2017-2018学年高中数学 模块综合检测(一)(含解析)新人教A版选修2-1
2017-2018学年高中数学选修2-1模块综合检测题含答案
2017-2018学年高中数学选修2-1模块综合检测题 2018.1.23本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.方程x =1-4y 2所表示的曲线是( ) A .双曲线的一部分B .椭圆的一部分 C .圆的一部分 D .直线的一部分2.若抛物线的准线方程为x =-7,则抛物线的标准方程为( ) A .x 2=-28y B .x 2=28y C .y 2=-28x D .y 2=28x3.双曲线x 2a 2-y 2b 2=1的两条渐近线互相垂直,那么该双曲线的离心率是( )A .2 B.3C. 2 D.324.已知点A (4,1,3)、B (2,-5,1),C 为线段AB 上一点,且AC →=13AB →,则C 点坐标为( )A.⎝⎛⎭⎫72,-12,52B.⎝⎛⎭⎫83,-3,2 C.⎝⎛⎭⎫103,-1,73D.⎝⎛⎭⎫52,-72,32 5.已知a 、b 为不等于0的实数,则ab >1是a >b 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件6.已知灯反光镜的纵断面是抛物线的一部分,光源在抛物线的焦点处.已知灯口直径是60 cm ,灯深40 cm ,则光源到反光镜顶点的距离是( ) A .11. 25 cmB .5.625 cm C .20 cm D .10 cm7.已知椭圆x 2+y 22=a 2(a >0)与以A (2,1),B (4, 3)为端点的线段没有公共点,则a 的取值范围是( )A .0<a <322B .0<a <322或a >822C .0<a <13D.322<a <8228.P 是双曲线x 29-y 216=1的右支上一点,M 、N 分别是圆(x +5)2+y 2=4和(x -5)2+y 2=1上的点,则|PM |-|PN |的最大值为( ) A .6 B .7 C .8 D .99.下列四个结论中正确的个数为( )①命题“若x 2<1,则-1<x <1”的逆否命题是“若x >1或x <-1,则x 2>1”; ②已知p :∀x ∈R ,sin x ≤1,q :若a <b ,则am 2<bm 2,则p ∧q 为真命题; ③命题“∃x ∈R ,x 2-x >0”的否定是“∀x ∈R ,x 2-x ≤0”; ④“x >2”是“x 2>4”的必要不充分条件. A .0个B .1个 C .2个 D .3个 10.如图所示,已知PD ⊥平面ABCD ,底面ABCD 是正方形,PD =AB ,M 是P A 的中点,则二面角M —DC —A 的大小为( ) A.2π3B.π3 C.π4 D.π611.已知命题P :函数y =log 0.5(x 2+2x +a )的值域为R ;命题Q :函数y =-(5-2a )x 是R 上的减函数.若P 或Q 为真命题,P 且Q 为假命题,则实数a 的取值范围是( ) A .a ≤1 B .a <2C .1<a <2D .a ≤1或a ≥2 12.三棱锥A —BCD 中,AB =AC =2,∠BAD =90°,∠BAC =60°,则AB →·CD →等于( ) A .-2 B .2 C .-23D .2 3第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.已知点A (1,2,3)和点B (3,2,1),若点M 满足AM →=MB →,则M 的坐标为__________.14.在平面直角坐标系xOy 中,若抛物线y 2=4x 上的点P 到该抛物线的焦点的距离为6,则点P 的横坐标x =________.15.已知F 1、F 2是椭圆C :x 2a 2+y 2b 2=1 (a >b >0)的两个焦点,P 为椭圆C 上一点,且PF 1→⊥PF 2→.若△PF 1F 2的面积为9,则b =________.16.正方体ABCD —A 1B 1C 1D 1中,点E 、F 分别是底面A 1C 1和侧面CD 1的中心,若EF →+λA 1D →=0 (λ∈R),则λ=________.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)已知p :x 2-12x +20<0,q :x 2-2x +1-a 2>0 (a >0).若非q 是非p 的充分条件,求a 的取值范围.18.(本小题满分12分)如图,M 是抛物线y 2=x 上的一个定点,动弦ME 、MF 分别与x 轴交于不同的点A 、B ,且|MA |=|MB |.证明:直线EF 的斜率为定值.19.(本小题满分12分)已知两点M (-1,0)、N (1,0),动点P (x ,y )满足|MN →|·|NP →|-MN →·MP →=0, (1)求点P 的轨迹C 的方程;(2)假设P 1、P 2是轨迹C 上的两个不同点,F (1,0),λ∈R ,FP 1→=λFP 2→,求证:12111FP FP +=20.(本小题满分12分)如图所示,已知直线l :y =kx -2与抛物线C :x 2=-2py (p >0)交于A ,B 两点,O 为坐标原点,OA →+OB →=(-4,-12). (1)求直线l 和抛物线C 的方程;(2)抛物线上一动点P 从A 到B 运动时,求△ABP 面积的最大值.21.(本小题满分12分)命题p:关于x的不等式x2+2ax+4>0,对一切x∈R恒成立,命题q:指数函数f(x)=(3-2a)x是增函数,若p或q为真,p且q为假,求实数a的取值范围.22.(本小题满分12分)如图,正方形ACDE所在的平面与平面ABC垂直,AD与CE的点为M,AC⊥BC,且AC=BC.(1)求证:AM⊥平面EBC;(2)求二面角A—EB—C的大小.选修2-1模块综合检测题参考答案【第1题解析】x =,∴x 2+4y 2=1 (x ≥0).即x 2+41=1 (x ≥0).故选B.【第2题解析】由题得选项D 正确,故选D.【第3题解析】由已知,a2b2=1,∴a =b ,∴c 2=2a 2,∴e =a c =a 2a =.故选C.【第4题解析】设C (x ,y ,z ),则=(x -4,y -1,z -3).又=(-2,-6,-2),=31,∴(x -4,y -1,z -3)=31(-2,-6,-2),得x =310,y =-1,z =37.∴C 37.故选C.【第7题解析】分两种情况:(1)A 点在椭圆外,4+21>a 2,解得0<a <22;(2)B 点在椭圆内,16+29<a 2,解得a >282.故选B.【第8题解析】设双曲线的两个焦点分别是F 1(-5,0)与F 2(5,0),则这两点正好是两圆的圆心,当且仅当点P 与M 、F 1三点共线以及P 与N 、F 2三点共线时所求的值最大,此时|PM |-|PN |=(|PF 1|+2)-(|PF 2|-1)=6+3=9.故选D.【第9题解析】只有③中结论正确.故选B.【第10题解析】二面角M —DC —A 的平面角为∠MDA .故选C.【第11题解析】由函数y =log 0.5(x 2+2x +a )的值域为R 知:内层函数u (x )=x 2+2x +a 恰好取遍(0,+∞)内的所有实数⇔Δ=4-4a ≥0⇔a ≤1;即P ⇔a ≤1;同样由y =-(5-2a )x 是减函数⇔5-2a >1,即Q ⇔a <2;由P 或Q 为真,P 且Q 为假知,P 与Q 中必有一真一假.故选C.【第12题解析】·.故选A.【第13题解析】直接设点代入=得点(2,2,2),故填(2,2,2).【第14题解析】抛物线y 2=4x 的准线方程为x =-1,根据抛物线的定义,点P 到准线的距离也为6,所以点P 的横坐标x =5.故填5.【第15题解析】由已知,得|PF1|·|PF2|=18|PF1|+|PF2|=2a,∴|PF 1|2+|PF 2|2+36=4a 2.又|PF 1|2+|PF 2|2=4c 2,∴4a 2-4c 2=36,∴b =3.故填3. 【第16题解析】如图,连结A 1C 1,C 1D ,则E 在A 1C 1上,F 在C 1D 上易知EF 平行且等于21A 1D ,∴=21,即-21=0,∴λ=-21.故填-21.【第17题答案】0<a <1.由0得ky 2-y +y 0(1-ky 0)=0.于是y 0·y E =k 1-ky0,所以y E =k 1-ky0.同理可得y F =-k 1+ky0.∴k EF =xE -xF yE -yF =F 2=yE +yF 1=-2y01,即直线EF 的斜率为定值.【第19题答案】(1)y 2=4x ;(2)证明见解析. 【第19题解析】(1)||=2,则=(x +1,y ),=(x -1,y ). 由||·||-·=0,则2-2(x +1)=0,化简整理得y 2=4x . (2)由=λ·,得F 、P 1、P 2三点共线,设P 1(x 1,y 1)、P 2(x 2,y 2),斜率存在时,直线P 1P 2的方程为:y =k (x -1)代入y 2=4x 得:k 2x 2-2(k 2+2)x +k 2=0.则x 1x 2=1,x 1+x 2=k22k2+4.∴=x1+11+x2+11=+1x1+x2+2=1.当P 1P 2垂直x 轴时,结论照样成立.【第20题答案】(1)l 的方程为y =2x -2,抛物线C 的方程为x 2=-2y ;(2)8.【第 20题解析】(1)由x2=-2py ,y =kx -2,得x 2+2pkx -4p =0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-2pk ,y 1+y 2=k (x 1+x 2)-4=-2pk 2-4. 因为+=(x 1+x 2,y 1+y 2)=(-2pk ,-2pk 2-4)=(-4,-12),所以-2pk2-4=-12.-2pk =-4, 解得k =2.p =1,所以l 的方程为y =2x -2,抛物线C 的方程为x 2=-2y .(2)设P (x 0,y 0),依题意,抛物线过点P 的切线与l 平行时,△ABP 的面积最大,y ′=-x ,所以-x 0=2⇒x 0=-2,y 0=-21x 02=-2,所以P (-2,-2). 此时点P 到直线l 的距离d =2-2-2|=54=55,由x2=-2y ,y =2x -2,得x 2+4x -4=0,|AB |=·=·=4.∴△ABP 面积的最大值为5=8. 【第21题答案】{a |1≤a <2或a ≤-2}.(1)若p 真q 假,则a≥1,-2<a<2,∴1≤a <2.(2)若p 假q 真,则a<1,a≤-2或a≥2,∴a ≤-2.综上可知,所求实数a 的取值范围为{a |1≤a <2或a ≤-2}. 【第22题答案】(1)证明见解析;(2)60°.学科*网【第22题解析】(1)证明 ∵四边形ACDE 是正方形,∴EA ⊥AC ,AM ⊥EC , ∵平面ACDE ⊥平面ABC ,∴EA ⊥平面ABC ,∴可以以点A 为原点,以过A 点平行于BC 的直线为x 轴,分别以直线AC 和AE 为y 轴和z 轴,建立如图所示的空间直角坐标系Axyz .设EA =AC =BC =2,则A (0,0,0),B (2,2,0),C (0,2,0),E (0,0,2), 又M 是正方形ACDE 的对角线的交点,∴M (0,1, 1),=(0,1,1), =(0,2,0)-(0,0,2)=(0,2,-2),=(2,2,0)-(0,2,0)=(2,0,0),∴·=0,·=0, ∴AM ⊥EC ,AM ⊥CB ,∴AM ⊥平面EBC .又∵为平面EBC 的一个法向量,且=(0,1,1),∴cos 〈n ,〉==-21,设二面角A —EB —C 的平面角为θ,则cos θ=|cos 〈n ,〉|=21,∴二面角A —EB —C 为60°.。
2018高中数学人教a版选修1-2:模块综合检测 含解析
模块综合检测(时间120分钟满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知复数z1=2+i,z2=1+i,则z1z2在复平面内对应的点位于( ) A.第一象限B.第三象限C.第二象限D.第四象限解析:选D z1z2=2+i1+i=32-i2,对应点⎝⎛⎭⎪⎪⎫32,-12在第四象限.2.下面几种推理中是演绎推理的为( )A.由金、银、铜、铁可导电,猜想:金属都可导电B.猜想数列11×2,12×3,13×4,…的通项公式为a n=1n(n+1)(n∈N+)C.半径为r的圆的面积S=πr2,则单位圆的面积S=πD.由平面直角坐标系中圆的方程为(x-a)2+(y-b)2=r2,推测空间直角坐标系中球的方程为(x-a)2+(y-b)2+(z-c)2=r2解析:选C 由演绎推理的概念可知C正确.3.设a,b∈R,i是虚数单位,则“ab=0”是“复数a+bi为纯虚数”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件解析:选B ∵ab=0,∴a=0或b=0.由复数a+bi=a-bi为纯虚数,得a=0且b ≠0.∴“ab =0”是“复数a +b i为纯虚数”的必要不充分条件. 4.下列说法正确的有( )①回归方程适用于一切样本和总体.②回归方程一般都有时间性.③样本取值的范围会影响回归方程的适用范围.④回归方程得到的预报值是预报变量的精确值.A .①②B .②③C .③④D .①③解析:选B 回归方程只适用于所研究样本的总体,所以①不正确;而“回归方程一般都有时间性”正确,③也正确;而回归方程得到的预报值是预报变量的近似值,故选B.5.观察下列等式,13+23=32,13+23+33=62,13+23+33+43=102,根据上述规律,13+23+33+43+53+63=( )A .192B .202C .212D .222解析:选C 归纳得13+23+33+43+53+63=()1+2+…+62=212.6.定义运算⎪⎪⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,则符合条件⎪⎪⎪⎪⎪⎪⎪⎪1 -1z zi =4+2i 的复数z 为( )A .3-iB .1+3iC .3+iD .1-3i解析:选A 由定义知⎪⎪⎪⎪⎪⎪⎪⎪1 -1z zi =zi +z ,得zi +z =4+2i ,即z =4+2i 1+i =3-i.7.(重庆高考)执行如图所示的程序框图,则输出的k 的值是( )A .3B .4C .5D .6解析:选C 第一次运行得s =1+(1-1)2=1,k =2;第二次运行得s =1+(2-1)2=2,k =3;第三次运行得s =2+(3-1)2=6,k =4;第四次运行得s =6+(4-1)2=15,k =5;第五次运行得s =15+(5-1)2=31,满足条件,跳出循环,所以输出的k 的值是5,故选C.8.根据一位母亲记录儿子3~9岁的身高数据,建立儿子身高(单位:cm)对年龄(单位:岁)的线性回归方程y^=7.19x +73.93,用此方程预测儿子10岁的身高,有关叙述正确的是( )A .身高一定为145.83 cmB .身高大于145.83 cmC .身高小于145.83 cmD .身高在145.83 cm 左右解析:选D 用线性回归方程预测的不是精确值,而估计值,当x =10时,。
2017-2018学年人教A版高中数学选修1-2模块综合评价(二)含答案
模块综合评价(二)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设复数z满足1+z1-z=i,则|z|=()A.1 B.错误!C。
错误!D.2解析:由错误!=i,得z=错误!=错误!=i,所以|z|=1,故选A。
答案:A2.如图所示的框图是结构图的是( )A.P⇒Q1→错误!→错误!→…→错误!B.错误!→错误!→错误!→…→错误!C.D。
错误!→错误!→错误!→错误!→错误!→错误!解析:选项C为组织结构图,其余为流程图.答案:C3.用反证法证明命题:“若a,b∈N,ab能被3整除,那么a,b 中至少有一个能被3整除"时,假设应为()A.a,b都能被3整除B.a,b都不能被3整除C.a,b不都能被3整除D.a不能被3整除解析:因为“至少有一个"的否定为“一个也没有”.答案:B4.下面几种推理中是演绎推理的是( )A.因为y=2x是指数函数,所以函数y=2x经过定点(0,1)B.猜想数列错误!,错误!,错误!,…的通项公式为a n=错误!(n∈N*) C.由圆x2+y2=r2的面积为πr2猜想出椭圆错误!+错误!=1的面积为πabD.由平面直角坐标系中圆的方程为(x-a)2+(y-b)2=r2,推测空间直角坐标系中球的方程为(x-a)2+(y-b)2+(z-c)2=r2解析:选项B为归纳推理,选项C和选项D为类比推理,选项A 为演绎推理.答案:A5.下列推理正确的是( )A.把a(b+c)与log a(x+y)类比,则有:log a(x+y)=log a x+log a y B.把a(b+c)与sin(x+y)类比,则有:sin(x+y)=sin x+sin yC.把(ab)n与(x+y)n类比,则有:(x+y)n=x n+y nD.把(a+b)+c与(xy)z类比,则有:(xy)z=x(yz)解析:A中类比的结果应为log a(xy)=log a x+log a y,B中如x=y=错误!时不成立,C中如x=y=1时不成立,D中对于任意实数结合律成立.答案:D6.已知错误!=1+i(i为虚数单位),则复数z=()A.1+i B.1-iC.-1+i D.-1-i解析:因为错误!=1+i,所以z=错误!=错误!=错误!=错误!=-1-i。
2017-2018学年高中数学人教A版选修2-3:模块综合检测含解析
模块综合检测(时间120分钟满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法正确的有()①回归方程适用于一切样本和总体.②回归方程一般都有时间性.③样本取值的范围会影响回归方程的适用范围.④回归方程得到的预报值是预报变量的精确值.A.①②B.②③C.③④D.①③解析:选B 回归方程只适用于所研究样本的总体,所以①不正确;而“回归方程一般都有时间性”正确,③也正确;而回归方程得到的预报值是预报变量的近似值,故选B.2.某校教学大楼共有5层,每层均有2个楼梯,则由一楼至五楼的不同走法共有( )A.24种B.52种C.10种D.7种解析:选A 因为每层均有2个楼梯,所以每层有两种不同的走法,由分步计数原理可知:从一楼至五楼共有24种不同走法.3.设随机变量X服从二项分布X~B(n,p),则D X2E X2等于( )A.p2B.(1-p)2C.1-p D.以上都不对解析:选B 因为X~B(n,p),(D(X))2=[np(1-p)]2,(E(X))2=(np)2,所以D X2E X2=错误!=(1-p)2.故选B.4.若(2x+3)4=a0+a1x+a2x2+a3x3+a4x4,则(a0+a2+a4)2-(a1+a3)2的值是( )A.1 B.-1C.0 D.2解析:选A 令x=1,得a0+a1+…+a4=(2+错误!)4,令x=-1,a0-a1+a2-a3+a4=(-2+错误!)4.所以(a0+a2+a4)2-(a1+a3)2=(2+3)4(-2+3)4=1.5.给出以下四个说法:①绘制频率分布直方图时,各小长方形的面积等于相应各组的组距;②在刻画回归模型的拟合效果时,R2的值越大,说明拟合的效果越好;③设随机变量ξ服从正态分布N(4,22),则P(ξ〉4)=错误!;④对分类变量X与Y,若它们的随机变量K2的观测值k越小,则判断“X与Y有关系”的犯错误的概率越小.其中正确的说法是( )A.①④B.②③C.①③D.②④解析:选B ①中各小长方形的面积等于相应各组的频率;②正确,相关指数R2越大,拟合效果越好,R2越小,拟合效果越差;③随机变量ξ服从正态分布N(4,22),正态曲线对称轴为x=4,所以P(ξ〉4)=错误!;④对分类变量X与Y,若它们的随机变量K2的观测值k越小,则说明“X与Y有关系”的犯错误的概率越大.6.若随机变量ξ~N(-2,4),则ξ在区间(-4,-2]上取值的概率等于ξ在下列哪个区间上取值的概率( )A.(2,4]B.(0,2]C.[-2,0) D.(-4,4]解析:选C 此正态曲线关于直线x=-2对称,∴ξ在区间(-4,-2]上取值的概率等于ξ在[-2,0)上取值的概率.7.如图所示,A,B,C表示3种开关,若在某段时间内它们正常工作的概率分别为0.9,0.8,0.7,那么此系统的可靠性为()A.0.504 B.0.994C.0.496 D.0.06解析:选B A、B、C三个开关相互独立,三个中只要至少有一个正常工作即可,由间接法知P=1-(1-0.9)×(1-0.8)(1-0.7)=1-0.1×0.2×0.3=0.994.8.一牧场有10头牛,因误食含有病毒的饲料而被感染,已知该病的发病率为0.02.设发病的牛的头数为ξ,则D(ξ)等于( )A.0.2 B.0.8C.0.196 D.0.804解析:选C 因为由题意知该病的发病率为0.02,且每次试验结果都是相互独立的,所以ξ~B(10,0.02),所以由二项分布的方差公式得到D(ξ)=10×0.02×0.98=0.196.故选C.9.学校小卖部为了研究气温对饮料销售的影响,经过统计,得到一个卖出饮料数与当天气温的对比表:摄氏温度-1381217饮料瓶数3405272122根据上表可得回归方程错误!=错误!x+错误!中的错误!为6,据此模型预测气温为30 ℃时销售饮料瓶数为()A.141 B.191C.211 D.241解析:选B 由题意,错误!=错误!=7.8,错误!=错误!=57.8,因为回归方程错误!=错误!x+错误!中的错误!为6,所以57.8=6×7.8+错误!,所以错误!=11,所以错误!=6x+11,所以x=30时,错误!=6×30+11=191,故选B.10.