江苏省2018-2019学年度苏锡常镇四市高三教学情况调查(一)数学(解析板)

合集下载

江苏省苏锡常镇四市2019届高三一模考试数学试卷(有答案)

江苏省苏锡常镇四市2019届高三一模考试数学试卷(有答案)

2018-2019学年度苏、锡、常、镇四市高三教学情况调查(一)数学试卷一、 填空题, 本大题共 14 题, 每小题 5 分, 共 70 分, 不需要写出解答过程, 请把答案直接填在答题卡相应位置上1、已知集合 A = {0,1,2}, B = {x | -1 < x < 1}, 则 A ∩B = .答案:{}=0A B ⋂。

2、i 为虚数单位, 复数(1- 2i )2 的虚部为 .答案:2312()4i i =---,即虚部为-4。

3、抛物线 y 2 = 4x 的焦点坐标为 .答案:()1,0。

4、箱子中有形状、 大小相同的 3只红球、 1只白球, 一次摸出 2 只球, 则摸到的2 只球颜色相同的概率为 .答案:12解析:232412C C =。

5、如图是抽取某学校160 名学生的体重频率分布直方图, 已知从左到右的前 3组的频率成等差数列, 则第 2 组的频数为 .答案:406、如图是一个算法流程图, 则输出的 S 的值是 .答案:7、已知函数2log (3),0()21,0x x x f x x -≤⎧=⎨->⎩,若1(1)2f a -=, 则实数a = .答案:2log 3 解析:222133(1)1log 1log log 3222f a a a -=⇒-=⇒=+= 8、中国古代著作《张丘建算经》 有这样一个问题:“今有马行转迟,次日减半疾,七日行七百里”,意思是说有一匹马行走的速度逐渐减慢,每天行走的里程是前一天的一半, 七天一共行走了 700 里, 那么这匹马在最后一天行走的里程数为 . 答案:700127解析:设第七天走的路程为x ,那么七天总共走的路程为76127002270012127x x x x x -+++==⇒=-。

9、已知圆柱的轴截面的对角线长为 2, 则这个圆柱的侧面积的最大值为 . 答案:2π解析:设圆柱的底面半径为r ,高为h ,那么2244r h +=,圆柱的侧面积为224222r h rh πππ+≤=。

苏锡常镇四市2019届高三教学情况调研(一)数学-修正版

苏锡常镇四市2019届高三教学情况调研(一)数学-修正版

输出 ������ 结束
π 10. 设定义在区间 (0, ) 上的函数 ������ = 3√3 sin ������ 的图象与 ������ = 3 cos 2������ + 2 的图象交于点 ������ , 则点 ������ 到 ������ 轴 2 的距离为 . π 11. 在 △������������������ 中, 角 ������, ������, ������ 对边分别为 ������, ������, ������ , 已知 5������ = 8������, ������ = 2������ , 则 sin(������ − ) 的值为 4 为等腰直角三角形(������ 为直角顶点) , 则实数 ������ 的取值范围为 . .
������ ������ ������ ������ ������ ������
高三数学 I 第 3 页(共 4 页)
19. (本小题满分 16 分) 已知函数 ������ (������) = (������ + 1) ln ������ + ������������, ������ ∈ ������. (1) 若曲线 ������ = ������ (������) 在 (1, ������ (1)) 处的切线方程为 ������ + ������ + ������ = 0, 求实数 ������, ������ 的值; ������ (������) , ������ ∈ [1, e](其中 e 是自然对数的底数) . (2) 设函数 ������(������) = ������ ① 当 ������ = −1 时, 求函数 ������(������) 的最大值; ������(������) ② 若 ℎ(������) = 是单调递减函数, 求实数 ������ 的取值范围. | e������ |

江苏省苏锡常镇四市2018届高三教学情况调研(一)(3月)数学试题 (9)

江苏省苏锡常镇四市2018届高三教学情况调研(一)(3月)数学试题 (9)

【题文】如图,某景区内有一半圆形花圃,其直径AB 为6,O 是圆心,且OC AB ⊥.在OC 上有一座观赏亭Q ,其中23AQC π∠=.计划在BC 上再建一座观赏亭P ,记(0)2P O B πθθ∠=<<.(1)当3πθ=时,求OPQ ∠的大小;(2)当OPQ ∠越大,游客在观赏亭P 处的观赏效果越佳,求游客在观赏亭P 处的观赏效果最佳时,角θ的正弦值. 【答案】 解:(1)设O P Q α∠=,由题,Rt OAQ ∆中,3OA =,AQO AQC π∠=-∠233πππ=-=,所以OQ =OPQ ∆中,3OP =,2POQ πθ∠=-236πππ=-=,由正弦定理得sin sin OQ OPOPQ OQP=∠∠,即3sin sin()6παπα=--sin()6παπα=--5sin()6πα=-,5sincos 6παα=5cos sin 6πα-1cos 2αα=cos αα=,因为α为锐角,所以cos 0α≠,所以tan 3α=,得6πα=; (2)设OPQ α∠=,在OPQ ∆中,3OP =,2POQ πθ∠=-236πππ=-=,由正弦定理得sin sin OQ OP OPQ OQP =∠∠3sin(())2ππαθ=---,所以sin(())2παπαθ=---sin(())2παθ=--cos()αθ=-cos cos sin sin αθαθ=+,从而sin )sin θαcos cos αθ=sin 0θ≠,cos 0α≠, 所以tanα=记()f θ=,'()f θ=(0,)2πθ∈;令'()0f θ=,sin θ=0(0,)2πθ∈使得0sin θ=, 当0(0,)θθ∈时'()0f θ>,()f θ单调增,当0(,)2πθθ∈时'()0f θ<,()f θ单调减,所以当0θθ=时,()f θ最大,即tan OPQ ∠最大,又OPQ ∠为锐角,从而OPQ ∠最大,此时sin θ=答:观赏效果达到最佳时,θ 【解析】【标题】江苏省苏锡常镇四市2018届高三教学情况调研(一)(3月)数学试题 【结束】。

