高一数学必修一模块综合检测(附详细答案解析)

合集下载

高一数学必修一综合测试题(含答案)

高一数学必修一综合测试题(含答案)

高一数学必修一综合测试题(含答案)一、选择题(每题5分,共50分)1、已知集合M={0,1,2},N={xx=2a,a∈M},则集合MN=A、{ }B、{0,1}C、{1,2}D、{0,2}答案:B解析:将M中的元素代入N中得到:N={2,4,8},与M 的交集为{0,1},故MN={0,1}。

2、若f(lgx)=x,则f(3)=()A、lg3B、3C、10D、310答案:C解析:将x=3代入f(lgx)=x中得到f(lg3)=3,又因为lg3=0.477,所以f(0.477)=3,即f(3)=10^0.477=3.03.3、函数f(x)=x−1x−2的定义域为()A、[1,2)∪(2,+∞)B、(1,+∞)C、[1,2)D、[1,+∞)答案:A解析:由于分母不能为0,所以x-2≠0,即x≠2.又因为对于x<1,分母小于分子,所以x-1<0,即x<1.所以定义域为[1,2)∪(2,+∞)。

4、设a=log13,b=23,则().A、a<b<cB、c<b<aC、c<a<bD、b<a<c答案:A解析:a=log13=log33-log32=1/2-log32,b=23=8,c=2^3=8,所以a<b=c。

5、若102x=25,则10−x等于()A、−15B、51C、150D、0.2答案:B解析:由102x=25可得x=log10(25)/log10(102)=1.3979,所以10^-x=1/10^1.3979=0.1995≈0.2.6、要使g(x)=3x+1+t的图象不经过第二象限,则t的取值范围为A.t≤−1B.t<−1C.t≤−3D.t≥−3答案:B解析:当x=0时,y=1+t,要使图像不经过第二象限,则1+t>0,即t>-1.又因为g(x)的斜率为正数,所以对于任意的x,g(x)的值都大于1+t,所以t< -1.7、函数y=2x,x≥1x,x<1的图像为()答案:见下图。

