锆石成因矿物学研究及其对U-Pb年龄解释的制约
锆石U_Pb同位素定年的原理_方法及应用_高少华
![锆石U_Pb同位素定年的原理_方法及应用_高少华](https://img.taocdn.com/s3/m/a79ebe00844769eae009ed5f.png)
立年龄; 定年方法各有优缺点,应用时应根据从样品中分选出的锆石数量、粒度、内部结构、定年精度等因素,
灵活选择; 锆石 U-Pb 年龄常用于沉积盆地物源分析、岩体的年代约束及成矿年代学与韧性剪切带定年中,应
用时要结合地质背景,对定年结果进行合理解释。
关键词: 锆石; U-Pb 同位素; 原理; 定年方法; 地质应用
收稿日期: 2013 - 04 - 11; 修订日期: 2013 - 05 - 30 作者简介: 高少华( 1986 - ) ,男,在读硕士,专业方向: 沉积盆地物源分析研究。
·364·
江西科学
2013 年第 31 卷
1 锆石的地球化学特征和内部结构
1. 1 锆石的地球化学特征 锆石 的 氧 化 物 中 ω ( ZrO2 ) 占 67. 2% 、ω
Abstract: This article discusses geochemical characteristics and internal structure of zircon,the principle of zircon U-Pb isotopic dating,the advantages and disadvantages of dating method and the application of geological problems through consulting a large number of Chinese and foreign literature and combined with the author's experiments. The results show that magmatic zircon and metamorphic zircon in geochemical and internal structure have different characteristics. Principle is that by using of the U-Pb decay equation getting three independent ages of 206 Pb / 238 U、207 Pb / 235 U and 207 Pb / 206 Pb. Dating methods have advantages and disadvantages,please accord to the quantity,size,internal structure and factors such as accuracy of sorting out the zircons from samples,selecting dating methods flexibly. Zircon U-Pb age is often used in the analysis of the sedimentary basin provenance,in the age constraint of some rock and metallogenic chronology and ductile shear zone. The dating results are reasonable explanation to combined with the geological background. Key words: Zircon,U-Pb isotope,The principle,Dating method,The geological applications
锆石在地质研究中的应用
![锆石在地质研究中的应用](https://img.taocdn.com/s3/m/75cba272302b3169a45177232f60ddccda38e61a.png)
2021.08科学技术创新锆石在地质研究中的应用夏浪(成都理工大学,四川成都610000)锆石一直被视为具有高度稳定性的矿物,具有能持久保持矿物形成时的物理化学特征,富含U 、Th 等放射性元素、离子扩散速率低、封闭温度高等特点,因此被广泛于岩石学、地球化学研究中。
近年来微区定年技术发展,锆石更加成为了U -Pb 定年的理想对象。
本文从锆石岩相学、地球化学、包裹体等方面阐述锆石在地质领域研究中的应用方向。
1锆石矿物学和岩相学特征锆石的化学式为Zr Si O 4,含有H f ,Th ,U 等混入物,在岩浆岩矿物中含量较低,一般是以副矿物的形式存在。
在岩浆结晶分异演化过程中,根据鲍文反应序列分为连续和不连续系列。
岩浆中先后结晶出橄榄石、辉石、角闪石等暗色矿物,斜长石伴随暗色矿物且牌号递减依次结晶出来,从基性向酸性斜长石演化。
Zr 在基性岩浆中不饱和,锆石难结晶出来,而在酸性岩浆中饱和可以晶出。
CL 阴极发光的原理实质上是由于矿物中可能会混入杂质离子或者是晶体生长过程中产生的缺陷、双晶、生长条纹等,这些因素都可能导致矿物颗粒内部由于成分不均一而在阴极发光图像上呈现不同,锆石环带很好的记录了岩浆演化的过程。
在对锆石的CL 阴极发光影像图中,不同岩石成因的锆石在CL 阴极发光图像下形态会有显著的区别。
岩浆锆石广泛存在于酸性岩浆岩中,而在偏基性的岩石中存在的较少,岩浆锆石具有特征的同心韵律环带,具有自形到半自形的长柱状特征。
在沉积岩中也会以少量碎屑锆石的形式存在,碎屑锆石磨圆较好。
在高级变质岩中,特别是在原岩富含锆石的高级变质岩中,锆石的结构往往较为复杂,构成由晶核和变质增生组成的复杂结构。
变质锆石指的是变质作用过程中形成的锆石,成因不同的锆石(深熔作用形成、变质流体结晶、变质重结晶等)甚至是不同变质相下形成的锆石在阴极发光图像上都具有不同的环带特征以及锆石形态,如图1。
2锆石包裹体包裹体是矿物生长过程中或形成之后被捕获包裹于矿物晶体缺陷中的,保存在主矿物至今的物质。
锆石成因矿物学研究及其对U-Pb年龄解释的制约
![锆石成因矿物学研究及其对U-Pb年龄解释的制约](https://img.taocdn.com/s3/m/385cda6748d7c1c708a1453c.png)
评述第49卷第16期 2004年8月锆石成因矿物学研究及其对U-Pb年龄解释的制约吴元保郑永飞(中国科学技术大学地球与空间科学学院, 合肥 230026. E-mail: ybwu@)摘要锆石U-Pb定年是同位素年代学研究中最常用的方法, 如何对所得到的年龄值给予合理的地质解释是锆石U-Pb年代学研究的重点. 本文对近年来锆石成因矿物学研究及其对U-Pb年龄解释的制约方面有关的进展进行了系统的总结和评述. 不同地质环境中形成的锆石具有不同的结构类型: 岩浆锆石具有典型的振荡环带和/或扇形分带结构; 变质锆石有其特征的内部结构, 主要有无分带、弱分带、云雾状分带、扇形分带、面状分带和斑杂状分带等, 不同成因变质锆石具有其特征的内部结构特点. 岩浆锆石的微量元素特征与其岩石类型有关, 从超基性岩到酸性岩中的锆石的微量元素含量逐渐升高; 不同成因变质锆石具有不同的微量元素特征, 变质锆石的微量元素特征可以反映变质锆石的形成环境. 通过锆石与石榴石之间微量元素的配分, 可以很好地确定含石榴石的高级变质岩中变质锆石形成的具体P-T条件. 锆石中原生包裹体矿物组成同样可以为锆石的形成环境提供明确的限定. 因此, 在进行锆石U-Pb定年的同时, 对锆石进行显微结构、微量元素特征和矿物包裹体成分等方面的综合研究, 限定锆石的形成环境, 能够为锆石U-Pb年龄的合理解释提供有效的制约.关键词锆石 显微结构 微量元素 包裹体 U-Pb年龄测定各种地质事件的准确时间是放射成因同位素研究的主要任务之一. 由于锆石广泛存在于各类岩石中, 富含U和Th, 低普通Pb以及非常高的矿物稳定性, 使得锆石U-Pb定年成为同位素年代学研究中最常用和最有效的方法之一. 锆石U-Pb体系是目前已知矿物同位素体系中封闭温度最高的, 锆石中Pb 的扩散封闭温度高达900℃[1,2], 是确定各种高级变质作用峰期年龄和岩浆岩结晶年龄的理想对象. 对于只有单阶段演化历史的岩浆岩, 锆石U-Pb定年往往可以给出非常准确的年龄信息. 但是对于具有复杂演化历史的变质岩, 锆石往往具有多期生长和/或重置区域的复杂内部结构. 虽然锆石记录了相应岩石经历的多期演化历史, 同时它也给常规热电离质谱(TIMS)分析方法获得复杂类型锆石的精确年龄及获得年龄的准确解释带来了困难.高分辨离子探针(SIMS)[3~5]及激光剥蚀等离子体质谱(LA-ICP-MS)[6~11]可以对锆石进行微区定年. 这对具有复杂结构的锆石定年具有非常重要的意义, 可以得到锆石不同结构区域的多组年龄, 这些年龄可能分别对应于锆石寄主岩石的原岩时代、变质事件时间(一期和/或多期)及源区残留锆石的年龄等. 对于复杂的变质岩而言, 这些样品中锆石的多组年龄如何进行合理的地质解释, 是目前锆石U-Pb年代学研究的重点和难点[12,13]. 最近研究表明, 锆石的显微结构、微量元素特征和矿物包裹体成分等可以用来对锆石的形成环境进行限定, 进而为锆石U-Pb年龄的合理解释提供有效和重要的制约[14~29]. 本文将对这些方面的研究进展进行系统的总结和评述, 以期抛砖引玉, 引起同行们对这些方面的注意, 在进行锆石U-Pb定年的同时, 加强锆石成因矿物学方面的研究, 对所得到的U-Pb年龄赋予更加合理的地质解释.1不同成因锆石的内部结构特征常用揭示锆石内部结构的方法有HF酸蚀刻图像、背散射电子(BSE)图像和阴极发光电子(CL)图像等. HF酸蚀刻法的应用原理是由于锆石不同区域表面的微量元素含量和蜕晶化程度的差异导致其稳定性和抗HF酸腐蚀能力的不同, 在HF酸的作用下, 这些锆石的内部结构就会显示出来[30](图1(a)). 这种方法简单易行, 不需要大型仪器设备, 但它可能会对锆石表面造成不同程度的破坏作用. BSE图像揭示的是锆石表面平均分子量的差异[32]. 除可以揭示锆石的内部结构外, 锆石的BSE图像还可以很好地显示锆石的表面特征(如包裹体的分布和裂隙的发育情况等)(图1(b)). 而CL图像显示的则是锆石表面部分微量元素(如: U, Y, Dy和Tb等)的含量和/或晶格缺陷的差异, 一般锆石中U, REE和Th等微量元素含量越高, 锆石阴极发光的强度越弱[32~35]. 锆石的CL图像和第49卷 第16期 2004年8月评 述图1 HF 酸蚀刻、BSE 和CL 图像显示的锆石内部结构(a) HF 酸蚀刻图像; (b) BSE 图像; (c) CL 图像. (a) 引自Pidgeon 等人[30], (b) 引自Nasdala 等人[31], (c) 引自Vavra 等人[26]图2 不同类型岩浆锆石的CL 图像(a) 辉长岩中的岩浆锆石; (b) 花岗岩中的岩浆锆石和残留核; (c) 花岗岩中的扇形分带锆石. (a) 引自赵子福等人[41], (b)和(c)分别为大别山主薄源和北淮阳花岗岩样品(本文)BSE 图像的明暗程度往往具有相反的对应关系. 在绝大多数情况下, CL 图像反映锆石的内部结构最清楚, 也是锆石内部结构研究中最常用和最有效的方法.岩浆锆石通常为半自形到自形, 粒径20~250 µm [36]. 产于金伯利岩及其相关岩石中的锆石常常为它形(少数情况下为半自形), 较大的粒径(毫米级到厘米级)[34,37,38]. 部分基性-超基性岩中的锆石同样具有不规则的形状和较大的粒径[39,40]. 火山岩中的锆石具有较大的长宽比值(比值可以高达12), 一般为长柱状或针状的外形特征[36].岩浆锆石一般具有特征的岩浆振荡环带(图2(a), (b)). 振荡环带的宽度可能与锆石结晶时岩浆的温度有关, 高温条件下微量元素扩散快, 常常形成较宽的结晶环带(如辉长岩中的锆石)(图2(a)); 低温条件下微量元素的扩散速度慢, 一般形成较窄的岩浆环带(如I 型和S 型花岗岩中的锆石)(图2(b))[35]. 岩浆锆石中还可能出现扇形分带的结构(图2(c)), 这种扇形分带结构是由于锆石结晶时外部环境的变化导致各晶面的生长速率不一致造成的[25]. 部分地幔岩石中的锆石表现出无分带或弱分带的特征. 在岩浆锆石中往往有继承锆石的残留核(图2(b)).变质锆石是指在变质作用过程中形成的锆石. 变质锆石的形成主要有如下五种机制: (1) 深熔过程中从熔体中结晶[26,42,43]; (2) 固相矿物分解产生的Zr 和Si, 成核和结晶[44,45]; (3) 从变质流体中结晶[20,23,46,47]; (4) 原岩锆石的变质重结晶作用[36,48~52]; (5) 热液蚀变作用对原有锆石的淋滤和溶蚀[26,34,51,53,54]. 因此, 变质锆石的形成既可以是变质过程中新生长的锆石(图3(a), (b)), 又可以是变质作用对岩石中原有锆石不同程度的改造(图3(c)), 其中变质增生锆石既可以形成独立的新生颗粒(图3(a)), 还可以在原有锆石基础上形成变质新生边(图3(b)). 此外, 锆石的蜕晶质化或蜕晶质化锆石的重新愈合作用同样会对原有锆石产生不同程度的影响[31,54].变质锆石的外部形态从它形到非常自形, 并有图3 不同类型变质锆石内部结构特点(a) 完全变质新生锆石颗粒; (b) 变质增生边; (c) 原有锆石改造形成的变质锆石. 短白线为标尺, 长度30 µm. (a)引自Hermann 等人[16],(b)引自Rubatto 等人[19], (c)为苏鲁仰口榴辉岩中的锆石(本文)评 述第49卷 第16期 2004年8月特征的内部结构, 主要包括: 无分带(图4(a))、弱分带(图4(b))、云雾状分带(图4(b))、扇形分带(图4(c))、 冷杉叶状分带(图4(d))、面状分带(图4(e))、斑杂状分带(图4(f))、海绵状分带(图4(i))和流动状分带(图4(j))等复杂的结构类型. 不同变质条件下形成的锆石具有不同的外形和内部结构特点. 麻粒岩相变质增生锆石一般为半自形、它形到等轴状, 内部分带特征为扇形分带(图5(a))、面状分带(图5(b))、冷杉叶状分带(图5(c))、弱分带或无分带(图5(d))等[26]. 榴辉岩相变质增生锆石一般为半自形、椭圆形和它形等, 内部分带特征主要有无分带(图6(a))、弱分带(图6(b))、云雾状分带(图6(c))或片状分带(图6(d))等[16,19,20]. 