2018江苏苏锡常镇四市高三调研(一)数学试题及答案

2018江苏苏锡常镇四市高三调研(一)数学试题及答案

2018江苏苏锡常镇四市高三调研(一)数学试题及答案2017-2018学年度苏锡常镇四市高三教学情况调研(一)数学Ⅰ试题一、填空题:本大题共14个小题,每小题5分,共70分.请把答案填写在答题..卡相应位置上....... 1.已知集合{1,1}A =-,{3,0,1}B =-,则集合A B =.2.已知复数z 满足34z i i ⋅=-(i 为虚数单位),则z =.3.双曲线22143x y -=的渐近线方程为 .4.某中学共有1800人,其中高二年级的人数为600.现用分层抽样的方法在全校抽取n 人,其中高二年级被抽取的人数为21,则n = .5.将一颗质地均匀的正四面体骰子(每个面上分别写有数字1,2,3,4)先后抛掷2次,观察其朝下一面的数字,则两次数字之和等于6的概率为 .6.如图是一个算法的流程图,则输出S 的值是 .7.若正四棱锥的底面边长为2cm ,侧面积为28cm ,则它的体积为 3cm .8.设nS 是等差数列{}na 的前n 项和,若242aa +=,241S S +=,则10a = .9.已知0a >,0b >,且23aba b+=,则ab 的最小值是 .10.设三角形ABC 的内角A ,B ,C 的对边分别为a ,b,c ,已知tan 3tan A c bB b-=,则cos A = . 11.已知函数,1()4,1x a e x f x x x x ⎧-<⎪=⎨+≥⎪⎩(e 是自然对数的底).若函数()y f x =的最小值是4,则实数a 的取值范围为 .12.在ABC ∆中,点P 是边AB 的中点,已知3CP =4CA =,23ACB π∠=,则CP CA ⋅= .17.已知椭圆C :22221x y a b+=(0)a b >>经过点1(3,)2,3(1,)2,点A 是椭圆的下顶点. (1)求椭圆C 的标准方程;(2)过点A 且互相垂直的两直线1l ,2l 与直线y x =分别相交于E ,F 两点,已知OE OF =,求直线1l 的斜率.18.如图,某景区内有一半圆形花圃,其直径AB 为6,O 是圆心,且OC AB ⊥.在OC 上有一座观赏亭Q ,其中23AQC π∠=.计划在BC 上再建一座观赏亭P ,记(0)2POB πθθ∠=<<.(1)当3πθ=时,求OPQ ∠的大小; (2)当OPQ ∠越大,游客在观赏亭P 处的观赏效果越佳,求游客在观赏亭P 处的观赏效果最佳时,角θ的正弦值. 19.已知函数32()f x x ax bx c=+++,()ln g x x =.(1)若0a =,2b =-,且()()f x g x ≥恒成立,求实数c 的取值范围;(2)若3b =-,且函数()y f x =在区间(1,1)-上是单调递减函数.①求实数a 的值; ②当2c =时,求函数(),()()()(),()()f x f xg xh x g x f x g x ≥⎧=⎨<⎩的值域. 20.已知nS 是数列{}na 的前n 项和,13a=,且123n n S a +=-*()n N ∈.(1)求数列{}na 的通项公式;(2)对于正整数i ,j ,()k i j k <<,已知ja λ,6i a ,kaμ成等差数列,求正整数λ,μ的值;(3)设数列{}nb 前n 项和是nT ,且满足:对任意的正整数n ,都有等式12132nn n a b a b a b --++113n n a b ++⋅⋅⋅+=33n --成立.求满足等式13n nTa=的所有正整数n .2017-2018学年度苏锡常镇四市高三教学情况调研(一)数学Ⅱ(附加题)21.【选做题】在A ,B ,C ,D 四小题中只能选做两题,每小题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.A. 选修4-1:几何证明选讲如图,AB 是圆O 的直径,D 为圆O 上一点,过点D 作圆O 的切线交AB 的延长线于点C ,且满足DA DC =.(1)求证:2AB BC =; (2)若2AB =,求线段CD 的长. B. 选修4-2:矩阵与变换已知矩阵4001A ⎡⎤=⎢⎥⎣⎦,1205B ⎡⎤=⎢⎥⎣⎦,列向量a X b ⎡⎤=⎢⎥⎣⎦.(1)求矩阵AB ; (2)若1151B A X --⎡⎤=⎢⎥⎣⎦,求a ,b 的值.C. 选修4-4:坐标系与参数方程 在极坐标系中,已知圆C 经过点(22,)4P π,圆心为直线sin()33πρθ-=-C 的极坐标方程.D. 选修4-5:不等式选讲已知x ,y 都是正数,且1xy =,求证:22(1)(1)9x y y x ++++≥. 【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.22.如图,在四棱锥P ABCD -中,底面ABCD 是矩形,PD垂直于底面ABCD ,2PD AD AB ==,点Q 为线段PA (不含端点)上一点.(1)当Q 是线段PA 的中点时,求CQ 与平面PBD 所成角的正弦值;(2)已知二面角Q BD P --的正弦值为23,求PQPA的值. 23.在含有n 个元素的集合{1,2,,}nAn =⋅⋅⋅中,若这n 个元素的一个排列(1a ,2a ,…,na )满足(1,2,,)ia i i n ≠=⋅⋅⋅,则称这个排列为集合nA 的一个错位排列(例如:对于集合3{1,2,3}A=,排列(2,3,1)是3A 的一个错位排列;排列(1,3,2)不是3A 的一个错位排列).记集合nA 的所有错位排列的个数为nD .(1)直接写出1D ,2D ,3D ,4D 的值;(2)当3n ≥时,试用2n D -,1n D -表示nD ,并说明理由;(3)试用数学归纳法证明:*2()nDn N ∈为奇数.2017-2018学年度苏锡常镇四市高三教学情况调研(一)数学Ⅰ试题参考答案一、填空题1. {1}2. 53. 32y x =±4. 635. 3166. 2543 8. 8 9. 261311. 4a e ≥+ 12. 6 13. 1,53⎧⎫⎨⎬⎩⎭14. [0,1)二、解答题15.解:(1)由题意4sin 5α=,3cos 5α=,所以2sin()4a b a πα⋅=++2sin cos 4παα=+cos sin4πα+4242552=+⨯3232522+⨯=.(2)因为//a b 2sin()14a πα+=,即2α(sin coscos sin )144ππαα+=,所以2sin sin cos 1ααα+=,则2sin cos 1sin ααα=-2cos α=,对锐角α有cos 0α≠,所以tan 1α=,所以锐角4πα=.16.证明:(1)连结MN ,正三棱柱111ABC A B C -中,11//AA CC 且11AA CC =,则四边形11AAC C 是平行四边形,因为点M、N 分别是棱11A C ,AC 的中点,所以1//MN AA 且1MN AA =,又正三棱柱111ABC A B C -中11//AA BB 且11AA BB =,所以1//MN BB且1MN BB =,所以四边形1MNBB 是平行四边形,所以1//B M BN,又1B M ⊄平面1A BN ,BN ⊂平面1A BN ,所以1//B M 平面1A BN ;(2)正三棱柱111ABC A B C -中,1AA ⊥平面ABC ,BN ⊂平面ABC ,所以1BN AA ⊥,正ABC ∆中,N 是AB 的中点,所以BN AC ⊥,又1AA 、AC ⊂平面11AAC C ,1AAAC A=,所以BN ⊥平面11AAC C ,又AD ⊂平面11AAC C , 所以AD BN ⊥,由题意,16AA =2AC =,1AN =,63CD =,所以132AA ANAC CD ==又12A AN ACD π∠=∠=,所以1A AN ∆与ACD ∆相似,则1AA N CAD∠=∠,所以1ANA CAD ∠+∠112ANA AA N π=∠+∠=, 则1AD A N ⊥,又1BNA N N=,BN ,1A N ⊂平面1A BN ,所以AD ⊥平面1A BN . 17.解:(1)由题意得222231141314a b a b ⎧+=⎪⎪⎨⎪+=⎪⎩,解得2211411a b ⎧=⎪⎪⎨⎪=⎪⎩,所以椭圆C 的标准方程为2214x y +=;(2)由题意知(0,1)A -,直线1l ,2l 的斜率存在且不为零,设直线1l :11y k x =-,与直线y x =联立方程有11y k x y x=-⎧⎨=⎩,得1111(,)11E k k --,设直线2l :111y x k =--,同理1111(,)1111F k k ----,因为OE OF =,所以1111||||111k k =---,①1111111k k =---,1110k k +=无实数解;②1111111k k =---,1112k k -=,211210kk --=,解得112k=综上可得,直线1l 的斜率为1218.解:(1)设OPQ α∠=,由题,Rt OAQ ∆中,3OA =,AQO AQC π∠=-∠233πππ=-=,所以3OQ =OPQ ∆中,3OP =,2POQ πθ∠=-236πππ=-=, 由正弦定理得sin sin OQ OPOPQ OQP=∠∠, 即33sin sin()6παπα=--3sin()6παπα=--5sin()6πα=-,53sincos 6παα=5cos sin 6πα-13cos 22αα=+,所以3cos αα=,因为α为锐角,所以cos 0α≠,所以3tan 3α=,得6πα=; (2)设OPQ α∠=,在OPQ ∆中,3OP =,2POQ πθ∠=-236πππ=-=, 由正弦定理得sin sin OQ OPOPQ OQP=∠∠,即33sin(())2ππαθ=---,所以3sin(())2παπαθ=---sin(())2παθ=--cos()αθ=-cos cos sin sin αθαθ=+,从而3sin )sin θαcos cos αθ=3sin 0θ≠,cos 0α≠,所以tan 3sin αθ=-,记()3sin f θθ=-,213sin '()(3sin )f θθθ-=-(0,)2πθ∈; 令'()0f θ=,3sin 3θ=,存在唯一0(0,)2πθ∈使得03sin 3θ=,当0(0,)θθ∈时'()0f θ>,()f θ单调增,当0(,)2πθθ∈时'()0f θ<,()f θ单调减,所以当0θθ=时,()f θ最大,即tan OPQ ∠最大, 又OPQ ∠为锐角,从而OPQ ∠最大,此时3sin 3θ=. 答:观赏效果达到最佳时,θ的正弦值为33.19.解:(1)函数()y g x =的定义域为(0,)+∞.当0a =,2b =-,3()2f x xx c=-+,∵()()f x g x ≥恒成立,∴32ln xx c x-+≥恒成立,即3ln 2c x x x≥-+.令3()ln 2x x xxϕ=-+,则21'()32x x xϕ=-+3123x x x +-=2(1)(133)x x x x -++=,令'()0x ϕ≥,得1x ≤,∴()x ϕ在(0,1]上单调递增, 令'()0x ϕ≤,得1x ≥,∴()x ϕ在[1,)+∞上单调递减,∴当1x =时,max[()](1)1x ϕϕ==.∴1c ≥.(2)①当3b =-时,32()3f x x ax x c=+-+,2'()323f x xax =+-.由题意,2'()3230f x xax =+-≤对(1,1)x ∈-恒成立,∴'(1)3230'(1)3230f a f a =+-≤⎧⎨-=--≤⎩,∴0a =,即实数a 的值为0. ②函数()y h x =的定义域为(0,)+∞. 当0a =,3b =-,2c =时,3()32f x xx =-+.2'()33f x x =-,令2'()330f x x=-=,得1x =.x(0,1)1(1,)+∞'()f x - 0+ ()f x极小值∴当(0,1)x ∈时,()0f x >,当1x =时,()0f x =,当(1,)x ∈+∞时,()0f x >.对于()ln g x x =,当(0,1)x ∈时,()0g x <,当1x =时,()0g x =,当(1,)x ∈+∞时,()0g x >.∴当(0,1)x ∈时,()()0h x f x =>,当1x =时,()0h x =,当(1,)x ∈+∞时,()0h x >.故函数()y h x =的值域为[0,)+∞. 20.解:(1)由123nn S a +=-*()n N ∈得1223n n Sa ++=-,两式作差得1212n n n aa a +++=-,即213n n aa ++=*()n N ∈. 13a =,21239aS =+=,所以13n n aa +=*()n N ∈,0na≠,则13n na a +=*()n N ∈,所以数列{}na 是首项为3公比为3的等比数列, 所以3n na=*()n N ∈;(2)由题意26jk ia a a λϕ+=⋅,即33263jk iλμ+=⋅⋅,所以3312j ik i λμ--+=,其中1j i -≥,2k i -≥,所以333j iλλ-≥≥,399k iμμ-≥≥,123312j i k i λμ--=+≥,所以1j i -=,2k i -=,1λμ==;(3)由12132nn n a ba b a b --++113n n a b ++⋅⋅⋅+=33n --得, 11231n n n a b a b a b +-++211n n a b a b ++⋅⋅⋅++233(1)3n n +=-+-,111213(n n n a b a b a b +-++121)n n a b a b -+⋅⋅⋅++233(1)3n n +=-+-,1113(333)n n a b n +++--233(1)3n n +=-+-,所以21333(1)n n b n ++=-+133(333)n n +----,即1363n bn +=+,所以121n b n +=+*()n N ∈,又因为111133133a b +=-⋅-=,得11b =,所以21nbn =-*()n N ∈, 从而135(21)n T n =+++⋅⋅⋅+-21212n n n +-==*()n N ∈,2*()3n n n T n n N a =∈,当1n =时1113Ta=;当2n =时2249Ta=;当3n =时3313Ta=;下面证明:对任意正整数3n >都有13n nTa<,11n n n n T T a a ++-121(1)3n n +⎛⎫=+ ⎪⎝⎭121133n n n +⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭1221((1)3)3n n n +⎛⎫+-= ⎪⎝⎭2(221)n n -++,当3n ≥时,22221(1)nn n -++=-(2)0n n +-<,即110n nn nTT aa ++-<,所以当3n ≥时,n nT a递减,所以对任意正整数3n >都有3313n nTT aa <=;综上可得,满足等式13n nTa=的正整数n 的值为1和3.2017-2018学年度苏锡常镇四市高三教学情况调研(一)数学Ⅱ(附加题)参考答案21.【选做题】A. 选修4-1:几何证明选讲证明:(1)连接OD ,BD .因为AB 是圆O 的直径,所以90ADB ∠=,2AB OB =.因为CD 是圆O 的切线,所以90CDO ∠=, 又因为DA DC =,所以A C ∠=∠, 于是ADB CDO ∆≅∆,得到AB CO =, 所以AO BC =,从而2AB BC =.(2)解:由2AB =及2AB BC =得到1CB =,3CA =.由切割线定理,2133CDCB CA =⋅=⨯=,所以3CD =B. 选修4-2:矩阵与变换解:(1)401248010505AB ⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦;(2)由1151BA X --⎡⎤=⎢⎥⎣⎦,解得51X AB ⎡⎤=⎢⎥⎣⎦485280515⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,又因为a X b ⎡⎤=⎢⎥⎣⎦,所以28a =,5b =.C. 选修4-4:坐标系与参数方程 解:在sin()33πρθ-=-0θ=,得2ρ=, 所以圆C 的圆心的极坐标为(2,0). 因为圆C 的半径PC 22(22)22222cos24π=+-⨯⨯⨯=,于是圆C 过极点,所以圆的极坐标方程为4cos ρθ=. D. 选修4-5:不等式选讲 证明:因为x ,y 都是正数, 所以223130x yxy ++≥>,223130y xyx ++≥>,22(1)(1)9x y y x xy++++≥,又因为1xy =,所以22(1)(1)9x y y x ++++≥.【必做题】22.解:(1)以D 为原点,DA ,DC ,DP 为坐标轴,建立如图所示空间直角坐标系;设AB t =,则(0,0,0)D ,(2,0,0)A t ,(2,,0)B t t ,(0,,0)C t ,(0,0,2)P t ,(,0,)Q t t ;所以(,,)CQ t t t =-,(2,,0)DB t t =,(0,0,2)DP t =, 设平面PBD 的法向量1(,,)n x y z =,则110DB n DP n ⎧⋅=⎪⎨⋅=⎪⎩,即2020tx ty tz +=⎧⎨=⎩,解得20x y z +=⎧⎨=⎩,所以平面PBD 的一个法向量1(1,2,0)n =-,111cos ,n CQ n CQ n CQ⋅<>=53t=⨯15=,则CQ 与平面PBD 所成角的正弦值为155.(2)由(1)知平面PBD 的一个法向量为1(1,2,0)n =-,设(01)PQ PAλλ=<<,则PQ PA λ=,DQ DP PQ =+(0,0,2)(2,0,2)t t t λ=+-(2,0,2(1))t t λλ=-,(2,,0)DB t t =,设平面QBD 的法向量2(,,)nx y z =,则2200DQ n DB n ⎧⋅=⎪⎨⋅=⎪⎩,即22(1)020t x t z tx ty λλ+-=⎧⎨+=⎩,解得(1)020x z x y λλ+-=⎧⎨+=⎩,所以平面QBD 的一个法向量2(1,22,)n λλλ=---,由题意得21221()cos ,3n n -=<>1212n nn n ⋅=2225(1)5(1)(22)()λλλλ-=-+-+-,所以2255(1)96105λλλ-=-+,即2(2)()03λλ--=, 因为01λ<<,所以23λ=,则23PQ PA =. 23. 解:(1)10D =,21D=,32D =, 49D =,(2)12(1)()nn n Dn D D --=-+,理由如下:对nA 的元素的一个错位排列(1a ,2a ,…,na ),若1(1)a k k =≠,分以下两类:若1ka=,这种排列是2n -个元素的错位排列,共有2n D -个;若1ka≠,这种错位排列就是将1,2,…,1k -,1k +,…,n排列到第2到第n 个位置上,1不在第k 个位置,其他元素也不在原先的位置,这种排列相当于1n -个元素的错位排列,共有1n D -个;根据k 的不同的取值,由加法原理得到12(1)()n n n D n D D --=-+;(3)根据(2)的递推关系及(1)的结论,nD 均为自然数;当3n ≥,且n 为奇数时,1n -为偶数,从而12(1)()n n n D n D D --=-+为偶数,又10D =也是偶数,故对任意正奇数n ,有nD 均为偶数.下面用数学归纳法证明2nD (其中*n N ∈)为奇数.当1n =时,21D =为奇数;假设当n k =时,结论成立,即2kD 是奇数,则当1n k =+时,2(1)212(21)()k k k Dk D D ++=++,注意到21k D +为偶数,又2kD 是奇数,所以212k kDD ++为奇数,又21k +为奇数,所以2(1)212(21)()k k k D k D D ++=++,即结论对1n k =+也成立;根据前面所述,对任意*n N ∈,都有2nD 为奇数.。

