) ∠3=∠4; (4) ∠B=∠5. A.1 B.2 C.3 D.45、下面生活中,物体的运动情况可以看成平移的是 ( ) A 、时钟摆动的钟摆 B 、在笔直的公路上行驶的汽车 C 、随风摆动的旗帜 D 、汽车玻璃窗上雨刷的运动6、在平面直角坐标系中,点一定在( ).A.第一象限B.第二象限C.第三象限D.第四象限 7、中国2010年上海世博会吉祥物的名字叫“海宝”,意即“四海之宝”。

通过平移图中的吉祥物“海宝”得到的图形是( )(海宝) A B C D8、如果方程x-y=3与下面的方程组成的方程组的解为,那么这一个方程可以是( )A 、3x-4y=16B 、2(x-y)=6yC 、D 、9、下面四个图形中,∠1与∠2是邻补角的是( )12212121ABCD10、下列说法中,正确的是( ) A 、无理数包括正无理数,0和负无理数 B 、无理数是用根号形式表示的数 C 、无理数是开方开不尽的数 D 、无理数是无限不循环小数 11、如图,AD ∥BC ,∠B=30°,DB 平分∠ADE ,则∠DEC 的度数为( )E D C BA 54321A . 30°B .60°C .90°D .120° 12、在实数3.1415926,,1.010010001……,,,,中,无理数的个数是( )个 A 、1 B 、2 C 、3 D 、4题号 1 2 3 4 5 6 7 8 9 10 11 12 答案二、填空题(每题2分,共20分)13、-8是________的立方根,的平方根是 。

2016-2017学年武汉市洪山区七下期末数学试卷

2016-2017学年武汉市洪山区七下期末数学试卷

2016-2017学年武汉市洪山区七下期末数学试卷一、选择题(共10小题;共50分)1. 计算的结果为A. B. C. D.2. 下列调查中,适合用全面调查方式的是A. 对旅客上飞机前的安检B. 了解一批签字笔的使用寿命C. 了解市场上酸奶的质量情况D. 了解武汉市中学生的眼睛视力情况3. 如图,不等式组的解集在同一个数轴上表示正确的是A. B.C. D.4. 如图,直线与相交于,在的平分线上有一点,.当时,的度数是A. B. C. D.5. 《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两:牛二、羊五,直金八两.问:牛、羊各直金几何?”译文:“假设有头牛、只羊,值金两;头牛、只羊,值金两.问:每头牛、每只羊各值金多少两?”设每头牛值金两,每只羊值金两,可列方程组为A. B. C. D.6. 如图,用大小形状完全相同的长方形纸片在直角坐标系中摆成以下图案,已知,则点的坐标为A. B. C. D.7. 不等式组的所有整数解的和为A. B. C. D.8. 小明想了解全校名同学对新闻、体育、音乐、娱乐、戏曲五类电视节目的喜爱情况,从中抽取了一部分同学进行了一次抽样调查,利用所得数据绘制成下面的统计图:根据图中所给信息,全校喜欢娱乐类节目的学生大约有人.A. B. C. D.9. 已知实数,同时满足三个条件:①,②,③,那么实数的取值范围是A. B. C. D.10. 如图,面积为,第一次操作:分别延长,,至点,,,使,,,顺次连接,,,得到.第二次操作:分别延长,,至点,,,使,,,顺次连接,,,得到,那么的面积是A. B. C. D.二、填空题(共6小题;共30分)11. 我们用表示不大于的最大整数,例如:,,若,则的取值范围是.12. 平面直角坐标系中,点,,,若轴,则线段的长最短时,点的坐标为.13. 如图,,,为上一点,将沿翻折得到,点在上,且,,那么的度数为.14. 如图是根据某初中为灾区捐款的情况而制作的统计图,已知该校在校学生有人,请根据统计图计算该校共捐款元.15. 已知方程组的解满足,则的取值范围为.16. 有大小两种货车,辆大货车与辆小货车一次可以运货;辆大货车与辆小货车一次可以运货;现在租用这两种货车共辆,要求一次运输货物不低于,则大货车至少租辆.