角闪岩相变质增生锆石通常具有规则的外形, 且以柱面发育为其主要特点, 在CL 图像中一般为无分带或弱分带的特征(图7)[16,26]. Vavra 等人[26]对Ivrea 地区的角闪岩相变质岩石、角闪岩到麻粒岩过渡相变质图4 变质锆石中典型的内部结构(a) 无分带结构; (b) 弱分带结构; (c) 扇形分带结构(rd); (d) 冷杉叶状分带(ft); (e) 面状分带(bd); (f) 斑杂状分带(ZCA); (g), (h)溶蚀结构; (i) 海绵状分带; (j) 流动状分带(fl). (a)和(b)分别为大别山燕子河混合岩和苏鲁青龙山榴辉岩中的锆石(本文), (c)~(g)和(j)引自Vavra 等人[26], (h)引自Schaltegger 等人[24], (i)引自Tomaschek 等人[52]图5 麻粒岩相变质锆石CL 特征(a) 扇形分带; (b) 面状分带; (c) 冷杉叶状分带; (d) 弱分带或无分带.短白线为标尺, 长度30 µm. 引自Vavra 等人[25,26]图6 榴辉岩相变质锆石CL 图像特征(a) 无分带; (b) 无分带到弱分带; (c) 云雾状分带; (d) 片状分带. 短白线为标尺, 长度30 µm. (a)和(b)引自Hermann 等人[16], (c)引自Rubatto 等人[19], (d)引自Rubatto 等人[20]第49卷第16期 2004年8月评述岩石和麻粒岩相变质岩石中的变质增生锆石进行了详细的外形和内部结构特征的对比研究后发现, 角闪岩相变质岩石中的变质增生锆石为自形、长柱状、弱CL强度和弱的内部分带(图8(a)), 过渡相变质岩石中的变质增生锆石为短轴状、冷杉叶状分带或面状分带(图8(b)), 而麻粒岩相变质岩石中的变质增生锆石则主要表现为等轴状、弱分带等特征, 少量柱状面形分带的变质锆石可能形成于前进变质阶段(图8(c)).据此他们认为锆石的外形和内部结构特征受锆石生长时的温度条件控制, 温度条件控制了锆石各晶面生长速度, 导致锆石出现不同的外形和内部结构. 并推测寄主岩石的性质可能也会对变质增生锆石的外部形态和内部结构产生一定的影响.变质流体活动过程中形成的脉体中的锆石一般具有非常规则的外形, 局部或整个锆石颗粒具有明显的面形分带或振荡环带(图9)[20,23,46,47]. 混合岩化深熔作用变质过程中形成的新生变质锆石同样具有图7 角闪岩相变质锆石CL图像(a) 角闪岩相变质锆石和残留核; (b) 榴辉岩相变质锆石的核和角闪岩相变质锆石的边; (c) 榴辉岩到麻粒岩过渡相变质锆石的核和角闪岩相变质增生边. 短白线为标尺, 长度30 µm. (a)引自Vavra等人[26],(b)和(c)引自Hermann等人[16]图8 同一地区不同变质条件下增生锆石外形和内部结构特点(a) 角闪岩相样品中的变质增生锆石; (b) 角闪岩到麻粒岩过渡相样品中的变质增生锆石; (c) 麻粒岩相样品中的变质增生锆石. 短白线为标尺, 长度30 µm. 资料引自Vavra等人[26]较规则的外形, 内部分带特征为无明显分带到面形分带(图10)[42,47], 部分深熔增生锆石具有典型岩浆锆石的环带特征. 受热液作用影响明显的锆石, 在锆石颗粒的边部(图11(a))和/或不同生长阶段锆石的边部(图11(b))会出现晶棱圆化、港湾状结构等外形特征, 且这些区域阴极发光强度较强、无明显分带, 为热液溶蚀作用形成的变质锆石[24,25,53]. 当热液蚀变作用进一步增强时, 在锆石的周围会出现较宽的白色蚀变边(图11(c)), 对这些热液蚀变作用较为彻底的锆石区域进行微区定年, 可以得到热液蚀变作用的准确年龄[53].锆石变质重结晶作用是指结构上不稳定的锆石, 在一定温压条件下(一般温度 > 400℃), 锆石晶格进行重新愈合和调整, 使锆石在结构上更加稳定[30,34,37,48~52]. 所以锆石发生变质重结晶作用时并没有新的锆石生成, 只是对原有锆石进行了不同程度的改造. 锆石的重结晶作用一般优先发生在锆石边部以及锆石内部矿物包裹体周围等结构不稳定的区域[26,50]. 微量元素含量较高的锆石的稳定性低于微量元素含量较低的锆石, 因此, 在同一样品的锆石中微量元素较高的颗粒和/或区域更易于发生重结晶作用[52]. 受蜕晶化作用影响的锆石区域由于其结构上的不稳定性, 最容易发生变质重结晶作用[51,55]. 已有实验图9 变质脉体中结晶的锆石(a) 榴辉岩脉中的增生锆石, 具有规则的外形、无分带到局部清楚的结晶环带; (b) 前进变质石英脉中的增生锆石, 具有清楚的面形分带;(c) 前进变质石英脉中的变质增生锆石, 具有明显的振荡环带, 核部为CL较强、外形不规则的残留锆石, 边部亮白色区域为后期改造的结果; (d) 蛇纹岩化过程中形成的锆石, 具有清楚的振荡环带和扇形分带. (a)引自Rubatto等人[23], (b)引自Laiti等人[47], (c)引自Rubatto等人[20], (d)引自Dubinska等人[46]评 述第49卷 第16期 2004年8月图10 混合岩化过程中的深熔变质增生锆石(a) 无分带增生锆石(左边为CL 照片、右边为二次电子照片); (b) 面形分带增生锆石. (a)引自Liati 等人[47], (b)为大别山漫水河混合岩中的锆石(本文)图11 锆石表面的溶蚀结构(a) 变质增生锆石边部的溶蚀结构; (b) 核部原岩锆石的周围出现溶蚀结构; (c) 锆石边部出现较宽的蚀变边. (a)引自Vavra 等人[25], (b)引自Schaltegger 等人[24], (c)引自Liati 等人[53]结果表明, 在有流体存在的情况下, 在温度≥400℃时, 严重蜕晶化锆石可以很快发生重结晶作用[48,51]. 但是锆石发生重结晶作用的区域不仅仅是发生过蜕晶化作用的区域, 在没有发生蜕晶化作用的晶质锆石区域同样可以发生重结晶作用, 只是发生重结晶作用需要较高的温度和/或较长的流体作用时间[48,51,52]. 由于变质重结晶过程中只是锆石晶格的重新调整, 没有新的锆石生成, 因此重结晶锆石常常为自形到半自形, 且外形与原岩岩浆锆石环带形状相似, 与原岩锆石之间没有明显的生长界限[30,48~52]. 同时, 变质重结晶锆石区域的CL 强度比原岩锆石明显增强, 内部结构一般为无分带、弱分带、斑杂状分带或海绵状分带等, 局部有岩浆环带的残留, 常见这些变质特征的锆石区域切割原岩锆石的振荡环带(图12(a), (b))[30,47,49]. 在重结晶锆石与原岩锆石之间有时会出现弱CL 强度的重结晶前锋(图12(b)). 而变质增生锆石则是指变质过程中发生成核和结晶作用, 有新的锆石从周围的介质中结晶出来. 所以变质新生锆石具有多晶面状-不规则状-规则外形, 与原岩残留锆石之间界限清楚, 不同变质环境中增生的锆石有其特征的外形和内部结构, 且受变质锆石形成时的温度条件和寄主岩石的化学性质制约(图12(c), (d))[26].在目前认识条件下, 对锆石的外形和内部结构进行详细研究是区分变质增生锆石与变质重结晶锆石最为直接和有效的方法. 变质重结晶锆石有两种成因类型: 没有流体参与的亚固相条件下的重结晶作用[47,49,50]和有流体参与下锆石局部区域的溶解再结晶[51,52]. 第二类重结晶锆石由于形成时在流体的参与下发生了矿物反应, 在锆石再结晶时常常伴有图12 重结晶锆石和变质增生锆石外形和内部结构特点(a) 边部变质重结晶锆石结构均匀且切割原岩锆石的岩浆环带, 整个锆石颗粒非常自形; (b) 核部重结晶锆石中有明显的残留岩浆环带, 重结晶锆石和未受重结晶作用影响的锆石区域之间有强度弱的变质重结晶前锋, 整个锆石颗粒较自形; (c) 完全变质新生锆石, 锆石呈卵圆形, 无分带或弱分带; (d) 变质增生边与原岩残留锆石之间有清楚的接触界限, 整个锆石颗粒呈它形. 短白线为标尺, 长度30 µm. (a)为苏鲁仰口榴辉岩中的锆石(本文), (b)据Pidgeon 等人[30], (c)据Hermann等人[16], (d)据Rubatto 等人[19]第49卷 第16期 2004年8月评 述其他磷酸盐和/或硅酸盐矿物的形成, 同时再结晶的锆石区域会圈闭一定的流体包裹体, 所以这种类型的重结晶锆石除有较均匀的结构区域外, 还常常有多空状或海绵状结构区域, 并常常富含流体和矿物包裹体(图13(a), (b)), 重结晶作用比较彻底的锆石 还会由于流体的溶蚀作用出现骨架状结构(图13 (c))[48,51,52].2 锆石的微量元素研究进展2.1 Th, U 含量及Th/U 比值大量研究表明, 不同成因锆石有不同的Th, U 含量及Th/U 比值: 岩浆锆石的Th, U 含量较高、Th/U 比值较大(一般>0.4); 变质锆石的Th, U 含量低、Th/U 比值小(一般<0.1)[35,54]. 岩浆锆石的Th/U 比值与Th 和U 在岩浆中的含量以及它们在锆石与岩浆之间的分配系数有关[56,57], 具体对应关系为: (Th/U)锆石≌(D Th /D U )锆石/熔体·(Th/U )熔体. 一般情况下(DTh/D U )锆石/熔体≌0.2, 平均地壳物质中Th/U 比值约为4, 所以通常岩浆锆石的Th/U 比值接近1. 但是一些组成特殊的岩浆中结晶的岩浆锆石具有异常的Th/U 比值, 例如有些岩浆岩锆石的Th/U 比值非常低, 可以小于0.1[58~60], 而部分碳酸岩样品中岩浆锆石具有异常高的Th/U 比值, 可以高达10000[61]. 所以, 仅凭锆石的Th/U 比值有时并不能有效地鉴别岩浆锆石和变质锆石. 变质增生锆石的Th/U 比值受变质流体和/或熔体的成分[56,57]、共生矿物的组成[59,62]以及变质锆石的生长速率[26]等因素的影响. 由于U 在流体中的活动性比Th 强, 所以变质流体一般富U 贫Th [63,64], 从这种类型的流体中结晶的锆石常常具有较低的Th/U 比值[56,57]. 在混合岩化地区部分熔融熔体中的成分也通常贫Th 且富U, 导致从这些熔体中结晶的锆石也同样具有非常低的Th/U 比值[22,42]. 变质锆石形成时, 如果有富Th 矿物(如独居石和褐帘石)的同时形成, 同样会导致增生锆石具有较低的Th/U 比值. Vavra 等人[26]对Ivrea 地区角闪岩相样品、角闪岩到麻粒岩过渡相样品以及麻粒岩相样品中的变质增生锆石的Th, U 特征进行了系统的对比研究后发现, 生长速度最慢的角闪岩相变质增生锆石具有最高的U 含量(1008~图13 有流体参与下重结晶锆石的CL 特征(a)~(c)都为海绵状结构锆石, (a)中局部有少量原岩锆石的残余, (c)中锆石有骨架状结构(黑色管状结构部分为空洞). 据Tomaschek 等人[52]图14 不同变质条件下增生的锆石的Th, U 含量和Th/U 比值(a) 角闪岩相样品的变质增生锆石; (b) 角闪岩到麻粒岩过渡相样品的变质增生锆石; (c) 麻粒岩相样品变质增生锆石(空心圆圈代表等轴状变质增生锆石, 实心方块为柱状面形分带的变质增生锆石). 据Vavra 等人[26]评 述第49卷 第16期 2004年8月2279 µg/g)和最低的Th/U 比值(<0.01)(图14(a)), 生长速度最快的麻粒岩样品中等轴状变质增生锆石具有最低的U 含量(为53~127 µg/g)和最高的Th/U 比值(Th/U 比值都大于0.1, 最大值可达0.73)(图14(c)), 生长速度介于二者之间的角闪岩到麻粒岩过渡相变质增生锆石的U 含量和Th/U 比值介于二者之间(图14(b)). 同一麻粒岩样品中, 生长速度较慢的面形分带变质增生锆石的U 含量高于生长速度较快的等轴状生长的变质锆石, 而Th/U 比值则小于生长速度较快的等轴状生长的锆石(图14(c)). 这可能是U 比Th 更易于进入锆石的晶格中, 在平衡状态下, 锆石具有相对较高的U 含量. 生长速度较慢的锆石容易与接触介质到达化学平衡, 导致这类变质新生锆石具有较高的U 含量和较低的Th/U 比值; 而生长速度较快的变质锆石与生长介质之间不能或只能部分到达化学平衡, 导致其具有较低的U 含量和较高的Th/U 比值. 变质增生锆石中也存在Th/U 比值高达0.7的情况[26], 同样说明不能仅仅根据锆石的Th/U 比值来区分变质锆石和岩浆锆石.由于Th 4+比U 4+具有更大的离子半径, Th 比U 在锆石晶格中更不稳定, 变质重结晶作用过程中Th 比U 更容易被逐出锆石的晶格, 导致重结晶变质锆石区域具有相对较低的Th/U 比值[30,49]. 变质重结晶作用越强, 变质重结晶锆石区域的Th/U 比值会越低. 放射成因Pb 在锆石晶格中也不稳定, 锆石重结晶作用过程中同样会把锆石中的放射成因Pb 排除出晶格, 锆石重结晶作用越彻底, 其U-Pb 年龄会越小. 所以, 变质重结晶锆石的Th/U 比值与其U-Pb 年龄有明显的正相关关系, 只有那些Th/U 比值最低、年龄值最小测定点年龄值的加权平均结果才能代表锆石重结晶作用发生的时间[49].2.2 稀土及其他微量元素岩浆锆石的微量元素(特别是稀土元素)特征研究主要是应用在判断其寄主岩石类型中. 但是, 对于岩浆锆石的微量元素特征是否能判断寄主岩石的类型还存在较大的争议. Hoskin 等人[65]对不同类型岩石中的锆石进行了稀土元素分析后发现, 除典型的地幔岩石中的锆石具有较低的稀土元素含量外, 其他类型岩石中的锆石具有非常类似的稀土元素含量和配分模式, 所以锆石的稀土元素特征并不能用来判断寄主岩石的类型. Belouova 等人[61]对更大量的岩浆锆石进行了微量元素分析, 结果表明不同类型的岩浆锆石可以通过其微量元素对变化图解和微量元素含量统计分析树形图解来进行区分. 岩浆锆石的微量元素含量从超基性岩→基性岩→花岗岩有总体上增长的变化趋势(图15). 金伯利岩中岩浆锆石的稀土元素的总量一般小于50 µg/g, 碳酸岩和煌斑岩中锆石的稀土元素总量为600~700 µg/g, 基性岩中锆石的稀土总量为约2000 µg/g, 而花岗岩类和伟晶岩中锆石的稀土总量则为百分含量级[61].根据已经获得的微量元素在锆石与熔体之间的分配系数, 通过锆石的微量元素含量, 可以计算出锆石结晶时熔体的微量元素特征, 根据这些特征可以进一步制约寄主岩石的演化历史. 