2018~2019学年度苏锡常镇四市高三教学情况调研(一)

2018~2019学年度苏锡常镇四市高三教学情况调研(一)

2018~2019学年度苏锡常镇四市高三教学情况调研(一)历史2019.03注意事项:1.本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必用0.5毫米黑色墨水的签字笔将自己的学校、班级、姓名、准考证号填写在答题卡的规定位置。

2.回答第I卷时,选出每小题答案后,必须用2B铅笔把答题卡上对应题目的选项的方框涂满、涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,须用0.5毫米黑色墨水的签字笔在答题卡指定位置上作答,在其它位置作答一律无效。

第I卷(选择题,共60分)一、本大题共20题,每题3分,共计60分。

在每小题给出的四个选项中,只有一项最符合题目要求。

1.王夫之认为商周之变和周秦之变是中国古代影响最大的两次政权更替,中国古代的政治体制曾随之发生变化。

下列最能体现“周秦之变”的是A.从传位贤能到血缘世袭B.从官僚政治到贵族政治C.从分封诸侯到郡县制度D.从礼乐治国到法律治国2.《汉书》记载汉废帝刘贺因“行昏乱,恐危社稷”而遭废黜,直至被贬为海昏侯。

但近年来海昏侯刘贺墓出土了《论语》《礼记》等儒家简书、围棋及孔子像。

根据古代“事死如事生”的原则,可知A.出土的文物是唯一可靠的B.考古发现可弥补文献不足C.《汉书》的记载更为可信D.考古发现和文献有所差异3. 唐太宗贞观三年“凡军国大事,则中书舍人各执所见,杂署其名,谓之五花判事。

”这一做法A.削弱了门下省审议权B.有利于决策的合理性C.一定程度上削弱皇权D.加强了尚书省执行权4. 右图的书法作品是苏轼《寒食帖》的局部,此帖被称为“天下第三行书”。

下列对其书体特点描述正确的是A. 笔画圆匀,庄严厚重B. 字体方正,规范标准C. 随意挥洒,任情纵性D. 行云流水,飘逸易识5. 宋明理学家们一方面借鉴佛教和道教在哲学本体论方面的成果,一方面在传统儒学中寻找能够用来构筑哲学形而上学的因素,传统儒学经由理学家们的改造,道德信条式的理论体系终于变成以哲学形上学为基础的哲学理论体系。

推荐-江苏省苏、锡、常、镇四市2018年高三教学情况调查(一)数学试卷附答案 精品

推荐-江苏省苏、锡、常、镇四市2018年高三教学情况调查(一)数学试卷附答案 精品

江苏省苏、锡、常、镇四市2018年高三教学情况调查(一)数 学注意事项:1.本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页.满分150分.考试时间120分钟.2.请将第Ⅰ卷的答案填涂在答题卡上,第Ⅱ卷的解答写在答题卷上.在本试卷上答题无效.第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{}(,)2M x y x y =+=,{}(,)4N x y x y =-=,则MN =A .{}3,1x y ==-B .(3,1)-C .{}3,1-D .{}(3,1)- 2.设向量a =(1,2)-,b =(1,1)-,c =(3,2)-,且p q c =a +b ,则实数p,q 的值为 A .41p =,q = B .14p =,q = C .04p =,q = D .14p =,q =- 3.已知函数()2sin()f x x =+ωϕ对任意x 都有()()66f x f x ππ+=-,则()6f π等于 A .2或0 B .2-或2 C .0 D .2-或0 4.等差数列{}n a 的公差10,d a d ≠≠,若这数列的前40项的和是20m ,则m 等于 A .1030a a + B .20a C .40a d + D .1526a a + 5.已知,a b ∈R ,则“,0a b ab >>”是“11a b<”成立的是 A .充分不必要条件 B .必要不充分条件 C .充要条件 D . 既不充分也不必要条件 6.已知平面α、β和直线a 、b ,若,,l a b =⊂⊂αβαβ,且平面α与平面β不垂直,直线a 与直线l 不垂直,则A .直线a 与直线b 可能垂直,但不可能平行B .直线a 与直线b 可能垂直,也可能平行C .直线a 与直线b 不可能垂直,但可能平行D .直线a 与直线b 不可能垂直,也不可能平行7.已知双曲线2221x y a-=的一条准线与抛物线26y x =-的准线重合,则该双曲线的离心率为 AB .32 CD8.已知函数()(0,)(,2)f x x =∈πππ,则A .函数图象关于直线x =π对称B .函数图象关于点(,0)π对称C .函数在区间(,)2ππ上递减 D .函数在区间3(,)2ππ上递减 9.已知(,)(0)M a b ab ≠是圆O :222x y r +=内一点,现有以M 为中点的弦所在直线m 和直线l :2ax by r +=,则A .//m l ,且l 与圆相交B .l m ⊥,且l 与圆相交C .//m l ,且l 与圆相离D .l m ⊥,且l 与圆相离 10.已知()y f x =是定义域为R 的单调函数,且1212,1,,1x x x x +≠≠-=+λλαλ211x x +=+λβλ,若12()()()()f x f x f f -<-αβ,则A .0<λB .0=λC .01<<λD .1>λ11.身穿红、黄两种颜色衣服的各有两人,身穿蓝颜色衣服的有一人,先将这五人排成一行,要求穿相同颜色衣服的人不能相邻,则不同的排法共有A .48种B .72种C .78种D .84种 12.函数()lg(2)1f x x x =⋅+-的图象与x 轴的交点个数有A .0个B .1个C .2个D .3个第Ⅱ卷(非选择题,共90分)二、填空题:本大题共6小题,每小题4分,共24分.把答案填在答卷纸相应位置上. 13.5(12)x -展开式中的倒数第三项是 .14.已知三角形两边长分别为1,第三边上的中线长为 .15.在正三棱锥P ABC -中,侧棱PC ⊥侧面PAB,侧棱PC =接球的表面积为 .16.变量,x y 满足20400x y x y y ++⎧⎪-+⎨⎪⎩的最小值为 . ≤ ≤≤17.某电脑公司计划在2018 年5月1日将500台电脑投放市场,经市场调研发现,该批电脑每个10天平均日销售量减少两台,现准备用38天的时间销售完该批电脑,则预计该公司5月1日至5月10日的平均销售量是 台. 18.已知函数()sin()()2x f x =+ϕϕ为常数,有以下命题:①不论ϕ取何值,函数()f x 的周期都是π; ②存在常数ϕ,使得函数()f x 是偶函数; ③函数()f x 在区间[2,32]πϕπϕ--上是增函数; ④若0,ϕ<函数()f x 的图象可由函数sin2xy =的图象向右平移|2|ϕ个单位得到. 其中,所有正确命题的序号是__________________.三、解答题:本大题共5小题,共66分.请把解答写在答题卷规定的答题框内.解答应写出文字说明、证明过程或演算步骤. 19.(本小题满分12分) 已知函数3()3f x x x =-.(Ⅰ)求函数()f x 在3[3]2-,上的最大值和最小值;(Ⅱ)过点26P-(,)作曲线()y f x =的切线,求此切线的方程.20.(本小题满分12分)加工某种零件需经过四道工序.已知第一、二、三、四道工序的合格率分别为910、89、 78、67,且各道工序互不影响. (Ⅰ)求该种零件的合格率;(Ⅱ)从加工好的零件中任取3件,求至少取到2件合格品的概率;(Ⅲ) 假设某人依次抽取4件加工好的零件检查,求恰好连续2次抽到合格品的概率.(用最简分数表示结果)21.(本小题满分14分)正三棱柱111ABC A B C -的所有棱长都为2,D 是棱AC 的中点,E 是棱1CC 的中点,AE 交1A D 于点H .(Ⅰ)求证:1AE A BD⊥平面; (Ⅱ)求二面角1D BA A --的大小;(用反三角函数表示结果) (Ⅲ)求点1B 到平面1A BD 的距离.22.(本小题满分14分)在平面直角坐标系中,O 为坐标原点,点,,,F T M P 满足(1,0)OF =,(1,)OT t =-,FM MT =,PM FT ⊥,//PT OF .(Ⅰ)当t 变化时,求点P 的轨迹C 的方程;(Ⅱ)若过点F 的直线交曲线C 于,A B 两点,求证:直线,,TA TF TB 的斜率依次成等差数列.23.(本小题满分14分) 已知数列{}n a 满足12115,5,6(n nna a a a a n +-===+≥2,)n *∈N ,若数列{}1n n a a λ++ 是等比数列.(Ⅰ)求出所有λ的值,并求数列{}n a 的通项公式; (Ⅱ)求证:当k 为奇数时,111143k k k a a +++<; (Ⅲ)求证:121111()2n n a a a *+++<∈N .1苏、锡、常、镇四市2018年高三教学情况调查(一)数学答题卡苏、锡、常、镇四市2018年高三教学情况调查(一)数学试题参考答案及评分标准说明:一、本解答给出了一种或几种解法供参考,如果考生的解答与本解答不同,可根据试题的主要考查内容参照评分标准制定相应的评分细则。