三、解答题(共7小题;共91分)17. 解二元一次方程组:18. 解下列不等式组并将不等式组的解集在数轴上表示出来.(1)(2)19. 为了创设全新的校园文化氛围,进一步组织学生开展课外阅读,让学生在丰富多彩的书海中,扩大知识源,亲近母语,提高文学素养.某校准备开展“与经典为友、与名著为伴”的阅读活动,活动前对本校学生进行了“你最喜欢的图书类型(只写一项)”的随机抽样调查,相关数据统计如下:请根据以上信息解答下列问题:(1)该校对名学生进行了抽样调查;(2)请将图补充完整:扇形统计图中“科幻”所对应的圆心角的度数是;(3)已知该校共有学生人,利用样本数据估计全校学生中最喜欢小说的人数约为人.20. 如图,中,,,三点分别在,,三边上,过点的直线与线段的交点为点,,.(1)求证:;(2)在以上条件下,若及,两点的位置不变,点在边上运动使得的大小发生变化,保证点存在且不与点重合,探究:要使成立,请说明点应满足的位置条件,在图中画出符合条件的图形并说明理由;(3)在()条件下,若,直接写出的大小.21. 已知关于,的方程组(1)当时,这个方程组的解为.(2)当这个方程组的解,满足求的取值范围;(3)在()的条件下,如果三角形的顶点坐标分别为,,,那么三角形面积的最大值为,最小值为.22. 某自行车专卖店销售A,B两种型号的自行车,其进价与售价如表:进价元辆售价元辆自行车自行车(1)一季度,自行车专卖店购进这两种型号的自行车共辆,用去了元,并且全部售完,该自行车专卖店在该买卖中赚了元.(2)为了满足市场需求,二季度自行车专卖店决定用不超过元的资金采购A,B两种型号的自行车共辆,且自行车A的数量不少于自行车B数量的,问自行车专卖店有哪几种进货方案?并说明理由;(3)在()的条件下,请你通过计算判断,哪种进货方案自行车专卖店赚钱最多?23. 如图,在平面直角坐标系中,点在轴上,直线上所有点的坐标都是二元一次方程的解,直线上所有点的坐标都是二元一次方程的解,过点作轴平行线,交轴于点.(1)求点,,的坐标;(2)点,分别为线段,上的两个动点,点从点向左以个单位长度/秒运动,同时点从点向点以个单位长度/秒运动,如图所示,设运动时间为秒.①当时,求的取值范围;②是否存在一段时间,使得?若存在,求出的取值范围;若不存四边形四边形在,说明理由.答案第一部分1. C2. A3. D4. D5. A6. B7. A8. B9. C 10. C【解析】提示:连接,,利用中线性质可得,可得,同理可得第二部分11.12.13.14.15.16.第三部分17.,得.把代入,解得方程组的解为18. (1)解不等式得解不等式得不等式组的解集为在数轴上表示为:(2)解不等式得解不等式得不等式组的解集为在数轴上表示为:19. (1)(2);补充的条形统计图如图所示,(3)20. (1)延长交于点.,,,,,,,,.(2)满足.证明:,,,,.(3)21. (1)(2)解方程组得把代入不等式组得解得(3);22. (1)(2)设A的数量为辆,则B的数量为辆.根据题意得解得取整,故方案有:购进A型号自行车辆,B型号自行车辆;购进A型号自行车辆,B型号自行车辆;购进A型号自行车辆,B型号自行车辆.(3)设专卖店赚钱元,依题意有越大,越大,当时,最大,,选择购进A型号自行车辆,B型号自行车辆,自行车专卖店赚钱最多.23. (1)令中,解得,,解得,.(2)①,,当时,,解得.②,,,,,四边形,四边形,,解得,.。

试卷答案-2017武汉市洪山区七年级下期中数学试卷

试卷答案-2017武汉市洪山区七年级下期中数学试卷