对地球上最古老锆石(4.4 Ga)的稀土元素分析表明, 其寄主岩石已经经历过地壳再循环, 导致其轻稀土明显富集[66], 这一结论也得到了锆石氧同位素分析结果的支持[18,29,67]. Whitehouse 等人[27]对Greenland 西南部Gothabsfjord 地区的两个中太古代样品进行了锆石和全岩样品的稀土元素分析, 发现其中一个样品(GGU 125540)中锆石的轻稀土含量较低(图16(a)), 通过锆石计算出的全岩稀土元素含量和全岩样品测定得到的结果一致(图16(d)); 而另外一个样品(SM/GR/98/02)中的锆石具有较高的轻稀土含量(图16(b)), 通过它计算得到的全岩稀土含量中的轻稀土明显高于全岩样品分析得到的结果(图16(d)). 在(Pr/Gd)CN 和(Gd/Yb)CN 图解中(图16(c )), 这两个样品的锆石具有较一致的(Gd/Yb)CN 值, 但样品SM/GR/98/02中锆石的(Pr/Gd)CN 值明显高于样品GGU 125540中的锆石. 据此, 他们认为SM/GR/98/02的锆石中存在明显的轻稀土超量图15 不同类型岩浆岩中锆石微量元素平均值球粒陨石标准化图引自Belousova 等人[61]第49卷 第16期 2004年8月评 述图16 Gothabsfjord 地区样品GGU 125540和SM/GR/98/02中锆石的稀土元素特征(a) 样品GGU 125540中锆石的稀土元素球粒陨石标准化图; (b) 样品SM/GR/98/02中锆石的稀土元素球粒陨石标准化图; (c) 样品GGU 125540和SM/GR/98/02中锆石的(Pr/Gd)CN 和(Gd/Yb)CN 变化图解, 实心圆点为样品GGU 125540的结果, 空心正方形为样品SM/GR/98/02的结果; (d) 通过锆石计算和实测的全岩稀土组成球粒陨石标准化图解(空心点代表根据锆石计算得到的结果, 实心点代表实测结果; 正方形为样品GGU125540的结果, 圆形为样品SM/GR/98/02的结果). 据Whitehouse 等人[27]现象(overabundance)(图16(d)), 并对这种轻稀土超量的锆石的稀土元素特征是否能对应锆石形成时的熔体的成分提出了质疑, 并进一步认为应用锆石的微量元素来判断寄主岩石的微量元素特征时应当谨慎. 锆石中轻稀土超量可能是由以下几种原因造成的: (1) 锆石结晶时LREE 优先进入锆石的晶格缺陷中; (2) 锆石结晶时的熔体成分与全岩成分不一致; (3) 分析点中包含了富LREE 的磷酸盐矿物(如独居石和磷灰石); (4) 后期地质事件扰动时LREE 优先进入被扰动的锆石中. 因为独居石和磷灰石等磷酸盐矿物一般都富Th, 如果锆石的LREE 超量是分析点中包含了富LREE 的磷酸盐矿物造成的, 那么在锆石微量元素(La/Sm)CN -Th(CN 表示球粒陨石标准化)的相关变化图解中(La/Sm)CN 与Th 应该有非常明显的正相关关系[27]. 如果锆石的LREE 超量是由于锆石形成以后后期地质的扰动造成的, 那么LREE 超量的锆石区域会相应富集Th 和U, 在锆石的微量元素La/Gd)CN - (Th+U)图解中同样会出现明显的正相关关系[27].在变质过程中, 变质增生锆石的微量元素特征除与各个微量元素进入锆石晶格的能力大小有关外,还受与锆石同时形成的矿物种类控制(如石榴石、长石和金红石等), 这些矿物存在与否对变质作用的条件(如榴辉岩相、麻粒岩相和角闪岩相等)有重要的指示意义[16,21~24,28,58,68,69]. 因此, 通过变质锆石微量元素特征的研究, 可以很好地判断锆石的形成条件, 为锆石U-Pb 年龄的解释提供更加有效的制约. 在麻粒岩相变质条件下, 由于石榴石和长石类矿物可以稳定存在, 而石榴石和长石类矿物分别是富集重稀土和Eu 的主要造岩矿物, 导致麻粒岩相变质锆石一般具有HREE 相对亏损和明显Eu 负异常的特征(图17(a))[24,28,68,69]. 榴辉岩相变质条件下, 石榴石可以稳定存在, 但长石不能稳定存在, 且榴辉岩相变质过程中有变质金红石的生成, 而金红石能强烈富集Nb 和Ta, 并有较高的Nb/Ta 比值[70], 所以榴辉岩相变质锆石具有HREE 相对亏损、无明显Eu 负异常和较低的Nb, Ta 含量和Nb/Ta 比值等特征(图17(b))[21~23,58,69]. 角闪岩相变质条件下, 高压变质石榴石不能稳定存在, 而长石类矿物可以稳定存在, 所以, 角闪岩相变质增生锆石具有HREE 相对富集和Eu 负异常明显的特征(图17(c))[16].。
锆石成因矿物学与同位素研究综述
![锆石成因矿物学与同位素研究综述](https://img.taocdn.com/s3/m/e7ed7ae5b0717fd5360cdc5d.png)
锆石成因矿物学与同位素研究综述作者:郑改红张藤藤来源:《科学导报·学术》2019年第49期摘 ;要:锆石是一种常见的副矿物,广泛存在于岩浆岩,变质岩和沉积岩中,具有高度稳定性的矿物,具有稳定的晶体结构,在经历风化、搬运、剥蚀等各种地质过程中内部结构不容易发生蚀变从而使其保存下来。
近年来越来越多的学者对锆石进行研究。
不同成因类型岩石中的锆石具有不同的结构特征,对锆石成因类型的准确判断是正确理解锆石U-Pb年龄意义的关键。
通过对锆石微量元素,稀土元素和同位素特征进行研究,再结合锆石的阴极发光图像(CL)、背散射电子图像(BSE)等,能够指示岩石的来源和成因。
关键词:锆石;结构特征;U-Pb定年由于锆石在各类岩石中广泛存在,是一种非常好的定年矿物。
锆石的U-Pb定年方法目前应用最广泛的仪器是激光剥蚀等离子体质谱法(LA-ICPMS),本文主要研究由于不同的形成环境而导致不同结构特征的锆石石并结合原位微区测试技术对微量元素和同位素进行研究,从而推测其生长环境,形成过程,指示其来源和成因。
对所测出来的锆石年龄进行解释时,应该结合其矿物学的结构特征。
1 不同成因锆石的结构特征进行锆石定年首先要区分锆石的种类,区分岩浆锆石,变质锆石,热液锆石的主要方法就是观察样品的内部结构。
在对锆石内部结构进行研究时一般会用HF酸蚀刻图像、背散射(BSE)图像、阴极发光电子(CL)图像等来观察其内部结构。
2 锆石的化学成分特征及在岩石成因中的应用根据锆石的U和Th的含量不同来判别锆石的类型,锆石的Th/U比值被用作判断其成因的标志,如果Th/U 比值>0.10就认为它是岩浆锆石,反之,则认为是变质锆石,尽管大部分变质锆石的Th/U含量低,但还是有一些变质锆石的Th/U含量大于0.10,如重结晶锆石和高温变质作用中的锆石其Th/U往往偏大。
影响锆石中Th和U的含量的原因比较复杂,其中包括整个环境中的Th、U含量,以及这两种元素进入不同矿物的能力不同锁导致。
锆石成因矿物学研究及其对UPb年龄解释的制约
![锆石成因矿物学研究及其对UPb年龄解释的制约](https://img.taocdn.com/s3/m/2063499932d4b14e852458fb770bf78a64293a66.png)
锆石成因矿物学研究及其对UPb年龄解释的制约一、本文概述1、锆石的概述:介绍锆石的基本性质,包括化学组成、晶体结构及其在地质体中的分布等。
锆石,作为一种重要的副矿物,具有独特的物理化学性质和广泛的地质分布,为地质年代学和矿物学研究提供了重要的信息。
其基本性质主要包括化学组成、晶体结构以及在各类地质体中的分布等。
化学组成方面,锆石主要由锆和氧组成,其化学式为ZrSiO₄。
锆石中的锆元素是一种高场强元素,具有较高的离子半径和电荷,因此在矿物中通常以四面体配位形式存在。
锆石中还可能含有少量的其他元素,如Hf、Th、U等,这些元素的存在对锆石的成因和演化过程具有重要的指示意义。
晶体结构方面,锆石属于四方晶系,具有高度的结晶性。
其晶体结构中,锆离子与四个氧离子形成四面体配位,而硅离子则与四个氧离子形成硅氧四面体。
这些四面体结构在空间中相互连接,形成了锆石的独特晶体结构。
在地质体中的分布方面,锆石广泛存在于各类岩石中,特别是在火成岩和变质岩中更为常见。
锆石在岩石中的分布和形态受到多种因素的控制,如岩浆成分、温度、压力、时间等。
因此,锆石的研究不仅可以揭示岩石的形成和演化过程,还可以为地质年代学提供重要的年代信息。
锆石的基本性质决定了其在地质学研究中的重要地位。
通过深入研究锆石的成因矿物学特征,我们可以更好地理解地球的形成和演化历史,为地质学的发展提供新的思路和方法。
锆石中的UPb年龄信息也是制约我们理解地球历史的关键因素之一。
通过对锆石UPb年龄数据的精确测定和分析,我们可以更加准确地推断出岩石的形成时间、岩浆活动历史以及地壳演化过程等。
因此,锆石成因矿物学研究及其对UPb 年龄解释的制约是地质学研究领域中的一个重要课题。
2、锆石成因矿物学的重要性:阐述锆石成因矿物学在地球科学领域的研究意义,特别是在理解地壳演化、岩浆活动、变质作用等方面的作用。
锆石成因矿物学在地球科学领域的研究意义重大,其研究不仅有助于深入理解地壳演化、岩浆活动、变质作用等关键地质过程,同时也为地球内部物质循环和成矿作用提供了重要的制约。
碎屑锆石U-Pb定年在准噶尔盆地南缘物源研究中的应用
![碎屑锆石U-Pb定年在准噶尔盆地南缘物源研究中的应用](https://img.taocdn.com/s3/m/8a95f16e30b765ce0508763231126edb6f1a76ca.png)
碎屑锆石U-Pb定年在准噶尔盆地南缘物源研究中的应用武富礼;姚志刚【摘要】伊连哈比尔尕山山前断褶带是准噶尔南缘前陆盆地和北天山造山带的重要结合部位,从该区采集了4件中生界中的砂岩样品,用LA-ICP-MS方法对其中的250个锆石颗粒进行了U-Pb年龄测定.根据锆石的矿物学特征、CL图像特点以及碎屑锆石年龄分布特征,结合古水流条件的约束,对其沉积物源和构造环境进行了分析.结果表明,锆石形成年龄的范围在170~2 886 Ma间.最年轻的碎屑锆石年龄是(170±1)Ma,说明这套地层不老于中侏罗世;最古老锆石的年龄峰值为2 200~2 900 Ma和1 000~1 600 Ma,源区应为天山在燕山期造山后已有古老基岩的剥露区;290~310 Ma和400~410 Ma的锆石,物源可能包括两部分:伊山为主和部分来自南部的中天山地区;碎屑锆石中出现170~200Ma的年龄峰值,表明晚侏罗世北天山及盆地南缘发生了较明显的隆升和剥蚀作用,判断其物源为天山北坡.【期刊名称】《西安石油大学学报(自然科学版)》【年(卷),期】2011(026)003【总页数】8页(P6-13)【关键词】准噶尔盆地南缘;碎屑锆石;U-Pb年龄;物源分析;中生界【作者】武富礼;姚志刚【作者单位】西安石油大学油气资源学院,陕西西安710065;西安石油大学油气资源学院,陕西西安710065【正文语种】中文【中图分类】T121.1;P581准噶尔盆地南缘(简称,准南)前陆冲断带作为准噶尔大型多旋回叠合盆地的重要组成部分,南与伊林哈比尔尕山(简称,伊山)-博格达山相邻,北至昌吉凹陷.大地构造位置上,北侧为准噶尔;南侧为北天山逆冲推覆带(图1).作为天山造山系的一部分,该区吸引了众多的中外地质工作者对其地壳组成、结构及形成历史的研究.从现有的文献看,以往对该区的研究大部分都集中在探讨和重建该区古生代洋陆构造格局和新生代的陆内造山作用及其演变过程,而对二叠纪以来叠加改造的研讨相对要少得多,尤其是该区伊山山前断褶带内碎屑沉积物来源的研究还很有限[1-4],而中生代构造活动、盆山格局演化是认识这2次区域性构造事件之间转换关系的关键.另一方面,对准噶尔盆地来说,中生代是烃源岩演化、油气运聚成藏的关键时期.研究准噶尔盆地南缘物源,可为理清北天山造山带与准南在主要成盆期和关键变革时期构造应力场提供确切依据,对于探讨准南及至整个准噶尔盆地的油气资源分布及其聚集的时空特点具有重要意义.近年来,通过造山带相邻盆地沉积记录来认识造山带和盆山格局演化已有不少成功的实例[5-6].通过碎屑岩碎屑锆石定年研究确定碎屑岩物质来源、源区特征、沉积时代和形成环境的方法是其他方法不可替代的.准南聚集了大量从隆升高地剥蚀而来的沉积物,中生界的完好保存为研究中生代构造作用、沉积背景和盆山格局提供了理想的条件.本文就准南小泉沟群、水西沟群和艾维尔沟群中碎屑锆石U-Pb同位素年代学最新分析结果进行了研究,对其所揭示的地质意义进行了讨论.图1 准噶尔盆地南缘中段区域构造格架F1-妖魔山断裂;F2-阜康断裂;F3-乌鲁木齐-米泉断裂;F4-亚马特-拜辛德达坂大断裂;F5-乌鲁木齐-四古南断裂;F6-红车断裂.样号:①SHC006;②SHC036;③SHC019;④SHC031 Fig.1 The tectonic sketch map of the central section of the southern margin of Junggar Basin F1-Yaomoshan fault;F2-Fukang fault;F3-Urumqi-Miquan fault; F4-Yamater-Baixindaban fault;F5-Urumqi-Sigunan fault;F6-Hongche fault.The numbers of samples:①SHC006;②SHC036;③SHC019;④SHC0311 区域地质概况本文中所述准南是指阜康以西,奎屯—独山子南北线以东,北以准南隐伏大断裂(沙湾—玛纳斯—呼图壁—阜康东西一线)为界,南抵伊山北麓的带状地区,为海西期褶皱回返基础上发展起来的二级构造单元.准南盖层沉积始于晚石炭世,包括上古生界、中生界和新生界的全部地层.地层出露齐全,厚度巨大[7].三叠系中—上统小泉沟群在北天山北缘广泛分布,不整合或假整合于二叠系或更老地层之上.小泉沟群地层下部克拉玛依组和黄山街组以灰色砂岩和泥岩为主,上部郝家沟组为灰色砾岩、砂岩、泥岩韵律状互层,夹碳质泥岩和薄煤层,在准南地区厚200~450 m.侏罗系中—下统水西沟群主体为一套河流-沼泽相的含煤碎屑建造.在博格达山和伊山多处可见含煤地层超覆于下伏石炭—二叠系之上,玛纳斯地区出露厚度最大.地层由下往上分别为八道湾组、三工河组和西山窑组.侏罗系中—上统艾维尔沟群在盆地南缘分布较厚.从头屯河组到喀拉扎组整体表现为一下细上粗的正旋回.2 样品与分析方法用于锆石定年的样品采自沙湾县石场附近的小泉沟群、水西沟群和艾维尔沟群,采样点位置见图1.用于分选锆石的大样野外采集质量为5~10 kg,锆石U-Pb同位素组成分析在西北大学大陆动力学重点实验室的激光剥蚀等离子体质谱仪器(LAICP-MS)上用标准测定程序进行[8].4件样品的锆石U-Pb同位素组成列于表1.3 分析结果3.1 锆石的形态特征描述及代表性锆石分析反射光和投射光下锆石颜色主要为浅紫红色、浅黄褐色、浅绿色和烟灰色.在所测的锆石颗粒中,部分颗粒受到机械破碎作用而不完整.其中保存较好的锆石也以半自形-他形为主,个别锆石颗粒晶形较完好,可分辨出复四方双锥,四方双锥的晶体特征,但总体以短柱状、粒状和不规则形状颗粒居多.