【苏锡常镇2019届一模3月】2018-2019学年度苏锡常镇四市高三教学情况调研(一) 数学(含附加题)(含答案)

【苏锡常镇2019届一模3月】2018-2019学年度苏锡常镇四市高三教学情况调研(一) 数学(含附加题)(含答案)

2018-2019学年度苏、锡、常、镇四市高三教学情况调研(一)数学Ⅰ2019.03一、 填空题, 本大题共 14 题, 每小题 5 分, 共 70 分, 不需要写出解答过程, 请把答案直接填在答题卡相应位置上1、已知集合 A = {0,1,2}, B = {x | -1 < x < 1}, 则 A ∩B = .2、i 为虚数单位, 复数(1- 2i )2 的虚部为 .3、抛物线 y 2 = 4x 的焦点坐标为 .4、箱子中有形状、 大小相同的 3只红球、 1只白球, 一次摸出 2 只球, 则摸到的 2 只球颜色相同的概率为 .5、如图是抽取某学校160 名学生的体重频率分布直方图, 已知从左到右的前 3组的频率成等差数列, 则第 2 组的频数为 .6、如图是一个算法流程图, 则输出的 S 的值是 .7、已知函数2log (3),0()21,0x x x f x x -≤⎧=⎨->⎩,若1(1)2f a -=, 则实数a = . 8、中国古代著作《张丘建算经》 有这样一个问题:“今有马行转迟,次日减半疾,七日行七百里”,意思是说有一匹马行走的速度逐渐减慢,每天行走的里程是前一天的一半, 七天一共行走了 700 里, 那么这匹马在最后一天行走的里程数为 .9、已知圆柱的轴截面的对角线长为 2, 则这个圆柱的侧面积的最大值为 .10、设定义在区间 (0,2π)上的函数 y =x 的图像与 y = 3cos 2x + 2 的图像交于点P , 则点 P 到 x 轴的距离为 .11、在△ABC 中 , 角 A , B ,C 所对的边分别为a ,b ,c ,已知5a = 8b ,A = 2B , 则 sin (A -4π)= . 12、若直线 l : ax + y - 4a = 0 上存在相距为 2 的两个动点 A ,B ,圆 O : x 2 + y 2 =1上存在 点 C , 使得△ABC 为等腰直角三角形(C 为直角顶点), 则实数 a 的取值范围为 .13、在△ABC 中, 已知 AB = 2, AC = 1,∠BAC = 90º, D ,E 分别为 BC ,AD 的中点, 过点 E 的直线交 AB 于点 P ,交 AC 于点 Q , 则BQ CP ⋅u u u r u u r 的最大值为 .14、已知函数 f (x ) =2||x x a +-, g (x ) = (2a -1)x + a ln x , 若函数 y = f (x ) 与函数 y = g (x ) 的图像恰好有两个不同的交点, 则实数 a 的取值范围为 .二、 解答题: 共 6 小题, 共 90 分、请在答题卡指定区域内作答, 解答时应写出文字说明、 证明过程或演算步骤.15.( 本小题满分 14 分)如图,三棱锥 D - ABC 中,已知 AC ⊥ BC , AC ⊥ DC , BC = DC , E ,F 分别为BD , CD 的中点, 求证:(1) EF // 平面 ABC ;(2) BD ⊥平面 ACE .16.( 本小题满分 14 分)已知向量 a = (2cos α,2sin α ),b = (cos α - sin α,cos α + sin α ).(1) 求向量a 与b 的夹角;(2) 若(λb - a ) ⊥ a ,求实数 λ的值.17.( 本小题满分 14 分)某新建小区规划利用一块空地进行配套绿化. 已知空地的一边是直路 AB ,余下的外围是抛 物线的一段弧, 直路 AB 的中垂线恰是该抛物线的对称轴( 如图) . 拟在这个空地上划出 一个等腰梯形 ABCD 区域种植草坪, 其中 A , B ,C , D 均在该抛物线上. 经测量, 直路 AB 长为 40 米, 抛物线的顶点 P 到直路 AB 的距离为 40 米. 设点C 到抛物线的对称轴的距离为m 米, 到直路AB 的距离为 n 米.(1) 求出 n 关于 m 的函数关系式;(2) 当m 为多大时, 等腰梯形草坪 ABCD 的面积最大?并求出其最大值.18.( 本小题满分 16 分)已知椭圆E : 22221(0)x y a b a b +=>>的离心率为2, 焦点到相应准线的距离为3. (1) 求椭圆 E 的标准方程;(2) 已知 P (t ,0) 为椭圆 E 外一动点, 过点 P 分别作直线 l 1和 l 2 , l 1和 l 2 分别交椭圆 E 于点 A , B 和点C ,D , 且 l 1和 l 2 的斜率分别为定值k 1 和k 2,求证:PA PB PC PD为定值.。

2018-2019 学年度苏锡常镇四市高三教学情况调研(一)含答案解析

2018-2019 学年度苏锡常镇四市高三教学情况调研(一)含答案解析

地理一、选择题(共60分)(一)单项选择题:本大题共18小题,每小题2分,共计36分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

下图为一位旅游者于北京时间2018年7月30日13:31在巴厘岛面向大海拍摄的景观。

读图回答下面小题。

1. 根据光影可知该景观拍摄的地点位于()A. 甲B. 乙C. 丙D. 丁2. 最能反映该地6月22日旗杆杆影端点移动轨迹的是()A. AB. BC. CD. D从开罗到开普敦,穿越整个非洲大陆的梦幻之旅。

某旅行者在日记中写道:“再向前行,树木越加稀疏,植被逐渐稀少,越来越多裸露的岩石将你带到漫无边际的沙漠……”左图为“非洲梦幻之旅路线图”,右图为“肯尼亚山植被垂直分布示意图”。

据此回答下列各题。

3. 与旅行者日记描述相符的路段是() A. 甲 B. 乙 C. 丙 D. 丁4. 该线路途经距赤道最近的雪山——肯尼亚山,关于肯尼亚山说法正确的是()A. 山地雨林受赤道低压影响降水多B. M坡为东北信风迎风坡降水多C. ①、②植被分别为森林、灌丛D. 山坡草甸比山麓草原湿润元阳哈尼梯田位于云南省哀牢山南部,哈尼梯田一般分布在海拔1000~1300米的坡地上,以种植水稻为主。

从山顶道山脚具有“森林—村寨—梯田—河流”垂直景观结构,构成了良好的梯田生态系统,其中,森林构成了巨大的天然南水库。

上图为元阳哈尼梯田局部等高线地形图,读图回答下面小题。

5. 下列描述可能与实地相符的是()A. ②地适合建村寨B. ②地分布原始森林C. ③地欣赏积雪冰川D. ④地适合建梯田的观景平台6. 关于梯田生态系统各要素的叙述,正确的是()A. 元阳梯田抵御旱涝灾害的能力较差B. 河流显著调节了当地的气温年较差C. 森林市维持梯田生态系统的关键D. 村寨在梯田上方有利于地下径流形成河谷底部超出一般洪水位以上,呈阶梯状分布于河流两侧的地形称为河流阶地。

一般情况下,阶地位置越高年代越老。

下图是北半球某河流平直河段的河谷及两岸阶地的东西向刨面图。

江苏省2018-2019学年度苏锡常镇四市高三教学情况调查(一)数学试题(含附加题)

江苏省2018-2019学年度苏锡常镇四市高三教学情况调查(一)数学试题(含附加题)