2016-2017学年湖北省武汉市洪山区七年级(下)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)下列各式中,正确的是()A.=±4 B.±=4 C.=﹣3 D.=﹣4【解答】解:A、原式=4,所以A选项错误;B、原式=±4,所以B选项错误;C、原式=﹣3=,所以C选项正确;D、原式=|﹣4|=4,所以D选项错误.故选:C.2.(3分)如图,能判定AD∥BC的条件是()A.∠3=∠2 B.∠1=∠2 C.∠B=∠D D.∠B=∠1【解答】解:A、∠3=∠2可知AB∥CD,不能判断AD∥BC,故A错误;B、∠1=∠2不能判断AD∥BC,故B错误;C、∠B=∠D不能判断AD∥BC,故C错误;D、当∠B=∠1时,由同位角相等,两直线平行可知AD∥BD,故D正确.故选:D.3.(3分)在平面直角坐标系中,点P(﹣3,2)在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:点P(﹣3,2)在第二象限,故选:B.4.(3分)下列说法正确的是()A.﹣3是﹣9的平方根B.3是(﹣3)2的算术平方根C.(﹣2)2的平方根是2 D.8的立方根是±2【解答】解:A、负数没有平方根,故A错误;B、3是(﹣3)2的算术平方根,故B正确;C、(﹣2)2的平方根是±2,故C错误;D、8的立方根是2,故D错误.故选:B.5.(3分)一个长方形在平面直角坐标系中,若其三个顶点的坐标分别为(﹣3,﹣2),(2,﹣2),(2,1),则第四个顶点为()A.(2,﹣5)B.(2,2) C.(3,1) D.(﹣3,1)【解答】解:依照题意画出图形,如图所示.设点D的坐标为(m,n),∵点A(﹣3,﹣2),B(2,﹣2),C(2,1),AB=2﹣(﹣3)=5,DC=AB=5=2﹣m=5,解得:m=﹣3;BC=1﹣(﹣2)=3,AD=BC=3=n﹣(﹣2),解得:n=1.∴点D的坐标为(﹣3,1).故选:D.6.(3分)如图,一条公路修到湖边时,需拐弯绕道而过,如果第一次拐的角∠A是100°第二次拐的角∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C是()A.120°B.130°C.140° D.150°【解答】解:过点B作BD∥AE,∵AE∥CF,∴AE∥BD∥CF,∴∠A=∠1,∠2+∠C=180°,∵∠A=100°,∠1+∠2=∠ABC=150°,∴∠2=50°,∴∠C=180°﹣∠2=180°﹣50°=130°,故选:B.7.(3分)下列各数:、1.414、0.、、中,其中无理数有()个.A.1个 B.2个 C.3个 D.4个【解答】解:是无理数,故选:A.8.(3分)如图,AB∥CD,∠P=35°,∠D=100°,则∠ABP的度数是()A.165°B.145°C.135° D.125°【解答】解:延长AB交DP于点E.∵AB∥CD,∴∠BEP=∠D=100°,∴∠ABP=∠BEP+∠P=100°+35°=135°.故选:C.9.(3分)比较实数:2、、的大小,正确的是()A.<2< B.2<< C.<<2 D.2<<【解答】解:∵2=<,∴2<,∵<=2,∴<2,∴<2<.故选:A.10.(3分)如图,已知AB∥CD,∠EBF=2∠ABE,∠EDF=2∠CDE,则∠E与∠F之间满足的数量关系是()A.∠E=∠F B.∠E+∠F=180°C.3∠E+∠F=360°D.2∠E﹣∠F=90°【解答】解:过点E作EN∥DC,∵AB∥CD,∴AB∥EN∥DC,∴∠ABE=∠BEN,∠CDE=∠NED,∴∠ABE+∠CDE=∠BED,∵∠EBF=2∠ABE,∠EDF=2∠CDE,∴设∠ABE=x,则∠EBF=2x,设∠CDE=y,则∠EDF=2y,∵2x+2y+∠BED+∠F=360°,∴2∠BED+∠BED+∠F=360°,∴3∠BED+∠F=360°.故选:C.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)一个正数a的平方根是5x+18与6﹣x,则这个正数a是144.【解答】解:∵一个正数a的平方根是5x+18与6﹣x,∴5x+18+6﹣x=0,解得x=﹣6∴a=(6+6)2=144.故答案为:144.12.