保存完好的晶体一般可指示短距离的搬运,而磨圆的颗粒表明它们经历了长距离的搬运或者经历了侵蚀和沉积循环过程.表1 碎屑锆石中U-Pb同位素分析结果Tab.1 Tab.1 The analysis data of U-Pb isotope in detrital zircon samplesSHC019分析号表面年龄/Ma SHC006207Pb/206Pb±1σ 207Pb/235U±1σ 206Pb/238U±1σ w(232Th)/w(238U)分析号表面年龄/Ma 207Pb/206Pb±1σ 207Pb/235U±1σ 206Pb/238U±1σw(232Th)/w(238U).51 2 322±111 310±12 309±3 0.46 2 645±118 341±15 298±3 0.87 3 360±36 293±6 284±2 0.38 3 219±42 308±7 320±3 0.83 4 280±86 265±8 263±2 0.50 4 555±37 443±9 421±4 0.62 5 343±31 279±5 271±2 0.53 5 705±78 403±11 352±3 0.60 6 574±29 480±8 461±4 0.61 6 446±29 347±6 332±3 0.88 7 489±81 459±13 453±4 0.59 7 436±98282±10 264±2 0.93 8 320±29 272±5 267±2 0.62 8 403±99 290±11 277±3 0.51 9 407±26 287±4 272±2 0.45 9 296±118 298±13 299±3 0.65 10369±80 290±8 280±2 0.70 10 687±97 352±13 303±3 1.31 11 432±36284±6 266±2 0.89 11 674±153 372±21 326±4 0.86 12 486±82 313±9291±3 0.56 12 452±71 374±10 361±3 0.80 13 517±24 298±4 271±2 0.63 13 492±30 428±7 416±3 0.64 14 1 512±21 1 463±14 1 429±12 1.11 14 454±60 415±9 408±3 0.46 15 436±46 307±7 291±3 0.59 15 619±78428±12 393±3 0.46 16 625±19 535±6 515±4 0.60 16 1 060±26 1 189±14 1261±10 0.35 17 388±83293±9 282±2 0.46 17 728±54 339±10 285±3 1.11 18 645±36 352±7 309±3 1.37 18 464±27 403±6 393±3 0.60 19 547±66 308±10 277±3 0.38 19 370±121 337±15 333±4 0.61 20 364±41 288±6 279±2 0.47 20 581±62 417±9 388±3 0.67 21 109±113 263±14 280±4 0.42 21 311±58 300±9 298±3 0.87 22 429±88 297±13 280±4 0.38 22 498±70 343±9 320±3 0.97 23 264±37 267±5 268±2 0.31 23 367±90 315±10308±3 0.97 24 418±65 294±7 279±2 0.50 24 564±108 314±13 281±3 0.95 25 337±49 290±7 284±3 0.62 25 1559±7 1 544±7 1 533±10 0.44 26344±74 276±7 268±2 0.52 26 496±24 430±6 418±3 0.55 27 398±38296±6 284±2 0.64 27 545±92 350±12 321±3 1.43 28 282±24 288±4289±2 0.20 28 62±321 278±44 304±4 1.05 29 302±65 299±10 298±3 0.44 29 382±90 313±10 304±3 1.09 30 290±69 290±10 290±3 0.50 30 495±116 315±14 291±3 1.1331 318±35 278±5 273±2 0.53 31 749±48 465±11410±4 0.61 32 320±127 273±13 268±3 0.53 32 307±123 291±13 289±3 0.77 33 359±29 276±5 267±2 0.60 33 804±101 473±17 408±4 0.31 34 339±113 267±11 259±3 0.43 34 625±81 357±11 317±3 0.72 35 460±104 309±12 289±3 0.70 35 1 174±43 518±12 382±4 0.78 36 342±26 278±4 270±2 0.62 36 1 055±145 316±19 225±2 0.88 37 362±27 289±5 280±2 0.33 37 1 227±25 465±7 326±3 0.86 38 306±42 286±6 283±2 0.43 38415±45 325±8 312±3 1.06 39 607±77 308±9 270±2 0.46 39 486±131302±15 279±3 0.63 40335±101 274±10 267±2 0.71 40 1 360±127 321±17 197±2 1.08 41 304±29 274±5 270±2 0.57 41 396±55 352±10 345±3 0.81 42 294±111 288±12 287±3 0.41 42 1 068±56 368±12 267±3 1.10 43472±60 292±6 270±2 0.20 43 510±94 336±12 311±3 1.04 44 332±50284±5 279±2 0.35 441 301±10 1 022±7 897±6 0.68 45 379±43 300±7 290±3 0.39 45 315±43 286±6 282±2 0.36 46 493±62 305±7 281±2 0.61 46 381±54 341±6 335±2 0.49 47 410±82 275±8 260±2 0.46 47 297±95296±10 296±3 0.55 48 349±67 285±10 277±3 0.36 48 441±29 405±6399±3 0.45 49 443±66318±11 301±3 0.51 49 439±31 307±5 290±2 1.20 50 279±75 272±7 272±2 0.55 50 421±30 306±5 291± 1 366±29 290±5 280±2 0.60 1 472±20 454±6 451±3 0 2 0.86续表1SHC036分析号表面年龄/Ma SHC031 207Pb/206Pb±1σ207Pb/235U±1σ 206Pb/238U±1σ w(232Th)/w(238U)分析号表面年龄/Ma 207Pb/206Pb±1σ 207Pb/235U±1σ 206Pb/238U±1σ w(232Th)/w(238U).84 2 599±41 392±9 358±3 1.08 2 358±38 294±4 286±2 0.14 3 479±25 417±6 405±3 0.47 3 1 112±143 353±20 248±3 1.09 4 490±30 356±6 335±3 0.14 4 259±56 303±8 308±3 0.64 5 486±76 430±11 420±4 0.39 5 276±34308±5 312±2 0.52 6 345±59 309±9 305±3 0.53 6 804±81 327±10 264±2 0.69 7 488±53 416±11 404±4 0.53 7 90048 366±9 288±3 0.98 8 394±87 318±14 308±4 1.08 8 319±114 324±13 324±3 0.65 9 380±125 311±14 301±3 0.57 9 584±70 342±12 307±3 0.97 10 665±92 339±12 293±3 0.81 10 352±106 271±11 262±2 0.58 11 380±58 358±10 354±4 0.78 11409±129 391±18 388±4 0.51 12 379±68 361±12 359±4 0.52 12 372±83 332±10 326±3 0.39 13 336±70 290±10 284±3 0.92 13 376±177 290±19 279±4 0.51 14 637±55 392±8 351±3 0.34 14 379±41 345±7 340±2 0.44 15 572±129 364±23 333±6 0.65 15 348±37 295±6 288±2 0.53 16 416±41 397±8 394±3 0.69 16 791±68 753±16 740±5 0.83 17 651±73 369±10326±3 0.86 17 328±57 319±9 318±3 0.75 18 635±72 401±14 361±5 1.0518 877±25 379±5 303±2 0.64 19 578±66 299±10 265±3 0.63 19 364±36 296±6 287±2 0.43 20 349±178 309±20 304±5 0.48 20 1 554±27 1241±9 1 069±6 0.17 21 511±27 450±7 438±3 0.64 21 381±64 282±7 271±2 0.59 22 319±29 266±17 299±4 0.76 22 404±108 338±13 328±3 0.86 23 600±22 419±6 387±3 0.68 23 1 148±47 1 103±15 1 081±7 0.77 24 377±75 309±11 300±4 0.63 24 605±47 433±10 401±3 0.82 25 828±23 472±7 401±3 0.40 25 925±36 808±9 767±4 0.54 26 523±70 424±10 407±4 0.38 26 371±73 310±8 302±2 0.39 27 609±47 347±9 309±3 1.41 27 430±202 192±15173±2 1.34 28 362±95 271±9 261±2 0.73 28 494±39 452±9 444±3 0.59 29 415±77 317±12 303±4 0.60 29 529±62 357±11 331±3 0.45 30 430±35 409±8 404±3 0.88 30 577±34 463±8 441±3 0.67 31 369±27 339±5 334±3 0.52 31 290±42 306±6 308±2 1.38 32 599±72 448±16 418±5 0.52 32460±96 365±13 350±3 0.63 33 221±27 284±4 291±2 0.59 33 326±57202±6 192±2 0.44 34 330±59 305±9 301±3 0.66 34 420±62 325±10312±3 0.61 35 362±58 342±10 338±3 1.24 35 754±270 335±34 278±4 0.51 36 542±32 362±7 333±3 1.03 36 341±68 305±8 301±2 0.33 37619±50 485±12 456±5 0.77 37 492±68 336±11 314±3 0.59 38 387±36 400±8 401±3 0.62 38 544±24 512±6 504±3 0.89 39 618±41 445±10411±4 0.73 39 3 152±14 3 045±6 2 886±13 0.07 40 410±38 409±8 408±3 0.69 40 537±151 442±24 424±5 0.50 41 377±29 352±6 347±3 0.60 41 469±68 476±11 478±3 0.79 42 1 471±28 1 132±9 963±7 0.19 42 227±50 174±4 170±1 0.41 43 487±27 417±6 403±3 0.39 43 433±59 298±9 281±2 0.62 44 402±55 348±10 339±3 1.62 44 2691±5 2668±6 2636±11 0.07 45 440±67 400±13 391±4 1.13 45 882±24 691±8 633±4 1.27 46 623±30460±8 426±3 1.30 46 162±102 171±9 171±2 1.38 47 327±34 300±6296±2 0.88 47 235±238 184±22 181±5 0.65 48 552±95 324±16 292±4 0.68 48 766±41 500±10 444±4 0.14 49 364±64 413±13 420±4 0.69 49 371±42 310±7 302±2 0.45 50 765±29 365±6 304±2 0.89 50 352±71258±7 248±2 0.51 51 346±80 309±9 305±3 0.53 51 390±186 260±18246±3 0.75 52 487±73 416±11 404±4 0.53 52 509±152 277±16 2 1338±50 298±8 293±3 0.57 1 472±36 435±8 427±3 0 50±3 1.53续表1SHC036分析号表面年龄/Ma SHC031 207Pb/206Pb±1σ207Pb/235U±1σ 206Pb/238U±1σ w(232Th)/w(238U)分析号表面年龄/Ma 207Pb/206Pb±1σ 