如图,用4种不同颜色对图中5个区域涂色(4种颜色全部使用),要求每个区域涂一种颜色,相邻的区域不能涂相同的颜色,则不同的涂色种数有() A.72 B.96解析:选B 颜色都用上时,必定有两块同色,在图中,同色的可能是1,3或1,5或2,5或3,5.对每种情况涂色有A错误!=24种,所以一共有96种.11.假设每一架飞机的引擎在飞行中出现故障的概率为1-p,且各引擎是否有故障是独立的,已知4引擎飞机中至少有3个引擎正常运行,飞机就可成功飞行;2个引擎飞机要2个引擎全部正常运行,飞机才可成功飞行.要使4个引擎飞机更安全,则p的取值范围是( )A.错误!B.错误!C.错误!D.错误!解析:选B 4个引擎飞机成功飞行的概率为C3,4p3(1-p)+p4,2个引擎飞机成功飞行的概率为p2,要使C3,4p3(1-p)+p4>p2,必有错误!<p<1.12.(全国丙卷)定义“规范01数列"{a n}如下:{a n}共有2m项,其中m项为0,m项为1,且对任意k≤2m,a1,a2,…,a k中0的个数不少于1的个数.若m=4,则不同的“规范01数列”共有()A.18个B.16个解析:选C 由题意知:当m=4时,“规范01数列”共含有8项,其中4项为0,4项为1,且必有a1=0,a8=1.不考虑限制条件“对任意k≤2m,a1,a2,…,a k中0的个数不少于1的个数”,则中间6个数的情况共有C错误!=20(种),其中存在k≤2m,a1,a2,…,a k中0的个数少于1的个数的情况有:①若a2=a3=1,则有C错误!=4(种);②若a2=1,a3=0,则a4=1,a5=1,只有1种;③若a2=0,则a3=a4=a5=1,只有1种.综上,不同的“规范01数列”共有20-6=14(种).故共有14个.故选C.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上)13.(四川高考)同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X的均值是__________.解析:法一:由题意可知每次试验不成功的概率为错误!,成功的概率为34,在2次试验中成功次数X的可能取值为0,1,2,则P(X=0)=错误!,P(X=1)=C错误!×错误!×错误!=错误!,P(X=2)=错误!2=错误!.所以在2次试验中成功次数X的分布列为则在2E(X)=0×116+1×错误!+2×错误!=错误!.法二:此试验满足二项分布,其中p=错误!,所以在2次试验中成功次数X的均值为E(X)=np=2×错误!=错误!.答案:错误!14.为了调查患慢性气管炎是否与吸烟有关,调查了339名50岁以上的人,调查结果如表根据列联表数据,求得K2≈__________.解析:由计算公式K2=错误!,得K2≈7.469.答案:7.46915.从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为________.解析:十个数中任取七个不同的数共有C错误!种情况,七个数的中位数为6,那么6只有处在中间位置,有C36种情况,于是所求概率P=错误!=错误!.答案:错误!16.某射手射击1次,击中目标的概率是0.9,他连续射击4次,且各次射击是否击中目标相互之间没有影响,有下列结论:①他第3次击中目标的概率是0.9;②他恰好击中目标3次的概率是0.93×0.1;③他至少击中目标1次的概率是1-0.14.其中正确结论的序号是________(写出所有正确结论的序号).解析:①因为各次射击是否击中目标相互之间没有影响,所以第3次击中目标的概率是0.9,正确;②恰好击中目标3次的概率应为C34×0.93×0.1;③4次射击都未击中的概率为0.14;所以至少击中目标1次的概率为1-0.14.答案:①③三、简答题(本大题共6小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知(a2+1)n展开式中的各项系数之和等于错误!5的展开式的常数项,而(a2+1)n的展开式的系数最大的项等于54,求a的值.解:错误!5的展开式的通项为T r+1=C错误!错误!5-r错误!r=错误!5-r C错误!x错误!,令20-5r=0,得r=4,故常数项T5=C4,5×错误!=16.又(a2+1)n展开式的各项系数之和等于2n,由题意知2n=16,得n=4.由二项式系数的性质知,(a2+1)n展开式中系数最大的项是中间项T3,故有C错误!a4=54,解得a=±错误!.18.(本小题满分12分)(全国甲卷)某险种的基本保费为a(单元:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:(1)求一续保人本年度的保费高于基本保费的概率;(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;(3)求续保人本年度的平均保费与基本保费的比值.解:(1)设A表示事件“一续保人本年度的保费高于基本保费”,则事件A发生当且仅当一年内出险次数大于1,故P(A)=1-(0.30+0.15)=0.55.(2)设B表示事件“一续保人本年度的保费比基本保费高出60%",则事件B发生当且仅当一年内出险次数大于3,故P(B)=0.1+0.05=0.15.又P(AB)=P(B),故P(B|A)=P ABP A=错误!=错误!=错误!.因此所求概率为错误!.(3)记续保人本年度的保费为X,则X的分布列为X 0.85aa1.25a1.5a1.75a2aP 0.300.150.200.200.100.05EX=0.85a×0.30+a×0.15+1.25a×0.20+1.5a×0.20+1.75a×0.10+2a×0.05=1.23a.因此续保人本年度的平均保费与基本保费的比值为1.23.19.(本小题满分12分)退休年龄延迟是平均预期寿命延长和人口老龄化背景下的一种趋势.某机构为了解某城市市民的年龄构成,按1%的比例从年龄在20~80岁(含20岁和80岁)之间的市民中随机抽取600人进行调查,并将年龄按[20,30),[30,40),[40,50),[50,60),[60,70),[70,80]进行分组,绘制成频率分布直方图,如图所示.规定年龄在[20,40)岁的人为“青年人”,[40,60)岁的人为“中年人",[60,80]岁的人为“老年人”.(1)根据频率分布直方图估计该城市60岁以上(含60岁)的人数,若每一组中的数据用该组区间的中点值来代表,试估算所调查的600人的平均年龄;(2)将上述人口分布的频率视为该城市年龄在20~80岁的人口分布的概率,从该城市年龄在20~80岁的市民中随机抽取3人,记抽到“老年人"的人数为X,求随机变量X的分布列和数学期望.解:(1)由频率分布直方图可知60岁以上(含60岁)的频率为(0.01+0.01)×10=0.2,故样本中60岁以上(含60岁)的人数为600×0.2=120,故该城市60岁以上(含60岁)的人数为120÷1%=12 000.所调查的600人的平均年龄为25×0.1+35×0.2+45×0.3+55×0.2+65×0.1+75×0.1=48(岁).(2)由频率分布直方图知,“老年人”所占的频率为错误!,所以从该城市年龄在20~80岁的市民中随机抽取1人,抽到“老年人”的概率为错误!,分析可知X的所有可能取值为0,1,2,3,P(X=0)=C错误!错误!0错误!3=错误!,P(X=1)=C13错误!1错误!2=错误!,P(X=2)=C错误!错误!2错误!1=错误!,P(X=3)=C错误!错误!3错误!0=错误!.所以X的分布列为EX=0×错误!错误!错误!错误!错误!.错误!20.(本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响.对近8年的年宣传费x i和年销售量y i(i =1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.错误!错误!错误!错误!(x i-错误!)2错误!(w i-错误!)2错误!(x i-错误!)(y i-y)错误!(w i-错误!)(y i-错误!)46.65636.8289.81.6 1 469108.8w i错误!错误!错误!错误!i(1)根据散点图判断,y=a+bx与y=c+d x哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程.(3)已知这种产品的年利润z与x,y的关系为z=0.2y-x.根据(2)的结果回答下列问题:①年宣传费x=49时,年销售量及年利润的预报值是多少?②年宣传费x为何值时,年利润的预报值最大?附:对于一组数据(u1,v1),(u2,v2),…,(u n,v n),其回归直线v=α+βu的斜率和截距的最小二乘估计分别为错误!=错误!,错误!=错误!-错误!错误!.解:(1)由散点图可以判断,y=c+d错误!适宜作为年销售量y关于年宣传费x的回归方程类型.(2)令w=x,先建立y关于w的线性回归方程.由于错误!=错误!=错误!=68,错误!=错误!-错误!错误!=563-68×6.8=100.6,所以y关于w的线性回归方程错误!=100.6+68w,因此y关于x的回归方程为错误!=100.6+68错误!.(3)①由(2)知,当x=49时,年销售量y的预报值错误!=100.6+68错误!=576.6,年利润z的预报值错误!=576.6×0.2-49=66.32.②根据(2)的结果知,年利润z的预报值z,^=0.2(100.6+68错误!)-x=-x+13.6错误!+20.12.所以当错误!=错误!=6.8,即x=46.24时,错误!取得最大值.故年宣传费为46.24千元时,年利润的预报值最大.21.(本小题满分12分)PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可吸入肺颗粒物.我国PM2.5标准采用世卫组织设定的最宽限值,即PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.某试点城市环保局从该市市区2015年全年每天的PM2.5监测数据中随机抽取15天的数据作为样本,监测值如茎叶图所示(十位为茎,个位为叶)(1)从这15天的PM2.5日均监测数据中,随机抽出三天,求恰有一天空气质量达到一级的概率.(2)从这15天的数据中任取三天数据,记ξ表示抽到PM2.5监测数据超标的天数,求ξ的分布列及数学期望.(3)以这15天的PM2.5日均值来估计一年的空气质量情况,则一年(按360天计算)中平均有多少天的空气质量达到一级或二级.解:(1)记“从15天的PM2.5日均监测数据中,随机抽出三天,恰有一天空气质量达到一级”为事件A,P(A)=错误!=错误!.(2)依据条件,ξ服从超几何分布:ξ的可能值为0,1,2,3,其分布列为:P(ξ=k)=错误!(k=0,1,2,3).则E(X)=0×错误!+1×错误!+2×错误!+3×错误!=1,(3)依题意可知,一年中每天空气质量达到一级或二级的概率为P=错误!=错误!,一年中空气质量达到一级或二级的天数为η,则η~B错误!,所以E(η)=360×错误!=240,所以一年中平均有240天的空气质量达到一级或二级.22.(本小题满分12分)某高校共有学生15 000人,其中男生10 500人,女生4 500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).(1)应收集多少位女生样本数据?(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估计该校学生每周平均体育运动时间超过4个小时的概率.(3)在样本数据中,有60位女生的每周平均体育运动时间超过4个小时.请完成每周平均体育运动时间与性别的列联表,并判断在犯错误的概率不超过0.05的前提下认为“该校学生的每周平均体育运动时间与性别有关”.P(K 2≥k)0.100.050.010 0.005k 02.706 3.841 6.635 7.879附:K 2=错误!解:(1)由分层抽样得收集的女生样本数据为300×4 50015 000=90,所以应收集90位女生的样本数据.(2)由频率分布直方图得2×(0.150+0.125+0.075+0.025)=0.75,所以该校学生每周平均体育运动时间超过4小时的概率的估计值为0.75.(3)由(2)知,300名学生中有300×0.75=225人的每周平均体育运动时间超过4个小时.75人的每周平均体育运动时间不超过4个小时.又因为样本数据中有210份是关于男生的,90份是关于女生的,所以每周平均体育运动时间与性别的列联表如下:平均体育运动时间与性别列联表结合列联表可算得K2的观测值k=错误!≈4.762>3.841.在犯错误的概率不超过0.05的前提下认为“该校学生的每周学必求其心得,业必贵于专精平均体育运动时间与性别有关”.。
2017-2018学年高中数学(选修2-3)模块综合检测(一)含答案
模块综合检测(一)(时间120分钟,满分150分)一、选择题(共12小题,每小题5分,共60分)1.方程C x14=C错误!的解集为()A.{4}B.{14}C.{4,6} D.{14,2}解析:选C 由C错误!=C错误!得x=2x-4或x+2x-4=14,解得x=4或x=6.经检验知x=4或x=6符合题意.2.设X是一个离散型随机变量,则下列不能成为X的概率分布列的一组数据是( )A.0,错误!,0,0,错误!B.0.1,0。
2,0。
3,0.4C.p,1-p(0≤p≤1) D.错误!,错误!,…,错误!解析:选D 利用分布列的性质判断,任一离散型随机变量X 的分布列都具有下述两个性质:①p i≥0,i=1,2,3,…,n;②p1+p2+p3+…+p n=1。
选C 如图,由正态曲线的对称性可得P(a≤X〈4-a)=1-2P (X<a)=0。
36.3.已知随机变量X~N(2,σ2),若P(X〈a)=0。
32,则P(a≤X<4-a)等于()A.0。
32 B.0。
68 C.0.36 D.0。
64解析:选C 如图,由正态曲线的对称性可得P(a≤X〈4-a)=1-2P(X〈a)=0。
36.4.已知x,y取值如下表:x014568y 1。
31。
85.66.17。
49。
3从所得的散点图分析可知:y与x线性相关,且y^=0。
95x+a,则a等于( )A.1。
30 B.1。
45 C.1.65 D.1.80解析:选B 依题意得,错误!=错误!×(0+1+4+5+6+8)=4,错误!=错误!×(1。
3+1。
8+5.6+6.1+7。
4+9。
3)=5。
25。
又直线y^=0。
95x+a必过样本中心点(错误!,错误!),即点(4,5。
25),于是有5。
25=0.95×4+a,由此解得a=1.45.5.甲、乙两人独立地对同一目标各射击一次,其命中率分别为0.6,0.5,现已知目标被击中,则它是被甲击中的概率是( )A .0。
2017-2018学年高中数学人教A版选修2-1章末综合测评2 圆锥曲线与方程 含解析 精品
章末综合测评(二) 圆锥曲线与方程(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.双曲线3x2-y2=9的焦距为()A. 6B.26C.23D.4 3【解析】方程化为标准方程为x23-y29=1,∴a2=3,b2=9,∴c2=a2+b2=12,∴c=23,∴2c=4 3.【答案】 D2.抛物线y2=4x的焦点到双曲线x2-y23=1的渐近线的距离是()【导学号:37792096】A.12 B.32C.1D. 3【解析】抛物线y2=4x的焦点为(1,0),到双曲线x2-y23=1的渐近线3x-y=0的距离为|3×1-1×0|(3)2+12=32,故选B.【答案】 B3.已知抛物线C1:y=2x2的图象与抛物线C2的图象关于直线y=-x对称,则抛物线C2的准线方程是()A.x=-18 B.x=12C.x=18 D.x=-12【解析】抛物线C1:y=2x2关于直线y=-x对称的C2的表达式为-x=2(-y)2,即y2=-12x,其准线方程为x=18.【答案】 C4.已知点F ,A 分别为双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左焦点、右顶点,点B (0,b )满足FB →·AB →=0,则双曲线的离心率为( )A. 2B. 3C.1+32D.1+52【解析】 ∵FB →·AB →=0,∴FB ⊥AB ,∴b 2=ac ,又b 2=c 2-a 2,∴c 2-a 2-ac =0,两边同除以a 2,得e 2-1-e =0,∴e =1+52.【答案】 D5.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,则C 的渐近线方程为( )A.y =±14x B.y =±13x C.y =±12xD.y =±x【解析】 由e =52,得c a =52, ∴c =52a ,b =c 2-a 2=12a .而x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±b a x , ∴所求渐近线方程为y =±12x . 【答案】 C6.如图1所示,一圆形纸片的圆心为O ,F 是圆内一定点,M 是圆周上一动点,把纸片折叠使M 与F 重合,然后抹平纸片,折痕为CD ,设CD 与OM 交于点P ,则点P 的轨迹是( )图1A.椭圆B.双曲线C.抛物线D.圆【解析】 由条件知|PM |=|PF |,∴|PO |+|PF |=|PO |+|PM |=|OM |=k >|OF |, ∴P 点的轨迹是以O ,F 为焦点的椭圆. 【答案】 A7.如图2,已知F 是椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点,P 是椭圆上的一点,PF ⊥x 轴,OP ∥AB (O 为原点),则该椭圆的离心率是()图2A.22B.24C.12D.32【解析】 因为PF ⊥x 轴,所以P ⎝ ⎛⎭⎪⎫-c ,b 2a .又OP ∥AB ,所以b a =b 2ac ,即b =c . 于是b 2=c 2,即a 2=2c 2,所以e =c a =22. 【答案】 A8.若点O 和点F (-2,0)分别为双曲线x 2a 2-y 2=1(a >0)的中心和左焦点,点P 为双曲线右支上的任意一点,则OP →·FP →的取值范围为( )A.[3-23,+∞)B.[3+23,+∞)C.⎣⎢⎡⎭⎪⎫-74,+∞ D.⎣⎢⎡⎭⎪⎫74,+∞【解析】 因为双曲线左焦点的坐标为F (-2,0), 所以c =2.所以c 2=a 2+b 2=a 2+1, 即4=a 2+1,解得a = 3.设P (x ,y ),则OP →·FP →=x (x +2)+y 2, 因为点P 在双曲线x 23-y 2=1上, 所以OP →·FP →=43x 2+2x -1=43⎝ ⎛⎭⎪⎫x +342-34-1.又因为点P 在双曲线的右支上,所以x ≥ 3. 所以当x =3时,OP →·FP →最小,且为3+23, 即OP →·FP →的取值范围是[3+23,+∞). 【答案】 B9.已知定点A ,B 满足|AB |=4,动点P 满足|P A |-|PB |=3,则|P A |的最小值是( )A.12B.32C.72D.5【解析】 已知定点A ,B 满足|AB |=4,动点P 满足|P A |-|PB |=3,则点P 的轨迹是以A ,B 为左、右焦点的双曲线的右支,且a =32,c =2.所以|P A |的最小值是点A 到右顶点的距离,即为a +c =2+32=72,选C.【答案】 C10.已知定点A (2,0),它与抛物线y 2=x 上的动点P 连线的中点M 的轨迹方程为( )A.y 2=2(x -1)B.y 2=4(x -1)C.y 2=x -1D.y 2=12(x -1)【解析】设P (x 0,y 0),M (x ,y ),则⎩⎪⎨⎪⎧x =x 0+22,y =y 02,所以⎩⎨⎧x 0=2x -2,y 0=2y ,由于y 20=x 0,所以4y 2=2x -2,即y 2=12(x -1). 【答案】 D11.已知直线y =k (x +2)与双曲线x 2m -y 28=1,有如下信息:联立方程组⎩⎪⎨⎪⎧y =k (x +2),x 2m -y 28=1,消去y 后得到方程Ax 2+Bx +C =0,分类讨论:(1)当A =0时,该方程恒有一解;(2)当A ≠0时,Δ=B 2-4AC ≥0恒成立.在满足所提供信息的前提下,双曲线离心率的取值范围是( )【导学号:37792097】A.(1, 3]B.[3,+∞)C.(1,2]D.[2,+∞)【解析】 依题意可知直线恒过定点(-2,0),根据(1)和(2)可知直线与双曲线恒有交点,故需要定点(-2,0)在双曲线的左顶点上或左顶点的左边,即-2≤-m ,即0<m ≤4,又e =1+b 2a 2=1+8m ,所以e ≥ 3.【答案】 B12.已知点P 为抛物线y 2=2px (p >0)上的一点,F 为抛物线的焦点,直线l 过点P 且与x 轴平行,若同时与直线l 、直线PF 、x 轴相切且位于直线PF 左侧的圆与x 轴切于点Q ,则点Q ( )A.位于原点的左侧B.与原点重合C.位于原点的右侧D.以上均有可能【解析】 设抛物线的准线与x 轴、直线l 分别交于点D ,C ,圆与直线l 、直线PF 分别切于点A ,B .如图,由抛物线的定义知|PC |=|PF |,由切线性质知|P A |=|PB |,于是|AC |=|BF |.又|AC |=|DO |,|BF |=|FQ |,所以|DO |=|FQ |,而|DO |=|FO |,所以O ,Q 重合,故选B.【答案】 B二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.