(3分)已知A(1,﹣2)、B(﹣1,2)、E(2,a)、F(b,3),若将线段AB平移至EF,点A、E为对应点,则a+b的值为﹣1.【解答】解:∵线段AB平移至EF,即点A平移到E,点B平移到点F,而A(1,﹣2),B(﹣1,2),E(2,a),F(b,3),∴点A向右平移一个单位到E,点B向上平移1个单位到F,∴线段AB先向右平移1个单位,再向上平移1个单位得到EF,∴﹣2+1=a,﹣1+1=b,∴a=﹣1,b=0,∴a+b=﹣1+0=﹣1.故答案为:﹣1.13.(3分)如图,在直角坐标系中,△ABC的三个顶点均在格点上,其位置如图所示.现将△ABC沿AA′的方向平移,使得点A移至图中的点A′的位置,写出平移过程中线段AB扫过的面积8.【解答】解:如图,线段AB扫过的图形为平行四边形ABB′A′,则S▱ABB′A′=6×3﹣×4×2﹣×2×1﹣×4×2﹣×2×1=8,故答案为:8.14.(3分)把一张长方形纸片按图中那样折叠后,若得到∠BGD′=40°,则∠C′FE=110°.【解答】解:∵AD∥BC,∴∠BGD′=∠AEG=40°,由折叠的性质得,∠DEF=∠D′EF=(180°﹣40°)=70°,∴∠C′FE=∠EFC=180°﹣∠E=DEF=110°故答案为:110.15.(3分)如图,长方形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2,0)同时出发,沿长方形BCDE的边作环绕运动.物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2017次相遇地点的坐标是(﹣1,1).【解答】解:矩形的边长为4和2,因为物体乙是物体甲的速度的2倍,时间相同,物体甲与物体乙的路程比为1:2,由题意知:①第一次相遇物体甲与物体乙行的路程和为12×1,物体甲行的路程为12×=4,物体乙行的路程为12×=8,在BC边相遇;②第二次相遇物体甲与物体乙行的路程和为12×2,物体甲行的路程为12×2×=8,物体乙行的路程为12×2×=16,在DE边相遇;③第三次相遇物体甲与物体乙行的路程和为12×3,物体甲行的路程为12×3×=12,物体乙行的路程为12×3×=24,在A点相遇;…此时甲乙回到原出发点,则每相遇三次,两点回到出发点,∵2017÷3=672…1,故两个物体运动后的第2014次相遇地点的是:第一次相遇地点,即物体甲行的路程为12×1×13=4,物体乙行的路程为12×1×23=8;此时相遇点F的坐标为:(﹣1,1),故答案为:(﹣1,1).16.(3分)如图,已知EF∥GH,A、D为GH上的两点,M、B为EF上的两点,延长AM于点C,AB平分∠DAC,直线DB平分∠FBC,若∠ACB=100°,则∠DBA的度数为50°.【解答】解:如图,设∠DAB=∠BAC=x,即∠1=∠2=x,∵EF∥GH,∴∠2=∠3,在△ABC内,∠4=180°﹣∠ACB﹣∠1﹣∠3=180°﹣∠ACB﹣2x,∵直线BD平分∠FBC,∴∠5=(180°﹣∠4)=(180°﹣180°+∠ACB+2x)=∠ACB+x,∴∠DBA=180°﹣∠3﹣∠4﹣∠5=180°﹣x﹣(180°﹣∠ACB﹣2x)﹣(∠ACB+x)=180°﹣x﹣180°+∠ACB+2x﹣∠ACB﹣x=∠ACB=×100°=50°.故答案为:50°.三、解答题(共7题,共52分)17.(8分)求值或计算:(1)求满足条件的x值:x2﹣8=0(2)计算:﹣﹣.【解答】解:(1)方程整理得:x2=16,解得:x=±4;(2)原式=3+4﹣6=1.18.(6分)如图,已知∠AGE+∠AHF=180°,∠BEC=∠BFC,则∠A与∠D相等吗?下面是童威同学的推导过程,请你帮助他在括号内填上推导依据∵∠AGE+∠AHF=180°(已知)∠AGE=∠CGD (对顶角相等)∴∠CGD+∠AHF=180°∴CE∥BF (同旁内角互补,两直线平行)∴∠BEC+∠B=180°∵∠BFC+∠BFD=180°∠BEC=∠BFC(已知)∴∠B=∠BFD (等角的补角相等)∴AB∥CD∴∠A=∠D.