2019-2020学年高中数学(苏教版必修一)模块综合测评 Word版含解析

2019-2020学年高中数学(苏教版必修一)模块综合测评 Word版含解析

模块综合测评(时间120分钟,满分160分)一、填空题(本大题共14小题,每小题5分,共70分,请把答案填在题中横线上) 1.已知集合A ={}0,1,2,3,4,B ={}x||x|<2,则A ∩B =________. 【解析】 B ={}x||x|<2={}x|-2<x<2,A ∩B ={}0,1. 【答案】 {}0,12.如果集合P ={x |x >-1},那么下列结论成立的是________.(填序号) (1)0⊆P ;(2){0}∈P ;(3)∅∈P ;(4){0}⊆P .【解析】 元素与集合之间的关系是从属关系,用符号∈或∉表示,故(1)(2)(3)不对,又0∈P ,所以{0}⊆P .【答案】 (4)3.设集合B ={a 1,a 2,…,a n },J ={b 1,b 2,…,b m },定义集合B⊕J ={(a ,b )|a =a 1+a 2+…+a n ,b =b 1+b 2+…+b m },已知B ={0,1,2},J ={2,5,8},则B ⊕J 的子集为________.【解析】 因为根据新定义可知,0+1+2=3,2+5+8=15,故B ⊕J 的子集为∅,{(3,15)}. 【答案】 ∅,{(3,15)}4.若函数f (x )=错误!的定义域为A ,g (x )=错误!的定义域为B ,则∁R (A ∪B )=________. 【解析】 由题意知,⎩⎨⎧x -1>0,2-x>0⇒1<x <2.∴A =(1,2).错误!⇒x ≤0.∴B =(-∞,0], A ∪B =(-∞,0]∪(1,2), ∴∁R (A ∪B )=(0,1]∪[2,+∞). 【答案】 (0,1]∪[2,+∞)5.若方程x 3-x +1=0在区间(a ,b )(a ,b ∈Z ,且b -a =1)上有一根,则a +b 的值为________.【解析】 设f (x )=x 3-x +1,则f (-2)=-5<0,f (-1)=1>0,所以a =-2,b =-1,则a +b =-3.【答案】 -36.已知函数y =g (x )与y =log ax 互为反函数,f(x )=g (3x -2)+2,则f(x )的图象恒过定点________.【解析】 由题知g (x )=a x ,∴f (x )=a 3x -2+2,由3x -2=0,得x =23,故函数f (x )=a 3x -2+2(a >0,a ≠1)的图象恒过定点⎝ ⎛⎭⎪⎫23,3.【答案】 ⎝ ⎛⎭⎪⎫23,37.已知函数f(x )=(m -1)x 2+2mx +3为偶函数,则f(x )在(-5,-2)上是________.(填序号)①增函数;②减函数;③非单调函数;④可能是增函数,也可能是减函数. 【解析】 ∵f (x )为偶函数,∴m =0,即f (x )=-x 2+3在(-5,-2)上是增函数. 【答案】 ① 8.已知函数f(x )=a x +log a x (a >0且a ≠1)在[1,2]上的最大值与最小值之和为log a 2+6,则a =________.【解析】 依题意,函数f (x )=a x +log a x (a >0且a ≠1)在[1,2]上具有单调性,因此a +a 2+log a 2=log a 2+6,解得a =2.【答案】 29.已知f (x )=⎩⎪⎨⎪⎧x2+1,x≤0,2x ,x>0,若f (x )=10,则x =________.【解析】 当x ≤0时,令x 2+1=10,解得x =-3或x =3(舍去); 当x >0时,令2x =10, 解得x =5.综上,x =-3或x =5. 【答案】 -3或510.若y =f (x )是奇函数,当x >0时,f (x )=2x +1,则f ⎝ ⎛⎭⎪⎫log2 13=________.【解析】 ∵f (x )是奇函数, ∴f ⎝ ⎛⎭⎪⎫log2 13=f (-log 2 3)=-f (log 2 3).又log 2 3>0,且x >0时,f (x )=2x +1,∴f ⎝ ⎛⎭⎪⎫log2 13=-4.【答案】 -411.定义在R 上的函数f (x )满足f (x )=错误!则f (3)的值为________.【解析】 ∵3>0,且x >0时,f (x )=f (x -1)-f (x -2),∴f (3)=f (2)-f (1),又f (2)=f (1)-f (0),所以f (3)=-f (0),又∵x ≤0时,f (x )=log 2 (4-x ),∴f (3)=-f (0)=-log 2 (4-0)=-2.【答案】 -212.函数y =f (x )的图象如图1所示,则函数y =log 12f (x )的图象大致是________.(填序号)图1【解析】 设y =log 12u ,u =f (x ),所以根据外层函数是单调减函数,所以看函数u =f (x )的单调性,在(0,1)上u =f (x )为减函数,所以整体是增函数,u >1,所以函数值小于0,在(1,2)上u =f (x )为增函数,所以整体是减函数,u >1,所以函数值小于0,所以选③.【答案】 ③13.若函数y =⎝ ⎛⎭⎪⎫12|1-x |+m 的图象与x 轴有公共点,则m 的取值范围是________.【解析】 ∵y =⎝ ⎛⎭⎪⎫12|1-x |=错误!∴画图象可知-1≤m <0. 【答案】 [-1,0) 14.已知f(x )=x 2-2ax +2(a ≤-1),若当x∈[-1,+∞)时,f(x )≥a 恒成立,则实数a 的取值范围是________.【解析】 函数f (x )的对称轴为直线x =a , 当a ≤-1,x ∈[-1,+∞)时, f (x )min =f (-1)=3+2a .又f (x )≥a 恒成立,所以f (x )min ≥a ,即3+2a ≥a ,解得a ≥-3. 所以-3≤a ≤-1. 