双曲线x 216-y 29=1的两条渐近线的方程为________. 【解析】 由双曲线方程可知a =4,b =3, 所以两条渐近线方程为y =±34x . 【答案】 y =±34x14.已知F 1,F 2为椭圆x 225+y 29=1的两个焦点,过F 1的直线交椭圆于A ,B 两点.若|F 2A |+|F 2B |=12,则|AB |=________.【解析】 由题意,知(|AF 1|+|AF 2|)+(|BF 1|+|BF 2|)=|AB |+|AF 2|+|BF 2|=2a +2a ,又由a =5,可得|AB |+(|BF 2|+|AF 2|)=20,即|AB |=8.【答案】 815.如图3所示,已知抛物线C :y 2=8x 的焦点为F ,准线l 与x 轴的交点为K ,点A 在抛物线C 上,且在x 轴的上方,过点A 作AB ⊥l 于B ,|AK |=2|AF |,则△AFK 的面积为________.【导学号:37792098】图3【解析】 由题意知抛物线的焦点为F (2,0),准线l 为x =-2,∴K (-2,0),设A (x 0,y 0)(y 0>0),∵过点A 作AB ⊥l 于B ,∴B (-2,y 0),∴|AF |=|AB |=x 0-(-2)=x 0+2, |BK |2=|AK |2-|AB |2,∴x 0=2,∴y 0=4,即A (2,4),∴△AFK 的面积为12|KF |·|y 0|=12×4×4=8.【答案】 816.设F 为抛物线C :y 2=4x 的焦点,过点P (-1,0)的直线l 交抛物线C 于A ,B 两点,点Q 为线段AB 的中点,若|PQ |=2,则直线l 的斜率等于________.【解析】 设直线l 的方程为 y =k (x +1),A (x 1,y 1),B (x 2,y 2).由⎩⎨⎧y 2=4x ,y =k (x +1),联立得k 2x 2+2(k 2-2)x +k 2=0, ∴x 1+x 2=-2(k 2-2)k 2, ∴x 1+x 22=-k 2-2k 2=-1+2k 2, y 1+y 22=2k ,即Q ⎝ ⎛⎭⎪⎫-1+2k 2,2k .又|FQ |=2,F (1,0),∴⎝ ⎛⎭⎪⎫-1+2k 2-12+⎝ ⎛⎭⎪⎫2k 2=4,解得k =±1. 【答案】 ±1三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,短轴的一个端点到右焦点的距离为 3.求椭圆C 的方程.【解】 设椭圆的半焦距为c ,依题意, 得a =3且e =c a =63, ∴a =3,c =2, 从而b 2=a 2-c 2=1,因此所求椭圆的方程为x 23+y 2=1.18.(本小题满分12分)已知F 1,F 2分别为椭圆x 2100+y 2b 2=1(0<b <10)的左、右焦点,P 是椭圆上一点.(1)求|PF 1|·|PF 2|的最大值;(2)若∠F 1PF 2=60°,且△F 1PF 2的面积为6433,求b 的值.【导学号:37792099】【解】 (1)|PF 1|·|PF 2|≤⎝ ⎛⎭⎪⎫|PF 1|+|PF 2|22=100(当且仅当|PF 1|=|PF 2|时取等号), ∴|PF 1|·|PF 2|的最大值为100.(2)S △F 1PF 2=12|PF 1|·|PF 2|sin 60°=6433, ∴|PF 1|·|PF 2|=2563, ①由题意知:⎩⎨⎧|PF 1|2+|PF 2|2+2|PF 1|·|PF 2|=4a 2,|PF 1|2+|PF 2|2-4c 2=2|PF 1|·|PF 2|cos 60°, ∴3|PF 1|·|PF 2|=400-4c 2. ②由①②得c =6,∴b =8.19.(本小题满分12分)在平面直角坐标系xOy 中,已知圆心在x 轴上,半径为4的圆C 位于y 轴右侧,且与y 轴相切.(1)求圆C 的方程;(2)若椭圆x 225+y 2b 2=1的离心率为45,且左、右焦点为F 1,F 2.试探究在圆C 上是否存在点P ,使得△PF 1F 2为直角三角形?若存在,请指出共有几个这样的点?并说明理由.【解】 (1)依题意,设圆的方程为(x -a )2+y 2=16(a >0). ∵圆与y 轴相切,∴a =4, ∴圆的方程为(x -4)2+y 2=16. (2)∵椭圆x 225+y 2b 2=1的离心率为45, ∴e =c a =25-b 25=45,解得b 2=9.∴c =a 2-b 2=4, ∴F 1(-4,0),F 2(4,0),∴F 2(4,0)恰为圆心C ,(ⅰ)过F 2作x 轴的垂线,交圆于点P 1,P 2,则∠P 1F 2F 1=∠P 2F 2F 1=90°,符合题意;(ⅱ)过F 1可作圆的两条切线,分别与圆相切于点P 3,P 4, 连接CP 3,CP 4,则∠F 1P 3F 2=∠F 1P 4F =90°,符合题意. 综上,圆C 上存在4个点P ,使得△PF 1F 2为直角三角形.20.(本小题满分12分)已知双曲线的中心在原点,焦点F 1、F 2在坐标轴上,离心率为2,且过点P (4,-10).(1)求双曲线的方程;(2)若点M (3,m )在双曲线上,求证:MF 1→·MF 2→=0; (3)求△F 1MF 2的面积.【导学号:37792100】【解】 (1)∵e =2, ∴可设双曲线方程为x 2-y 2=λ. ∵过点P (4,-10), ∴16-10=λ,即λ=6. ∴双曲线方程为x 2-y 2=6.(2)证明:法一:由(1)可知,双曲线中a =b =6, ∴c =23,∴F 1(-23,0),F 2(23,0), ∴kMF 1=m 3+23,kMF 2=m3-23,kMF 1·kMF 2=m 29-12=-m 23.∵点(3,m )在双曲线上, ∴9-m 2=6,m 2=3,故kMF 1·kMF 2=-1,∴MF 1⊥MF 2. ∴MF 1→·MF 2→=0.法二:∵MF 1→=(-23-3,-m ),MF 2→=(23-3,-m ),∴MF 1→·MF 2→=(3+23)×(3-23)+m 2=-3+m 2, ∵M 点在双曲线上, ∴9-m 2=6,即m 2-3=0, ∴MF 1→·MF 2→=0.(3)△F 1MF 2的底边|F 1F 2|=43, △F 1MF 2的高h =|m |=3, ∴S △F 1MF 2=6.21.(本小题满分12分)已知A ,B ,C 是椭圆W :x 24+y 2=1上的三个点,O 是坐标原点.(1)当点B 是W 的右顶点,且四边形OABC 为菱形时,求此菱形的面积; (2)当点B 不是W 的顶点时,判断四边形OABC 是否可能为菱形,并说明理由.【解】 (1)椭圆W :x 24+y 2=1的右顶点B 的坐标为(2,0).因为四边形OABC 为菱形,所以AC 与OB 相互垂直平分.所以可设A (1,m ),代入椭圆方程得14+m 2=1,即m =±32.所以菱形OABC 的面积是 12|OB |·|AC |=12×2×2|m |= 3. (2)四边形OABC 不可能为菱形.理由如下: 假设四边形OABC 为菱形.因为点B 不是W 的顶点,且直线AC 不过原点,所以可设AC 的方程为y =kx +m (k ≠0,m ≠0).由⎩⎨⎧x 2+4y 2=4,y =kx +m ,消去y 并整理得 (1+4k 2)x 2+8kmx +4m 2-4=0. 设A (x 1,y 1),C (x 2,y 2),则x 1+x 22=-4km 1+4k 2, y 1+y 22=k ·x 1+x 22+m =m 1+4k 2. 所以AC 的中点为M ⎝ ⎛⎭⎪⎫-4km 1+4k 2,m 1+4k 2. 因为M 为AC 和OB 的交点,所以直线OB 的斜率为-14k .因为k ·⎝ ⎛⎭⎪⎫-14k ≠-1, 所以AC 与OB 不垂直.所以OABC 不是菱形,与假设矛盾.所以当点B 不是W 的顶点时,四边形OABC 不可能是菱形.22.(本小题满分12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,以原点O 为圆心,椭圆的短半轴长为半径的圆与直线x -y +6=0相切.(1)求椭圆C 的标准方程;【导学号:37792101】(2)若直线l :y =kx +m 与椭圆C 相交于A ,B 两点,且k OA ·k OB =-b 2a 2.求证:△AOB 的面积为定值.【解】 (1)由题意得,b =|0-0+6|2=3,c a =12, 又a 2+b 2=c 2,联立解得a 2=4,b 2=3,∴椭圆的方程为x 24+y 23=1. (2)设A (x 1,y 1),B (x 2,y 2),则A ,B 的坐标满足⎩⎪⎨⎪⎧ x 24+y 23=1,y =kx +m ,消去y 化简得,(3+4k 2)x 2+8kmx +4m 2-12=0.∴x 1+x 2=-8km 3+4k 2,x 1x 2=4m 2-123+4k 2, 由Δ>0得4k 2-m 2+3>0,y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2=k 24m 2-123+4k 2+km ⎝ ⎛⎭⎪⎫-8km 3+4k 2+m 2=3m 2-12k 23+4k 2. ∵k OA ·k OB =-34,y 1y 2x 1x 2=-34,即y 1y 2=-34x 1x 2, ∴3m 2-12k 23+4k 2=-34·4m 2-123+4k 2,即2m 2-4k 2=3, ∵|AB |=(1+k 2)[(x 1+x 2)2-4x 1x 2] =(1+k 2)·48(4k 2-m 2+3)(3+4k 2)2 =48(1+k 2)(3+4k 2)2·3+4k 22=24(1+k 2)3+4k 2. 又O 到直线y =kx +m 的距离d =|m |1+k 2. ∴S △AOB =12d |AB |=12|m |1+k 224(1+k 2)3+4k 2 =12m 21+k 2·24(1+k 2)3+4k 2 =123+4k 22·243+4k 2=3,为定值.。
2017-2018版高中数学 模块综合测评2 新人教A版选修1-2
模块综合测评(二)(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.有下列关系:①人的年龄与他(她)拥有的财富之间的关系;②曲线上的点与该点的坐标之间的关系;③苹果的产量与气候之间的关系;④森林中的同一种树木,其横断面直径与高度之间的关系.其中有相关关系的是( )A.①②③B.①②C.②③D.①③④【解析】曲线上的点与该点的坐标之间是确定关系——函数关系,故②不正确.其余均为相关关系.【答案】 D2.若z=4+3i,则z|z|=( )A.1 B.-1C.45+35i D.45-35i【解析】∵z=4+3i,∴z=4-3i,|z|=42+32=5,∴z|z|=4-3i5=45-35i.【答案】 D3.有一段演绎推理:直线平行于平面,则平行于平面内所有直线;已知直线b⊄平面α,直线a⊂平面α,直线b∥平面α,则直线b∥直线a.这个结论显然是错误的,这是因为( )【导学号:81092073】A.大前提错误B.小前提错误C.推理形式错误D.非以上错误【解析】大前提错误,直线平行于平面,未必平行于平面内的所有直线.【答案】 A4.如图1所示的知识结构图为什么结构( )图1A .树形B .环形C .对称性D .左右形【解析】 由题图可知结构图为树形结构. 【答案】 A5.执行如图2所示的程序框图,若输入的n 的值为8,则输出的s 的值为( )图2A .4B .8C .10D .12【解析】 初始值:n =8,i =2,k =1,s =1;i <n ,s =1×(1×2)=2,i =2+2=4,k =1+1=2;i <n ,s =12×(2×4)=4,i =4+2=6,k =2+1=3;i <n ,s =13×(4×6)=8,i =6+2=8,k =3+1=4;i =n ,退出循环.故输出的s 的值为8.【答案】 B6.已知回归直线的斜率的估计值是 1.23,样本点的中心为(4,5),则回归直线的方程是( )A.y ^=1.23x +4 B.y ^=1.23x +5 C.y ^=1.23x +0.08D.y ^=0.08x +1.23【解析】 由题意可设回归直线方程为y ^=1.23x +a ,又样本点的中心(4,5)在回归直线上,故5=1.23×4+a ,即a =0.08, 故回归直线的方程为y ^=1.23x +0.08. 【答案】 C7.设△ABC 的三边长分别为a ,b ,c ,△ABC 的面积为S ,内切圆半径为r ,则r =2Sa +b +c,类比这个结论可知:四面体S ABC 的四个面的面积分别为S 1,S 2,S 3,S 4,内切球半径为R ,四面体S ABC 的体积为V ,则R =( )A.VS 1+S 2+S 3+S 4B.2VS 1+S 2+S 3+S 4C.3VS 1+S 2+S 3+S 4D.4VS 1+S 2+S 3+S 4【解析】 四面体中以内切球的球心为顶点,四面体的各个面为底面,可把四面体分割成四个高均为R 的三棱锥,从而有13S 1R +13S 2R +13S 3R +13S 4R =V .即(S 1+S 2+S 3+S 4)R =3V .∴R =3VS 1+S 2+S 3+S 4.【答案】 C8.已知数列{a n }的前n 项和S n =n 2·a n (n ≥2),而a 1=1,通过计算a 2,a 3,a 4猜想a n等于( )A.2n +2B.2nn +C.22n-1D.22n -1【解析】 ∵a 1=1,S n =n 2·a n (n ≥2), ∴a 1+a 2=22·a 2,得a 2=13;由a 1+a 2+a 3=32· a 3,得a 3=16;由a 1+a 2+a 3+a 4=42·a 4,得a 4=110;….猜想a n =2nn +.【答案】 B9.若关于x的一元二次实系数方程x2+px+q=0有一个根为1+i(i为虚数单位),则p+q的值是( )A.-1 B.0C.2 D.-2【解析】把1+i代入方程得(1+i)2+p(1+i)+q=0,即2i+p+p i+q=0,即p+q+(p+2)i=0,∵p,q为实数,∴p+q=0.【答案】 B10.满足条件|z-i|=|3-4i|的复数z在复平面上对应点的轨迹是( )A.一条直线B.两条直线C.圆D.椭圆【解析】|z-i|=|3-4i|=5,∴复数z对应点到定点(0,1)的距离等于5,故轨迹是个圆.【答案】 C11.设a,b,c均为正实数,P=a+b-c,Q=b+c-a,R=c+a-b,则“PQR>0”是“P,Q,R同时大于0”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】必要性显然成立;PQR>0,包括P,Q,R同时大于0,或其中两个为负两种情况.假设P<0,Q<0,则P+Q=2b<0,这与b为正实数矛盾.同理当P,R同时小于0或Q,R同时小于0的情况亦得出矛盾,故P,Q,R同时大于0,所以选C.【答案】 C12.在正整数数列中,由1开始依次按如下规则将某些数染成红色.先染1,再染2个偶数2,4;再染4后面最邻近的3个连续奇数5,7,9;再染9后面最邻近的4个连续偶数10,12,14,16;再染16后面最邻近的5个连续奇数17,19,21,23,25.按此规律一直染下去,得到一红色子数列1,2,4,5,7,9,10,12,14,16,17,….则在这个红色子数列中,由1开始的第60个数是( )A.103 B.105C.107 D.109【解析】由题可知染色规律是:每次染完色后得到的最后一个数恰好是染色个数的平方.故第10次染完后的最后一个数为偶数100,接下来应该染101,103,105,107,109,此时共60个数.【答案】 D二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上.) 13.若复数z 满足3z +z =1+i ,其中i 为虚数单位,则z =________.【解析】 设复数z =a +b i ,a ,b ∈R ,则z =a -b i ,a ,b ∈R,3z +z =4a +2b i =1+i ,a ,b ∈R ,则a =14,b =12,故z =14+12i.【答案】 14+12i14.某工程的工序流程图如图3所示,现已知工程总工时数为10天,则工序c 所需工时为________天.【导学号:81092074】图3【解析】 设工序c 所需工时为x 天.由题意知:按①→③→④→⑥→⑦→⑧所需工时为0+2+3+3+1=9(天), 按①→②→④→⑥→⑦→⑧所需工时为1+0+3+3+1=8(天), 故按①→②→⑤→⑦→⑧所需工时应为10天. ∴1+x +4+1=10,∴x =4. 【答案】 415.在Rt △ABC 中,若∠C =90°,AC =b ,BC =a ,则△ABC 外接圆半径r =a 2+b 22.运用类比方法,若三棱锥的三条侧棱两两互相垂直且长度分别为a ,b ,c ,则其外接球的半径R =________.【解析】 通过类比可得R =a 2+b 2+c 22.证明:作一个在同一个顶点处棱长分别为a ,b ,c 的长方体,则这个长方体的体对角线的长度是a 2+b 2+c 2,故这个长方体的外接球的半径是a 2+b 2+c 22,这也是所求的三棱锥的外接球的半径.【答案】a 2+b 2+c 2216.某考察团对中国10个城市进行职工人均工资水平x (千元)与居民人均消费水平y (千元)调查,y 与x 具有相关关系,回归方程为y ^=0.66x +1.562,若A 城市居民人均消费水平为7.765(千元),估计该城市人均消费额占人均工资收入的百分比约为________.【导学号:81092075】【解析】 因为y 与x 具有线性相关关系,满足回归方程y ^=0.66x +1.562,A 城市居民人均消费水平为y =7.765,所以可以估计该城市的职工人均工资水平x 满足7.765=0.66x +1.562,所以x ≈9.4,所以该城市人均消费额占人均工资收入的百分比约为7.7659.4×100%≈83%.【答案】 83%三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明,证明过程或演算步骤.)17.(本小题满分10分)复数z =1+i ,求实数a ,b ,使az +2b z =(a +2z )2. 【解】 ∵z =1+i ,∴az +2b z =(a +2b )+(a -2b )i ,又∵(a +2z )2=(a +2)2-4+4(a +2)i =(a 2+4a )+4(a +2)i , ∵a ,b 都是整数,∴⎩⎪⎨⎪⎧a +2b =a 2+4a ,a -2b =a +,解得⎩⎪⎨⎪⎧a 1=-2,b 1=-1或⎩⎪⎨⎪⎧a 2=-4,b 2=2.∴所求实数为a =-2,b =-1或a =-4,b =2.18.(本小题满分12分)在调查男女乘客是否晕机的情况中,已知男乘客晕机为28人,不会晕机的也是28人,而女乘客晕机为28人,不会晕机的为56人.(1)根据以上数据建立一个2×2列联表; (2)试判断晕机是否与性别有关?(参考数据:K 2>2.706时,有90%的把握判定变量A ,B 有关联;K 2>3.841时,有95%的把握判定变量A ,B 有关联;K 2>6.635时,有99%的把握判定变量A ,B 有关联.参考公式:K 2=n ad -bc 2a +bc +d a +cb +d)【解】 (1)2×2列联表如下:(2)得K 2的观测值k =-256×84×56×84=359≈3.889>3.841,所以有95%的把握认为晕机与性别有关.19.(本小题满分12分)某省公安消防局对消防产品的监督程序步骤为:首先受理产品请求,如果是由公安部发证的产品,则审核考察,领导复核,不同意,则由窗口将信息反馈出去,同意,则报公安部审批,再经本省公安消防局把反馈信息由窗口反馈出去.如果不是由公安部发证的产品,则由窗口将信息反馈出去.试画出此监督程序的流程图.【解】 某省公安消防局消防产品监督程序的流程图如下:20.(本小题满分12分)已知a ,b ,c 是全不相等的正实数,求证:b +c -a a +a +c -bb+a +b -cc>3. 【证明】 法一(分析法):要证b +c -a a +a +c -b b +a +b -cc>3, 只需证明b a +ca -1+ab +c b -1+a c +b c-1>3, 即证b a +c a +a b +c b +a c +b c>6,而事实上,由a ,b ,c 是全不相等的正实数, ∴b a +a b >2,c a +a c >2,c b +b c>2. ∴b a +c a +a b +c b +a c +b c>6, ∴b +c -a a +a +c -b b +a +b -cc>3得证.法二(综合法):∵a ,b ,c 全不相等, ∴b a 与a b ,c a 与a c ,c b 与b c 全不相等, ∴b a +a b>2,c a +a c>2,c b +b c>2, 三式相加得b a +c a +a b +c b +a c +b c>6,∴⎝⎛⎭⎪⎫b a +c a -1+⎝⎛⎭⎪⎫a b +cb -1+⎝⎛⎭⎪⎫a c +bc -1>3, 即b +c -a a +a +c -b b +a +b -cc>3. 21.(本小题满分12分)某产品的广告支出x (单位:万元)与销售收入y (单位:万元)之间有下表所对应的数据:(1)(2)求出y 对x 的线性回归方程;(3)若广告费为9万元,则销售收入约为多少万元? 【导学号:81092076】 【解】 (1)散点图如图:(2)观察散点图可知各点大致分布在一条直线附近,列出下列表格,以备计算a ^,b ^.于是x =52,y =2,代入公式得:b ^=∑i =14x i y i -4x -y -∑i =14x 2i -4x -2=418-4×52×69230-4×⎝ ⎛⎭⎪⎫522=735,a ^=y -b ^x =692-735×52=-2.故y 与x 的线性回归方程为y ^=735x -2,其中回归系数为735,它的意义是:广告支出每增加1万元,销售收入y 平均增加735万元.(3)当x =9万元时,y =735×9-2=129.4(万元).所以当广告费为9万元时,可预测销售收入约为129.4万元.22.(本小题满分12分)某少数民族的刺绣有着悠久的历史,如图4(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含f (n )个小正方形.图4(1)求出f (5);(2)利用合情推理的“归纳推理思想”归纳出f (n +1)与f (n )的关系式; (3)根据你得到的关系式求f (n )的表达式.【解】 (1)∵f (1)=1,f (2)=5,f (3)=13,f (4)=25, ∴f (5)=25+4×4=41. (2)∵f (2)-f (1)=4=4×1.f (3)-f (2)=8=4×2,f (4)-f (3)=12=4×3,f (5)-f (4)=16=4×4,由上式规律得出f (n +1)-f (n )=4n . (3)∵f (2)-f (1)=4×1,f (3)-f (2)=4×2,f(4)-f(3)=4×3,f(n-1)-f(n-2)=4·(n-2),f(n)-f(n-1)=4·(n-1),∴以上各式相加得f(n)-f(1)=4[1+2+…+(n-2)+(n-1)]=2(n-1)·n,∴f(n)=2n2-2n+1.。