207Pb/235U±1σ 206Pb/238U±1σ w(232Th)/w(238U) 53 394±110 318±14 308±4 1.08 53 585±89 385±16 353±4 0.70 54 684±78 352±11 304±3 0.57 54 311±49 311±7 311±2 0.71 55 1 318±41 453±7 302±3 0.81 55 704±25 479±6 434±3 0.47 56 380±78 358±10 354±4 0.78 56 440±74 258±7 238±2 0.57 57 379±89 361±12 359±4 0.52 57 323±40 277±6 272±2 0.22 58 336±92 290±10 284±3 0.92 58 321±127 265±12 259±3 0.55 59 717±43 405±6 352±3 0.34 59 623±151 347±24 307±5 0.52 60 572±159 365±23 333±6 0.65 60 358±54 317±8 311±3 0.45 61 416±59 397±8 394±3 0.69 61 351±58 327±9323±3 0.66 62 1 102±35 449±6332±3 0.86 62 550±26 504±7 494±3 0.92 63 635±95 401±14 361±5 1.05 63 504±143 291±16 265±2 1.36 64 579±88 300±10 265±3 0.63 64 288±71 251±7 247±2 0.49 65 910±102 393±16 310±5 0.48 65 2 498±7 2378±7 2 240±11 0.46 66 510±45 450±7438±3 0.64 66 364±53 308±8 301±2 0.85 67 368±44 339±5 334±3 0.76 67 1 568±25 356±6 199±2 0.40 68 600±239 420±5 387±3 0.68 68 922±28 881±7 864±4 0.20 69 377±97 309±11300±4 0.63 69 432±81 398±15 392±4 0.55 70 828±40 472±7 401±3 0.40 70 351±73 296±10 289±3 0.79 71 599±53 438±8 408±4 0.38 71 543±122 431±19 410±4 0.54 72 609±66 347±9 309±3 1.41 72 1 562±41 779±17535±6 0.70 73 477±60 285±6 262±2 0.73 73 544±167 344±21 315±4 1.41 74 415±100 317±12 303±4 0.60 74 386±72 236±62 286±14 0.95 75429±53 409±8 404±3 0.88 75 328±41 300±6 296±2 0.24对4个样品中250多个颗粒的测量统计结果表明:锆石的长径一般在20~100 μm 之间,短径在20~80 μm之间.除样品SHC006和SHC036中个别锆石颗粒呈长条状外,所测锆石的长宽比小于2,说明大多数锆石是剥蚀、搬运沉积的产物[9].在所研究的250颗锆石颗粒中,仅有3颗锆石中Th与U的质量比值小于0.1,分别为SHC031-3、SHC031-39和SHC036-65,形态上已经分辨不出环带结构现象,可见到明显的增生边,判断应为变质成因锆石颗粒.有218颗锆石中Th与U的质量比值大于0.4,大多数都可见到明显的环带结构和明暗相间的结构特征(图2),应为岩浆成因锆石颗粒[10-11].图2 代表性锆石微区CL图像及相应206Pb/238U年龄Fig.2 The micro-zoneCL images of representative zircon samples and theircorresponding206Pb/238U ages3.2 U-Pb同位素分析结果3.2.1 小泉沟群对样品SHC019(N43°54'2.7″,E85°39'49.2″)共测量了50粒锆石,其中35粒锆石的U-Pb同位素组成落在谐和曲线上,15粒锆石存在不同程度的Pb丢失 (图3(a)),35粒谐和锆石的206Pb/238U的加权平均年龄为(326±15)Ma.所测最年轻和最老的锆石谐和年龄分别为(264±2)Ma和(1533±10)Ma,说明该套岩石的沉积时代不老于晚二叠世.3.2.2 水西沟群对样品SHC031(N43°53'33″,E85°51'46.6″)的75粒锆石进行了分析,其中57粒锆石获得了谐和年龄,18粒不谐和锆石表现为少量的Pb丢失(图3(b)),且其206Pb/238U表面年龄均小于(456±5)Ma.所测最年轻锆石谐和年龄为(261± 2)Ma,说明该套岩石的沉积时代不老于晚二叠世.3.2.3 艾维尔沟群样品SHC036(N43°55'4.1″,E85°52'18.9″)采自艾维尔沟群头屯河组下部的含砾砂岩,对其75粒锆石进行了分析,其中58粒锆石获得了谐和年龄(图3(c)).所测最年轻和最老的锆石谐和年龄分别为(170±1)Ma和(2 886±13) Ma,说明该套岩石的沉积时代不老于中侏罗世.样品SHC006(N43°57'8.1″,E85°42'49.9″)采自艾维尔沟群齐古组下部的砂岩,对50粒锆石进行了分析,仅有2粒锆石有不明显的Pb丢失,由48粒锆石构成的不一致线与谐和曲线的上、下交点年龄分别为(957±160)Ma和(250±16)Ma(MSWD为9.8)(图3(d)),且由其中44粒谐和锆石获得的206 Pb/238U加权平均年龄为(277±3)Ma(MSWD为19).所测最年轻锆石谐和年龄为(259±3)Ma,说明该套岩石的沉积时代不老于晚二叠世.图3 准噶尔盆地南缘沉积岩中锆石颗粒的206Pb/238U和207Pb/235U谐和图Fig.3 The concordia plot of206Pb/238U and207Pb/235U for zircon samples from sedimentary rocks in the southern margin of Junggar Basin3.3 锆石的年龄分布特征锆石的年龄分布特征见图4.锆石形成年龄的范围在170~2 886 Ma间,最年轻的碎屑锆石年龄是(170±1)Ma,来自艾维尔沟群头屯河组,进一步证实这套地层不老于中侏罗统;从170 Ma至1 533 Ma年龄段,锆石年龄的分布几乎是连续的,而缺失1 533~2 240 Ma年龄段的锆石,说明该区自中元古代至中侏罗世一直是接受沉积区;在分析的250颗锆石中有3颗显示了2240 Ma、2 636 Ma和2 886 Ma的年龄值,推测它们可能来源于天山在燕山期造山后已有古老基岩被剥露的产物.小泉沟群SHC019样品中锆石形成的谐和年龄范围为264~451 Ma,主要峰值集中在270~340 Ma和380~430 Ma.反映其沉积物主要是华力西期和加里东期的产物,说明该区在古生界是接受沉积区,而其物源区可能至少曾经历过2次较大的隆升、剥蚀事件.水西沟群SHC031样品中,锆石形成的年龄范围为261~456 Ma,其主要峰值范围与SHC019相似,但缺少265~285 Ma和365~385 Ma 年龄段的锆石,330~360 Ma和400~410 Ma锆石有所增加,说明其沉积物主要是华力西运动早期天山运动的产物.艾维尔沟群头屯河组SHC036样品中锆石形成年龄范围为170~2 886 Ma,除了具有上述样品的峰值区外,增加了170~200 Ma和430~450 Ma年龄段的锆石,说明有燕山早期的和晚奥陶世的产物流入该区.480~1 000 Ma年龄段的锆石也有少量分布,3颗年龄最大的锆石就出现在这个件品中,揭示沉积物源可能来自不同的地区,且源区有元古宙的地层出露.艾维尔沟群齐古组SHC006样品中,锆石的形成年龄范围为260~1 512 Ma,主要峰值集中在260~310 Ma.该区地层齐古组覆于头屯河组上,而缺失燕山期的产物,说明晚侏罗世该区已开始隆升为非沉积区.图4 锆石年龄分布柱状图Fig.4 The column graph for zircon age distribution 从这些锆石的总体年龄分布特征和不同层位样品的对比以及锆石颗粒的形态可以看出:准南中段中生界的沉积物源可能不是单一的,特别是艾维尔沟群;而在这些沉积物的组成中,既有一部分来自同一稳定的源区(与260~320 Ma阶段形成的锆石相对应),也有来自其他源区沉积物源的改变(与其他年龄段的锆石数量变化相对应).而碎屑锆石既有来自近源的自形且磨圆度低的颗粒,也有可能来自经历了长距离搬运而呈浑圆状的颗粒.总体分析,砂岩中主要锆石的形成年龄可分为3期:分别为加里东期、印支期和燕山期.锆石主体结晶于早古生代,在晚古生代和中生代早—中期的构造变质事件中形成锆石的增生边及新生颗粒.含U低的锆石的不谐和铅丢失模式可能是由于后来的构造岩浆运动所致.170~200 Ma的年龄区间显示了燕山早期运动的影响.250~350 Ma的峰值区代表了印支期的物源是研究区的主要贡献者.400~440 Ma的谐和锆石颗粒可以来源于加里东运动期剥蚀的产物.4 结论此次研究所涉及的2组最古老锆石的年龄峰值为2 200~2 900 Ma和1 000~1 600 Ma,形成于这2个阶段的锆石共8颗,其源区应为准噶尔的南缘基底.考虑到在准南中段古老基底的出露面积并不是很广,此次研究的碎屑锆石谐和年龄为准噶尔存在太古宙基底提供了证据.伊山主体由石炭系凝灰岩和火山岩以及侵入其中的巨大岩基型花岗岩组成,其花岗岩主要形成于华力西期和加里东期.本研究中水西沟群碎屑锆石形成年龄的主峰值为290~310 Ma和400~410 Ma,且锆石形态多显示近源沉积的特征,反映伊山应是主要物源区并非沉积区.海西期岩浆活动在天山地区表现得很强烈,具有分布广、规模大、种类多等特点.所分析的这一阶段的锆石占67%,达168颗.砂岩样品中海西期锆石多呈自形且磨圆度低的结构特征,显示近源沉积的特点,这一阶段的物源应来自伊山.进入中生代,天山地区火山活动大大减弱,出露的印支-燕山期岩浆岩为数不多,主要分布在天山北坡、天山东段吐鲁番等地.碎屑锆石中出现170~200 Ma的年龄峰值,证实了燕山运动对研究区物源的影响,综合判断其物源为天山北坡.参考文献:[1]方世虎,郭召杰,贾承造,等.准噶尔盆地南缘中—新生界沉积物重矿物分析与盆山格局演化[J].地质科学,2006,41(4):648-662.FANG Shi-hu,GUO Zhao-jie,JIA Cheng-zao,et al.Mesocenozoic heavy minerals assemblages in the southern Junggar Basin and its implicationsfor Basin-Orogen pattern[J].Chinese Journal of Geology,2006,41(4):648-662.[2]方世虎,贾承造,宋岩,等.准南前陆盆地燕山期构造活动及其成藏意义[J].地学前缘,2005,12(3):67-76.FANG Shi-hu,JIA Cheng-zao,SONG Yan,et al.The tectonism during Yanshan period in southern Junggar foreland basin and its implications for hydrocarbon accumulation[J].Earth Science Frontiers,2005,12(3):67-76.[3]徐学义,李向民,马中平,等.北天山巴音沟蛇绿岩形成于早石炭世:来自辉长岩LA-ICPMS锆石U-Pb年龄的证据[J].地质学报,2006,80(8):1168-1176. XU Xue-yi,LI Xiang-min,MA Zhong-ping,et ICPMS zircon U-Pb dating of gabbro from the Bayingou ophiolite in the northern Tianshan mountains[J].ACTA Geologica Sinica,2006,80(8):1168-1176.[4]李锦轶,何国琦,徐新,等.新疆北部及邻区地壳构造格架及其形成过程的初步探讨[J].地质学报,2006,80(1):148-168.LI Jin-yi,HE Guo-qi,XU Xin,et al.Crustal tectonic framework of northern Xinjiang and adjacent regions and its formation[J].ACTA Geologica Sinica,2006,80(1): 148-168.[5] Wartes M A,Carroll A R,Greene T J.Permian sedimentary record of the Turpan-Hami basin and adjacent regions,northwest China:Constraints on postamalgamation tectonic evolution[J].Geol Soc Amer Bull,2002,114(2):131-152.[6]杨高学,李永军,司国辉,等.东准卡拉麦里地区贝勒库都克岩体锆石 LA-ICPMS U-Pb测年及地质意义[J].大地构造与成矿学,2010,34(1):133-138.YANG Gao-xue,LI Yong-jun,SI Guo-hui,et ICPMS U-Pb zircon dating of the beilekuduke granite in Kalamaili area,east Junggar,Xinjiang,China and its geological implication[J].GeotectonicaetMetallogenia,2010,34(1):133-138.[7]周立发,赵重远.准噶尔盆地南缘地质构造演化与油气[M].西安:西北大学出版社,1995:5-148.[8] Yuan H L,Gao S,Liu X M.Accurate U-Pb age and trace element determinations of zircon by laser ablation inductively coupled plasma mass spectrometry[J].Geostan Geoanal RES,2004,28:353-370.[9]潘兆橹.结晶学与矿物学[M].北京:地质出版社,2001:169-174.[10]Zhou M F,Yan D P.SHRIMPU-Pb zircon geochronological and geochemical evidence for neoproterozoic arc-magmatism along the western margin of the yangtze block,south china[J].Earth and Planetary Science Letters,2002,196:51-67.[11]吴元保,郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报,2004,49(16):1589-1604.。