【答案】 [-3,-1] 二、解答题(本大题共6小题,共90分.解答时应写出必要的文字说明、证明过程或演算步骤)(2)原式=⎝ ⎛⎭⎪⎫log2 3+23log2 3⎝ ⎛⎭⎪⎫2log3 2+32log3 2+log3 2+(lg 2)2+(1+lg 2)lg 5=53log 2 3·92log 3 2+(lg 2)2+lg 2·lg 5+lg 5=152+lg 2(lg 5+lg 2)+lg 5=152+lg 2+lg 5=152+1=172.16.(本小题满分14分)已知集合A ={x |3≤3x ≤27},B ={x |log 2 x >1}. (1)分别求A ∩B ,(∁R B )∪A ;(2)已知集合C ={x |1<x <a },若C ⊆A ,求实数a 的取值范围. 【解】 (1)A ={x |3≤3x ≤27}={x |1≤x ≤3},B ={x |log 2 x >1}={x |x >2},A ∩B ={x |2<x ≤3},(∁R B )∪A ={x |x ≤2}∪{x |1≤x ≤3}={x |x ≤3}. (2)①当a ≤1时,C =∅,此时C ⊆A ; ②当a >1时,C ⊆A ,则1<a ≤3.综合①②,可得a 的取值范围是(-∞,3].17.(本小题满分14分)某企业拟共用10万元投资甲、乙两种商品.已知各投入x 万元时,甲、乙两种商品可分别获得y 1,y 2万元的利润,利润曲线P 1:y 1=ax n ,P 2:y 2=bx +c 如图2所示.图2(1)求函数y 1,y 2的解析式;(2)为使投资获得最大利润,应怎样分配投资? 【解】 由题图知P 1:y 1=ax n过点⎝ ⎛⎭⎪⎫1,54,⎝ ⎛⎭⎪⎫4,52,∴⎩⎪⎨⎪⎧ 54=a·1n ,52=a·4n ,∴⎩⎪⎨⎪⎧a =54,n =12,∴y 1=54x ,x ∈[0,+∞).P 2:y 2=bx +c 过点(0,0),(4,1),∴⎩⎨⎧0=0+c ,1=4b +c ,∴⎩⎪⎨⎪⎧c =0,b =14,∴y 2=14x ,x ∈[0,+∞). (2)设用x 万元投资甲商品,那么投资乙商品为(10-x )万元,则y =54x +14(10-x )=-14x +54 x +52=-14⎝ ⎛⎭⎪⎫x -522+6516(0≤x ≤10),当且仅当x =52即x =254=6.25时,y max =6516, 此时投资乙商品为10-x =10-6.25=3.75万元,故用6.25万元投资甲商品,3.75万元投资乙商品,才能获得最大利润. 18.(本小题满分16分)已知f (x )是定义在R 上的奇函数,当x ≥0时,f(x )=a x -1.其中a >0且a ≠1.(1)求f (2)+f (-2)的值; (2)求f (x )的解析式;(3)解关于x 的不等式-1<f (x -1)<4,结果用集合或区间表示. 【解】 (1)∵f (x )是奇函数, ∴f (-2)=-f (2), 即f (2)+f (-2)=0. (2)当x <0时,-x >0, ∴f (-x )=a -x -1.由f (x )是奇函数,有f (-x )=-f (x ), 即f (x )=-a -x +1(x <0). ∴所求的解析式为 f (x )=错误! (3)不等式等价于⎩⎨⎧x -1<0,-1<-a -x +1+1<4,或⎩⎨⎧x -1≥0,-1<ax -1-1<4, 即⎩⎨⎧ x -1<0,-3<a -x +1<2或⎩⎨⎧x -1≥0,0<ax -1<5. 当a >1时,有⎩⎨⎧x <1,x >1-loga2或⎩⎨⎧x≥1,x <1+loga5,注意此时log a 2>0,log a 5>0,可得此时不等式的解集为(1-log a 2,1+log a 5). 同理可得,当0<a <1时,不等式的解集为R . 综上所述,当a >1时,不等式的解集为(1-log a 2,1+log a 5); 当0<a <1时,不等式的解集为R .19.(本小题满分16分)已知函数f (x )=log a (a x -1)(a >0,a ≠1), (1)求函数f (x )的定义域; (2)判断函数f (x )的单调性.【解】 (1)函数f (x )有意义,则a x -1>0, 当a >1时,由a x -1>0,解得x >0; 当0<a <1时,由a x -1>0,解得x <0. ∴当a >1时,函数的定义域为(0,+∞); 当0<a <1时,函数的定义域为(-∞,0).由函数单调性定义知:当0<a <1时,f (x )在(-∞,0)上是单调递增的.20.(本小题满分16分)设函数y =f (x )是定义域为R ,并且满足f (x +y )=f (x )+f (y ),f ⎝ ⎛⎭⎪⎫13=1,且当x >0时,f (x )>0.(1)求f (0)的值; (2)判断函数的奇偶性;(3)如果f (x )+f (2+x )<2,求x 的取值范围. 【解】 (1)令x =y =0, 则f (0)=f (0)+f (0), ∴f (0)=0. (2)令y =-x ,得f (0)=f (x )+f (-x )=0,∴f (-x )=-f (x ).故函数f (x )是R 上的奇函数. (3)任取x 1,x 2∈R ,x 1<x 2, 则x 2-x 1>0, ∴f (x 2)-f (x 1) =f (x 2-x 1+x 1)-f (x 1) =f (x 2-x 1)+f (x 1)-f (x 1) =f (x 2-x 1)>0.∴f (x 1)<f (x 2).故f (x )是R 上的增函数. ∵f ⎝ ⎛⎭⎪⎫13=1,∴f ⎝ ⎛⎭⎪⎫23=f ⎝ ⎛⎭⎪⎫13+13=f ⎝ ⎛⎭⎪⎫13+f ⎝ ⎛⎭⎪⎫13=2.∴f (x )+f (2+x )=f [x +(2+x )] =f (2x +2)<f ⎝ ⎛⎭⎪⎫23,又由y =f (x )是定义在R 上的增函数, 得2x +2<23,解得x <-23. 故x ∈⎝ ⎛⎭⎪⎫-∞,-23.。