2018-2019学年度苏、锡、常、镇四市高三教学情况调查(一)数学Ⅰ一、填空题,本大题共14 题,每小题5 分,共70 分,不需要写出解答过程,请把答案直接填在答题卡相应位置上1、已知集合A ={0,1,2},B ={x | -1 <x < 1},则A∩B =▲ .2、i为虚数单位,复数(1- 2i)2 的虚部为▲ .3、抛物线y 2 = 4x 的焦点坐标为▲ .4、箱子中有形状、大小相同的3只红球、1只白球,一次摸出2 只球,则摸到的2 只球颜色相同的概率为▲ .5、如图是抽取某学校160 名学生的体重频率分布直方图,已知从左到右的前3组的频率成等差数列,则第2 组的频数为▲ .6、如图是一个算法流程图,则输出的S 的值是▲ .7、已知函数2log (3),0()21,0x x x f x x -≤⎧=⎨->⎩,若1(1)2f a -=, 则实数a = ▲ .8、中国古代著作《 张丘建算经》 有这样一个问题:“今有马行转迟,次日减半疾,七日行七百里”,意思是说有一匹马行走的速度逐渐减慢,每天行走的里程是前一天的一半, 七天一共行走了 700 里, 那么这匹马在最后一天行走的里程数为 ▲ .9、已知圆柱的轴截面的对角线长为 2, 则这个圆柱的侧面积的最大值为 ▲ .10、设定义在区间 (0,2π)上的函数 y =x 的图像与 y = 3cos 2x + 2 的图像交于点P , 则点 P 到 x 轴的距离为 ▲ .11、在△ABC 中 , 角 A , B ,C 所对的边分别为a ,b ,c ,已知5a = 8b ,A = 2B , 则sin (A -4π)= ▲ . 12、若直线 l : ax + y - 4a = 0 上存在相距为 2 的两个动点 A ,B ,圆 O : x 2 + y 2 =1上存在 点 C , 使得△ABC 为等腰直角三角形(C 为直角顶点), 则实数 a 的取值范围为 ▲ . 13、在△ABC 中, 已知 AB = 2, AC = 1,∠BAC = 90º, D ,E 分别为 BC ,AD 的中点, 过点 E 的直线交 AB 于点 P ,交 AC 于点 Q , 则BQ CP ⋅u u u r u u r的最大值为 ▲ . 14、已知函数 f (x ) = x 2 +|x - a |, g (x ) = (2a -1)x + a ln x , 若函数 y = f (x ) 与函数 y = g (x ) 的图像恰好有两个不同的交点, 则实数 a 的取值范围为 ▲ .二、 解答题: 共 6 小题, 共 90 分、请在答题卡指定区域内作答, 解答时应写出文字说明、 证明过程或演算步骤. 15.( 本小题满分 14 分)如图,三棱锥 D - ABC 中,已知 AC ⊥ BC , AC ⊥ DC , BC = DC , E ,F 分别为BD , CD 的中点, 求证: (1) EF // 平面 ABC ; (2) BD ⊥平面 ACE.16.( 本小题满分 14 分)已知向量 a = (2cos α,2sin α ),b = (cos α - sin α,cos α + sin α ). (1) 求向量a 与b 的夹角; (2) 若(λb - a ) ⊥ a ,求实数 λ的值.某新建小区规划利用一块空地进行配套绿化. 已知空地的一边是直路 AB ,余下的外围是抛 物线的一段弧, 直路 AB 的中垂线恰是该抛物线的对称轴( 如图) . 拟在这个空地上划出 一个等腰梯形 ABCD 区域种植草坪, 其中 A , B ,C , D 均在该抛物线上. 经测量, 直路 AB 长为 40 米, 抛物线的顶点 P 到直路 AB 的距离为 40 米. 设点C 到抛物线的对称轴的距离为m 米, 到直路AB 的距离为 n 米. (1) 求出 n 关于 m 的函数关系式;(2) 当m 为多大时, 等腰梯形草坪 ABCD 的面积最大? 并求出其最大值.18.( 本小题满分 16 分)已知椭圆E : 22221(0)x y a b a b +=>> (1) 求椭圆 E 的标准方程;(2) 已知 P (t ,0) 为椭圆 E 外一动点, 过点 P 分别作直线 l 1和 l 2 , l 1和 l 2 分别交椭圆 E 于点 A , B 和点C ,D , 且 l 1和 l 2 的斜率分别为定值k 1 和k 2,求证:PA PBPC PD为定值.已知函数 f (x ) = (x +1)ln x + ax (a ∈ R ).(1) 若 y = f (x ) 在(1,f (1)) 处的切线方程为 x + y + b = 0 , 求实数 a ,b 的值;(2) 设函数 g (x ) =()f x x, x ∈ [1,e ]( 中 e 为自然对数的底数) . ①当 a =- 1时, 求 g (x ) 的最大值;②若h (x ) =()g x x是单调递减函数, 求实数 a 的取值范围.20.( 本小题满分 16 分)定义: 若有穷数列 a 1,a 2,⋅⋅⋅,a n 同时满足下列三个条件, 则称该数列为 P 数列.①首项 a 1 = 1; ② a 1 < a 2 < ⋅⋅⋅ < a n ; ③对于该数列中的任意两项 a i 和 a j (1 ≤ i ≤ j ≤ n ) , 其积 a i a j 或商j ia a 仍是该数列中的项.(1) 问等差数列1,3,5 是否为 P 数列?(2) 若数列 a ,b ,c ,6 是 P 数列, 求 b 的取值范围;(3) 若 n > 4 ,且数列 b 1,b 2,…,b n 是 P 数列, 求证: 数列 b 1,b 2,⋅⋅⋅,b n 是等比数列.2018-2019学年度苏、锡、常、镇四市高三教学情况调查(一)数学Ⅱ(附加题)21.【选做题】本题包括A ,B ,C 三小题,请选定其中两题作答,每小题10分共计20分,解答时应写出文字说明,证明过程或演算步骤. A .选修4—2:矩阵与变换已知x ,y ∈R ,12α⎡⎤=⎢⎥⎣⎦是矩阵A = 10 x y ⎡⎤⎢⎥⎣⎦的属于特征值﹣1的一个特征向量,求矩阵A 的另一个特征值.B .选修4—4:坐标系与参数方程在极坐标系中,已知直线l :sin()03πρθ-=,在直角坐标系(原点与极点重合,x 轴正方向为极轴的正方向)中,曲线C 的参数方程为1414y t tx t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数).设l 与C 交于A ,B 两点,求AB 的长.C .选修4—5:不等式选讲若不等式15x x a ++-≥对任意的x ∈R 恒成立,求实数a 的取值范围.【必做题】第22题、第23题,每题10分,共计20分,解答时应写出文字说明,证明过程或演算步骤. 22.(本小题满分10分)从批量较大的产品中随机取出10件产品进行质量检测,若这批产品的不合格率为0.05,随机变量X 表示这10件产品中的不合格产品的件数.(1)蚊:这10件产品中“恰好有2件不合格的概率P(X =2)”和“恰好有3件不合格的概率P(X =3)”哪个大?请说明理由;(2)求随机变量X 的数学期望E(X). 23.(本小题满分10分)已知34268243451681022()n nn n C C C C f n C C C C ++=++++,562468243451681022()n nn n C C C C g n C C C C +++=++++,其中n N *∈,2n ≥.(1)求(2)f ,(3)f ,(2)g ,(3)g 的值;(2)记()()()h n f n g n =-,求证:对任意的m N *∈,m ≥2,总有1(2)2mm h ->.2018-2019学年度苏、锡、常、镇四市高三教学情况调查(一)数学Ⅰ参考答案一、填空题:本大题共14小题,每小题5分,共70分. 1.{}0 2.4- 3.(1,0) 4.125.408. 700127 9.2π 10.313.94- 14.1a >二、解答题:本大题共6小题,共计90分.15.(1)三棱锥D ABC -中,∵E 为DC 的中点,F 为DB 的中点,∴EF BC ∥, …………………………3分 ∵BC ⊂平面ABC ,EF ⊄平面ABC ,∴EF ∥平面ABC . ……………………………………………………………6分 (2)∵AC BC ⊥,AC DC ⊥,BC DC C =,∴AC ⊥平面BCD , …………………………………………………………………8分 ∵BD ⊂平面BCD ,∴AC BD ⊥, ………………………………………………10分 ∵,DC BC E =为BD 的中点,∴CE BD ⊥, ……………………………………12分 ∵AC CE C =,∴BD ⊥平面ACE . …………………………………………14分 16.(1)设向量a 与b 的夹角为θ,因为2=a ,==b ………………………4分 所以cos θ⋅=⋅a ba b =22==…………………………………………………………7分 考虑到0πθ剟,得向量a 与b 的夹角4π. ………………………………………9分(2)若()λ-⊥b a a ,则()0λ-⋅=b a a ,即20λ⋅-=b a a , ………………………12分 因为2⋅=b a ,24=a ,所以240λ-=,解得2λ=. ……………………………………………………14分 17.(1)以路AB 所在的直线为x 轴,抛物线的对称轴为y 轴建立平面直角坐标系, …………………………………………………1分 则(20,0)A -,(20,0)B ,(0,40)P , …………………………………………………2分∵曲线段APB 为抛物线的一段弧,∴可以设抛物线的解析式为(20)(20)y a x x =-+, 将点(0,40)P 代入得:40400a =-,解得110a =-, ………………………………4分∴抛物线的解析式为21(400)10y x =-, …………………………………………5分 ∵点C 在抛物线上,∴21(400)10n m =-,00m <<2. ………………………6分(2)设等腰梯形ABCD 的面积为S ,则211(240)(400)210S m m =⨯+⨯-, ………………………………………………8分321(204008000)10S m m m =--++, ………………………………………………9分 ∵211(340400)(320)(20)1010S m m m m '=--+=--+, ………………………10分令0S '=,得20m =, …………………………………………………………11分分 ∴当203m =时,等腰梯形ABCD 的面积最大,最大值为2560027平方米. …………14分18. (1)设椭圆的半焦距为c ,由已知得,c a=2a c c -=,222c a b =-, ………………………………………3分 解得2a =,1b =,c = …………………………………………………………5分∴椭圆E 的标准方程是2214x y +=. ………………………………………………6分 (2)由题意,设直线1l 的方程为1()y k x t =-,代入椭圆E 的方程中,并化简得,22222111(14)8440k x k t xk t +-+-=, …………………………………………………8分 设11(,)A x y ,22(,)B x y .则211221814k t x x k +=+,22112214414k t x x k -=+,因为P A 1t -,PB 2t -,……………………………………10分 所以PA PB ⋅=2112(1)k x t x t +--2211212(1)()k t x x t x x =+-++2222221112211844(1)1414k t k t k t k k -=+-+++221211|4|14k t k +-=+(), ……………………………12分同理,PC ⋅ PD =222221|4|14k t k +-+(), …………………………………………………14分所以PA PB PC PD ⋅⋅=22122221(114114k k k k ++++)()()()为定值. ………………………………………16分 19.(1)1()ln x f x x a x+'=++,(1)21f a '=+=-,3a =-, ………………………1分 (1)3f a ==-,(1,3)-代入0x y b ++=解得2b =. ……………………………2分 (2)①∵1()(1)ln 1g x x x =+-,则222ln 1ln 1()x x x x g x x x x +-+'=-+=. …………3分令()ln 1x x x ϕ=-+,则1()10x xϕ'=-≥,()x ϕ在[]1,e 单调递增, …………………………………5分()(1)0x ϕϕ>≥, ………………………………………………………………6分∴()0g x '>,()g x 在[]1,e 单调递增,∴()g x 的最大值为1(e)eg =. …………8分 ②同理,单调递增函数()()f x g x x =1,1e a a ⎡⎤∈++⎢⎥⎣⎦, ……………………………9分则11()(1)ln ex h x x a x =++⋅.1若0a ≥,()0g x ≥,1(1)ln ()e xx ax h x ++=,111ln (1)ln ()exx x x ax x x h x +-+-+-'=222(1)ln 10e x x x x ax x x -++-++=…, 令22()(1)ln 1u x x x x ax x =-++-++, 则1()(12)ln (21)0u x x x a x x'=-+--+<. 即()u x 在[]1,e 单调递减,∴max ()(1)20u x u a ==-+…,∴2a ≥.……………11分2若a …1知,h 即221(1)ln ax x x x x +-++≤对[1,e]x ∈恒成立,3若e +-[)2,⎤+∞⎥⎦.20.(1)∵3515⨯=,53均不在此等差数列中, ∴等差数列1,3,5不是P 数列; …………………………………………………2分 (2)∵数列a ,b ,c ,6是P 数列,所以1=a <b <c <6, ………………………3分由于6b 或6b是数列中的项,而6b 大于数列中的最大项6, ∴6b 是数列中的项,同理6c也是数列中的项, ……………………………………5分考虑到1<6c <6b <6,于是6c =b ,6b=c ,∴bc =6,又1<b <c ,所以1<b …………………………………………7分综上,b 的取值范围是(1. ………………………………………………8分(3)∵数列{b n }是P 数列,所以1=b 1<b 2<b 3<…<b n ,由于b 2b n 或2n b b 是数列中的项,而b 2b n 大于数列中的最大项b n , ∴2n b b 是数列{b n }中的项, …………………………………………………………10分 同理3n b b ,4n b b ,…,1n n b b -也都是数列{b n }中的项, 考虑到1<1n n b b -<…<2n b b <b n ,且1,1n n b b -,…,2n b b ,b n 这n 个数全是共有n 项的增数列1, b 2,…,b n 中的项, ∴21n n b b b -=,…,12n n b b b -=, 从而b n =b i b n +1-i (i =1,2,…,n -1),① ………………………………12分又∵b n -1b 3>b n -1b 2=b n ,所以b n -1b 3不是数列{b n }中的项, ∴13n b b -是数列{b n }中的项,同理14n b b -,…12n n b b --也都是数列{b n }中的项, 考虑到1<12n n b b --<…<14n b b -<13n b b -<3n b b =b n -2<b n -1<b n , 且1,12n n b b --,…,14n b b -,13n b b -,3n b b ,b n -1,b n 这n 个数全是共有n 项的增数列1, b 2,…,b n 中的项,于是,同理有,b n -1=b i b n -i (i =1,2,…,n -2),② …………………………14分在①中将i 换成i +1后与②相除,得1n n b b -=1i ib b +,i =1,2,…,n -2, ∴b 1,b 2,…,b n 是等比数列. …………………………………………………16分2018-2019学年度苏、锡、常、镇四市高三教学情况调查(一)数学Ⅱ(附加题) 参考答案21.【选做题】本题包括A ,B ,C ,三小题,每小题10分.A .(选修4—2:矩阵与变换)解:∵12α⎡⎤=⎢⎥⎣⎦是矩阵10x A y ⎡⎤=⎢⎥⎣⎦的属于特征值1-的一个特征向量, ∴111022x y ⎡⎤⎡⎤⎡⎤=-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,∴21,22,x y +=-⎧⎨=-⎩解得3,1x y =-=-, ……………………4分 ∴3101A -⎡⎤=⎢⎥-⎣⎦, …………………………………………………………………6分 特征多项式为31()001f λλλ+-==+,即(3)(1)0λλ++=, ……………………8分 ∴另一个特征值为3λ=-. …………………………………………………………10分B .(选修4—4:坐标系与参数方程)解:以极点为直角坐标系原点,极轴为x 轴建立坐标系, 直线sin()03πρθ-=的直角坐标方程为y =, ……………………………………2分 曲线1,41,4y t t x t t ⎧=+⎪⎪⎨⎪=-⎪⎩的普通方程为221y x -=, ……………………………………………4分则直线与曲线的交点为A和(B , ………………………………7分∴AB ==. ………………………………………………………………10分C .(选修4—5:不等式选讲) 解:∵111x x a x x a a ++-+-+=+≥, …………………………………………4分 ∴要使不等式15x x a ++-≥对任意的R x ∈恒成立,当且仅当15a +≥, ………7分 ∴4a ≥或6a -…. ………………………………………………………………………10分【必做题】第22,23题,每小题10分,计20分.22.解: 由于批量较大,可以认为随机变量(10,0.05)X B , ………………………2分(1)恰好有2件不合格的概率22810(2)0.050.95P X C ==⨯⨯,恰好有3件不合格的概率33710(3)0.050.95P X C ==⨯⨯, ……………………………4分 ∵22810337100.050.95(2)571(3)0.050.958C P X P X C ⨯⨯===>=⨯⨯, ∴(2)(3)P X P X =>=,即恰好有2件不合格的概率大; …………………………6分(2)∵1010()(1)k k k k P X k p C p p -===-,0,1,2,,10k =.随机变量X 的概率分布为:故0()0.5k k E X kp ===∑. ………………………………………………………………9分答:随机变量X 的数学期望()E X 为0.5. …………………………………………10分23.解:(1)24363(2)10C f C ==,3264346841(3)70C C f C C =+=, 44361(2)20C g C ==,5464346819(3)140C C g C C =+=;……………………………………………3分 (2)∵222122(2)!(2)!(!)(!)((2)!)((2)!)(22)!((1)!)((1)!)k k k k k k k k C C k k k k k C k k +++--⋅-⋅+=++⋅+ 2(1)(2)(1)(1)(22)(21)(2)k k k k k k k k ++-+-=+++ (1)(42)1(22)(21)(2)2k k k k k k ++==++++, ………………………………………4分 ∴222122221()()()2k k n n k k k k k k C Ch n f n g n C k ++==+-=-==+∑∑.……………………………………5分 下面用数学归纳法证:对任意的*,2N m m ∈≥,总有1(2)2m m h ->. 当2m =时,111371(4)456602h =++=>,命题成立;则当1m t =+时,11111(2)(2)232422t t t t t h h ++=+++⋅⋅⋅++++ 111111122324252622t t t t t t +->++++⋅⋅⋅++++++(), …………………………7分 ∵3t ≥,1113232422t t t ++-+++1(23)2(23)(24)(22)t t t t t +--22=+++0>, ∴1113232422t t t ++>+++. ……………………………………………………………8分 又1111252622t t t ++⋅⋅⋅++++111111222222t t t +++>++⋅⋅⋅++++ 12222t t +-=+, ………………………………………………………………………9分 ∴1111322(2)222222t t t t t t h +++-->++=++, ∴命题成立. ……………………………………………………………………………10分。