2017-2018学年高中数学 综合检测 新人教A版选修2-3
综合检测时间:120分钟 满分:150分 第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知50个乒乓球中,45个为合格品,5个次品,从这50个乒乓球中任取3个,出现次品的概率为( ) A.C 35C 350 B.C 15+C 25+C 33C 350 C .1-C 345C 350D.C 15C 245+C 25C 145C 350解析:间接法.出现次品的对立面为取出的3个均为正品,取出3个均为正品的概率为C 345C 350,所以出现次品的概率为1-C 345C 350.答案:C2.一盒中有12个乒乓球,其中9个旧的,从盒子中任取3个球来用,用完后放回盒中,此时盒中旧球个数X P (X ),则P (X =4)的值为( ) A.1D.21553个球为1个新球2个旧球,其概率P (X =3( ) A >0)都是实数B .f (x )=12πe 24x μ(-)-C .f (x )=12·2πe24x -D .f (x )=1πe 2()x μ--解析:对照正态分布密度函数:f (x )=12πσe22()2x μσ--,x ∈(-∞,+∞),注意指数上的σ和系数的分母上σ要一致,且指数部分是一个负数.对于A ,f (x )=12πσe22()2x μσ+-=12π·σ·e22[()]2x μσ---.由于μ∈(-∞,+∞),所以-μ∈(-∞,+∞),故它可以作为正态分布密度函数;对于B ,若σ=1,则应为f (x )=12π·e22x μ(-)-.若σ=2,则应为f (x )=12π·2e24x μ(-)-,均与所给函数不相符,故它不能作为正态分布密度函数;对于C ,它就是当σ=2,μ=0时的正态分布密度函数;对于D ,它是当σ=22时的正态分布密度函数.故选B. 答案:B4.已知X ~N (0,σ2),且P (-2≤X ≤2)=0.6,则P (X >2)等于( ) A .0.1 B .0.2 C .0.3 D .0.4 解析:P (X >2)=1-P -2≤X2=0.2.答案:B5.有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的概率是( )A B .0.8 D .0.9 AB (发芽,并成活而成长为幼P (B |A )=0.8,所以P (AB )=P (A )P (B |A )6上或向右,并且向上、向右移动的概率都是12.质点P 移动五次后位于点(2,3)的概率是( )A .(12)5B .C 25(15)5C .C 35(12)3D .C 25C 35(12)5解析:由题意可知质点P 在5次运动中向右移动2次,向上移动3次,且每次移动是相互独立的,即向右移动的次数ξ~B (5,12),∴P (ξ=2)=C 25(12)2(12)3=C 25(12)5.答案:B7.已知P (X =1)=0.4,P (X =2)=0.2,P (X =3)=0.4,则E (X )和D (X )的值分别为( ) A .1和0 B .1和1.8 C .2和2D .2和0.8解析:X 的分布列为:从而由D (X ),E (X )答案:D8.在10支铅笔中,有8只正品,2支次品,从中任取2支,则在第一次抽的是次品的条件下,第二次抽的是正品的概率是( ) A.15 B.845C.89D.45解析:设A ,B 分别表示“第一次、第二次抽得正品”,则A B 表示“第一次抽得次品第二次抽得正品”.∴P (B |A )=PA B PA=2×810×9210=89.答案:C 9.二项式⎝⎛⎭⎪⎫31x +51x n 展开式中所有奇数项系数之和等于 1 024,则所有项的系数中最大的值是( ) A .330 B .462 C .680D .790解析:显然奇数项之和是所有项系数之和的一半,令x =1即得所有项系数之和.据题意可得2n -1=1 024=210,∴n =11.各项的系数为二项式系数,故系数最大值为C 611或C 511,为462.答案:B10.某产品的广告费用x 与销售额y 的统计数据如下表:根据上表可得回归方程y =bx +a 中的b 为9.4,据此模型预测广告费用为6万元时销售额为( ) A .63.6万元 B .65.5万元 C .67.7万元 D .72.0万元解析:∵x =4+2+3+54=72,y =49+26+39+544=42, 又y =bx +a 必过(x ,y ),∴42=72×9.4+a ,∴a =9.1.∴线性回归方程为y =9.4x +9.1.∴当x =6时,y =9.4×6+9.1=65.5(万元). 答案:B11.设(1+x +x 2)n=a 0+a 1x +a 2x 2+…+a 2n x 2n,则a 0+a 2+a 4+…+a 2n 等于( ) A.12(3n+1) B.12(3n-1) C .3n-1D .3n+1解析:令x =1,得a 0+a 1+a 2+…+a 2n =3n. 令x =-1,得a 0-a 1+a 2-a 3+…+a 2n =1. 故a 0+a 2+a 4+…+a 2n =12(3n+1).答案:A12.在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23 145且小于43 521的数共有( ) A .56个 B .57个 C .58个D .60个解析:首位为3时,有A 44=24(个); 首位为2,千位为3时,有A 12A 22+1=5(个), 千位为4或5时,有A 12A 33=12(个);首位为4,千位为1或2时,有A 12A 33=12(个), 千位为3时,有A 12A 22+1=5(个). ∴共有24+5+12+12+5=58(个). 答案:C第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题4分,共16分,把答案填在题中横线上) 13.已知随机变量ξ的分布列如下表:则x 的值为________,P (3<ξ<2)=________.解析:根据分布列的性质可得x =1-(115+215+415+13)=15.P (23<ξ<92)=P (ξ=1)+P (ξ=2)+P (ξ=3)+P (ξ=4)=1-P (ξ=5)=23.答案:15 2314.设(x -1)21=a 0+a 1x +a 2x 2+…+a 21x 21,则a 10+a 11=________. 解析:因为a 10=C 1121(-1)11=-C 1021,a 11=C 1021(-1)10=C 1021,所以a 10+a 11=C 1021-C 1021=0. 答案:015.事件A ,B ,C 相互独立,如果P (AB )=16,P (B C )=18,P (AB C )=18,则P (B )=________,P (A B )=________.解析:由已知得⎩⎪⎨⎪⎧P AP B =16,PB PC =18,PAP BPC=18,解得P (A )=13,P (B )=12.所以P (A B )=P (A )P (B )=23×12=13.答案:12 1316.某校高二年级共有6个班,现从外地转入4名学生,要安排到该年级的两个班且每班安排两名,则不同安排方案有________种.解析:分两步:先将四个学生平均分成二组,有12C 24种方法,对每一种分组方法有A 26种安排方式.由分步乘法计数原理,方法有12C 24A 26=90(种).答案:90三、解答题(本大题共6小题,共74分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(12分)从1,2,3,…,9这9个数字中任取2个不同的数分别作为一个对数的底数和真数.一共可以得到多少个不同的对数值?其中比1大的有几个?解析:在2,3,…,9这8个数中任取2个数组成对数,有A28个,在这些对数值中,log24=log39,log42=log93,log23=log49,log32=log94,重复计数4个;又1不能作为对数的底数,1作为真数时,不论底数为何值,其对数值均为0.所以,可以得到A28-4+1=53个不同的对数值.要求对数值比1大,分类完成:底数为2时,真数从3,4,5,…,9中任取一个,有7种选法;底数为3时,真数从4,5,…,9中任取一个,有6种选法……依次类推,当底数为8时,真数只能取9,故有7+6+5+4+3+2+1=28(个).但其中log24=log39,log23=log49,所以,比1大的对数值有28-2=26(个).18.(12分)甲箱的产品中有5个正品和3个次品,乙箱的产品中有4个正品和3个次品.(1)从甲箱中任取2个产品,求这2个产品都是次品的概率;(2)若从甲箱中任取2个产品放入乙箱中,然后再从乙箱中任取一个产品,求取出的这个产品是正品的概率.解析:(1)从甲箱中任取2个产品的事件数为C28=28,这2个产品都是次品的事件数为C23=3.B1为“从甲箱中取出2个产品都是正品”,B3为“从甲箱中取出2个产品都是次PPP(A|B2)=9,P(A|B3)=9,所以P(A)=P(B1)P(A|B1)+P(B2)P(A|B2)+P(B3)P(A|B3)=514×23+1528×59+328×49=712,即取出的这个产品是正品的概率为7 12 .19.(12分)某学生语、数、英三科考试成绩,在一次考试中排名全班第一的概率:语文为0.9,数学为0.8,英语为0.85,问一次考试中(1)三科成绩均未获得第一名的概率是多少?(2)恰有一科成绩未获得第一名的概率是多少?解析:分别记该生语、数、英考试成绩排名全班第一为事件A,B,C,则A、B、C两两相互独立且P(A)=0.9,P(B)=0.8,P(C)=0.85.(1)“三科成绩均未获得第一名”可以用A B C表示.P(A B C)=P(A)P(B)P(C)=[1-P(A)][1-P(B)][1-P(C)]=(1-0.9)(1-0.8)(1-0.85)=0.003,∴三科成绩均未获得第一名的概率是0.003.(2)“恰有一科成绩未获得第一名”可以用(A BC)∪(A B C)∪(AB C)表示.由于事件A BC,A B C和AB C两两互斥,根据概率加法公式和相互独立事件的意义,所求的概率为P(A BC)+P(A B C)+P(AB C)=P(A)P(B)P(C)+P(A)P(B)P(C)+P(A)P(B)P(C)=[1-P(A)]P(B)P(C)+P(A)[1-P(B)]P(C)+P(A)P(B)[1-P(C)]=(1-0.9)×0.8×0.85+0.9×(1-0.8)×0.85+0.9×0.8×(1-0.85)=0.329,∴恰有一科成绩未获得第一名的概率是0.329.20.(12分)在一次天气恶劣的飞机航程中,调查了男女乘客在飞机上晕机的情况:男乘客晕机的有24人,不晕机的有31人;女乘客晕机的有8人,不晕机的有26人.请你根据所给数据判定:在天气恶劣的飞机航程中,男乘客是否比女乘客更容易晕机?解析:根据题意,列出2×2列联表如下:由公式可得χ2=n ad-bc2a +b c+d a+c b+d=-255×34×32×57≈3.689>2.706.故在犯错误的概率不超过0.10的前提下,认为“在天气恶劣的飞机航程中男乘客比女乘客更容易晕机”.21.(13分)第16届亚运会在中国广州举行,在安全保障方面,警方从武警训练基地挑选防暴警察,从体能、射击、反应三项指标进行检测,如果这三项中至少有两项通过即可入选.假定某基地有4名武警战士(分别记为A 、B 、C 、D )拟参加挑选,且每人能通过体能、射击、反应的概率分别为23,23,12.这三项测试能否通过相互之间没有影响.(1)求A 能够入选的概率;(2)规定:按入选人数得训练经费(每选1人,则相应的训练基地得到3 000元的训练经费),求该基地得到训练经费的分布列与数学期望.解析:(1)设A 通过体能、射击、反应分别记为事件M 、N 、P ,则A 能够入选包含以下几个互斥事件:MN P ,M N P ,M NP ,MNP .∴P (A )=P (MN P )+P (M N P )+P (M =23×23×12+23×13×12+13×23×12+23×E 200分).设每次击鼓出现音乐的概率为2,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X ,求X 的分布列; (2)玩三盘游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因. 解析:(1)X 可能的取值为:10,20,100,-200.根据题意,有P (X =10)=C 13×⎝ ⎛⎭⎪⎫121×⎝ ⎛⎭⎪⎫1-122=38,P (X =20)=C 23×⎝ ⎛⎭⎪⎫122×⎝⎛⎭⎪⎫1-121=38, P (X =100)=C 33×⎝ ⎛⎭⎪⎫123×⎝⎛⎭⎪⎫1-120=18,P (X =-200)=C 03×⎝ ⎛⎭⎪⎫120×⎝⎛⎭⎪⎫1-123=18.所以X 的分布列为(2)设“第i i 1=P (A 2)=P (A 3)=P (X =-200)=18.所以“三盘游戏中至少有一次出现音乐”的概率为1-P (A 1A 2A 3)=1-⎝ ⎛⎭⎪⎫183=1-1512=511512.因此,玩三盘游戏至少有一盘出现音乐的概率是511512.(3)X 的数学期望为E (X )=10×38+20×38+100×18-200×18=-54.这表明,获得分数X 的均值为负,因此,多次游戏之后分数减少的可能性更大.。
2017-2018学年高中数学人教A版选修1-2创新应用:模块综合检测 Word版含解析
由表格中数据的散点图分析,y 与 x 线性相关,且回归方程为^y=0.95x+a,则 a=
________.
15.在平面上,我们如果用一条直线去截正方形的一个角,那么截下的一个直角三角形, 按如图所标边长,由勾股定理有:c2=a2+b2.设想正方形换成正方体,把截线换成如图的截 面,这时从正方体上截下三条侧棱两两垂直的三棱锥 OLMN,如果用 S1,S2,S3 表示三个 侧面面积,S4 表示截面面积,那么类比得到的结论是________.
nn+1 2
C.n(n+1)
D.n(n+1)f(1)
12.如图是某汽车维修公司的维修点环形分布图.公司在年初分配给 A,B,C,D 四 个维修点某种配件各 50 件,在使用前发现需将 A,B,C,D 四个维修点的这批配件分别调 整为 40,45,54,61 件,但调整只能在相邻维修点之间进行.那么要完成上述调整,最少的调 动件次(n 件配件从一个维修点调整到相邻维修点的调动件次为 n)为( )
A.2n B.n2 C.22(n-1) D.nn
10.下面给出了关于复数的四种类比推理:
①复数的加减法运算可以类比多项式的加减法运算法则;②由向量 a 的性质|a|2=a2 类
比得到复数 z 的性质|z2|=z2;③方程 ax2+bx+c=0(a,b,c∈R)有两个不同实数根的条件是
b2-4ac>0 可以类比得到:方程 az2+bz+c=0(a,b,c∈C)有两个不同复数根的条件是 b2-
A.第一象限 B.第二象限
C.第三象限 D.第四象限
3.用反证法证明:“a>b”,应假设( )
A.a>b
B.a<b
C.a=b
D.a≤b
4.由①正方形的对角线相等;②矩形的对角线相等;③正方形是矩形.写一个“三段
2018年秋高中数学 模块综合测评 新人教A版选修1-2
模块综合测评(时间:120分钟,满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如果z =m (m +1)+(m 2-1)i 为纯虚数,则实数m 的值为( )【导学号:48662218】A .1B .0C .-1D .-1或1B [由题意知,⎩⎪⎨⎪⎧m m +=0m 2-1≠0,∴m =0.]2.演绎推理“因为对数函数y =log a x (a >0且a ≠1)是增函数,而函数y =log 12x 是对数函数,所以y=log 12x 是增函数”所得结论错误的原因是( )A .大前提错误B .小前提错误C .推理形式错误D .大前提和小前提都错误A [对数函数y =log a x (a >0,且a ≠1),当a >1时是增函数,当0<a <1时是减函数,故大前提错误.] 3.i 是虚数单位,复数1-3i1-i的共轭复数是( )【导学号:48662219】A .2+iB .2-iC .-1+2iD .-1-2iA [∵1-3i 1-i =-+-+=4-2i 2=2-i ,∴1-3i1-i的共轭复数是2+i.] 4.用反证法证明命题“a ,b ∈N ,如果ab 可以被5整除,那么a ,b 至少有1个能被5整除.”假设的内容是( )A .a ,b 都能被5整除B .a ,b 都不能被5整除C .a 不能被5整除D .a ,b 有1个不能被5整除B [用反证法证明时,要假设所要证明的结论的反面成立,本题中应反设a ,b 都不能被5整除.] 5.实数的结构图如图1所示,其中1,2,3三个方格中的内容分别为( )【导学号:48662220】图1A .有理数、零、整数B .有理数、整数、零C .零、有理数、整数D .整数、有理数、零B [由实数的包含关系知B 正确.]6.在西非肆虐的“埃博拉病毒”的传播速度很快,这已经成为全球性的威胁.为了考察某种埃博拉病毒疫苗的效果,现随机抽取100只小鼠进行试验,得到如下列联表,下列结论正确的是( )B .在犯错误的概率不超5%过的前提下,认为“小动物是否被感染与有没有服用疫苗无关”;C .有97.5%的把握认为“小动物是否被感染与有没有服用疫苗有关”;D .有97.5%的把握认为“小动物是否被感染与有没有服用疫苗无关”.A [K 2=-230×70×50×50≈4.762>3.841,所以在犯错误的概率不超5%过的前提下,认为“小动物是否被感染与有没有服用疫苗有关”.]7.已知复数z 1=2+i ,z 2=1+i ,则z 1z 2在复平面内对应的点位于( )【导学号:48662221】A .第一象限B .第三象限C .第二象限D .第四象限D [z 1z 2=2+i 1+i =32-i 2,对应点⎝ ⎛⎭⎪⎫32,-12在第四象限.]8. 某考察团对全国10大城市进行职工人均工资水平x (千元)与居民人均消费水平y (千元)统计调查发现,y 与x 具有相关关系,回归方程为y ^=0.66x +1.562.若某城市居民人均消费水平为7.765(千元),估计该城市人均消费额占人均工资收入的百分比约为( )A .83%B .72%C .67%D .66%A [由(x,7.765)在回归直线y ^=0.66x +1.562上.所以7.765=0.66x +1.562,则x ≈9.4,所以该城市人均消费额占人均工资收入的百分比约为7.7659.4×100%≈83%.]9.已知结论:“在正三角形ABC 中,若D 是BC 的中点,G 是三角形ABC 的重心,则AG GD=2”.若把该结论推广到空间,则有结论:在棱长都相等的四面体A BCD 中,若△BCD 的中心为M ,四面体内部一点O 到四面体各面的距离都相等,则AO OM等于( )A .1B .2C .3D .4C [面的重心类比几何体的重心,平面类比空间,AG GD =2类比AO OM=3,故选C.] 10.如图2所示的程序框图是为了求出满足3n-2n>1 000的最小偶数n ,那么在和两个空白框中,可以分别填入( )【导学号:48662222】图2A .A >1 000和n =n +1B .A >1 000和n =n +2C .A ≤1 000和n =n +1D .A ≤1 000和n =n +2D [因为题目要求的是“满足3n-2n>1 000的最小偶数n ”,所以n 的叠加值为2,所以内填入“n =n +2”.由程序框图知,当内的条件不满足时,输出n ,所以内填入“A ≤1 000”.故选D.]11.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( )。
2017-2018学年高中数学 全册检测 新人教A版选修2-2
3.设函数f(x)的导函数为f′(x),且f(x)=x2+2x·f′(1).则f′(0)等于()
A.0 B.-4
C.-2 D.2
解析:因为f(x)=x2+2x·f′(1),所以f′(x)=2x+2f′(1),f′(0)=2f′(1).因为f′(1)=2+2f′(1),所以f′(1)=-2,故f′(0)=-4.