【解答】解:∵∠AGE+∠AHF=180°(已知),∠AGE=∠CGD (对顶角相等),∴∠CGD+∠AHF=180°,∴CE∥BF (同旁内角互补,两直线平行),∴∠BEC+∠B=180°,∵∠BFC+∠BFD=180°,∠BEC=∠BFC(已知),∴∠B=∠BFD (等角的补角相等),∴AB∥CD,∴∠A=∠D,故答案为:对顶角相等,同旁内角互补,两直线平行,等角的补角相等.19.(6分)已知:如图,AE⊥BC,FG⊥BC,∠1=∠2(1)求证:AB∥CD(2)若∠D=∠3+50°,∠CBD=70°,求∠C的度数.【解答】(1)证明:∵AE⊥BC,FG⊥BC,∴∠AMB=∠GNM=90°,∴AE∥FG,∴∠A=∠2;又∵∠2=∠1,∴∠A=∠1,∴AB∥CD;(2)解:∵AB∥CD,∴∠D+∠CBD+∠3=180°,∵∠D=∠3+50°,∠CBD=70°,∴∠3=30°,∵AB∥CD,∴∠C=∠3=30°.20.(8分)某区进行课堂教学改革,将学生分成5个学习小组,采取团团坐的方式.如图,这是某校七(1)班教室简图,点A、B、C、D、E分别代表五个学习小组的位置,已知C点的坐标为(﹣2,﹣2)(1)请按题意建立平面直角坐标系(横轴和纵轴均为小正方形的边所在直线,每个小正方形边长为1个单位长度),写出图中其他几个学习小组的坐标;(2)过点D作直线DF∥AC交y轴于点F,直接写出点F的坐标.【解答】解:(1)由题意可得,建立平面直角坐标系,如右图所示,则A点的坐标为(﹣3,0),B点的坐标为(0,0),D点的坐标为(1,﹣3),E点的坐标为(﹣4,2);(2)如右图所示,直线DF∥AC交y轴于点F,则点F的坐标为(0,﹣1).21.(6分)△ABC在平面直角坐标系中的位置如图所示,三个顶点A、B、C的坐标分别是(﹣1,4)、(﹣4,﹣1)、(1,1).将△ABC向右平移5个单位长度,再向上平移1个单位长度,得到△A′BC(1)请画出平移后的,并写出的坐标(2)若在第四象限内有一点M(4,m),是否存在点M,使得四边形A′OMB′的面积等于△ABC的面积的一半?若存在,请求出点M的坐标;若不存在,请说明理由.【解答】解:(1)如图,△A′B′C′即为所求;A′(4,5)、B′(1,0)、C′(6,2);(2)存在.∵S=5×5﹣×3×5﹣×2×3﹣×2×5△A′B′C′=25﹣﹣3﹣5=,∴S=S△A′OB′+S△MOB′四边形A′OMB′=×1×5+×1×(﹣m)=﹣m,∴﹣m=,解得m=﹣,∴M(4,﹣).22.(8分)如图,四边形ABCD中,AD∥BC,∠ADC=α,P为直线CD上一动点,点M在线段BC上,连MP,∠MPD=β(1)如图,若MP⊥CD,α=120°,则∠BMP=150°;(2)如图,当P点在DC延长线上时,∠BMP=60°+β;(3)如图,当P点在CD延长线上时,请画出图形,写出∠BMP、β、α之间的数量关系,并证明你的结论.【解答】解:(1)∵AD∥BC,∴∠C=180°﹣∠ADC=180°﹣120°=60°,∵MP⊥CD,∴∠CMP=90°﹣∠C=90°﹣60°=30°,∴∠BMP=180°﹣∠CMP=180°﹣30°=150°;(2)∵AD∥BC,∴∠ASC=∠B CP=α,∴∠BMP=∠PCM+∠P=α+β.故答案为:(1)150°;(2)α+β;(3)∵AD∥BC,∴∠BCP=180°﹣∠ADP=180°﹣α,在△CMP中,∠CMP=180°﹣∠BCP﹣∠MPD=α﹣β,∴∠BMP=180°﹣∠CMP=180°﹣(α﹣β)=180°﹣α+β.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年湖北省武汉市洪山区七年级(下)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)下列各式中,正确的是()A.