2019学年江苏苏锡常镇四市高三教学情况调研(一)数学试卷【含答案及解析】

2019学年江苏苏锡常镇四市高三教学情况调研(一)数学试卷【含答案及解析】

2019学年江苏苏锡常镇四市高三教学情况调研(一)数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、填空题1. 已知集合,,∁ ________ .2. 若复数满足(为虚数单位),则 ______________ .3. 函数的定义域为 ______________ .4. 下图是给出的一种算法,则该算法输出的结果是 ______________ .5. 某高级中学共有名学生,现用分层抽样的方法从该校学生中抽取个容量为的样本,其中高一年级抽人,高三年级抽人.则该校高二年级学生人数为_________.6. 已知正四棱锥的底面边长是,侧棱长是,则该正四棱锥的体积为____________ .7. 从集合中任取两个不同的数,则这两个数的和为的倍数的概率为_______ .8. 在平面直角坐标系中,已知抛物线的焦点恰好是双曲线的右焦点,则双曲线的离心率为 ______________.9. 设等比数列的前项和为,若成等差数列,且,则的值为 ______________.10. 在平面直角坐标系中,过点的直线与圆交于两点,其中点在第一象限,且,则直线的方程为 ______________.11. 在△ 中,已知,若点满足,且,则实数的值为 ______________.12. 已知,则 ______________ .13. 若函数,则函数的零点个数为 ______________ .14. 若正数满足,则的最小值为 ______________ .二、解答题15. 在△ 中,分别为角的对边.若,且.(1)求边的长;(2)求角的大小.16. 如图,在斜三棱柱中,侧面是菱形,与交于点,是棱上一点,且∥平面.(1)求证:是中点;(2)若,求证:.17. 某单位将举办庆典活动,要在广场上竖立一形状为等腰梯形的彩门(如图).设计要求彩门的面积为(单位:),高为(单位:)(为常数).彩门的下底固定在广场底面上,上底和两腰由不锈钢支架构成,设腰和下底的夹角为,不锈钢支架的长度和记为.( 1 )请将表示成关于的函数;( 2 )问当为何值最小,并求最小值.18. 在平面直角坐标系中,已知椭圆的焦距为,离心率为,椭圆的右顶点为 .(1)求该椭圆的方程;(2)过点作直线交椭圆于两个不同点,求证:直线的斜率之和为定值.19. 已知函数(为正实数,且为常数).(1)若函数在区间上单调递增,求实数的取值范围;(2)若不等式恒成立,求实数的取值范围.20. 已知为正整数,数列满足,,设数列满足 .(1)求证:数列为等比数列;(2)若数列是等差数列,求实数的值;(3)若数列是等差数列,前项和为,对任意的,均存在,使得成立,求满足条件的所有整数的值.21. 已知二阶矩阵有特征值及对应的一个特征向量,并且矩阵对应的变换将点变换成 .(1)求矩阵;(2)求矩阵的另一个特征值.22. 已知圆和圆的极坐标方程分别为 .(1)把圆和圆的极坐标方程化为直角坐标方程;(2)求经过两圆交点的直线的极坐标方程.23. 如图,已知正四棱锥中,,点分别在上,且 .(1)求异面直线与所成角的大小;(2)求二面角的余弦值.24. 设,为正整数,数列的通项公式,其前项和为 .(1)求证:当为偶数时,;当为奇数时,;(2)求证:对任何正整数, .参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第8题【答案】第9题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】。

2018—2019学年度苏锡常镇四市高三教学情况调研(一)

2018—2019学年度苏锡常镇四市高三教学情况调研(一)

2018—2019学年度苏锡常镇四市高三教学情况调研(一)神更加真实可信,从这个意义上,科学不但是现代的神,而且比旧神更加威力强大。

科幻就是科学神话的最佳载体,或者说是旧神话与新科学的合体。

语文I试题A.神话、宗教、文学和科幻等都是人类幻想的结果。

B.科学从本质上来看和神话、宗教、文学是一样的。

2019年3月C.科幻是人基于对科学的信仰而创造的新幻想形态。

D.科幻将会取代人类社会曾经出现的各种幻想形式。

注意:本试卷共8页,21小题,满分160分。

考试时间150分钟。

请按照题号将答案填涂或二、文言文阅读(20分)书写在答题卡相对应的答题区域内,将答案直接书写在本试卷上无效。

阅读下面的文言文,完成5—8题。

一、语言文字运用(12分)邵山人潜夫传陈维崧1.在下面一段话的空缺处依次填入词语,最恰当的一组是(3分)山人名潜,字潜夫,扬之通州人也。

生即聪敏异常儿,顾授以经生家言,则恚甚,不肯读。

或鲁迅曾区分两种读书方法:一种是“看非看不可的书籍”,那必须;另一种是“消闲投诗赋古文辞,则大喜,昼夜疾读不辍。

间操笔为之,则大工。

山人虽名家子孙,然家实贫,性又的读书——随便翻翻”。

前者目的在求知,不免;后者意在消遣,自然更可体味到读书的不善治生产。

妇,里中小家子也,庸奴其夫,日求去。

妇既去,山人贫益甚,仅仅拾橡剉荐以自给。

乐趣。

至于获益,则实在。

性卞急,与人语,稍抵牾,辄谩骂。

食物多禁忌,间会食,食器中有非山人所素食者,辍叱去,不A.费尽心机正襟危坐难以名状顾也。

里中儿争匿笑之。

B.费尽心机道貌岸然难分轩轾里儿既多訾謷山人,而山人亦不乐居里中,则跳而客游。

居南中,为李本宁先生上客。

之梁溪,C.劳神费力正襟危坐难分轩轾则邹彦吉先生客之。

来吴中,而与王伯谷稚登谈诗一昼夜也。

居无何,山人念客游久,郁郁不得志,D.劳神费力道貌岸然难以名状间一归通州。

而属有世变,里门且荡析久,则转徙于皋之委巷中,而是时山人亦已老矣。

山人既无2.把“这也难怪好的书店老板,于‘生意经’外,还加上一点‘文化味’。

江苏省苏锡常镇四市2018届高三教学情况调研(一)(3月)数学试题 (11)