锆石的成因和U—Pb同位素定年的某些进展
![锆石的成因和U—Pb同位素定年的某些进展](https://img.taocdn.com/s3/m/1da14c106edb6f1aff001f90.png)
地
质
地
球
化
学
s’Y 1 R
20 年第 2 卷第 4 01 9 期
2 1o 4.0 9.4 . 2 0l '
CE 【 0 0G— CE H瑚 OC
文章编号 :0 8 24 吐) l 04 10. 4 (0 O 一06 一昕 一O
锆 石的成 因和 u P —b同位 素定年的某 些进 展
物 。 由于 离 子 探 针 和 激 光 等 离 子质 谱 的 技 术 发
展 , 别 后者 近 几年取 得很大 进展 , 特 利用 颗粒错 石 微 区的 u P b法 讨 论 地 质 事 件形 成 时 代成 为 国际 地 质学界 研 究 热 点 [ - 。本 文就 国 内外关 于 锆 3 o 石 以上方 面 的研 究成 果进 行综述 。
锆 石是岩 浆 岩 、 变质岩 、 积岩和 月岩 中最 重 沉 要 的 副矿物 由于锆 石 具 有 特殊 的矿物 性质 , 能 够用来讨 论 岩石 成 因和 地质事件 的形 成 时代 为 了深入讨 论锆 石 的成 因 . 少 学者 分 别 从 锆 石 的 不
z 含 量 , 它的 晶型 是 由 晶体 内部 结 构 和结 晶时 r 而 的物 理化 学条件 所决定 的 Ⅲ 。锆 石 的基本 形态特 1
谢桂青 , 胡瑞 忠 蒋 国豪 , , 赵军红 ,
(. 1 中科 院地球化 学研 究所 矿床开放实验室 , 州 贵 阳 500 ; . 贵| 502 2 中科院研究生院 , 北京 10 3) 0 09
摘
要: 锆石是 岩浆岩、 变质 岩、 沉积岩和 月岩 中最重要 的刮矿物 。本 文分别从 锆石 的形 态 、 tc 3X 影响锆石 形 , 5
征 可以揭示 它 在岩 石 中的历 史 , 并据 此 合理 地解
青海东昆仑托克妥Cu-Au(Mo)矿床含矿斑岩成因:锆石U-Pb年代学和地球化学约束
![青海东昆仑托克妥Cu-Au(Mo)矿床含矿斑岩成因:锆石U-Pb年代学和地球化学约束](https://img.taocdn.com/s3/m/4d4da73a5e0e7cd184254b35eefdc8d376ee14db.png)
写一篇青海东昆仑托克妥Cu-Au(Mo)矿床含矿斑岩成因:锆石U-Pb年代学和地球化学约束的报告,600字
青海东昆仑托克妥Cu-Au(Mo)矿床位于青海省定西市塔尔曼乡,是一个岩浆型铜金矿床,主要产矿物为铜、金、钼。
通过历史地质学和锆石U-Pb定年研究,地质学家得出了研究表明,此处矿床形成于中生代,距今大约101 Ma。
锆石U-Pb定年结果指出,托克妥Cu-Au(Mo)矿床的形成是由
三个时期的岩浆活动造成的,分别为102.7Ma、99.4Ma和
94.8Ma。
通过对岩石样品的地球化学分析,该矿床的成因可
以被划分为三种类型:高强度花岗岩系山脉造山作用,弧头大陆内拉结构变质作用以及侵入性岩浆活动。
矿床形成有三个阶段性的岩浆活动,第一阶段的岩浆活动产生了准碳酸盐系的金矿石,锆石U-Pb定年表明这发生在102.7 Ma,第二阶段的岩浆活动产生了基性系火山岩,定年结果说
明这发生在99.4 Ma,最后一阶段的岩浆活动产生了轻碳酸盐
系的金矿石,发生在94.8 Ma。
这三个时期的岩浆活动都暗示
了不同的深部构造背景。
总之,青海东昆仑托克妥Cu-Au(Mo)矿床是由三次岩浆活动
产生的,其中第一次岩浆活动是由高强度花岗岩系山脉造山作用形成的,第二次岩浆活动是由弧头大陆内拉结构变质作用形成的,而最后一次岩浆活动则是由侵入性岩浆活动形成的。
锆石U-Pb定年结果表明,托克妥Cu-Au(Mo)矿床形成于中生代,大约距今101 Ma。
锆石U-Pb年龄不一致原因浅析
![锆石U-Pb年龄不一致原因浅析](https://img.taocdn.com/s3/m/bff18f31e3bd960590c69ec3d5bbfd0a7956d56b.png)
锆石U-Pb年龄不一致原因浅析赖冬梅【期刊名称】《四川有色金属》【年(卷),期】2004(000)002【摘要】单颗粒锆石U-Pb法是当前最重要的一种同位素定年方法,但由于放射成因铅的不同程度丢失而导致获得不一致的年龄数据.本文讨论了导致年龄数据不一致主要因素是由蜕晶化作用、重结晶作用、扩散作用和增生作用过程中产生的放射成因铅丢失,并提出为了获得具有明确地质意义的年龄数据,必须采用各种手段尽可能选择新鲜、结晶完好、成因单一的锆石作为测试对象.在定年方法中,应首选能进行微区分析的离子探针质谱法和激光探针-等离子质谱法.【总页数】7页(P12-18)【作者】赖冬梅【作者单位】成都理工大学材料与生物工程学院,成都,610059【正文语种】中文【中图分类】P5【相关文献】1.云南腾冲大松坡锡矿成矿年代学研究:锆石LA-ICP-MS U-Pb年龄和锡石LA-MC-ICP-MS U-Pb年龄证据 [J], 马楠;邓军;王庆飞;王长明;张静;李龚健2.“花岗岩浆晶出锆石U-Pb体系的封闭温度≥850℃”质疑——基于元素扩散理论、锆石U-Pb年龄与全岩Rb-Sr年龄对比的证据 [J], 章邦桐;凌洪飞;吴俊奇;陈培荣3."花岗岩锆石U-Pb年龄能代表花岗岩侵位年龄"质疑——花岗岩锆石U-Pb年龄与全岩Rb-Sr等时线年龄对比证据 [J], 章邦桐;吴俊奇;凌洪飞;陈培荣4.胶东海阳所斜长角闪岩的锆石U-Pb年龄──多期变质作用对锆石不一致线年龄影响的实例 [J], 李曙光;陈移之;宋明春;张志敏;杨淳;赵敦敏5.热离子质谱测定的颗粒级锆石U-Pb不一致年龄数据处理的多边形准则——以大别山和东昆仑山深变质岩为例 [J], 陈能松;李惠民;何蕾;刘嵘;杨勇因版权原因,仅展示原文概要,查看原文内容请购买。
锆石成因矿物学与锆石微区定年综述
![锆石成因矿物学与锆石微区定年综述](https://img.taocdn.com/s3/m/de9f05217f21af45b307e87101f69e314232fa70.png)
二、锆石成因矿物学与锆石微区 定年的概念
锆石成因矿物学主要研究锆石的成因、分类、分布规律及其与岩石、矿物和 地质事件之间的关系。而锆石微区定年则是一种利用高精度测量手段,对单个锆 石颗粒内的微小区域进行定年,以揭示地质历史过程中细节时间尺度上的变化。
三、发展历史
锆石成因矿物学自20世纪初开始发展,经历了从传统分类学到现代化学成分 分析等不同阶段。同时,随着科技的不断进步,锆石微区定年技术也在不断发展 完善。自20世纪80年代以来,高精度质子轰击熔融法、激光剥蚀法等新技术的应 用,使得锆石微区定年研究得以迅速发展。
一、锆石成因矿物学与锆石微区 定年的重要性
锆石成因矿物学研究对了解地球演化、地壳形成和演化过程具有重要意义。 同时,通过对锆石微区的定年研究,可以获取地质历史过程中精确的时间信息, 为地球科学、地质学、古生物学等领域提供宝贵数据。因此,锆石成因矿物学与 锆石微区定年研究对于深化我们对地球科学体系的理解具有不可忽视的作用。
此外,加强国际合作与交流也是未来的重要方向。通过与其他国家和地区的 学者和专家进行深入的交流与合作,我们可以共享资源、技术和经验,推动该领 域的发展和创新。
七、总结
锆石成因矿物学和锆石微区定年研究是地球科学领域中的重要分支,对于深 化我们对地球演化历程和地壳形成与演化的理解具有不可忽视的作用。
总之,锆石成因矿物学研究及其对UPb年龄解释的制约是一个非常重要的研 究领域。通过深入研究和探讨,我们可以更好地理解地球内部的演化历史和地质 作用过程,为地球科学领域提供更多有价值的信息。在未来,需要进一步加强这 一领域的研究工作,提高我们的认识和理解,以更好地应用于地球科学研究和实 践中。
参考内容三
总之,LAMCICPMS锆石微区原位UPb定年技术是一种非常重要的地质学技术, 它可以提供更多、更准确的地质年代和地质信息,有助于深入了解地球的历史和 演化过程。
安徽庐枞盆地含矿岩浆岩锆石U-Pb年龄及其对成矿时限的约束
![安徽庐枞盆地含矿岩浆岩锆石U-Pb年龄及其对成矿时限的约束](https://img.taocdn.com/s3/m/7885007b7fd5360cba1adb2a.png)
年 。当矿床 中不 发育 或不 能挑纯 足够 分析 数量 的这 些矿物 时 , 以获 得精 确 成矿 年 代 。尽 管 已有 黄铁 难 矿 、 锌 矿 等 硫 化 物 R - s R -r定 年 的 报 道 闪 eO 、 bS
( r y i ta. 1 9 S en e 1 , 0 0 Ya g e 1 , F e de e 1 , 9 7; t i ta . 2 0 ; n t a. r
该 区含 矿 岩 浆 岩 锆 石 u P — b年 龄 的研 究 并 以此 约 束 成 矿 作 用 时 限 , 明 庐 枞 盆 地 金 属 成 矿 作 用 主 要 发 生 于 15 表 3 ~ 16Ma其 成 矿 地球 动 力 学 背 景 对 应 中 国 东部 中生 代 发 生 的构 造体 制 大 转 折 和 岩 石 圈 大拆 沉 两 大 地 质事 件 。 2 , 关 键 词 : 矿 岩 浆 岩 ; 石 u P 年 龄 ; e uA 含 锆 ~b F — — u成 矿 ; 矿 时 限 ; 徽 庐 枞 地 区 C 成 安
组 合关 联 的含 矿岩 浆 岩精 确 定 年 , 足 以讨 论 盆地 不 内相关 的金 属成矿 时间格架 ; 因此 , 需要在成 矿地质 特征深 入研究 基础 上 , 一步 测 定不 同类 型含 矿岩 进
20 ; 福 坤 等 , 0 5 Ha ta ,0 7 谢 建 成 等 , 0 1陈 2 0 ; ne 1 20 ; . 20 ) 但 国内实 验室 对这 些技 术方 法还 处 于探 索阶 09 ,
景 文等 ,0 4 徐 晓春等 ,0 8 谢 建成 等 ,0 9 。 20; 20 ; 2 0 ) 长江 中下游 成 矿 带 的庐一 地 区 为 凹ቤተ መጻሕፍቲ ባይዱ陷火 山 岩 枞
陈衍景 等 ,0 4 。但成 矿年 代 精确 测定 技 术方 法受 20)
锆石U—Pb同位素定年的原理、方法及应用研究
![锆石U—Pb同位素定年的原理、方法及应用研究](https://img.taocdn.com/s3/m/c9ab15f34431b90d6d85c791.png)
锆石U—Pb同位素定年的原理、方法及应用研究本文在研究中主要围绕锆石开展,在分析其化学特征的基础上,对U-Pb同位素定年的主要原理进行判断,提出定年的实际方法,并分析U-Pb同位素定年在韧性剪切带定年以及分析沉积盆地物源等方面的应用。
标签:U-Pb定年;锆石;方法;运用0 前言作为月岩、变质岩、岩浆岩以及沉积岩中的重要矿物,锆石在成分上涉及到较多微量元素、放射性元素。
而且该矿物本身具有较为稳定的物化性质,分布极为广泛,加上其自身封闭温度较高,不仅是矿物定年中的最佳选择,也能被应用于地质学中。
因此,本文对U-Pb同位素定年相关研究,具有十分重要的意义。
1 锆石化学特征及其U-Pb同位素定年原理关于锆石,其在不同类型岩石内所体现的微量元素、常量元素等较为不同,且锆石成因不同,其中的U、Th等含量也存在一定差异,且两种含量在比值上变化较为明显,如对于变质锆石U与Th含量的都较少,比值可保持在0.1以内,而岩浆锆石,U与Th含量较高,比值超出0.4。
需注意由于较多岩浆中涵盖的组分较为特殊,所以在锆石成因判断中并不能完全依靠Th/U比值。
假若从稀土元素看,锆石中有较多花岗岩、镁铁质岩等存在,具有较高的丰度。
而对于U-Pb 同位素进行定年,其实际原理主要表现在对母体进行测定的基础上,将其中因衰变而带来的子体同位素含量变化进行测定,结合放射性衰变定律,使同位素自形成起的年龄得以推算出来。
在测定过程中,由于有U、Th都存在于锆石中,而且贫普通Pb,本身具有较为明显的抗后期影响优势,此时便需对Th、U衰变为Pb的情况分析,完成整个定年过程。
需注意的是对于1000-1200Ma的年轻锆石,测试过程中可直接引入206Pb/238U,原因在于年轻锆石不存在较多放射成因铅,而在放射成因铅较多的锆石中,可采取的定年方式为207Pb/206Pb[1]。
2 U-Pb同位素定年的主要方法分析从现行定年中采用的方法看,常见的主要以LA-ICP-MS、SIM以及ID-TIMS 等方法,这些方法用于U-Pb同位素定年中有各自的优势与弊端。
锆石成因矿物学研究及其对UPb年龄解释的制约
![锆石成因矿物学研究及其对UPb年龄解释的制约](https://img.taocdn.com/s3/m/24775264b5daa58da0116c175f0e7cd1842518ce.png)
锆石成因矿物学研究及其对UPb年龄解释的制约一、本文概述本文旨在深入探讨锆石的成因矿物学研究及其对UPb年龄解释的制约。
锆石作为一种常见的副矿物,广泛存在于各类岩石中,其独特的物理化学性质使其成为地质年代学研究的理想对象。
通过精确测定锆石的UPb年龄,我们可以获取地壳演化、岩浆活动、变质作用等地质事件的重要信息。
然而,锆石的成因矿物学特征对其UPb年龄的解释具有重要影响,因此,对锆石成因矿物学的研究至关重要。
本文将首先介绍锆石的基本性质,包括其晶体结构、化学组成以及在地壳中的分布规律。
随后,我们将重点分析锆石的成因类型,包括岩浆成因、变质成因和热液成因等,并探讨各种成因类型对锆石UPb年龄的影响。