猜测:|( × )· |在几何上可表示以AB、AD、AP为棱的平行六面体的体积(或以AB、AD、AP为棱的直四棱柱的体积).
19. (本小题满分12分)统计表明,某种型号的汽车在匀速行驶中每小时的耗油量y(升)关于行驶速度x(千米/时)的函数解析式可以表示为y= x3- x+8(0<x≤120).已知甲、乙两地相距100千米.
解析:(1)∵ · =-2-2+4=0,∴AP⊥AB.
又∵ · =-4+4+0=0,
∴AP⊥AD.
∵AB、AD是底面ABCD上的两条相交直线,
∴AP⊥底面ABCD.
(2)设 与 的夹角为θ,则
cosθ= = = .
V= | |·| |·sinθ·| |
= · · =16.
(3)|( × )· |=|-4-32-4-8|=48,它是四棱锥P-ABCD体积的3倍.
所以a1=-1± .
又因为an>0,所以a1= -1.
S2=a1+a2= + -1,所以a2= - .
S3=a1+a2+a3= + -1,
所以a3= - .
(2)由(1)猜想an= - ,n∈N+.
下面用数学归纳法加以证明:
①当n=1时,由(1)知a1= -1成立.
②假设n=k(k∈N+)时,ak= - 成立.
所以曲线y=f(x)在点(1,f(1))处的切线的斜率为1.
2017-2018学年人教A版高中数学选修1-2模块综合评价(一)含答案
模块综合评价(一)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若z=4+3i,则错误!=( )A.1 B.-1C。
45+错误!i D。
错误!-错误!i解析:错误!=错误!=错误!-错误!i.答案:D2.下面几种推理是合情推理的是()①由圆的性质类比出球的有关性质;②由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180°;③张军某次考试成绩是100分,由此推出全班同学的成绩都是100分;④三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得凸多边形内角和是(n-2)·180°。
A.①②B.①③C.①②④D.②④解析:①是类比推理;②是归纳推理;④是归纳推理.所以①、②、④是合情推理.答案:C3.某考察团对全国10大城市进行职工人均工资水平x(千元)与居民人均消费水平y(千元)统计调查发现,y与x具有相关关系,回归方程为错误!=0。
66x+1.562。
若某城市居民人均消费水平为7.675(千元),估计该城市人均消费额占人均工资收入的百分比约为( )A.83% B.72%C.67% D.66%解析:由(错误!,7.765)在回归直线错误!=0.66x+1。
562上.所以7.765=0。
66错误!+1。
562,则错误!≈9。
4,所以该城市人均消费额占人均工资收入的百分比约为错误!×100%≈83%.答案:A4.有一段演绎推理是这样的:“若直线平行于平面,则平行于平面内所有直线,已知直线b在平面α外,直线a在平面α内,直线b∥平面α,则直线b∥直线a"的结论显然是错误的,这是因为()A .大前提错误B .小前提错误C .推理形式错误D .非以上错误解析:若直线平行平面α,则该直线与平面内的直线平行或异面,故大前提错误.答案:A5.执行如图所示的程序框图,如图输入的x ,t 均为2,则输出的S =( )A .4B .5C .6D .7解析:x =2,t =2,M =1,S =3,k =1.k ≤t ,M =错误!×2=2,S =2+3=5,k =2;k ≤t ,M =22×2=2,S =2+5=7,k =3;3>2,不满足条件,输出S =7。
2017-2018学年人教A版高中数学选修2-1模块综合评价含答案
模块综合评价(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列有关命题的说法正确的是( )A.“若x〉1,则2x〉1”的否命题为真命题B.“若cos β=1,则sin β=0”的逆命题是真命题C.“若平面向量a,b共线,则a,b方向相同”的逆否命题为假命题D.命题“若x〉1,则x〉a”的逆命题为真命题,则a>0解析:A选项中,因为2x≤1时,x≤0,从而否命题“若x≤1,则2x≤1”为假命题,故A选项不正确;B选项中,sin β=0时,cos β=±1,则逆命题为假命题,故B选项不正确;D选项中,由已知条件得a≥1,故D选项不正确.答案:C2.设A,B是两个集合,则“A∩B=A"是“A⊆B”的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:由题意得,A∩B=A⇒A⊆B,反之,A⊆B⇒A∩B=A,故为充要条件.答案:C3.若直线l的方向向量为b,平面α的法向量为n,则可能使l∥α的是()A.b=(1,0,0),n=(-2,0,0)B.b=(1,3,5),n=(1,0,1)C.b=(0,2,1),n=(-1,0,-1)D.b=(1,-1,3),n=(0,3,1)解析:若l∥α,则b·n=0.将各选项代入,知D正确.答案:D4.抛物线y2=4x的焦点到双曲线x2-错误!=1的渐近线的距离是()A。
错误!B。
错误!C.1 D。
错误!答案:B5.已知a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),若a,b,c三向量共面,则实数λ等于()A。
错误! B.错误! C.错误!D。
错误!答案:D6.已知a=(cos α,1,sin α),b=(sin α,1,cos α),则向量a+b与a-b的夹角是( )A.90°B.60°C.30°D.0°解析:因为|a|=|b|=错误!,所以(a+b)·(a-b)=a2-b2=0.故向量a+b与a-b的夹角是90°.答案:A7.抛物线y2=-ax的准线方程为x=-2,则a的值为( ) A.4 B.-4C.8 D.-8答案:D8.三棱锥A。
高中数学 模块综合测评(含解析)新人教A版高二选修2-1数学试题
模块综合测评(满分:150分 时间:120分钟)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知a ∈R ,则“a <2”是“a 2<2a ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件B [∵a 2<2a ⇔a (a -2)<0⇔0<a <2. ∴“a <2”是“a 2<2a ”的必要不充分条件.] 2.已知命题p :∀x >0,总有(x +1)e x >1,则p 为( )A .∃x 0≤0,使得(x 0+1)e x 0≤1B .∃x 0>0,使得(x 0+1)e x 0≤1C .∀x >0,总有(x +1)e x 0≤1D .∀x ≤0,总有(x +1)e x 0≤1 B [命题p 为全称命题,所以p 为∃x 0>0,使得(x 0+1)e x 0≤1.故选B .]3.若椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,则双曲线x 2a 2-y 2b 2=1的离心率为( )A .54B .52C .32D .54B [由题意,1-b 2a 2=⎝⎛⎭⎫322=34,∴b 2a 2=14,而双曲线的离心率e 2=1+b 2a 2=1+14=54,∴e =52.]4.已知空间向量a =(t,1,t ),b =(t -2,t,1),则|a -b |的最小值为( ) A . 2 B . 3 C .2D .4C [|a -b |=2(t -1)2+4≥2,故选C .] 5.椭圆x 225+y 29=1与椭圆x 2a 2+y 29=1有()A .相同短轴B .相同长轴C .相同离心率D .以上都不对D [对于x 2a 2+y 29=1,有a 2>9或a 2<9,因此这两个椭圆可能长轴相同,也可能短轴相同,离心率是不确定的,因此A ,B ,C 均不正确,故选D .]6.长方体ABCD -A 1B 1C 1D 1中,AB =2,AD =AA 1=1,则二面角C 1-AB -C 为( ) A .π3B .2π3C .3π4D .π4D [以A 为原点,直线AB ,AD ,AA 1分别为x 轴、y 轴、z 轴建立空间直角坐标系,则平面ABC 的一个法向量为AA 1→=(0,0,1),平面ABC 1的一个法向量为A 1D →=(0,1,-1),∴cos 〈AA 1→,A 1D →〉=-12=-22,∴〈AA 1→,A 1D →〉=3π4,又二面角C 1-AB -C 为锐角,即π-34π=π4,故选D .]7.命题“∀x ∈[1,2],x 2-a ≤0”为真命题的一个充分不必要条件是( ) A .a ≥4 B .a ≤4 C .a ≥5D .a ≤5C [∵∀x ∈[1,2],1≤x 2≤4,∴要使x 2-a ≤0为真,则a ≥x 2,即a ≥4,本题求的是充分不必要条件,结合选项,只有C 符合,故选C .]8.设斜率为2的直线l 过抛物线y 2=ax (a ≠0)的焦点F ,且和y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线的方程为( )A .y 2=±4xB .y 2=±8xC .y 2=4xD .y 2=8xB [由已知可得,抛物线的焦点坐标为⎝⎛⎭⎫a 4,0.又直线l 的斜率为2,故直线l 的方程为y =2⎝⎛⎭⎫x -a 4,则|OA |=|a |2,故S △OAF =12·|a |4·|a |2=4,解得a =±8,故抛物线的方程为y 2=±8x .] 9.已知A (1,2,3),B (2,1,2),C (1,1,2),O 为坐标原点,点D 在直线OC 上运动,则当DA →·DB →取最小值时,点D 的坐标为( )A .⎝⎛⎭⎫43,43,43B .⎝⎛⎭⎫83,43,83 C .⎝⎛⎭⎫43,43,83D .⎝⎛⎭⎫83,83,43C [点D 在直线OC 上运动,因而可设OD →=(a ,a,2a ),则DA →=(1-a,2-a,3-2a ),DB →=(2-a,1-a,2-2a ),DA →·DB →=(1-a )(2-a )+(2-a )(1-a )+(3-2a )(2-2a )=6a 2-16a +10,所以a =43时DA →·DB →取最小值,此时OD →=⎝⎛⎭⎫43,43,83.] 10.过椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左顶点A 的斜率为k 的直线交椭圆C 于另一点B ,且点B 在x 轴上的射影恰好为右焦点F ,若椭圆的离心率为23,则k 的值为( )A .-13B .13C .±13D .±12C [由题意知点B 的横坐标是c ,故点B 的坐标为⎝⎛⎭⎫c ,±b 2a ,则斜率k =±b 2ac +a =±b 2ac +a 2=±a 2-c 2ac +a 2=±1-e 2e +1=±(1-e )=±13,故选C .]11.若F 1,F 2为双曲线C :x 24-y 2=1的左、右焦点,点P 在双曲线C 上,∠F 1PF 2=60°,则点P 到x 轴的距离为( )A .55B .155C .2155D .1520B [设|PF 1|=r 1,|PF 2|=r 2,点P 到x 轴的距离为|y P |,则S △F 1PF 2=12r 1r 2sin 60°=34r 1r 2,又4c 2=r 21+r 22-2r 1r 2cos 60°=(r 1-r 2)2+2r 1r 2-r 1r 2=4a 2+r 1r 2,得r 1r 2=4c 2-4a 2=4b 2=4,所以S △F 1PF 2=12r 1r 2sin 60°=3=12·2c ·|y P |=5|y P |,得|y P |=155,故选B .]12.抛物线y 2=2px (p >0)的焦点为F ,准线为l ,A ,B 是抛物线上的两个动点,且满足∠AFB =2π3.设线段AB 的中点M 在l 上的投影为N ,则|MN ||AB |的最大值是( ) A . 3 B .32 C .33D .34C [如图.设|AF |=r 1,|BF |=r 2,则|MN |=r 1+r 22.在△AFB 中,因为|AF |=r 1,|BF |=r 2且∠AFB =2π3,所以由余弦定理,得|AB |=r 21+r 22-2r 1r 2cos 2π3=r 21+r 22+r 1r 2,所以|MN ||AB |=r 1+r 22r 21+r 22+r 1r 2=12×(r 1+r 2)2r 21+r 22+r 1r 2=12×1+r 1r 2r 21+r 22+r 1r 2≤12×1+r 1r 23r 1r 2=33,当且仅当r 1=r 2时取等号.故选C .] 二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上) 13.已知点P 是平行四边形ABCD 所在平面外的一点,如果AB →=(2,-1,-4),AD →=(4,2,0),AP →=(-1,2,-1).对于下列结论:①AP ⊥AB ;②AP ⊥AD ;③AP →是平面ABCD 的法向量;④AP →∥BD →.其中正确的是________.(填序号)①②③[∵AB →·AP →=-2-2+4=0,∴AB →⊥AP →,即AP ⊥AB ,①正确;∵AP →·AD →=-4+4=0,∴AP →⊥AD →,即AP ⊥AD ,②正确;由①②可得AP →是平面ABCD 的法向量,③正确;由③可得AP →⊥BD →,④错误.]14.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线平行于直线l :y =2x +10,双曲线的一个焦点在直线l 上,则双曲线的方程为________.x 25-y 220=1[由已知得ba =2,所以b =2a .在y =2x +10中令y =0得x =-5,故c =5,从而a 2+b 2=5a 2=c 2=25,所以a 2=5,b 2=20,所以双曲线的方程为x 25-y 220=1.] 15.在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =23,且椭圆C 上的点到点Q (0,2)的距离的最大值为3,则椭圆C 的方程为________.x 23+y 2=1[由e =c a=23,得c 2=23a 2,所以b 2=a 2-c 2=13a 2, 设P (x ,y )是椭圆C 上任意一点,则x 2a 2+y 2b 2=1,所以x 2=a 2⎝⎛⎭⎫1-y 2b 2=a 2-3y 2.|PQ |=x 2+(y -2)2=a 2-3y 2+(y -2)2=-2(y +1)2+a 2+6,当y =-1时,|PQ |有最大值a 2+6.由a 2+6=3,可得a 2=3,所以b 2=1,故椭圆C 的方程为x 23+y 2=1.]16.四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 是正方形,且PD =AB =1,G 为△ABC 的重心,则PG 与底面ABCD 所成的角θ的正弦值为________.31717[如图,分别以DA ,DC ,DP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,由已知P (0,0,1),A (1,0,0),B (1,1,0),C (0,1,0),则重心G ⎝⎛⎭⎫23,23,0,因此DP →=(0,0,1),GP →=⎝⎛⎭⎫-23,-23,1,所以sin θ=|cos 〈DP →,GP →〉|=|DP →·GP →||DP →|·|GP →|=31717.]三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)设集合A ={x |x 2-3x +2=0},B ={x |ax =1}.“x ∈B ”是“x ∈A ”的充分不必要条件,试求满足条件的实数a 组成的集合.[解]∵A ={x |x 2-3x +2=0}={1,2},由于“x ∈B ”是“x ∈A ”的充分不必要条件,∴B A .当B =∅时,得a =0;当B ≠∅时,由题意得B ={1}或B ={2}.则当B ={1}时,得a =1;当B ={2}时,得a =12.综上所述,实数a 组成的集合是⎩⎨⎧⎭⎬⎫0,1,12.18.(本小题满分12分)已知双曲线的中心在原点,焦点F 1,F 2在坐标轴上,离心率为2,且过点(4,-10).(1)求双曲线的方程;(2)若点M (3,m )在双曲线上,求证:MF 1→·MF 2→=0.[解](1)由双曲线的离心率为2,可知双曲线为等轴双曲线,设双曲线的方程为x 2-y 2=λ,又双曲线过点(4,-10),代入解得λ=6,故双曲线的方程为x 2-y 2=6.(2)证明:由双曲线的方程为x 2-y 2=6,可得a =b =6,c =23,所以F 1(-23,0),F 2(23,0).由点M (3,m ),得MF 1→=(-23-3,-m ),MF 2→=(23-3,-m ),又点M (3,m )在双曲线上,所以9-m 2=6,解得m 2=3,所以MF 1→·MF 2→=m 2-3=0.19.(本小题满分12分)如图,在四棱柱ABCD -A 1B 1C 1D 1中,侧棱AA 1⊥底面ABCD ,AB ∥DC ,AA 1=1,AB =3k ,AD =4k ,BC =5k ,DC =6k (k >0).(1)求证:CD ⊥平面ADD 1A 1;(2)若直线AA 1与平面AB 1C 所成角的正弦值为67,求k 的值.[解] (1)证明:取CD 的中点E ,连接BE ,如图①.①∵AB ∥DE ,AB =DE =3k , ∴四边形ABED 为平行四边形, ∴BE ∥AD 且BE =AD =4k . 在△BCE 中,∵BE =4k ,CE =3k ,BC =5k ,∴BE 2+CE 2=BC 2,∴∠BEC =90°,即BE ⊥CD . 又∵BE ∥AD ,∴CD ⊥AD .∵AA 1⊥平面ABCD ,CD ⊂平面ABCD ,∴AA 1⊥CD . 又AA 1∩AD =A ,∴CD ⊥平面ADD 1A 1.(2)以D 为原点,DA →,DC →,DD 1→的方向为x ,y ,z 轴的正方向建立如图②所示的空间直角坐标系,则A (4k,0,0),C (0,6k,0),B 1(4k,3k,1),A 1(4k,0,1),②∴AC →=(-4k,6k,0),AB 1→=(0,3k,1),AA 1→=(0,0,1).设平面AB 1C 的法向量n =(x ,y ,z ),则由⎩⎪⎨⎪⎧AC →·n =0,AB 1→·n =0,得⎩⎪⎨⎪⎧-4kx +6ky =0,3ky +z =0.取y =2,得n =(3,2,-6k ). 设AA 1与平面AB 1C 所成的角为θ,则sin θ=|cos 〈AA 1→,n 〉|=⎪⎪⎪⎪⎪⎪⎪⎪AA 1→·n |AA 1→||n |=6k 36k 2+13=67,解得k =1,故所求k 的值为1. 20.(本小题满分12分)如图,过抛物线y 2=2px (p >0)的焦点F 作一条倾斜角为π4的直线与抛物线相交于A ,B 两点.(1)用p 表示|AB |;(2)若OA →·OB →=-3,求这个抛物线的方程.[解](1)抛物线的焦点为F ⎝⎛⎭⎫p 2,0,过点F 且倾斜角为π4的直线方程为y =x -p2. 设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y 2=2px ,y =x -p 2,得x 2-3px +p 24=0, ∴x 1+x 2=3p ,x 1x 2=p 24,∴|AB |=x 1+x 2+p =4p .(2)由(1)知,x 1x 2=p 24,x 1+x 2=3p ,∴y 1y 2=⎝⎛⎭⎫x 1-p 2⎝⎛⎭⎫x 2-p 2=x 1x 2-p 2(x 1+x 2)+p 24=p 24-3p 22+p 24=-p 2,∴OA →·OB →=x 1x 2+y 1y 2=p 24-p 2=-3p 24=-3,解得p 2=4,∴p =2. ∴这个抛物线的方程为y 2=4x .21.(本小题满分12分)如图所示,四棱锥P -ABCD 的底面是边长为1的正方形,P A ⊥CD ,P A =1,PD =2,E 为PD 上一点,PE =2ED .(1)求证:P A ⊥平面ABCD ;(2)在侧棱PC 上是否存在一点F ,使得BF ∥平面AEC ?若存在,指出F 点的位置,并证明;若不存在,说明理由.[解](1)证明:∵P A =AD =1,PD =2,∴P A 2+AD 2=PD 2, 即P A ⊥AD .又P A ⊥CD ,AD ∩CD =D , ∴P A ⊥平面ABCD .(2)以A 为原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系. 则A (0,0,0),B (1,0,0),C (1,1,0),P (0,0,1),E ⎝⎛⎭⎫0,23,13,AC →=(1,1,0),AE →=⎝⎛⎭⎫0,23,13.设平面AEC 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AC →=0,n ·AE →=0,即⎩⎪⎨⎪⎧x +y =0,2y +z =0,令y =1,则n =(-1,1,-2).假设侧棱PC 上存在一点F ,且CF →=λCP →(0≤λ≤1), 使得BF ∥平面AEC ,则BF →·n =0.又∵BF →=BC →+CF →=(0,1,0)+(-λ,-λ,λ)=(-λ,1-λ,λ), ∴BF →·n =λ+1-λ-2λ=0,∴λ=12,∴存在点F ,使得BF ∥平面AEC ,且F 为PC 的中点.22.(本小题满分12分)如图,在平面直角坐标系xOy 中,F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,顶点B 的坐标为(0,b ),连接BF 2并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连接F 1C .(1)若点C 的坐标为⎝⎛⎭⎫43,13,且BF 2=2,求椭圆的方程; (2)若F 1C ⊥AB ,求椭圆离心率e 的值.[解](1)∵BF 2=2,而BF 22=OB 2+OF 22=b 2+c 2=2=a 2,∵点C 在椭圆上,C ⎝⎛⎭⎫43,13, ∴169a 2+19b2=1, ∴b 2=1,∴椭圆的方程为x 22+y 2=1. (2)直线BF 2的方程为x c +y b =1,与椭圆方程x 2a 2+y 2b2=1联立方程组,解得A 点坐标为⎝ ⎛⎭⎪⎫2a 2c a 2+c 2,-b 3a 2+c 2,则C 点的坐标为⎝ ⎛⎭⎪⎫2a 2c a 2+c 2,b 3a 2+c 2,又F 1为(-c,0),kF 1C =b 3a 2+c 22a 2c a 2+c 2+c=b 33a 2c +c 3, 又k AB =-b c ,由F 1C ⊥AB ,得b 33a 2c +c 3·⎝⎛⎭⎫-b c =-1, 即b 4=3a 2c 2+c 4,所以(a 2-c 2)2=3a 2c 2+c 4,化简得e =c a =55.。