江苏省苏锡常镇四市2018届高三教学情况调研(一)(3月)数学试题 (11)

【题文】如图,正三棱柱ABC -A 1B 1C 1,其底面边长为2.已知点M ,N 分别是棱A 1C 1,AC 的中点,点D 是棱CC 1上靠近C 的三等分点.求证:(1)B 1M ∥平面A 1BN ;(2)AD ⊥平面A 1BN .【答案】证明:(1)连结MN ,正三棱柱111ABC A B C -中,11//AA CC 且11AA CC =,则四边形11AAC C 是平行四边形,因为点M 、N 分别是棱11A C ,AC 的中点,所以1//MN AA 且1MN AA =,又正三棱柱111ABC A B C -中11//AA BB 且11AA BB =,所以1//MN BB 且1MN BB =,所以四边形1MNBB 是平行四边形,所以1//B M BN ,又1B M ⊄平面1A BN ,BN ⊂平面1A BN ,所以1//B M 平面1A BN ;(2)正三棱柱111ABC A B C -中,1AA ⊥平面ABC ,BN ⊂平面ABC ,所以1BN AA ⊥,正ABC ∆中,N 是AB 的中点,所以BN AC ⊥,又1AA 、AC ⊂平面11AAC C ,1AA AC A =,所以BN ⊥平面11AAC C ,又AD ⊂平面11AAC C ,所以AD BN ⊥,由题意,1AA =,2AC =,1AN =,3CD =,所以1AA AN AC CD == 又12A AN ACD π∠=∠=,所以1A AN ∆与ACD ∆相似,则1AA N CAD ∠=∠,所以1ANA CAD ∠+∠112ANA AA N π=∠+∠=, 则1AD A N ⊥,又1BNA N N =,BN ,1A N ⊂平面1A BN ,所以AD ⊥平面1A BN .【解析】 【标题】江苏省苏锡常镇四市2018届高三教学情况调研(一)(3月)数学试题【结束】。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019学年度苏、锡、常、镇四市高三教学情况调查(一)数学Ⅰ一、 填空题, 本大题共 14 题, 每小题 5 分, 共 70 分, 不需要写出解答过程, 请把答案直接填在答题卡相应位置上1、已知集合 A = {0,1,2}, B = {x | -1 < x < 1}, 则 A ∩B = .答案:{}=0A B ⋂。

2、i 为虚数单位, 复数(1- 2i )2 的虚部为 .答案:2312()4i i =---,即虚部为-4。

3、抛物线 y 2 = 4x 的焦点坐标为 .答案:()1,0。

4、箱子中有形状、 大小相同的 3只红球、 1只白球, 一次摸出 2 只球, 则摸到的 2 只球颜色相同的概率为 . 答案:12解析:232412C C =。

5、如图是抽取某学校160 名学生的体重频率分布直方图, 已知从左到右的前 3组的频率成等差数列, 则第 2 组的频数为 .答案:406、如图是一个算法流程图, 则输出的 S 的值是 .答案:2-7、已知函数2log (3),0()21,0x x x f x x -≤⎧=⎨->⎩,若1(1)2f a -=, 则实数a = .答案:2log 3 解析:222133(1)1log 1log log 3222f a a a -=⇒-=⇒=+= 8、中国古代著作《张丘建算经》 有这样一个问题:“今有马行转迟,次日减半疾,七日行七百里”,意思是说有一匹马行走的速度逐渐减慢,每天行走的里程是前一天的一半, 七天一共行走了 700 里, 那么这匹马在最后一天行走的里程数为 . 答案:700127解析:设第七天走的路程为x ,那么七天总共走的路程为76127002270012127x x x x x -+++==⇒=-。

9、已知圆柱的轴截面的对角线长为 2, 则这个圆柱的侧面积的最大值为 . 答案:2π解析:设圆柱的底面半径为r ,高为h ,那么2244r h +=,圆柱的侧面积为224222r h rh πππ+≤=。

10、设定义在区间 (0,2π)上的函数 y =x 的图像与 y = 3cos 2x + 2 的图像交于点P , 则点 P 到x 轴的距离为 .答案:3解析:()23 223122cos x sin x =+=-+()22312265=0sin x sin x sinx =-+⇒-⇒=3p p y x ==11、在△ABC 中 , 角 A , B ,C 所对的边分别为a ,b ,c ,已知5a = 8b ,A = 2B , 则sin (A -4π)= .答案:50解析:345825sin 8sin 2sin ,cos ,5564a b A B A B A B B B B ππ==⇒==⇒==∴<<,,)247sinA ,cosA ,sin sinA cosA 25254250A π==∴--=()=。

12、若直线 l : ax + y - 4a = 0 上存在相距为 2 的两个动点 A ,B ,圆 O : x 2 + y 2 =1上存在 点 C , 使得△ABC 为等腰直角三角形(C 为直角顶点), 则实数 a 的取值范围为 .答案:[ 解析:根据题意得,圆 O : x 2 y 2 1上存在点C ,使得点C 到直线l 的距离为1,那么圆心O 到直线l的距离为不大于22≤,于是[。

13、在△ABC 中, 已知 AB = 2, AC = 1,∠BAC = 90º, D ,E 分别为 BC ,AD 的中点, 过点 E 的直线交 AB 于点 P ,交 AC 于点 Q , 则BQ CP ⋅u u u r u u r的最大值为 .答案:94-解析:以AC 为x 轴,AB 为y 轴,建立直角坐标系,那么B(0,2),C(1,0),并且E 点的坐标为11,42⎛⎫ ⎪⎝⎭,设直线PQ 的方程为11()42y k x =-+,所以有11120,,,0624423k P Q k k ⎛⎫⎛⎫⎛⎫---≤≤- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,1112515921,64224342244k k BQ CP k k k ⎛⎫⎛⎫⎛⎫⋅=-----≤≤-=-++≤--=- ⎪⎪⎪⎝⎭⎝⎭⎝⎭,uu u r uu r14、已知函数 f (x ) =2||x x a +-, g (x ) = (2a -1)x + a ln x , 若函数 y = f (x ) 与函数y = g (x ) 的图像恰好有两个不同的交点, 则实数 a 的取值范围为 .答案:()1,+∞解析:很显然,0a <,()()()h x f x g x -=单调递增,至多有一个零点,不符合题意。