在此基础上,我们将进一步讨论锆石成因矿物学对UPb年龄解释的制约,包括锆石成因的复杂性、UPb体系的封闭温度以及锆石中Pb丢失等问题。
通过本文的研究,我们期望能够为锆石UPb年龄解释提供更加准确、可靠的地质年代学依据,并为地壳演化、岩浆活动等地质问题的研究提供新的视角和思路。
二、锆石成因矿物学的基本原理锆石,作为一种常见的副矿物,在地球科学研究中具有重要地位。
其独特的物理化学性质,如高熔点、高硬度以及抗化学风化能力,使得锆石能在各种地质环境中稳定存在,从而保留了丰富的地质信息。
锆石的成因矿物学研究,主要基于其晶体结构、化学成分以及微量元素含量等特征,揭示其形成环境和过程,进而为UPb年龄解释提供重要的制约。
锆石的晶体结构决定了其稳定性和元素容纳能力。
锆石属于硅酸盐矿物,其晶体结构中的硅酸盐四面体为阳离子提供了稳定的配位环境。
特别是锆离子(Zr4+)在硅酸盐四面体中的占位,使得锆石对许多元素,特别是稀土元素(REE)和高场强元素(HFSE)具有高度的容纳能力。
这种特性使得锆石在记录地质历史过程中,能够保存这些元素的原始信息。
锆石的化学成分是反映其成因的重要标志。
根据锆石中不同元素的含量和比例,可以推断其形成的环境和过程。
锆石成因矿物学与锆石微区定年综述
![锆石成因矿物学与锆石微区定年综述](https://img.taocdn.com/s3/m/4ea7925d9a6648d7c1c708a1284ac850ad0204e0.png)
锆石成因矿物学与锆石微区定年综述
锆石是岩浆岩、变质岩和石英脉型金矿床中的一种常见副矿物,对锆石成因类型的准确判断是正确理解锆石U-Pb年龄意义的关键.本文中笔者对不同成因类型锆石的判别标志及年龄意义进行系统的总结,并认为将锆石的*极发光图像(CL)、背散*电子图像(BSE)、痕量元素组成及矿物包裹体特征的研究相结合是进行锆石成因鉴定的有效方法.近年来同位素质谱技术的发展使得人们对同一锆石颗粒内部不同成因类型的锆石晶域进行原位年龄测定成为可能.通过微区原位定年技术,能够给出有关寄主岩石的地质演化历史等重要信息,这可以为地质过程的精细年代学格架的建立提供有效的*据.来自不同类型岩石中的锆石可能经历了Pb的扩散丢失作用、晶格损伤导致的蜕晶化作用以及变质重结晶作用.这些过程对锆石计时的准确*和有效*带来了不同程度的影响.为了对测定锆石年龄的地质意义进行合理解释,在进行锆石U-Pb定年前,必需对锆石进行成因矿物学和矿物内部结构的深入研究,特别是*极发光和背散*电子成像研究,通过内部结构特征确定锆石的成因类型和形成环境.笔者认为,组成单一的岩浆锆石是理想的U-Pb定年对象,变质重结晶锆石域常是重结晶锆石和继承晶质锆石的混合区,容易给出混合年龄,只有变质增生锆石和完全变质重结晶锆石才能给出准确的变质时代,而从继承锆石中鉴别出的热液锆石可以获得可靠的流体活动时间.。
激光拉曼、阴极荧光研究对蜕晶化锆石及其 U-Pb 年龄解释的指示意义
![激光拉曼、阴极荧光研究对蜕晶化锆石及其 U-Pb 年龄解释的指示意义](https://img.taocdn.com/s3/m/59d6b975cbaedd3383c4bb4cf7ec4afe04a1b139.png)
激光拉曼、阴极荧光研究对蜕晶化锆石及其 U-Pb 年龄解释的指示意义张永清【摘要】Three Metamictized Zircons were investigated by Laser-Raman Spectroscopy analysis, CL images, and U-Pb isotopic methods. It is proved that the Laser-Raman Spectroscopy analysis and the CL images can indicate metamict degrees of the zircons and provide significant constraints on U-Pb age interpretation. Particular atten-tion should be attached to the internal texture study of zircons, especially using Laser-Raman Spectroscopy analy-sis and CL images, to get better interpretation of U-Pb ages.% 通过对3个不同程度蜕晶化锆石样品的激光拉曼光谱,阴极荧光图像(CL)和U-Pb年龄特征进行对比分析,笔者发现锆石CL图像和激光拉曼光谱测试对蜕晶化锆石及其U-Pb年龄解释有很好的指示作用,因此强调加强矿物内部结构的研究,建议锆石激光拉曼测试、阴极荧光观察及锆石U-Pb同位素测试相结合分析锆石U-Pb年龄数据。
【期刊名称】《地质调查与研究》【年(卷),期】2012(000)003【总页数】6页(P224-228,235)【关键词】蜕晶化作用;激光拉曼;阴极荧光;锆石U-Pb年龄【作者】张永清【作者单位】天津地质矿产研究所,天津 300170【正文语种】中文【中图分类】P595锆石具有较强的抵抗风化、蚀变和变质作用影响的能力,分布广泛,U-Pb体系封闭温度高、普通铅含量低,一直是U-Pb定年的首选对象。
锆石的成因和U_Pb同位素定年的某些进展_谢桂青
![锆石的成因和U_Pb同位素定年的某些进展_谢桂青](https://img.taocdn.com/s3/m/91f7f7f3f705cc1755270937.png)
文章编号:1008-0244(2002)01-0064-07锆石的成因和U 2Pb 同位素定年的某些进展谢桂青1,2,胡瑞忠1,蒋国豪1,2,赵军红1,2(1.中科院地球化学研究所矿床开放实验室,贵州贵阳550002;2.中科院研究生院,北京100039)摘 要:锆石是岩浆岩、变质岩、沉积岩和月岩中最重要的副矿物。
本文分别从锆石的形态、以及影响锆石形态的因素、锆石的主量、微量、稀土元素地球化学和氧同位素特征等方面进行系统综述。
同时,论述了目前国内外有关锆石U 2Pb 法定年的研究进展,并对各种方法的局限性加以总结。
关键词:锆石;地球化学特征;U 2Pb 法中图分类号:P597;P581 文献标识码:A收稿日期:2001204205;修回日期:2001208229基金项目:国家杰出青年科学基金(49925309);国家重大基础研究规划项目(G 1999043200)第一作者简介:谢桂青(19752),男,现正在攻读博士学位,地球化学专业。
锆石是岩浆岩、变质岩、沉积岩和月岩中最重要的副矿物。
由于锆石具有特殊的矿物性质,能够用来讨论岩石成因和地质事件的形成时代。
为了深入讨论锆石的成因,不少学者分别从锆石的形态、主量、微量和稀土元素以及氧同位素等方面进行了一系列研究[1~29],特别是近十几年离子探针开发以来,人们逐渐认识到同一地质体的不同锆石颗粒以及同一锆石颗粒内部的不同区域,均可能具有不同的成因,故只有对大量锆石颗粒进行全面分析,才可以得出具有地质意义的锆石成因,在此方面已取得了一定研究进展。
同时,因锆石具有富含U 和Th 、普通铅含量低及封闭温度高的特征,是U 2Pb 法确定地质事件时代最理想的矿物。
由于离子探针和激光等离子质谱的技术发展,特别后者近几年取得很大进展,利用颗粒锆石微区的U 2Pb 法讨论地质事件形成时代成为国际地质学界研究热点[30~56]。
本文就国内外关于锆石以上方面的研究成果进行综述。
LA-ICPMS锆石U-Pb定年主要技术问题
![LA-ICPMS锆石U-Pb定年主要技术问题](https://img.taocdn.com/s3/m/66263646b94ae45c3b3567ec102de2bd9605de0a.png)
LA-ICPMS锆石U-Pb定年主要技术问题LA-ICPMS锆石U-Pb定年主要技术问题锆石是自然界岩石中的一种重要副矿物,由于它具有较高的U、Th含量使其成为U-Pb同位素地质年代学中最常研究的对象,并逐渐形成了一个应用前景极其广阔的分支学科-锆石学(zirconology)。
特别是,将锆石U-Pb年龄与其微量元素和Hf、O等同位素结合,为探讨地质作用的时标及过程提供了重要地球化学参数。
根据所测样品的性质,目前在锆石U-Pb同位素地质年代学中主要采用微量锆石法、单颗粒锆石法和微区分析三种方法。
但从分析的空间分辨率和使用的技术来看,上述方法基本可分为热电离质谱(TIMS)和微区原位(in situ)分析两类。
其中TIMS分析精度最高,但缺点是得不到锆石年龄变化的空间信息。
因此,锆石的微区原位分析构成近年来U-Pb同位素地质年代学的主导趋势。
在微区分析方法中,应用最广泛的是目前人们熟悉的离子探针(Secondary Ion Mass Spectrometry,简称SIMS),它有SHRIMP和CAMECA两种。
由于该仪器可对锆石进行微区原位高精度定年,从而成为目前研究复杂锆石年龄的最主要手段,并成为80年代以来地质科学创新成果的重大技术支撑。
离子探针锆石U-Pb 年代学研究和取得的成果不仅全面推动了地球科学的迅速发展,同时也带动了一系列同位素地球化学分析技术和方法的进步。
尽管运用离子探针可获得较高精度的年龄,但该仪器价格昂贵,且全球数量有限,难以满足锆石U-Pb定年的需求。
因此继离子探针之后,锆石的激光剥蚀等离子体质谱(LA-ICPMS)定年技术快速发展,并出现了若干LA-ICPMS锆石U-Pb微区原位定年结果可与SHRIMP 数据媲美的实例(Ballard et al., 2001; 袁洪林等,2003),从而使锆石微区U-Pb年代学更加经济和简便(Ko?ler and Sylvester, 2003)。
锆石定年原理 锆石U-Pb定年(1)
![锆石定年原理 锆石U-Pb定年(1)](https://img.taocdn.com/s3/m/14bc51d269dc5022aaea00ad.png)
锆石一般无色透明,但常具浅棕,粉红,
有时深棕色。一般颜色深成因复杂,多为
老锆石或U、Th含量高的。其比重达 4.5-
4.6,无磁性,是分选的有利条件。
h
2
锆石的结构
锆石是四方晶系矿物
h
3
单偏光下
h
4
正交偏光下
h
5
常 呈 矿 物 包 裹 体
h
6
锆 石 的 晶 面
h
7
Zircon typological classification Pupin (1980)
h
8
锆石的形成
岩浆结晶形成:超基性-酸性,形成温度 很广,(锆石饱和温度计)。
变质作用:
• 深熔锆石; • 变质重结晶; • 变质增生; • 热液沉淀锆石; • 热液蚀变锆石。
h
9
锆石内部结构的观察
Smiling zircon 背散射电子图像(BSE imaging)
HF酸蚀刻法
阴极发光电子成相(CL imaging)
h
10
岩浆成因锆石
h
11
变质成因
岩浆结晶的
变质结晶的
岩浆结晶的on Geochronology
h
1
锆石的组成
锆石(zircon)是一个极其常见的副矿物。 它的化学成分是ZrSiO4,在Zr位置会有Hf, U, Th, Y等置换,Si位置会有少量P的置换。
一般锆石中含ZrO2 = 65.9%, SiO2 = 32%, HfO2 =1.0 2.0%, Th, U, HREE, P微量。
变质锆石成因的岩相学研究_高级变质岩U_Pb年龄解释的基本依据_简平
![变质锆石成因的岩相学研究_高级变质岩U_Pb年龄解释的基本依据_简平](https://img.taocdn.com/s3/m/9d3cbba8f524ccbff1218436.png)
变质锆石成因的岩相学研究———高级变质岩U -Pb 年龄解释的基本依据简 平,程裕淇,刘敦一(中国地质科学院地质研究所,北京100037)摘 要:岩相学在研究高级变质岩(含深熔片麻岩)的锆石中起着重要的作用,其内容主要包括锆石的形貌和表面特征,锆石在岩石中的赋存状态,与主晶的关系和内部结构等方面。
基于大别山地区的一些榴辉岩相岩石、麻粒岩相岩石和片麻状花岗质岩石中锆石的研究,阐述了继承锆石、变质锆石、深熔锆石、变质增生、深熔增生和后期流体改造的基本岩相学特征。
结合大别山地区的4个实例,说明了高级变质岩中锆石的岩相学研究方法和步骤,并初步提出了高级变质岩锆石U -Pb 年龄解释的岩相学标志。
关键词:高级变质岩;变质锆石;深熔锆石;岩相学;U -Pb 年龄;大别山中图分类号:P545 文献标识码:A 文章编号:10052321(2001)03018309收稿日期:20010228;修订日期:20010514基金项目:原地质矿产部重大基础资助项目(95011022);国家自然科学基金资助项目(49902005);国土资源部同位素地质开放实验室及中国博士后基金资助项目作者简介:简平(1964— ),男,副研究员,同位素地质年代学专业。
变质岩锆石U -Pb 年龄的解释,极大地依赖对锆石成因及其在开放体系中的性质的理解。
其一,高级变质岩中的锆石通常是由继承锆石和变质锆石组成的混合体系,甚至在一个晶体中,也可能包含不同成因和时代的晶域,如继承性晶核和增生[1~3]。
其二,锆石在其演化过程中易产生放射性成因铅丢失,有些与地质作用有关,如流体作用的影响,但也有一些与地质作用无关,如蜕晶质化及有关的扩散作用。
对锆石进行岩相学研究的目的在于:(1)分析和判断锆石(或晶域)的成因,区分继承锆石、变质锆石和深熔锆石;(2)研究锆石的后期地质改造,如流体改造。
本文以大别山地区一些高级变质岩(麻粒岩相岩石、榴辉岩相岩石和片麻状花岗质岩石)锆石的岩相学研究为基础,较系统地阐述了高级变质岩锆石组成的特点,以及继承锆石、变质锆石、深熔锆石、变质增生、深熔增生及后期流体改造的概念和基本岩相学特征,初步提出了高级变质岩锆石U Pb 年龄解释的岩相学标志,并结合实例,说明了变质岩锆石成因的岩相学方法和步骤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
较规则的外形,内部分带特征为无明显分带到面形分 带(图10)弘2,4 71,部分深熔增生锆石具有典型岩浆锆石 的环带特征.受热液作用影响明显的锆石,在锆石颗 粒的边部(图1 1(a))和/或不同生长阶段锆石的边部(图 11(b))会出现晶棱圆化、港湾状结构等外形特征,且这 些区域阴极发光强度较强、无明显分带,为热液溶蚀 作用形成的变质锆石[24,25,53】.当热液蚀变作用进一步 增强时,在锆石的周围会出现较宽的白色蚀变边(图 1 l(c)),对这些热液蚀变作用较为彻底的锆石区域进 行微区定年,可以得到热液蚀变作用的准确年龄M引.