2017-2018版高中数学 模块综合测评1 新人教A版选修1-2
模块综合测评(一)(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设i为虚数单位,则复数(1+i)2=( )A.0 B.2C.2i D.2+2i【解析】(1+i)2=1+2i+i2=2i.【答案】 C2.根据二分法求方程x2-2=0的根得到的程序框图可称为( )A.工序流程图B.程序流程图C.知识结构图D.组织结构图【解析】由于该框图是动态的且可以通过计算机来完成,故该程序框图称为程序流程图.【答案】 B3.利用独立性检测来考查两个分类变量X,Y是否有关系,当随机变量K2的值( )【导学号:81092070】A.越大,“X与Y有关系”成立的可能性越大B.越大,“X与Y有关系”成立的可能性越小C.越小,“X与Y有关系”成立的可能性越大D.与“X与Y有关系”成立的可能性无关【解析】由K2的意义可知,K2越大,说明X与Y有关系的可能性越大.【答案】 A4.用反证法证明命题“a,b∈N,如果ab可被5整除”,那么a,b至少有一个能被5整除.则假设的内容是( )A.a,b都能被5整除B.a,b都不能被5整除C.a不能被5整除D.a,b有一个不能被5整除【解析】“至少有一个”的否定为“一个也没有”,故应假设“a,b都不能被5整除”.【答案】 B5.有一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数”结论显然是错误的,是因为( )A .大前提错误B .小前提错误C .推理形式错误D .非以上错误【解析】 一般的演绎推理是三段论推理:大前提——已知的一般原理;小前提——所研究的特殊情况;结论——根据一般原理对特殊情况作出的判断.此题的推理不符合上述特征,故选C.【答案】 C6.设i 是虚数单位,如果复数a +i2-i的实部与虚部相等,那么实数a 的值为( )A.13 B .-13C .3D .-3【解析】a +i 2-i=2a -1+a +5,由题意知2a -1=a +2,解得a =3.【答案】 C7.在两个变量的回归分析中,作散点图是为了( ) A .直接求出回归直线方程 B .直接求出回归方程C .根据经验选定回归方程的类型D .估计回归方程的参数【解析】 散点图的作用在于判断两个变量更近似于什么样的函数关系,便于选择合适的函数模型.【答案】 C8.给出下面类比推理:①“若2a <2b ,则a <b ”类比推出“若a 2<b 2,则a <b ”; ②“(a +b )c =ac +bc (c ≠0)”类比推出“a +bc =a c +bc(c ≠0)”; ③“a ,b ∈R ,若a -b =0,则a =b ”类比推出“a ,b ∈C ,若a -b =0,则a =b ”; ④“a ,b ∈R ,若a -b >0,则a >b ”类比推出“a ,b ∈C ,若a -b >0,则a >b (C 为复数集)”.其中结论正确的个数为( ) A .1 B .2 C .3D .4【解析】 ①显然是错误的;因为复数不能比较大小,所以④错误,②③正确,故选B.【答案】 B9.执行如图1所示的程序框图,若输出的n=7,则输入的整数K的最大值是( )图1A.18 B.50C.78 D.306【解析】第一次循环S=2,n=2,第二次循环S=6,n=3,第三次循环S=2,n=4,第四次循环S=18,n=5,第五次循环S=14,n=6,第六次循环S=78,n=7,需满足S≥K,此时输出n=7,所以18<K≤78,所以整数K的最大值为78.【答案】 C10.已知a1=3,a2=6,且a n+2=a n+1-a n,则a33为( )A.3 B.-3C.6 D.-6【解析】a1=3,a2=6,a3=a2-a1=3,a4=a3-a2=-3,a5=a4-a3=-6,a6=a5-a4=-3,a7=a6-a5=3,a8=a7-a6=6,…,观察可知{a n}是周期为6的周期数列,故a33=a3=3.【答案】 A11.下列推理合理的是( )A.f(x)是增函数,则f′(x)>0B.因为a>b(a,b∈R),则a+2i>b+2i(i是虚数单位)C.α,β是锐角△ABC的两个内角,则sin α>cos βD.A是三角形ABC的内角,若cos A>0,则此三角形为锐角三角形【解析】A不正确,若f(x)是增函数,则f′(x)≥0;B不正确,复数不能比较大小;C 正确,∵α+β>π2,∴α>π2-β,∴sin α>cos β;D 不正确,只有cos A >0,cos B >0,cos C >0,才能说明此三角形为锐角三角形.【答案】 C12.有人收集了春节期间平均气温x 与某取暖商品销售额y 的有关数据如下表:根据以上数据,用线性回归的方法,求得销售额y 与平均气温x 之间线性回归方程y ^=b^x +a ^的系数b ^=-2.4,则预测平均气温为-8℃时该商品销售额为( )A .34.6万元B .35.6万元C .36.6万元D .37.6万元【解析】 x =-2-3-5-64=-4,y =20+23+27+304=25,所以这组数据的样本中心点是(-4,25). 因为b ^=-2.4,把样本中心点代入线性回归方程得a ^=15.4, 所以线性回归方程为y ^=-2.4x +15.4. 当x =-8时,y =34.6.故选A. 【答案】 A二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上.) 13.已知复数z =m 2(1+i)-m (m +i)(m ∈R ),若z 是实数,则m 的值为________.【导学号:81092071】【解析】 z =m 2+m 2i -m 2-m i =(m 2-m )i , ∴m 2-m =0, ∴m =0或1. 【答案】 0或114.心理学家分析发现视觉和空间想象能力与性别有关,某数学兴趣小组为了验证这个结论,从所在学校中按分层抽样的方法抽取50名同学(男30女20),给所有同学几何题和代数题各一题,让各位同学自由选择一道题进行解答.选题情况如下表:(单位:人)过________.附表:k =-230×20×20×30≈5.556>5.024,∴推断犯错误的概率不超过0.025. 【答案】 0.02515.二维空间中圆的一维测度(周长)l =2πr ,二维测度(面积)S =πr 2,观察发现S ′=l ;三维空间中球的二维测度(表面积)S =4πr 2,三维测度(体积)V =43πr 3,观察发现V ′=S .则四维空间中“超球”的四维测度W =2πr 4,猜想其三维测度V =________.【解析】 由已知,可得圆的一维测度为二维测度的导函数;球的二维测度是三维测度的导函数.类比上述结论,“超球”的三维测度是四维测度的导函数,即V =W ′=(2πr 4)′=8πr 3.【答案】 8πr 316.已知等差数列{a n }中,有a 11+a 12+…+a 2010=a 1+a 2+…+a 3030,则在等比数列{b n }中,会有类似的结论________.【解析】 由等比数列的性质可知,b 1b 30=b 2b 29=…=b 11b 20, ∴10b 11b 12…b 20=30b 1b 2…b 30.【答案】 10b 11b 12…b 20=30b 1b 2…b 30三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤.)17.(本小题满分10分)设z =-++2+4i3+4i,求|z |.【解】 z =1+i -4i +4+2+4i 3+4i =7+i3+4i ,∴|z |=|7+i||3+4i|=525= 2.18.(本小题满分12分)我校学生会有如下部门:文娱部、体育部、宣传部、生活部、学习部.请画出学生会的组织结构图.【解】 学生会的组织结构图如图.19.(本小题满分12分)给出如下列联表:(参考数据:P (K 2≥6.635)=0.010,P (K 2≥7.879)=0.005) 【解】 由列联表中数据可得k =-230×80×50×60≈7.486.又P (K 2≥6.635)=0.010,所以在犯错误的概率不超过0.010的前提下,认为高血压与患心脏病有关系. 20.(本小题满分12分)已知非零实数a ,b ,c 构成公差不为0的等差数列,求证:1a,1b ,1c不能构成等差数列.【导学号:81092072】【证明】 假设1a ,1b ,1c 能构成等差数列,则2b =1a +1c,因此b (a +c )=2ac .而由于a ,b ,c 构成等差数列,且公差d ≠0,可得2b =a +c , ∴(a +c )2=4ac ,即(a -c )2=0,于是得a =b =c , 这与a ,b ,c 构成公差不为0的等差数列矛盾. 故假设不成立,即1a ,1b ,1c不能构成等差数列.21.(本小题满分12分)已知a 2+b 2=1,x 2+y 2=1,求证:ax +by ≤1(分别用综合法、分析法证明).【证明】 综合法:∵2ax ≤a 2+x 2,2by ≤b 2+y 2, ∴2(ax +by )≤(a 2+b 2)+(x 2+y 2). 又∵a 2+b 2=1,x 2+y 2=1, ∴2(ax +by )≤2,∴ax +by ≤1. 分析法:要证ax +by ≤1成立, 只要证1-(ax +by )≥0, 只要证2-2ax -2by ≥0, 又∵a 2+b 2=1,x 2+y 2=1,∴只要证a 2+b 2+x 2+y 2-2ax -2by ≥0, 即证(a -x )2+(b -y )2≥0,显然成立.22.(本小题满分12分)某班5名学生的数学和物理成绩如下表:(1)(2)求物理成绩y 对数学成绩x 的回归直线方程; (3)一名学生的数学成绩是96,试预测他的物理成绩. 附:回归直线的斜率和截距的最小二乘法估计公式分别为:b ^=∑i =1nx i y i -n x -y -∑i =1nx 2i -n x 2,a ^=y -b ^x -.【解】 (1)散点图如图,(2)x =15×(88+76+73+66+63)=73.2,y =15×(78+65+71+64+61)=67.8.∑i =15x i y i =88×78+76×65+73×71+66×64+63×61=25 054.∑i =15x 2i =882+762+732+662+632=27 174. 所以b ^=∑i =15x i y i -5x -y-∑i =15x 2i -5x -2=25 054-5×73.2×67.827 174-5×73.22≈0.625. a ^=y -b ^x -≈67.8-0.625×73.2=22.05.所以y 对x 的回归直线方程是 y ^=0.625x +22.05.(3)当x =96,则y ^=0.625×96+22.05≈82,即可以预测他的物理成绩是82分.。
2017-2018学年高中数学模块综合检测(一)(含解析)新人教A版选修1-1
模块综合检测(一)(时间120分钟,满分150分)一、选择题(本题共12小题,每小题5分,共60分) 1.(湖南高考)设命题p : ? x € R , x 2+ 1>0,则綈p 为( )2 2A. ? X °€ R , x °+ 1>0B . ? X °€ R, X 0+ 1W02 2C. ? X 0 € R , X 0+ 1<0 D . ? x € R, x + K 0解析:选B 全称命题的否定,要对结论进行否定,同时要把全称量词换成存在量词,故命题 2. p 的否定为"? X o € R, x o + K 0”,所以选B.对? k € R,则方程X + ky? = 1所表示的曲线不可能是( A. 两条直线 B .圆 C. 椭圆或双曲线 D .抛物线解析:选 k = 0,1及k > 0且k z 1,或k v 0分别讨论可知:方程 x 2 + ky 2= 1不可能为抛物线.3.曲线 y =1x3—X 2 + 5在x= 1处的切线的倾斜角是( A. n6D.3n _4解析:13 2•y = 3x —x + 5,二 tan 0 4.以双曲线--—2x . /. y Q|= 1 = 1 — 2=- 1.3 n=—1 即 0 = 4 . 2 (X)2y ,2=— 12 2x yA. + = 1 16 12B.2 2x y + — = 1 12 162 2x yC- + = 1 16 4 D.2 2x y4+16=1解析:选D 2 2 2 2 .X y y X由 7—石=—1 得 ^—7 =1.•••双曲线的焦点为B. n35.设点P (x , y ),则“x = 2且y = — 1”是“点P 在直线l : x + y — 1 = 0上”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件解析:选A "x = 2且y = — 1”满足方程x + y — 1 = 0,故"x = 2且y = — 1”可推得"点P 在直线I : x + y — 1 = 0上”;但方程x + y — 1= 0有无数多个解,故“点P 在直线I : x + y — 1 = 0上”不能推得"x = 2且y = — 1”.故"x = 2且y = — 1” 是“点P 在直线I : x + y — 1 = 0上”的充分不必要条件.2Cj6 .函数f (x ) = x + 2xf ' (1),贝U f ( — 1)与f (1)的大小关系为( )A. f ( — 1) = f (1) B . f ( — 1) v f (1) C. f ( — 1) > f (1) D .无法确定 解析:选 C f '(x ) = 2x + 2f ' (1),令 x = 1,得 f ' (1) = 2 + 2f ' (1), •••f ' (1) =— 2.2 2• f (x ) = x + 2x • f ' (1) = x — 4x , f (1) = — 3, f ( — 1) = 5.•- f ( — 1) > f (1).7.(陕西高考)对二次函数f (x ) = ax 2 + bx + c (a 为非零整数.),四位同学分别给出下列 结论,其中有且只有一个结论是错误的,则错误的结论是( )A. — 1是f (x )的零点B. 1是f (x )的极值点C. 3是f (x )的极值D. 点(2,8)在曲线y = f (x )上 解析:选A A 中一1是f (x )的零点, 则有a — b + c = 0.①B 中1是f (x )的极值点,则有 b =— 2a .②D 中点(2,8)在曲线y = f (x )上,则有4a + 2b + c = 8.④ 3 39 联立①②③解得a = — ;, b =;, c =;4 24联立②③④解得a = 5, b =— 10, c = 8,从而可判断A 错误,故选A.C 中3是f (x )的极值,则有4ac — b 2 4a=3.③&已知过抛物线y2= 4x的焦点F的直线I与抛物线相交于A, B两点,若线段AB的中点M的横坐标为3,则线段AB的长度为()C. 10 D . 12解析:选B设A(x i, y i), 0X2, y2),由中点坐标公式得x i + X2 = 6,由抛物线定义得| AB = X i + X2 + p= 8.9.已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f'(x)的图象如右图所示,则该函数的图象是()解析:选B由函数f(x)的导函数y = f '(x)的图象自左至右是先增后减,可知函数y =f (x)图象的切线的斜率自左至右先增大后减小.2 210.若直线y = 2x与双曲线与一y2= 1(a>0, b>0)有公共点,则双曲线的离心率的取值a b范围为()A. (1 , 5) B . ( 5,+R)C. (1 , ,5 ] D . [ .5,+^)b b解析:选B双曲线的两条渐近线中斜率为正的渐近线为y=;x.由条件知,应有->2,a a11.若函数f (x) = kx3+ 3( k- 1) x2- k2+ 1在区间(0,4)上是减函数,则k的取值范围是A.13 B.13 D.1x2由题意知 3kx + 6(k - l)x w 0, 即kx + 2k -2W0在(0,4)上恒成立,2得 k W x ^2,x € (0,4) ••该切线的斜率k = y '|=1 = - 3, 又当x = 1时,y = 2,1 2又 3<X T 2<11 •-kW 3.12.设e i , e 2分别为具有公共焦点 F i 与F 2的椭圆和双曲线的离心率, 、e 2 + e 2,+、 公共点,且满足 PF • PF ;= 0,贝U2的值为()ecP 为两曲线的一个1A.2 B . 1 C. 2 D . 4解析:选C 设椭圆长半轴长为 a,双曲线实半轴长为 a 2, 则|PF | +1 PF = 2a 1, II P 冋-|P 冋| = 2a 2. 平方相加得 | PF | 2+ | PR| 2= 2a 2+ 2a 2.■又••• PF —- • PR —= 0,二 PF 丄 PR , •••|PF |2 + |PF a |2 = | F 1F 2I 2= 4c 2, 45^• 2 丄 2 2 2 …a 十 a = 2c , 2 2a 1a 2•• 十丄丄2 21 1 e 1 十 e 2即 2 十 2 = —2 2= 2. e 1 e 2 e©二、填空题(本题共4小题,每小题5分,共20分) 13.已知p (x ) : x 2十2x - m >0,如果p (1)是假命题,p (2)是真命题,则实数 m 的取值范围是 解析:因为p (1)是假命题,所以1十2 -me 0,解得 m>3.又因为p (2)是真命题,所以4+ 4 — m> 0,解得 m< 8.故实数m 的取值范围是 3< m< 8.答案:[3,8)x 十114.