=±4 B.±=4 C.=﹣3 D.=﹣4【解答】解:A、原式=4,所以A选项错误;B、原式=±4,所以B选项错误;C、原式=﹣3=,所以C选项正确;D、原式=|﹣4|=4,所以D选项错误.故选:C.2.(3分)如图,能判定AD∥BC的条件是()A.∠3=∠2 B.∠1=∠2 C.∠B=∠D D.∠B=∠1【解答】解:A、∠3=∠2可知AB∥CD,不能判断AD∥BC,故A错误;B、∠1=∠2不能判断AD∥BC,故B错误;C、∠B=∠D不能判断AD∥BC,故C错误;D、当∠B=∠1时,由同位角相等,两直线平行可知AD∥BD,故D正确.故选:D.3.(3分)在平面直角坐标系中,点P(﹣3,2)在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:点P(﹣3,2)在第二象限,故选:B.4.(3分)下列说法正确的是()A.﹣3是﹣9的平方根B.3是(﹣3)2的算术平方根C.(﹣2)2的平方根是2 D.8的立方根是±2【解答】解:A、负数没有平方根,故A错误;B、3是(﹣3)2的算术平方根,故B正确;C、(﹣2)2的平方根是±2,故C错误;D、8的立方根是2,故D错误.故选:B.5.(3分)一个长方形在平面直角坐标系中,若其三个顶点的坐标分别为(﹣3,﹣2),(2,﹣2),(2,1),则第四个顶点为()A.(2,﹣5)B.(2,2) C.(3,1) D.(﹣3,1)【解答】解:依照题意画出图形,如图所示.设点D的坐标为(m,n),∵点A(﹣3,﹣2),B(2,﹣2),C(2,1),AB=2﹣(﹣3)=5,DC=AB=5=2﹣m=5,解得:m=﹣3;BC=1﹣(﹣2)=3,AD=BC=3=n﹣(﹣2),解得:n=1.∴点D的坐标为(﹣3,1).故选:D.6.(3分)如图,一条公路修到湖边时,需拐弯绕道而过,如果第一次拐的角∠A是100°第二次拐的角∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C是()A.120°B.130°C.140° D.150°【解答】解:过点B作BD∥AE,∵AE∥CF,∴AE∥BD∥CF,∴∠A=∠1,∠2+∠C=180°,∵∠A=100°,∠1+∠2=∠ABC=150°,∴∠2=50°,∴∠C=180°﹣∠2=180°﹣50°=130°,故选:B.7.(3分)下列各数:、1.414、0.、、中,其中无理数有()个.A.1个 B.2个 C.3个 D.4个【解答】解:是无理数,故选:A.8.(3分)如图,AB∥CD,∠P=35°,∠D=100°,则∠ABP的度数是()A.165°B.145°C.135° D.125°【解答】解:延长AB交DP于点E.∵AB∥CD,∴∠BEP=∠D=100°,∴∠ABP=∠BEP+∠P=100°+35°=135°.故选:C.9.(3分)比较实数:2、、的大小,正确的是()A.<2< B.2<< C.<<2 D.2<<【解答】解:∵2=<,∴2<,∵<=2,∴<2,∴<2<.故选:A.10.(3分)如图,已知AB∥CD,∠EBF=2∠ABE,∠EDF=2∠CDE,则∠E与∠F之间满足的数量关系是()A.∠E=∠F B.∠E+∠F=180°C.3∠E+∠F=360°D.2∠E﹣∠F=90°【解答】解:过点E作EN∥DC,∵AB∥CD,∴AB∥EN∥DC,∴∠ABE=∠BEN,∠CDE=∠NED,∴∠ABE+∠CDE=∠BED,∵∠EBF=2∠ABE,∠EDF=2∠CDE,∴设∠ABE=x,则∠EBF=2x,设∠CDE=y,则∠EDF=2y,∵2x+2y+∠BED+∠F=360°,∴2∠BED+∠BED+∠F=360°,∴3∠BED+∠F=360°.故选:C.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)一个正数a的平方根是5x+18与6﹣x,则这个正数a是144.