www.scichina.corn
万方数据
1589
钭学屯苏 第49卷第16期2004年8月
评述
。
图1 HF酸蚀刻、BSE和CL图像显示的锆石内部结构
(a)HF酸蚀刻图像;(b)BSE图像;(c)CL图像.(a)引自Pidgeon等人…,(b)引自Nasdala等人‘3”,(c)引自Vavra等人o”
变质锆石是指在变质作用过程中形成的锆石.变 质锆石的形成主要有如下五种机制:(1)深熔过程中
从熔体中结晶嘶,42,431;(2)固相矿物分解产生的zr和 si,成核和结引44’451;(3)从变质流体中结晶[20,23,46,471; (4)原岩锆石的变质重结晶作用[36,48~521;(5)热液蚀变 作用对原有锆石的淋滤和溶蚀[26,34,51,53,54].因此,变质 锆石的形成既可以是变质过程中新生长的锆石(图3(a), (b)),又可以是变质作用对岩石中原有锆石不同程度 的改造(图3(c)),其中变质增生锆石既可以形成独立 的新生颗粒(图3(a)),还可以在原有锆石基础上形成 变质新生边(图3(b)).此外,锆石的蜕晶质化或蜕晶质 化锆石的重新愈合作用同样会对原有锆石产生不同程 度的影响"l'”J.
锆石变质重结晶作用是指结构上不稳定的锆 石,在一定温压条件下(一般温度>400cC),锆石晶 格进行重新愈合和调整,使锆石在结构上更加稳 定[30,34,37,48“52】.所以锆石发生变质重结晶作用时并没 有新的锆石生成,只是对原有锆石进行了不同程度 的改造.锆石的重结晶作用一般优先发生在锆石边 部以及锆石内部矿物包裹体周围等结构不稳定的区 域【2 6’50】.微量元素含量较高的锆石的稳定性低于微 量元素含量较低的锆石,因此,在同一样品的锆石中 微量元素较高的颗粒和/或区域更易于发生重结晶作 用[5 21.受蜕晶化作用影响的锆石区域由于其结构上的 不稳定性,最容易发生变质重结晶作用【5l’55].已有实验
图2不同类型岩浆锆石的CL图像 (a)辉长岩中的岩浆锆石;(b)花岗岩中的岩浆锆石和残留核;(c)花岗岩中的扇形分带锆石.(a)引自赵子福等人‘4“,(b)和(c)分别为大别山主薄
源和北淮阳花岗岩样品(本文)
BSE图像的明暗程度往往具有相反的对应关系.在绝 大多数情况下,CL图像反映锆石的内部结构最清楚, 也是锆石内部结构研究中最常用和最有效的方法.
变质3不同类型变质锆石内部结构特点
(a)完全变质新生锆石颗粒;(b)变质增生边;(c)原有锆石改造形成 的变质锆石.短白线为标尺,长度30 I,tm.(a)引自Hermann等人I”1,
(b)引自Rubatto等人‘”1,(c)为苏鲁仰口榴辉岩中的锆石(本文)
1590
图4变质锆石中典型的内部结构 (a)无分带结构;(b)弱分带结构;(c)扇形分带结构(rd);(d)冷杉叶状分带(ft);(e)面状分带(bd);(f)斑杂状分带(zcA);(g),(h)溶蚀结构;(i)海 绵状分带;(j)流动状分带(n).(a)和(b)分别为大别山燕子河混合岩和苏鲁青龙山榴辉岩中的锆石(本文),(c)一g)和(j)引自Vavra等人‘2“,(h)引自
评述
第49卷第16期2004年8月 讲学屯苏
锆石成因矿物学研究及其对U.Pb年龄解释的制约
吴元保郑永飞
(中国科学技术大学地球与空间科学学院,合肥230026.E—mail:ybwu@ustc.edu.cn)
摘要锆石u—Pb定年是同位素年代学研究中最常用的方法,如何对所得到的年龄值给予合理的地质解 释是锆石u—Pb年代学研究的重点.本文对近年来锆石成因矿物学研究及其对u.Pb年龄解释的制约方 面有关的进展进行了系统的总结和评述.不同地质环境中形成的锆石具有不同的结构类型:岩浆锆石 具有典型的振荡环带和/或扇形分带结构;变质锆石有其特征的内部结构,主要有无分带、弱分带、云雾 状分带、扇形分带、面状分带和斑杂状分带等,不同成因变质锆石具有其特征的内部结构特点.岩浆锆 石的微量元素特征与其岩石类型有关,从超基性岩到酸性岩中的锆石的微量元素含量逐渐升高;不同 成因变质锆石具有不同的微量元素特征,变质锆石的微量元素特征可以反映变质锆石的形成环境.通 过锆石与石榴石之间微量元素的配分,可以很好地确定含石榴石的高级变质岩中变质锆石形成的具体 P.T条件.锆石中原生包裹体矿物组成同样可以为锆石的形成环境提供明确的限定.因此,在进行锆石 u.Pb定年的同时,对锆石进行显微结构、微量元素特征和矿物包裹体成分等方面的综合研究,限定锆 石的形成环境,能够为锆石u—Pb年龄的合理解释提供有效的制约.
关键词 锆石 显微结构 微量元素 包裹体 U-Pb年龄
测定各种地质事件的准确时间是放射成因同位 素研究的主要任务之一.由于锆石广泛存在于各类 岩石中,富含u和Th,低普通Pb以及非常高的矿物 稳定性,使得锆石U.Pb定年成为同位素年代学研究 中最常用和最有效的方法之一.锆石u—Pb体系是目 前已知矿物同位素体系中封闭温度最高的,锆石中 Pb的扩散封闭温度高达900℃【l'2J,是确定各种高级 变质作用峰期年龄和岩浆岩结晶年龄的理想对象. 对于只有单阶段演化历史的岩浆岩,锆石U—Pb定年 往往可以给出非常准确的年龄信息.但是对于具有 复杂演化历史的变质岩,锆石往往具有多期生长和/ 或重置区域的复杂内部结构.虽然锆石记录了相应 岩石经历的多期演化历史,同时它也给常规热电离 质谱(TIMS)分析方法获得复杂类型锆石的精确年龄 及获得年龄的准确解释带来了困难.
分带(图5(c))、弱分带或无分带(图5(d))等【26‘.榴辉岩 相变质增生锆石一般为半自形、椭圆形和它形等,内 部分带特征主要有无分带(图6(a))、弱分带(图6(b))、 云雾状分带(图6(c))或片状分带(图6(d))等【l6,19,201.角闪 岩相变质增生锆石通常具有规则的外形,且以柱面 发育为其主要特点,在CL图像中一般为无分带或弱 分带的特征(图7)¨6’261.Vavra等人【2印对Ivrea地区的 角闪岩相变质岩石、角闪岩到麻粒岩过渡相变质
岩浆锆石一般具有特征的岩浆振荡环带(图2(a), (b)).振荡环带的宽度可能与锆石结晶时岩浆的温度 有关,高温条件下微量元素扩散快,常常形成较宽的 结晶环带(如辉长岩中的锆石)(图2(a));低温条件下 微量元素的扩散速度慢,一般形成较窄的岩浆环带 (如I型和s型花岗岩中的锆石)(图2(b))口5|.岩浆锆石 中还可能出现扇形分带的结构(图2(c)),这种扇形分 带结构是由于锆石结晶时外部环境的变化导致各晶 面的生长速率不一致造成的[251.部分地幔岩石中的 锆石表现出无分带或弱分带的特征.在岩浆锆石中 往往有继承锆石的残留核(图2(b)).
Schaltegger等人‘2…,(i)引自Tomaschek等人‘521
图5麻粒岩相变质锆石CL特征 (a)扇形分带;(b)面状分带;(c)冷杉叶状分带;(d)弱分带或无分带
短白线为标尺,长度30 ttm.引自Vavra等人Ⅲ脚1
www.scichina.com
万方数据
图6榴辉岩相变质锆石CL图像特征 (a)无分带;(b)无分带到弱分带;(c)云雾状分带;(d)片状分带.短白线 为标尺,长度30肛m.(a)和(b)引自Hermann等人‘”1,(c)引自Rubatto等
人[191,(d)引自Rubatto等人‘20I
1591
触诲电报 第49卷第16期2004年8月
评述
岩石和麻粒岩相变质岩石中的变质增生锆石进行了 详细的外形和内部结构特征的对比研究后发现,角 闪岩相变质岩石中的变质增生锆石为自形、长柱状、 弱CL强度和弱的内部分带(图8Ca)),过渡相变质岩 石中的变质增生锆石为短轴状、冷杉叶状分带或面状 分带(图8(b)),而麻粒岩相变质岩石中的变质增生锆 石则主要表现为等轴状、弱分带等特征,少量柱状面 形分带的变质锆石可能形成于前进变质阶段(图8(c)). 据此他们认为锆石的外形和内部结构特征受锆石生 长时的温度条件控制,温度条件控制了锆石各晶面, 生长速度,导致锆石出现不同的外形和内部结构.并 推测寄主岩石的性质可能也会对变质增生锆石的外 部形态和内部结构产生一定的影响.
1不同成因锆石的内部结构特征
常用揭示锆石内部结构的方法有HF酸蚀刻图 像、背散射电子(BSE)图像和阴极发光电子(cL)图像 等.HF酸蚀刻法的应用原理是由于锆石不同区域表 面的微量元素含量和蜕晶化程度的差异导致其稳定 性和抗HF酸腐蚀能力的不同,在HF酸的作用下,这 些锆石的内部结构就会显示出来1301(图1(a)).这种方 法简单易行,不需要大型仪器设备,但它可能会对锆 石表面造成不同程度的破坏作用.BSE图像揭示的是 锆石表面平均分子量的差异"21.除可以揭示锆石的 内部结构外,锆石的BSE图像还可以很好地显示锆 石的表面特征(如包裹体的分布和裂隙的发育情况 等)(图1(b)).而CL图像显示的则是锆石表面部分微 量元素(如:U,Y,Dy和Tb等)的含量和/或晶格缺陷的 差异,一般锆石中U,REE和Th等微量元素含量越高, 锆石阴极发光的强度越弱[32“35]锆石的CL图像和
结构、微量元素特征和矿物包裹体成分等可以用来对 锆石的形成环境进行限定,进而为锆石U.Pb年龄的 合理解释提供有效和重要的制约【14以引.本文将对这 些方面的研究进展进行系统的总结和评述,以期抛 砖引玉,引起同行们对这些方面的注意,在进行锆石 u—Pb定年的同时,加强锆石成因矿物学方面的研究, 对所得到的u—Pb年龄赋予更加合理的地质解释.