0a >时,令()22()()||(1ln )x x h x f x g x a x a a x -+--==--2222ln ,2l )n (,x x a x a a x x aax a a x x a-⎧---≥⎪=⎨--<-⎪⎩ ,可以求得0a >时,()01h a a <∴>,二、 解答题: 共 6 小题, 共 90 分、请在答题卡指定区域内作答, 解答时应写出文字说明、 证明过程或演算步骤. 15.( 本小题满分 14 分)如图,三棱锥 D - ABC 中,已知 AC ⊥ BC , AC ⊥ DC , BC = DC , E ,F 分别为BD ,CD 的中点, 求证:(1) EF // 平面 ABC ; (2) BD ⊥平面 ACE .解:(1)三棱锥D ABC -中,∵E 为DC 的中点,F 为DB 的中点,∴EF BC ∥, …………………………3分 ∵BC ⊂平面ABC ,EF ⊄平面ABC ,∴EF ∥平面ABC . ……………………………………………………………6分 (2)∵AC BC ⊥,AC DC ⊥,BCDC C =,∴AC ⊥平面BCD , …………………………………………………………………8分 ∵BD ⊂平面BCD ,∴AC BD ⊥, ………………………………………………10分 ∵,DC BC E =为BD 的中点,∴CE BD ⊥, ……………………………………12分 ∵ACCE C =,∴BD ⊥平面ACE . …………………………………………14分16.( 本小题满分 14 分)已知向量 a = (2cos α,2sin α ),b = (cos α - sin α,cos α + sin α ). (1) 求向量a 与b 的夹角; (2) 若(λb - a ) ⊥ a ,求实数 λ的值.解:(1)设向量a 与b 的夹角为θ,因为2=a ,b ………………………4分所以cos θ⋅=⋅a b a b22== …………………………………………………………7分考虑到0πθ剟,得向量a 与b 的夹角4π. ………………………………………9分 (2)若()λ-⊥b a a ,则()0λ-⋅=b a a ,即20λ⋅-=b a a , ………………………12分因为2⋅=b a ,24=a ,所以240λ-=,解得2λ=. ……………………………………………………14分17.( 本小题满分 14 分)某新建小区规划利用一块空地进行配套绿化. 已知空地的一边是直路 AB ,余下的外围是抛 物线的一段弧, 直路 AB 的中垂线恰是该抛物线的对称轴( 如图) . 拟在这个空地上划出一个等腰梯形 ABCD 区域种植草坪, 其中 A , B ,C , D 均在该抛物线上. 经测量, 直路 AB 长为 40 米, 抛物线的顶点 P 到直路 AB 的距离为 40 米. 设点C 到抛物线的对称轴的距离为m 米, 到直路AB 的距离为 n 米.(1) 求出 n 关于 m 的函数关系式;(2) 当m 为多大时, 等腰梯形草坪 ABCD 的面积最大? 并求出其最大值.解:(1)以路AB 所在的直线为x 轴,抛物线的对称轴为y 轴建立平面直角坐标系, …………………………………………………1分 则(20,0)A -,(20,0)B ,(0,40)P , …………………………………………………2分∵曲线段APB 为抛物线的一段弧,∴可以设抛物线的解析式为(20)(20)y a x x =-+,将点(0,40)P 代入得:40400a =-,解得110a =-, ………………………………4分 ∴抛物线的解析式为21(400)10y x =-, …………………………………………5分 ∵点C 在抛物线上,∴21(400)10n m =-,00m <<2. ………………………6分(2)设等腰梯形ABCD 的面积为S ,则211(240)(400)210S m m =⨯+⨯-, ………………………………………………8分321(204008000)10S m m m =--++, ………………………………………………9分 ∵211(340400)(320)(20)1010S m m m m '=--+=--+, ………………………10分令0S '=,得20m =, …………………………………………………………11分…………………………………………………13分 ∴当203m =时,等腰梯形ABCD 的面积最大,最大值为2560027平方米. …………14分18.( 本小题满分 16 分)已知椭圆E : 22221(0)x y a b a b+=>> (1) 求椭圆 E 的标准方程;(2) 已知 P (t ,0) 为椭圆 E 外一动点, 过点 P 分别作直线 l 1和 l 2 , l 1和 l 2 分别交椭圆 E 于点 A ,B 和点C ,D , 且 l 1和 l 2 的斜率分别为定值k 1 和k 2, 求证:PA PBPC PD为定值.解:(1)设椭圆的半焦距为c ,由已知得,2c a=,则23a c c -=,222c a b =-, ………………………………………3分 解得2a =,1b =,c =, …………………………………………………………5分∴椭圆E 的标准方程是2214x y +=. ………………………………………………6分(2)由题意,设直线1l 的方程为1()y k x t =-,代入椭圆E 的方程中,并化简得,22222111(14)8440k x k t xk t +-+-=, …………………………………………………8分设11(,)A x y ,22(,)B x y .则211221814k t x x k +=+,22112214414k t x x k -=+,因为P A1t -,PB2t -,……………………………………10分 所以PA PB ⋅=2112(1)k x t x t +--2211212(1)()k t x x t x x =+-++2222221112211844(1)1414k t k t k t k k -=+-+++221211|4|14k t k +-=+(), ……………………………12分同理,PC ⋅ PD =222221|4|14k t k +-+(), …………………………………………………14分 所以PA PB PC PD ⋅⋅=22122221(114114k k k k ++++)()()()为定值. ………………………………………16分19.( 本小题满分 16 分)已知函数 f (x ) = (x +1)ln x + ax (a ∈ R ).(1) 若 y = f (x ) 在(1,f (1)) 处的切线方程为 x + y + b = 0 , 求实数 a ,b 的值; (2) 设函数 g (x ) =()f x x, x ∈ [1,e ]( 中 e 为自然对数的底数) . ①当 a =- 1时, 求 g (x ) 的最大值; ②若h (x ) =()g x x是单调递减函数, 求实数 a 的取值范围. 解:(1)1()ln x f x x a x+'=++,(1)21f a '=+=-,3a =-, ………………………1分 (1)3f a ==-,(1,3)-代入0x y b ++=解得2b =. ……………………………2分 (2)①∵1()(1)ln 1g x x x=+-,则222ln 1ln 1()x x x x g x x x x+-+'=-+=. …………3分 令()ln 1x x x ϕ=-+,则1()10x xϕ'=-≥,()x ϕ在[]1,e 单调递增, …………………………………5分()(1)0x ϕϕ>≥, ………………………………………………………………6分∴()0g x '>,()g x 在[]1,e 单调递增,∴()g x 的最大值为1(e)eg =. …………8分 ②同理,单调递增函数()()f x g x x =1,1e a a ⎡⎤∈++⎢⎥⎣⎦, ……………………………9分则11()(1)ln ex h x x a x =++⋅.1若0a ≥,()0g x ≥,1(1)ln ()e xx ax h x ++=,22111ln (1)ln ()e x x x x ax x x h x +-+-+-'=222(1)ln 10e xx x x ax x x -++-++=…,令22()(1)ln 1u x x x x ax x =-++-++, 则1()(12)ln (21)0u x x x a x x'=-+--+<. 即()u x 在[]1,e 单调递减,∴max ()(1)20u x u a ==-+…,∴2a ≥.……………11分2若a …1知,h 即221(1)ln ax x x x x +-++≤对[1,e]x ∈恒成立,e-. ………………………………………13分3若e e +- ∴()h x 在[1,e]上不单调. …………………………………………………15分 [)2,⎤+∞⎥⎦.20.( 本小题满分 16 分)定义: 若有穷数列 a 1,a 2,⋅⋅⋅,a n 同时满足下列三个条件, 则称该数列为 P 数列. ①首项 a 1 = 1; ② a 1 < a 2 < ⋅⋅⋅ < a n ; ③对于该数列中的任意两项 a i 和 a j (1 ≤ i ≤ j ≤ n ) , 其积 a i a j 或商j ia a 仍是该数列中的项.(1) 问等差数列1,3,5 是否为 P 数列?(2) 若数列 a ,b ,c ,6 是 P 数列, 求 b 的取值范围;(3) 若 n > 4 ,且数列 b 1,b 2,…,b n 是 P 数列, 求证: 数列 b 1,b 2,⋅⋅⋅,b n 是等比数列.解:(1)∵3515⨯=,53均不在此等差数列中, ∴等差数列1,3,5不是P 数列; …………………………………………………2分 (2)∵数列a ,b ,c ,6是P 数列,所以1=a <b <c <6, ………………………3分由于6b 或6b是数列中的项,而6b 大于数列中的最大项6, ∴6b 是数列中的项,同理6c也是数列中的项, ……………………………………5分考虑到1<6c <6b <6,于是6c =b ,6b=c ,∴bc =6,又1<b <c ,所以1<b…………………………………………7分 综上,b 的取值范围是(1. ………………………………………………8分 (3)∵数列{b n }是P 数列,所以1=b 1<b 2<b 3<…<b n ,由于b 2b n 或2nb b 是数列中的项,而b 2b n 大于数列中的最大项b n , ∴2nb b 是数列{b n }中的项, …………………………………………………………10分 同理3n b b ,4n b b ,…,1n n bb -也都是数列{b n }中的项, 考虑到1<1n n b b -<…<2n b b <b n ,且1,1n n b b -,…,2n bb ,b n 这n 个数全是共有n 项的增数列1, b 2,…,b n 中的项,∴21n n b b b -=,…,12n n bb b -=, 从而b n =b i b n +1-i (i =1,2,…,n -1),① ………………………………12分 又∵b n -1b 3>b n -1b 2=b n ,所以b n -1b 3不是数列{b n }中的项, ∴13n b b -是数列{b n }中的项,同理14n b b -, (12)n n bb --也都是数列{b n }中的项, 考虑到1<12n n b b --<…<14n b b -<13n b b -<3n bb =b n -2<b n -1<b n ,且1,12n n b b --,…,14n b b -,13n b b -,3n b b ,b n -1,b n 这n 个数全是共有n 项的增数列1, b 2,…,b n 中的项, 于是,同理有,b n -1=b i b n -i (i =1,2,…,n -2),② …………………………14分在①中将i 换成i +1后与②相除,得1n n b b -=1i ib b +,i =1,2,…,n -2, ∴b 1,b 2,…,b n 是等比数列. …………………………………………………16分2018-2019学年度苏、锡、常、镇四市高三教学情况调查(一)数学Ⅱ(附加题)21.【选做题】本题包括A ,B ,C 三小题,请选定其中两题作答,每小题10分共计20分,解答时应写出文字说明,证明过程或演算步骤.A .选修4—2:矩阵与变换已知x ,y ∈R ,12α⎡⎤=⎢⎥⎣⎦是矩阵A = 10 x y ⎡⎤⎢⎥⎣⎦的属于特征值﹣1的一个特征向量,求矩阵A 的另一个特征值. 解:∵12α⎡⎤=⎢⎥⎣⎦是矩阵10x A y ⎡⎤=⎢⎥⎣⎦的属于特征值1-的一个特征向量, ∴111022x y ⎡⎤⎡⎤⎡⎤=-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,∴21,22,x y +=-⎧⎨=-⎩解得3,1x y =-=-, ……………………4分 ∴3101A -⎡⎤=⎢⎥-⎣⎦, …………………………………………………………………6分 特征多项式为31()001f λλλ+-==+,即(3)(1)0λλ++=, ……………………8分 ∴另一个特征值为3λ=-. …………………………………………………………10分B .选修4—4:坐标系与参数方程在极坐标系中,已知直线l :sin()03πρθ-=,在直角坐标系(原点与极点重合,x 轴正方向为极轴的正方向)中,曲线C 的参数方程为1414y t t x t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数).设l 与C 交于A ,B 两点,求AB 的长. 解:以极点为直角坐标系原点,极轴为x 轴建立坐标系, 直线sin()03πρθ-=的直角坐标方程为y =, ……………………………………2分 曲线1,41,4y t t x t t ⎧=+⎪⎪⎨⎪=-⎪⎩的普通方程为221y x -=, ……………………………………………4分则直线与曲线的交点为A和(B , ………………………………7分∴AB == ………………………………………………………………10分C .选修4—5:不等式选讲若不等式15x x a ++-≥对任意的x ∈R 恒成立,求实数a 的取值范围.解:∵111x x a x x a a ++-+-+=+≥, …………………………………………4分 ∴要使不等式15x x a ++-≥对任意的R x ∈恒成立,当且仅当15a +≥, ………7分∴4a ≥或6a -…. ………………………………………………………………………10分【必做题】第22题、第23题,每题10分,共计20分,解答时应写出文字说明,证明过程或演算步骤.22.(本小题满分10分)从批量较大的产品中随机取出10件产品进行质量检测,若这批产品的不合格率为0.05,随机变量X 表示这10件产品中的不合格产品的件数.(1)蚊:这10件产品中“恰好有2件不合格的概率P(X =2)”和“恰好有3件不合格的概率P(X =3)”哪个大?请说明理由;(2)求随机变量X 的数学期望E(X).解:由于批量较大,可以认为随机变量(10,0.05)X B , ………………………2分(1)恰好有2件不合格的概率22810(2)0.050.95P X C ==⨯⨯, 恰好有3件不合格的概率33710(3)0.050.95P X C ==⨯⨯, ……………………………4分 ∵22810337100.050.95(2)571(3)0.050.958C P X P X C ⨯⨯===>=⨯⨯, ∴(2)(3)P X P X =>=,即恰好有2件不合格的概率大; …………………………6分(2)∵1010()(1)k k k k P X k p C p p -===-,0,1,2,,10k =.随机变量X 的概率分布为:故0()0.5k k E X kp ===∑. ………………………………………………………………9分答:随机变量X 的数学期望()E X 为0.5. …………………………………………10分23.(本小题满分10分)已知34268243451681022()n n n n C C C C f n C C C C ++=++++,562468243451681022()n n n n C C C C g n C C C C +++=++++,其中n N *∈,2n ≥. (1)求(2)f ,(3)f ,(2)g ,(3)g 的值;(2)记()()()h n f n g n =-,求证:对任意的m N *∈,m ≥2,总有1(2)2m m h ->. 解:(1)24363(2)10C f C ==,3264346841(3)70C C f C C =+=, 44361(2)20C g C ==,5464346819(3)140C C g C C =+=;……………………………………………3分 (2)∵222122(2)!(2)!(!)(!)((2)!)((2)!)(22)!((1)!)((1)!)k k k k k k k k C C k k k k k C k k +++--⋅-⋅+=++⋅+ 2(1)(2)(1)(1)(22)(21)(2)k k k k k k k k ++-+-=+++ (1)(42)1(22)(21)(2)2k k k k k k ++==++++, ………………………………………4分 ∴222122221()()()2k k n n k k k k k k C C h n f n g n C k ++==+-=-==+∑∑.……………………………………5分 下面用数学归纳法证:对任意的*,2N m m ∈≥,总有1(2)2m m h ->. 当2m =时,111371(4)456602h =++=>,命题成立;则当1m t =+时,11111(2)(2)232422t t t t t h h ++=+++⋅⋅⋅++++ 111111122324252622t t t t t t +->++++⋅⋅⋅++++++(), …………………………7分 ∵3t ≥,1113232422t t t ++-+++1(23)2(23)(24)(22)t t t t t +--22=+++0>, ∴1113232422t t t ++>+++. ……………………………………………………………8分 又1111252622t t t ++⋅⋅⋅++++111111222222t t t +++>++⋅⋅⋅++++ 12222t t +-=+, ………………………………………………………………………9分∴1111322(2)222222tt t t t t h +++-->++=++, ∴命题成立. ……………………………………………………………………………10分。

相关文档
最新文档