【解答】解:∵一个正数a的平方根是5x+18与6﹣x,∴5x+18+6﹣x=0,解得x=﹣6∴a=(6+6)2=144.故答案为:144.12.(3分)已知A(1,﹣2)、B(﹣1,2)、E(2,a)、F(b,3),若将线段AB平移至EF,点A、E为对应点,则a+b的值为﹣1.【解答】解:∵线段AB平移至EF,即点A平移到E,点B平移到点F,而A(1,﹣2),B(﹣1,2),E(2,a),F(b,3),∴点A向右平移一个单位到E,点B向上平移1个单位到F,∴线段AB先向右平移1个单位,再向上平移1个单位得到EF,∴﹣2+1=a,﹣1+1=b,∴a=﹣1,b=0,∴a+b=﹣1+0=﹣1.故答案为:﹣1.13.(3分)如图,在直角坐标系中,△ABC的三个顶点均在格点上,其位置如图所示.现将△ABC沿AA′的方向平移,使得点A移至图中的点A′的位置,写出平移过程中线段AB扫过的面积8.【解答】解:如图,线段AB扫过的图形为平行四边形ABB′A′,则S▱ABB′A′=6×3﹣×4×2﹣×2×1﹣×4×2﹣×2×1=8,故答案为:8.14.(3分)把一张长方形纸片按图中那样折叠后,若得到∠BGD′=40°,则∠C′FE=110°.【解答】解:∵AD∥BC,∴∠BGD′=∠AEG=40°,由折叠的性质得,∠DEF=∠D′EF=(180°﹣40°)=70°,∴∠C′FE=∠EFC=180°﹣∠E=DEF=110°故答案为:110.15.(3分)如图,长方形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2,0)同时出发,沿长方形BCDE的边作环绕运动.物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2017次相遇地点的坐标是(﹣1,1).【解答】解:矩形的边长为4和2,因为物体乙是物体甲的速度的2倍,时间相同,物体甲与物体乙的路程比为1:2,由题意知:①第一次相遇物体甲与物体乙行的路程和为12×1,物体甲行的路程为12×=4,物体乙行的路程为12×=8,在BC边相遇;②第二次相遇物体甲与物体乙行的路程和为12×2,物体甲行的路程为12×2×=8,物体乙行的路程为12×2×=16,在DE边相遇;③第三次相遇物体甲与物体乙行的路程和为12×3,物体甲行的路程为12×3×=12,物体乙行的路程为12×3×=24,在A点相遇;…此时甲乙回到原出发点,则每相遇三次,两点回到出发点,∵2017÷3=672…1,故两个物体运动后的第2014次相遇地点的是:第一次相遇地点,即物体甲行的路程为12×1×13=4,物体乙行的路程为12×1×23=8;此时相遇点F的坐标为:(﹣1,1),故答案为:(﹣1,1).16.(3分)如图,已知EF∥GH,A、D为GH上的两点,M、B为EF上的两点,延长AM于点C,AB平分∠DAC,直线DB平分∠FBC,若∠ACB=100°,则∠DBA的度数为50°.【解答】解:如图,设∠DAB=∠BAC=x,即∠1=∠2=x,∵EF∥GH,∴∠2=∠3,在△ABC内,∠4=180°﹣∠ACB﹣∠1﹣∠3=180°﹣∠ACB﹣2x,∵直线BD平分∠FBC,∴∠5=(180°﹣∠4)=(180°﹣180°+∠ACB+2x)=∠ACB+x,∴∠DBA=180°﹣∠3﹣∠4﹣∠5=180°﹣x﹣(180°﹣∠ACB﹣2x)﹣(∠ACB+x)=180°﹣x﹣180°+∠ACB+2x﹣∠ACB﹣x=∠ACB=×100°=50°.故答案为:50°.三、解答题(共7题,共52分)17.(8分)求值或计算:(1)求满足条件的x值:x2﹣8=0(2)计算:﹣﹣.【解答】解:(1)方程整理得:x2=16,解得:x=±4;(2)原式=3+4﹣6=1.18.(6分)如图,已知∠AGE+∠AHF=180°,∠BEC=∠BFC,则∠A与∠D相等吗?