过曲线y = ― (x >0)上横坐标为1的点的切线方程为 _________________________xx 2- 2x x + 142 —x — 2x则所求的切线方程为y —2=- 3( x- 1),即3x+ y — 5 = 0.答案:3x+ y —5= 02 2x y l15. 椭圆r :孑+ b2= 1(a>b>0)的左、右焦点分别为F i, F2,焦距为2c.若直线y =•. 3( x+ c)与椭圆r的一个交点M满足/ MFF2= 2/ MFF i,则该椭圆的离心率等于______________ .解析:直线y= .3(x + c)过点F i( —c, 0),且倾斜角为60°,所以/ MFF2= 60°,从而/ MFF i = 30°,所以MF丄MF.在Rt△ MFF2 中,| MF| = c, |MF] = 3c,所以该椭圆的离心率e=字= 2c =J3— 1.2a c + £c *答案:3 —116. _____________________________________ 下列命题中,正确命题的序号是.①可导函数f (x)在x = 1处取极值则f' (1) = 0;②若p为:?X o€ R, x2+ 2x0+ 2< 0,2则綈p 为:?x € R, x + 2x + 2 >0;2 2x y③若椭圆花+±= 1两焦点为F1, F2,弦AB过R点,则△ ABF的周长为16.16 25解析:命题③中,椭圆焦点在y轴上,a2= 25,故厶ABF的周长为4a= 20,故命题③错误.答案:①②三、解答题(本题共6小题,共70分•解答时应写出文字说明、证明过程或演算步骤)2 2x y17. (本小题满分10分)已知命题P:方程2 + m= 1表示焦点在y轴上的椭圆;命题q:4f(x) = 3X3—2m)2+ (4 m—3)x—m在(一^‘+^ )上单调递增•若(綈p) A q为真,求m的取3值范围.解:p真时,m>2.2q真时,f'( x) = 4x —4mx^ 4m-3》0在R上恒成立.2△ = 16m—16(4 m- 3) < 0,1 < me 3.•••(綈p) A q 为真,••• p假,q 真.me 2, 即1e m< 2.1< m< 3,* m的取值范围为[1,2].2 218. (本小题满分12分)斜率为2的直线I在双曲线专—= 1上截得的弦长为,6,求I的方程.解:设直线 I 的方程为y = 2x + my=2x + m 由妆2 y 2---- =1 〜 2 ,得 10x 2+ 12mx + 3( m + 2) = 0.(*)设直线I 与双曲线交于A (x i , y i ) , B (X 2, y 2)两点,由根与系数的关系,•所求I 的方程为y = 2x ± i5. i9.(本小题满分 i2 分)设函数 f (x ) = 2x 3— 3(a + i)x 2 + 6ax + 8,其中 a € R. (1) 若f (x )在x = 3处取得极值,求常数 a 的值; (2) 若f (x )在(一g, 0)上为增函数,求 a 的取值范围. 2 解:(1)f '(x ) = 6x — 6(a + 1)x + 6a = 6(x —a )( x — 1). 因为f (x )在x = 3处取得极值,7 7 I所以 f ' (3) = 6(3 — a )(3 — 1) = 0,解得 a = 3. 经检验知,当a = 3时,x = 3为f (x )的极值点. (2)令 f '(x ) = 6( x — a )( x — 1) = 0, 解得 x i = a , X 2= 1.当 a v 1 时,若 x € ( —g, a ) U (1 ,+g ), 则 f '(x )>0,所以f (x )在(一g, a )和(1 ,+g )上为增函数,6x i + X 2= —二 m3 2xix2=祕叭 2).2 2 2 2| AE | = (x i — X 2) + ( y i — y 2)= 5( x i — X 2)2=5[( x + X ) — 4xX ]736 2 3 2 .=5)5m -4X 而 m +Z ]= & ,••• 36n i — 6(m + 2) = 6.• m = i5, m =±i5.由(*)式得 △ = 24m — 240, 把m=± , i5代入上式,得△ >0,• m 的值为土 i5,故当0w a v 1时,f (x)在(一g, 0)上为增函数; 当a>1 时,若x € ( —g, 1) U (a,+g), 则f '(x)>0, 所以f(x)在(—g, 1)和(a,+^)上为增函数,所以f(x)在(一g, 0)上为增函数.综上所述,当a€ [0,+g)时,f(x)在(—g, 0)上为增函数.220. (本小题满分12分)已知抛物线E:x = 2py(p>0),直线y = kx+ 2与E交于A, B 两点,且OA~T・ OB-^= 2,其中O为原点.(1) 求抛物线E的方程;(2) 点C坐标为(0,—2),记直线CA CB的斜率分别为k i, k2,证明:k1 + k2 —2k2为定值.2解:⑴将y = kx+ 2代入x = 2py,得x2—2pkx—4p= 0,其中△ = 4pk + 16p>0.设A(x i, y i) , B(X2, y2),贝U X i+ X2 = 2pk, X1X2 = —4p.OA一• OB一 = X1X2+ yy2 2X1 X2=X1X2 + •=—4p+ 4.2p 2p,“ 1由已知,一4p + 4= 2, p= 2所以抛物线E的方程为x2= y.(2)证明:由(1)知,X1 + X2= k, X1X2=—2.亠2 亠 2_ y1+ 2 X1+ 2 X1 —X1X2k1 = = = = X1 —X2,X1 X1 X1同理k2= X2—X1,所以k1+ k2—2k2= 2(x1 —X2)2—2(X1 + X2)2=—8x1 X2 = 16.1 3 1 221. (本小题满分12分)已知函数f (x) = -x —^x + cx + d有极值.(1) 求实数c的取值范围;1 2(2) 若f(x)在x= 2处取得极值,且当x v 0时,f(x) <- d2+ 2d恒成立,求实数d的取6值范围.1 3 1 2解:⑴••• f(x) = 3X —2X + cx + d,• •• f '(x) = X2—X + c,要使f (x)有极值,则方程f '( X) = X2—X + c = 0有两个不相等的实数解,从而△= 1 — 4C > 0,二 C V 4.——a — |• , 4丿⑵•/ f (x )在x = 2处取得极值,f ' (2) = 4 — 2+ c = 0,二 C =一 2.2••• f '(x ) = x — x — 2= (x — 2)( x + 1),•••当x € ( —a, — 1]时,f '(x ) >0,函数单调递增;当x € ( — 1,2]时,f '(x ) V 0,函数单调递减.x v 0时,f (x )在x = — 1处取得最大值6 + d,•/x v 0 时,f (x ) v 6d 2 + 2d 恒成立,7 1 2•• 6+ d v g d + 2d ,即(d + 7)( d — 1) >0,d v — 7或 d > 1,即实数d 的取值范围是(一a, — 7) U (1 ,+a ).22. (本小题满分12分)如图,已知中心在原点 O,焦点在c \[3解:(1)由离心率e =—=〒, a 2得 a = 1 一 e2=2即实数C 的取值范围为 x 轴上的椭圆C 的离心率为 Q 厂 yR(1)求椭圆C 的标准方程;A, B 分别是椭圆C 的长轴、短轴的端点,点 O 到直线AB 的距离为6±^. 5(2)已知点E (3,0),设点P , Q 是椭圆C 上的两个动点,满足 EPL EQ 求 "E P • "QP 的取 值范围.• a= 2b.①•••原点O到直线AB的距离为直线AB的方程为bx —ay+ ab= 0,ab将①代入②,得b2= 9 ,••• a2= 36.2 2则椭圆C的标准方程为鶴+ y= 1.36 9⑵••• EP± EQ—> —>•EP • QP = 0,•EP • QP= EP •( EP —EQ) = EP22x设P(x, y),贝y y = 9—a,•EP • QP= EP22 2=(x —3)+ y22 x=x —6x+ 9 + 9——43=(x—4) + 6.4••• —6< x<6,3 2••6W 4( x—4) + 6< 81.—> —>故EP • QP的取值范围为[6,81].。
2017-2018学年高中数学人教A版选修2-1模块综合测评 含解析 精品
模块综合测评(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.命题“a ∉A 或b ∉B ”的否定形式是( ) A.若a ∉A ,则b ∉B B.a ∈A 或b ∈B C.a ∉A 且b ∉BD.a ∈A 且b ∈B【解析】 “p 或q ”的否定为“﹁p 且﹁q ”,D 正确. 【答案】 D2.已知a ∈R ,则“a <2”是“a 2<2a ”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件【解析】 ∵a 2<2a ⇔a (a -2)<0⇔0<a <2. ∴“a <2”是“a 2<2a ”的必要不充分条件. 【答案】 B3.若椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,则双曲线x 2a 2-y 2b 2=1的离心率为( )A.54B.52C.32D.54【解析】 由题意,1-b 2a 2=⎝ ⎛⎭⎪⎫322=34,∴b 2a 2=14,而双曲线的离心率e 2=1+b 2a 2=1+14=54,∴e =52.【答案】 B4.已知空间向量a =(t,1,t ),b =(t -2,t,1),则|a -b |的最小值为( )【导学号:37792156】A. 2B. 3C.2D.4【解析】 |a -b |=2(t -1)2+4≥2,故选C. 【答案】 C5.椭圆x 225+y 29=1与椭圆x 2a 2+y 29=1有( ) A.相同短轴 B.相同长轴 C.相同离心率D.以上都不对【解析】 对于x 2a 2+y 29=1,有a 2>9或a 2<9,因此这两个椭圆可能长轴相同,也可能短轴相同,离心率是不确定的,因此A ,B ,C 均不正确,故选D.【答案】 D6.长方体ABCD -A 1B 1C 1D 1中,AB =2,AD =AA 1=1,则二面角C 1-AB -C 为( )A.π3B.2π3C.3π4D.π4【解析】 以A 为原点,直线AB ,AD ,AA 1分别为x 轴、y 轴、z 轴建立空间直角坐标系,则平面ABC 的一个法向量为AA 1→=(0,0,1),平面ABC 1的一个法向量为A 1D →=(0,1,-1),∴cos 〈AA 1→,A 1D →〉=-12=-22,∴〈AA 1→,A 1D →〉=3π4,又二面角C 1-AB -C 为锐角,即π-34π=π4,故选D.【答案】 D7.命题“∀x ∈[1,2],x 2-a ≤0”为真命题的一个充分不必要条件是( ) A.a ≥4 B.a ≤4 C.a ≥5D.a ≤5【解析】 ∵∀x ∈[1,2],1≤x 2≤4,∴要使x 2-a ≤0为真,则a ≥x 2,即a ≥4,本题求的是充分不必要条件,结合选项,只有C 符合,故选C.【答案】 C 8.已知p :1x +2<0,q :lg(x +2)有意义,则﹁p 是q 的( ) 【导学号:37792157】A.充分不必要条件B.充要条件C.必要不充分条件D.既不充分也不必要条件【解析】 不等式1x +2<0的解集为{x |x <-2},则﹁p :x ≥-2.q :x >-2.故﹁p ⇒/ q ,q ⇒﹁p ,故选C.【答案】 C9.如图1,过抛物线y 2=2px (p >0)的焦点F 的直线,分别交抛物线的准线l 、y 轴、抛物线于A ,B ,C 三点,若AB →=3BC →,那么直线AF 的斜率是( )图1A.- 3B.-33C.-22D.-1【解析】 过点B ,C 分别作准线l 的垂线,垂足分别为B 1,C 1,设|BC |=a .因为O 是EF 的中点,BO ∥AE ,所以|AB |=|BF |=3a ,|CF |=|CC 1|=2a ,在△ACC 1中,|AC 1|=23a ,tan ∠AFO =tan ∠ACC 1=3,故直线AF 的斜率是-3,故选A.【答案】 A10.过椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左顶点A 的斜率为k 的直线交椭圆C 于另一点B ,且点B 在x 轴上的射影恰好为右焦点F ,若椭圆的离心率为23,则k 的值为( )A.-13B.13C.±13D.±12【解析】 由题意知点B 的横坐标是c ,故点B 的坐标为⎝ ⎛⎭⎪⎫c ,±b 2a ,则斜率k =±b 2ac +a =±b 2ac +a 2=±a 2-c 2ac +a 2=±1-e 2e +1=±(1-e )=±13,故选C. 【答案】 C11.若直线y =kx -2与抛物线y 2=8x 交于A ,B 两个不同的点,抛物线的焦点为F ,且|AF |,4,|BF |成等差数列,则k =( )【导学号:37792158】A.2或-1B.-1C.2D.1±5【解析】 设A (x 1,y 1),B (x 2,y 2).由⎩⎨⎧y =kx -2,y 2=8x ,消去y ,得k 2x 2-4(k +2)x+4=0,故Δ=16(k +2)2-16k 2=64(1+k )>0,解得k >-1,且x 1+x 2=4(k +2)k 2.由|AF |=x 1+p 2=x 1+2,|BF |=x 2+p2=x 2+2,且|AF |,4,|BF |成等差数列,得x 1+2+x 2+2=8,得x 1+x 2=4,所以4(k +2)k 2=4,解得k =-1或k =2,又k >-1,故k =2,故选C.【答案】 C12.若F 1,F 2为双曲线C :x 24-y 2=1的左、右焦点,点P 在双曲线C 上,∠F 1PF 2=60°,则点P 到x 轴的距离为( )A.55B.155C.2155D.1520【解析】 设|PF 1|=r 1,|PF 2|=r 2,点P 到x 轴的距离为|y P |,则S △F 1PF 2=12r 1r 2sin 60°=34r 1r 2,又4c 2=r 21+r 22-2r 1r 2cos 60°=(r 1-r 2)2+2r 1r 2-r 1r 2=4a 2+r 1r 2,得r 1r 2=4c 2-4a 2=4b 2=4,所以S △F 1PF 2=12r 1r 2sin 60°=3=12·2c ·|y P |=5|y P |,得|y P |=155,故选B.【答案】 B二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.已知空间三点的坐标为A (1,5,-2),B (2,4,1),C (p,3,q +2),若A ,B ,C 三点共线,则p +q =________.【解析】 由已知,得AC →=kAB →,所以(p -1,-2,q +4)=k (1,-1,3),得到p =3,q =2,p +q =5.【答案】 514.已知命题p :∃x 0∈R ,ax 20+x 0+12≤0.若命题p 是假命题,则实数a 的取值范围是________.【解析】 因为命题p 为假命题,所以命题“∀x ∈R ,ax 2+x +12>0”为真命题.当a =0时,取x =-1,则不等式不成立; 当a ≠0时,要使不等式恒成立,令ax 2+x +12=0,则有⎩⎨⎧ a >0,Δ<0,即⎩⎨⎧a >0,Δ=1-2a <0,所以⎩⎪⎨⎪⎧a >0,a >12,即实数a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞.【答案】 ⎝ ⎛⎭⎪⎫12,+∞15.已知抛物线y 2=4x 的焦点为F ,若点A ,B 是该抛物线上的点,∠AFB =π2,线段AB 的中点M 在抛物线的准线上的射影为N ,则|MN ||AB |的最大值为______.【导学号:37792159】【解析】 如图所示,设|AF |=a ,|BF |=b ,则|AB |=a 2+b 2,而根据抛物线的定义可得|MN |=a +b 2,又a +b 2≤a 2+b 22,所以|MN ||AB |=a +b 2a 2+b 2≤22,当且仅当a =b 时,等号成立,即|MN ||AB |的最大值为22.【答案】 2216.四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 是正方形,且PD =AB =1,G 为△ABC 的重心,则PG 与底面ABCD 所成的角θ的正弦值为________.【解析】 如图,分别以DA ,DC ,DP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,由已知P (0,0,1),A (1,0,0),B (1,1,0),C (0,1,0),则重心G ⎝ ⎛⎭⎪⎫23,23,0,因此DP →=(0,0,1),GP →=⎝ ⎛⎭⎪⎫-23,-23,1,所以sin θ=|cos 〈DP →,GP →〉|=|DP →·GP →||DP →|·|GP →|=31717.【答案】31717三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)设集合A ={x |x 2-3x +2=0},B ={x |ax =1}.“x ∈B ”是“x ∈A ”的充分不必要条件,试求满足条件的实数a 组成的集合.【解】 ∵A ={x |x 2-3x +2=0}={1,2},由于“x ∈B ”是“x ∈A ”的充分不必要条件,∴B A . 当B =∅时,得a =0;当B ≠∅时,由题意得B ={1}或B ={2}.则当B ={1}时,得a =1;当B ={2}时,得a =12.综上所述,实数a组成的集合是⎩⎨⎧⎭⎬⎫0,1,12. 18. (本小题满分12分)如图2,四边形MNPQ 是圆C 的内接等腰梯形,向量CM →与PN →的夹角为120°,QC →·QM →=2.图2(1)求圆C 的方程;(2)求以M ,N 为焦点,过点P ,Q 的椭圆方程.【解】 (1)连接CQ ,建立如图坐标系,由题意得△CQM 为正三角形.∴QC →·QM →=r 2·cos 60°=2, ∴r =2,∴圆C 的方程为x 2+y 2=4.(2)易知M (2,0),N (-2,0),Q (1,3), 2a =|QN |+|QM |=23+2.∴c =2,a =3+1,b 2=a 2-c 2=2 3. ∴椭圆的方程为x 24+23+y 223=1.19. (本小题满分12分)如图3,在四棱锥P -ABCD 中,底面ABCD 是矩形,P A ⊥平面ABCD ,P A =AD =2,AB =1,BM ⊥PD 于点M .图3(1)求证:AM ⊥PD ;(2)求直线CD 与平面ACM 所成的角的余弦值.【导学号:37792160】【解】 (1)证明:∵P A ⊥平面ABCD ,AB ⊂平面ABCD ,∴P A ⊥AB . ∵AB ⊥AD ,AD ∩P A =A ,∴AB ⊥平面P AD . ∵PD ⊂平面P AD ,∴AB ⊥PD .∵BM ⊥PD ,AB ∩BM =B ,∴PD ⊥平面ABM . ∵AM ⊂平面ABM ,∴AM ⊥PD .(2)如图所示,以点A 为坐标原点,建立空间直角坐标系Axyz ,则A (0,0,0),P (0,0,2),B (1,0,0),C (1,2,0),D (0,2,0),M (0,1,1),于是AC →=(1,2,0),AM →=(0,1,1),CD →=(-1,0,0). 设平面ACM 的一个法向量为n =(x ,y ,z ), 由n ⊥AC →,n ⊥AM →可得⎩⎨⎧x +2y =0,y +z =0.令z =1,得x =2,y =-1,于是n =(2,-1,1). 设直线CD 与平面ACM 所成的角为α, 则sin α=⎪⎪⎪⎪⎪⎪⎪⎪CD→·n |CD →||n |=63,cos α=33.故直线CD 与平面ACM 所成的角的余弦值为33. 20. (本小题满分12分)如图4,在四棱柱ABCD -A 1B 1C 1D 1中,侧棱AA 1⊥底面ABCD ,AB ∥DC ,AA 1=1,AB =3k ,AD =4k ,BC =5k ,DC =6k (k >0).图4(1)求证:CD ⊥平面ADD 1A 1;(2)若直线AA 1与平面AB 1C 所成角的正弦值为67,求k 的值. 