下面是童威同学的推导过程,请你帮助他在括号内填上推导依据∵∠AGE+∠AHF=180°(已知)∠AGE=∠CGD (对顶角相等)∴∠CGD+∠AHF=180°∴CE∥BF (同旁内角互补,两直线平行)∴∠BEC+∠B=180°∵∠BFC+∠BFD=180°∠BEC=∠BFC(已知)∴∠B=∠BFD (等角的补角相等)∴AB∥CD∴∠A=∠D.【解答】解:∵∠AGE+∠AHF=180°(已知),∠AGE=∠CGD (对顶角相等),∴∠CGD+∠AHF=180°,∴CE∥BF (同旁内角互补,两直线平行),∴∠BEC+∠B=180°,∵∠BFC+∠BFD=180°,∠BEC=∠BFC(已知),∴∠B=∠BFD (等角的补角相等),∴AB∥CD,∴∠A=∠D,故答案为:对顶角相等,同旁内角互补,两直线平行,等角的补角相等.19.(6分)已知:如图,AE⊥BC,FG⊥BC,∠1=∠2(1)求证:AB∥CD(2)若∠D=∠3+50°,∠CBD=70°,求∠C的度数.【解答】(1)证明:∵AE⊥BC,FG⊥BC,∴∠AMB=∠GNM=90°,∴AE∥FG,∴∠A=∠2;又∵∠2=∠1,∴∠A=∠1,∴AB∥CD;(2)解:∵AB∥CD,∴∠D+∠CBD+∠3=180°,∵∠D=∠3+50°,∠CBD=70°,∴∠3=30°,∵AB∥CD,∴∠C=∠3=30°.20.(8分)某区进行课堂教学改革,将学生分成5个学习小组,采取团团坐的方式.如图,这是某校七(1)班教室简图,点A、B、C、D、E分别代表五个学习小组的位置,已知C点的坐标为(﹣2,﹣2)(1)请按题意建立平面直角坐标系(横轴和纵轴均为小正方形的边所在直线,每个小正方形边长为1个单位长度),写出图中其他几个学习小组的坐标;(2)过点D作直线DF∥AC交y轴于点F,直接写出点F的坐标.【解答】解:(1)由题意可得,建立平面直角坐标系,如右图所示,则A点的坐标为(﹣3,0),B点的坐标为(0,0),D点的坐标为(1,﹣3),E点的坐标为(﹣4,2);(2)如右图所示,直线DF∥AC交y轴于点F,则点F的坐标为(0,﹣1).21.(6分)△ABC在平面直角坐标系中的位置如图所示,三个顶点A、B、C的坐标分别是(﹣1,4)、(﹣4,﹣1)、(1,1).将△ABC向右平移5个单位长度,再向上平移1个单位长度,得到△A′BC(1)请画出平移后的,并写出的坐标(2)若在第四象限内有一点M(4,m),是否存在点M,使得四边形A′OMB′的面积等于△ABC的面积的一半?若存在,请求出点M的坐标;若不存在,请说明理由.【解答】解:(1)如图,△A′B′C′即为所求;A′(4,5)、B′(1,0)、C′(6,2);(2)存在.∵S△A′B′C′=5×5﹣×3×5﹣×2×3﹣×2×5 =25﹣﹣3﹣5=,∴S四边形A′OMB′=S△A′OB′+S△MOB′=×1×5+×1×(﹣m)=﹣m,∴﹣m=,解得m=﹣,∴M(4,﹣).22.(8分)如图,四边形ABCD中,AD∥BC,∠ADC=α,P为直线CD上一动点,点M在线段BC上,连MP,∠MPD=β(1)如图,若MP⊥CD,α=120°,则∠BMP=150°;(2)如图,当P点在DC延长线上时,∠BMP=60°+β;(3)如图,当P点在CD延长线上时,请画出图形,写出∠BMP、β、α之间的数量关系,并证明你的结论.【解答】解:(1)∵AD∥BC,∴∠C=180°﹣∠ADC=180°﹣120°=60°,∵MP⊥CD,∴∠CMP=90°﹣∠C=90°﹣60°=30°,∴∠BMP=180°﹣∠CMP=180°﹣30°=150°;(2)∵AD∥BC,∴∠ASC=∠BCP=α,∴∠BMP=∠PCM+∠P=α+β.故答案为:(1)150°;(2)α+β;(3)∵AD∥BC,∴∠BCP=180°﹣∠ADP=180°﹣α,在△CMP中,∠CMP=180°﹣∠BCP﹣∠MPD=α﹣β,∴∠BMP=180°﹣∠CMP=180°﹣(α﹣β)=180°﹣α+β.。

相关文档
最新文档