【解】 (1)证明:取CD 的中点E ,连接BE ,如图(1).图(1)∵AB ∥DE ,AB =DE =3k , ∴四边形ABED 为平行四边形, ∴BE ∥AD 且BE =AD =4k .在△BCE 中,∵BE =4k ,CE =3k ,BC =5k , ∴BE 2+CE 2=BC 2,∴∠BEC =90°,即BE ⊥CD . 又∵BE ∥AD ,∴CD ⊥AD .∵AA 1⊥平面ABCD ,CD ⊂平面ABCD ,∴AA 1⊥CD . 又AA 1∩AD =A ,∴CD ⊥平面ADD 1A 1.(2)以D 为原点,DA →,DC →,DD 1→的方向为x ,y ,z 轴的正方向建立如图(2)所示的空间直角坐标系,则A (4k,0,0),C (0,6k,0),B 1(4k,3k,1),A 1(4k,0,1),图(2)∴AC →=(-4k,6k,0),AB 1→=(0,3k,1),AA 1→=(0,0,1).设平面AB 1C 的法向量n =(x ,y ,z ),则由⎩⎪⎨⎪⎧AC →·n =0,AB 1→·n =0,得⎩⎨⎧-4kx +6ky =0,3ky +z =0.取y =2,得n =(3,2,-6k ).设AA 1与平面AB 1C 所成的角为θ,则sin θ=|cos 〈AA 1→,n 〉|=⎪⎪⎪⎪⎪⎪⎪⎪AA 1→·n |AA 1→||n |=6k 36k 2+13=67,解得k =1,故所求k 的值为1.21. (本小题满分12分)如图5,过抛物线y 2=2px (p >0)的焦点F 作一条倾斜角为π4的直线与抛物线相交于A ,B 两点.图5(1)用p 表示|AB |;(2)若OA →·OB →=-3,求这个抛物线的方程.【导学号:37792161】【解】 (1)抛物线的焦点为F ⎝ ⎛⎭⎪⎫p 2,0,过点F 且倾斜角为π4的直线方程为y=x -p2.设A (x 1,y 1),B (x 2,y 2),由 ⎩⎪⎨⎪⎧y 2=2px ,y =x -p 2,得x 2-3px +p 24=0,∴x 1+x 2=3p ,x 1x 2=p 24, ∴|AB |=x 1+x 2+p =4p .(2)由(1)知,x 1x 2=p 24,x 1+x 2=3p ,∴y 1y 2=⎝ ⎛⎭⎪⎫x 1-p 2⎝ ⎛⎭⎪⎫x 2-p 2=x 1x 2-p 2(x 1+x 2)+p 24=p 24-3p 22+p 24=-p 2,∴OA →·OB→=x 1x 2+y 1y 2=p 24-p 2=-3p 24=-3,解得p 2=4,∴p =2.∴这个抛物线的方程为y 2=4x .22. (本小题满分12分)如图6,在平面直角坐标系xOy 中,F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,顶点B 的坐标为(0,b ),连接BF 2并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连接F 1C.图6(1)若点C 的坐标为⎝ ⎛⎭⎪⎫43,13,且BF 2=2,求椭圆的方程; 【导学号:37792162】(2)若F 1C ⊥AB ,求椭圆离心率e 的值.【解】 (1)∵BF 2=2,而BF 22=OB 2+OF 22=b 2+c 2=2=a 2,∵点C 在椭圆上,C ⎝ ⎛⎭⎪⎫43,13, ∴169a 2+19b 2=1, ∴b 2=1,∴椭圆的方程为x 22+y 2=1.(2)直线BF 2的方程为x c +y b =1,与椭圆方程x 2a 2+y 2b 2=1联立方程组,解得A 点坐标为⎝ ⎛⎭⎪⎫2a 2c a 2+c 2,-b 3a 2+c 2, 则C 点的坐标为⎝ ⎛⎭⎪⎫2a 2c a 2+c 2,b 3a 2+c 2, 又F 1为(-c,0),kF 1C =b 3a 2+c 22a 2c a 2+c 2+c =b 33a 2c +c 3, 又k AB =-b c ,由F 1C ⊥AB ,得b 33a 2c +c 3·⎝ ⎛⎭⎪⎫-b c =-1, 即b 4=3a 2c 2+c 4,所以(a 2-c 2)2=3a 2c 2+c 4,化简得e =c a =55.。
2017-2018学年人教A版数学选修1-1模块综合检测(二)含解析
模块综合检测(二)(时间120分钟,满分150分)一、选择题(本题共12小题,每小题5分,共60分)1.如果命题“(綈p)∨(綈q)”是假命题,则在下列各结论中:(1)命题“p∧q”是真命题;(2)命题“p∧q”是假命题;(3)命题“p∨q”是真命题;(4)命题“p∨q”是假命题.其中正确的为()A.(1)(3)B.(2)(4)C.(2)(3)D.(1)(4)解析:选A (綈p)∨(綈q)是假命题,则綈p与綈q均为假命题,所以p与q均为真命题,故p∧q为真命题,p∨q也为真命题.2.(北京高考)设a,b是实数,则“a>b”是“a2>b2”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析:选D 可采用特殊值法进行判断,令a=1,b=-1,满足a〉b,但不满足a2〉b2,即条件“a〉b”不能推出结论“a2>b2";再令a =-1,b=0,满足a2>b2,但不满足a〉b,即结论“a2〉b2”不能推出条件“a〉b".故选D。
3.已知函数f(x)的图象过点(0,-5),它的导数f′(x)=4x3-4x,则当f(x)取得极大值-5时,x的值应为() A.-1 B.0C.1 D.±1解析:选B 由题意易知f(x)=x4-2x2-5。
令f′(x)=0得x=0或x=±1,只有f(0)=-5,故选B.4.已知双曲线x2a2-错误!=1(a>0,b>0)的两条渐近线与抛物线y2=2px(p>0)的准线分别交于A,B两点,O为坐标原点.若双曲线的离心率为2,△AOB的面积为3,则p=()A.1 B。
错误!C.2 D.3解析:选C 因为双曲线的离心率e=错误!=2,所以b=错误!a,所以双曲线的渐近线方程为y=±错误!x=±错误!x,与抛物线的准线x =-错误!相交于A错误!,B错误!,所以△AOB的面积为错误!×错误!×错误!p =3,又p>0,所以p=2.5.函数f(x)=x2-2ax+a在区间(-∞,1)上有最小值,则函数g(x)=错误!在区间(1,+∞)上一定( )A.有最小值B.有最大值C.是减函数D.是增函数解析:选D 由函数f(x)=x2-2ax+a在区间(-∞,1)上有最小值,可得a〈1,∴g(x)=错误!=x+错误!-2a,则g′(x)=1-ax2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模块综合检测(一)(时间120分钟,满分150分)一、选择题(本题共10小题,每小题6分,共60分)1.命题“∃x0∈R,2x0-3>1”的否定是( )A.∃x0∈R,2x0-3≤1B.∀x∈R,2x-3>1C.∀x∈R,2x-3≤1D.∃x0∈R,2x0-3>1解析:选C 由特称命题的否定的定义即知.2.已知条件甲:ab>0;条件乙:a>0,且b>0,则( )A.甲是乙的充分但不必要条件B.甲是乙的必要但不充分条件C.甲是乙的充要条件D.甲是乙的既不充分又不必要条件解析:选B 甲⇒/乙,而乙⇒甲.3.对∀k∈R,则方程x2+ky2=1所表示的曲线不可能的是( )A.两条直线B.圆C.椭圆或双曲线D.抛物线解析:选D 分k=0,1及k>0且k≠1,或k<0可知:方程x2+ky2=1不可能为抛物线.4.下列说法中正确的是( )A.一个命题的逆命题为真,则它的逆否命题一定为真B.“a>b”与“a+c>b+c”不等价C.“a2+b2=0,则a,b全为0”的逆否命题是“若a,b全不为0,则a2+b2≠0”D.一个命题的否命题为真,则它的逆命题一定为真解析:选D 否命题和逆命题互为逆否命题,有着一致的真假性,故选D.5.已知空间向量a=(1,n,2),b=(-2,1,2),若2a-b与b垂直,则|a|等于( )A.5 32B.212C.372D.3 52解析:选D 由已知可得2a-b=(2,2n,4)-(-2,1,2)=(4,2n-1,2).又∵(2a-b)⊥b,∴-8+2n-1+4=0.∴2n =5,n =52.∴|a |=1+4+254=3 52.6.(山东高考)已知直线a ,b 分别在两个不同的平面α,β内,则“直线a 和直线b 相交”是“平面α和平面β相交”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 由题意知a ⊂α,b ⊂β,若a ,b 相交,则a ,b 有公共点,从而α,β有公共点,可得出α,β相交;反之,若α,β相交,则a ,b 的位置关系可能为平行、相交或异面.因此“直线a 和直线b 相交”是“平面α和平面β相交”的充分不必要条件.故选A.7.已知双曲线的中心在原点,离心率为3,若它的一个焦点与抛物线y 2=36x 的焦点重合,则该双曲线的方程是( )A.x 281-y 254=1B.y 2-x 2=1C.x 227-y 254=12=54,且焦点在x 轴,所以方程为x 2271(a >0,b >0)有公共点,则双曲线的离心率的取值B .(5,+∞) D .[5,+∞)解析:选B 双曲线的两条渐近线中斜率为正的渐近线为y =ba x .由条件知,应有b a>2,故e =c a =a 2+b 2a=1+⎝ ⎛⎭⎪⎫b a 2> 5.9.已知F 1(-3,0),F 2(3,0)是椭圆x 2m +y 2n=1的两个焦点,点P 在椭圆上,∠F 1PF 2=α.当α=2π3时,△F 1PF 2面积最大,则m +n 的值是( )A .41B .15C .9D .1解析:选B 由S △F 1PF 2=12|F 1F 2|·y P =3y P ,知点P 为短轴端点时,△F 1PF 2面积最大. 此时∠F 1PF 2=2π3,得a =m =2 3,b =n =3,故m +n =15.10.正三角形ABC 与正三角形BCD 所在平面垂直,则二面角A BD C 的正弦值为( ) A.55 B.33 C.255D.63解析:选C 取BC 中点O ,连接AO ,DO .建立如图所示坐标系,设BC =1,则A ⎝ ⎛⎭⎪⎫0,0,32,B ⎝⎛⎭⎪⎫0,-12,0, D ⎝⎛⎭⎪⎫32,0,0. ∴OA ―→=⎝ ⎛⎭⎪⎫0,0,32,BA ―→=⎝ ⎛⎭⎪⎫0,12,32,BD ―→=⎝ ⎛⎭⎪⎫32,12,0.由于OA ―→=⎝⎛⎭⎪⎫0,0,32为平面BCD 的一个法向量,可进一步求出平面ABD 的一个法向量n =(1,-3,1),∴cos 〈n ,OA ―→〉=55,∴sin 〈n ,OA ―→〉=255.二、填空题(本题共4小题,每小题5分,共20分)11.在平面直角坐标系xOy 中,若定点A (1,2)与动点P (x ,y )满足OP ―→·OA ―→=4,则动点P 的轨迹方程是________________.解析:由OP ―→·OA ―→=4得x ·1+y ·2=4,因此所求动点P 的轨迹方程为x +2y -4=0.答案:x +2y -4=012.命题“∃x 0∈R,2x 20-3ax 0+9<0”为假命题,则实数a 的取值范围是________. 解析:∵∃x 0∈R,2x 20-3ax 0+9<0为假命题,∴∀x ∈R,2x 2-3ax +9≥0为真命题, ∴Δ=9a 2-4×2×9≤0,即a 2≤8, ∴-22≤a ≤2 2. 答案:[-22,22]13.已知过点P (4,0)的直线与抛物线y 2=4x 相交于A (x 1,y 1),B (x 2,y 2)两点,则y 21+y 22的最小值是________.解析:当直线的斜率不存在时,直线方程为x =4, 代入y 2=4x ,得交点为(4,4),(4,-4), ∴y 21+y 22=16+16=32;当直线的斜率存在时,设直线方程为y =k (x -4), 与y 2=4x 联立,消去x 得ky 2-4y -16k =0, 由题意知k ≠0,则y 1+y 2=4k,y 1y 2=-16.∴y 21+y 22=(y 1+y 2)2-2y 1y 2=16k2+32>32.综上,(y 21+y 22)min =32. 答案:3214.在正方体ABCD A 1B 1C 1D 1中,O 1是A 1B 1C 1D 1的中心,E 1在B 1C 1上,并且B 1E 1=13B 1C 1,则.x 轴,以AD 所在直线为y 轴,以AA 1所在直线,E 1⎝ ⎛⎭⎪⎫1,13,1, ⎭⎪⎫,-12,1,⎭⎪⎫,-12,1=56,|BE 1―→|= 103,|CO 1―→|= 62.∴cos 〈BE 1―→,CO 1―→〉=56103× 62=156.即BE 1与CO 1所成角的余弦值为156.答案:156三、解答题(本题共6小题,共70分,解答时应写出文字说明、证明过程或演算步骤)15.(本小题满分10分)已知命题p :方程x 22+y 2m=1表示焦点在y 轴上的椭圆;命题q :∀x ∈R ,4x 2-4mx +4m -3≥0.若(綈p )∧q 为真,求m 的取值范围.解:p 真时,m >2.q 真时,4x 2-4mx +4m -3≥0在R 上恒成立.Δ=16m 2-16(4m -3)≤0,1≤m ≤3. ∵(綈p )∧q 为真, ∴p 假,q 真.∴⎩⎪⎨⎪⎧m ≤2,1≤m ≤3,即1≤m ≤2.∴所求m 的取值范围为[1,2].16.(本小题满分12分)如图,在直三棱柱ABC A 1B 1C 1中,AB =1,AC =AA 1= 3,∠ABC =60°.(1)证明:AB ⊥A 1C ;(2)求二面角A A 1C B 的正切值大小.解:法一:(1)证明:∵三棱柱ABC A 1B 1C 1为直三棱柱, ∴AB ⊥AA 1.在△ABC 中,AB =1,AC = 3,∠ABC =60°. 由正弦定理得∠ACB =30°, ∴∠BAC =90°,即AB ⊥AC , ∴AB ⊥平面ACC 1A 1. 又∵A 1C ⊂平面ACC 1A 1, ∴AB ⊥A 1C .(2)如图,作AD ⊥A 1C 交A 1C 于D 点,连接BD .∵AB ⊥A 1C , ∴A 1C ⊥平面ABD , ∴BD ⊥A 1C ,∴∠ADB 为二面角A A 1C B 的平面角.在Rt △AA 1C 中,AD =AA 1·AC A 1C =3× 36=62.在Rt △BAD 中,tan ∠ADB =AB AD =63, ∴二面角A A 1C B 的正切值为63. 法二:(1)证明:∵三棱柱ABC A 1B 1C 1为直三棱柱, ∴AA 1⊥AB ,AA 1⊥AC . 在△ABC 中,AB =1,AC = 3,∠ABC =60°.由正弦定理得∠ACB =30°, ∴∠BAC =90°,即AB ⊥AC .如图,建立空间直角坐标系,,3), A 1BC 的法向量n =(x ,y ,z ), ∴x =3y ,y =z .令y =1,则n =(3,1,1),∴cos 〈m ,n 〉=m ·n|m |·|n |=3×1+1×0+1×032+12+12·12+02+02=155, ∴sin 〈m ,n 〉=1-⎝⎛⎭⎪⎫1552=105,∴tan 〈m ,n 〉=63. ∴二面角A A 1C B 的正切值为63. 17.(本小题满12分)如图,点F 1(-c,0),F 2(c,0)分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过点F 1作x 轴的垂线交椭圆C 的上半部分于点P ,过点F 2作直线PF 2的垂线交直线x =a 2c于点Q .(1)如果点Q 的坐标是(4,4),求此时椭圆C 的方程; (2)证明:直线PQ 与椭圆C 只有一个交点.解:(1)法一:由条件知,P ⎝⎛⎭⎪⎫-c ,b 2a . 故直线PF 2的斜率为kPF 2=b 2a -0-c -c =-b22ac.因为PF 2⊥F 2Q .所以直线F 2Q 的方程为y =2ac b 2x -2ac2b2.故Q ⎝ ⎛⎭⎪⎫a 2c ,2a . 由题设知,a 2c=4,2a =4,解得a =2,c =1.则b 2=a 2-c 2=3. 故椭圆方程为x 24+y 23=1.法二:设直线x =a 2c 与x 轴交于点M .由条件知,P ⎝⎛⎭⎪⎫-c ,b 2a . 因为△PF 1F 2∽△F 2MQ , 所以|PF 1||F 2M |=|F 1F 2||MQ |.即b 2aa 2c-c =2c|MQ |,解得|MQ |=2a .所以⎩⎪⎨⎪⎧a 2c=4,2a =4.解得a =2,c =1.则b 2=3. 故椭圆方程为x 24+y 23=1.(2)直线PQ 的方程为y -2ab 2a -2a =x -a 2c -c -a 2c,即y =cax +a .将上式代入椭圆方程得,x 2+2cx +c 2=0,解得x =-c ,y =b 2a.所以直线PQ 与椭圆C 只有一个交点.18.(本小题满分12分)在如图所示的几何体中,EA ⊥平面ABC ,DB ⊥平面ABC ,AC ⊥BC ,AC =BC =BD =2AE ,M 是AB 的中点,建立适当的空间直角坐标系,解决下列问题:(1)求证:CM ⊥EM ;(2)求CM 与平面CDE 所成角的大小.解:(1)证明:分别以CB ,CA 所在直线为x 轴、y 轴,过点C 且与平面ABC 垂直的直线为z 轴,建立如图所示的空间直角坐标系.设AE =a ,则M (a ,-a,0),E (0,-2a ,a ),所以CM ―→=(a ,-a,0),EM ―→=(a ,a ,-a ), 所以CM ―→·EM ―→=a ×a +(-a )×a +0×(-a )=0, 所以CM ―→⊥EM ―→,即CM ⊥EM .(2)CE ―→=(0,-2a ,a ),CD ―→=(2a,0,2a ), 设平面CDE 的法向量n =(x ,y ,z ),则有⎩⎪⎨⎪⎧-2ay +az =0,2ax +2az =0,即⎩⎪⎨⎪⎧z =2y ,x =-z .令y =1,则n =(-2,1,2),cos 〈CM ―→,n 〉=CM ―→·n | CM ―→||n |=a -+-a +0×22a ×3=-22,所以直线CM 与平面CDE 所成的角为45°.19.(本小题满分12分)如图,椭圆C 1:x 2a 2+y 2b2=1(a >b >0)的离心率为32,x 轴被曲线C 2:y =x 2-b 截得的线段长等于C 1的长半轴长. (1)求C 1,C 2的方程;(2)设C 2与y 轴的交点为M ,过坐标原点O 的直线l 与C 2相交于点A ,B ,直线MA ,MB 分别与C 1相交于点D ,E .证明:MD ⊥ME .解:(1)由题意知对C 1:e =c a =32, 从而a =2b ,又2b =a ,解得a =2,b =1. 故C 1,C 2的方程分别为x 24+y 2=1,y =x 2-1.(2)证明:由题意知,直线l 的斜率存在,设为k ,则直线l 的方程为y =kx .由⎩⎪⎨⎪⎧y =kx ,y =x 2-1,得x 2-kx -1=0.设A (x 1,y 1),B (x 2,y 2),则x 1,x 2是上述方程的两个实根,于是x 1+x 2=k ,x 1x 2=-1. 又点M 的坐标为(0,-1),所以k MA ·k MB =y 1+1x 1·y 2+1x 2=kx 1+kx 2+x 1x 2=k 2x 1x 2+k x 1+x 2+1x 1x 2=-k 2+k 2+1-1=-1.故MA ⊥MB .即MD ⊥ME .20.(本小题满分12分)在平面直角坐标系xOy 中,经过点(0,2)且斜率为k 的直线l 与椭圆x 22+y 2=1有两个不同的交点P 和Q .(1)求k 的取值范围.(2)设椭圆与x 轴正半轴、y 轴正半轴的交点分别为A ,B ,是否存在常数k ,使得向量OP―→+OQ ―→与AB ―→共线?如果存在,求k 值;如果不存在,请说明理由.解:(1)由已知条件,知直线l 的方程为y =kx +2, 代入椭圆方程得x 22+(kx +2)2=1,整理得⎝ ⎛⎭⎪⎫12+k 2x 2+22kx +1=0.①又因为直线l 与椭圆有两个不同的交点P 和Q ,则Δ=8k 2-4⎝ ⎛⎭⎪⎫12+k 2=4k 2-2>0,解得k <-22或k >22. 故k 的取值范围为⎝ ⎛⎭⎪⎫-∞,-22∪⎝ ⎛⎭⎪⎫22,+∞. (2)不存在.理由如下:设P (x 1,y 1),Q (x 2,y 2), 则OP ―→+OQ ―→=(x 1+x 2,y 1+y 2).由方程①,得x 1+x 2=-42k1+2k 2.又因为y 1+y 2=k (x 1+x 2)+22-2,1).1+x 2=-2(y 1+y 2). k .。