新人教A版必修12021学年高中数学模块综合评估测评含解析

新人教A版必修12021学年高中数学模块综合评估测评含解析

模块综合评估 时间:120分钟 满分:150分一、选择题(每小题5分,共60分)1.已知集合M ={x|x<3},N ={x|log 2x>1},则M ∩N 等于( D ) A .∅ B .{x|0<x<3} C .{x|1<x<3} D .{x|2<x<3}解析:N ={x|x>2},∴用数轴表示集合可得M ∩N ={x|2<x<3},选D .2.设f(x)=⎩⎪⎨⎪⎧2e x -1,x<2,log 3(2x-1),x ≥2,则f[f(2)]等于( C ) A .0 B .1 C .2D .3解析:∵f(2)=log 3(22-1)=1, ∴f[f(2)]=f(1)=2e 1-1=2.3.与函数y =10lg (x -1)相等的函数是( C ) A .y =x -1B .y =|x -1|C .y =⎝ ⎛⎭⎪⎪⎫x -1x -12D .y =x 2-1x +1解析:y =10lg (x -1)=x -1(x>1),故选C . 4.函数y =ln (2x -1)2-x的定义域为( B )A.⎝ ⎛⎭⎪⎫12,+∞B.⎝ ⎛⎭⎪⎫12,2 C.⎝ ⎛⎭⎪⎫12,1 D .(-∞,2)解析:要使函数有意义,则⎩⎪⎨⎪⎧2x -1>0,2-x>0,解得12<x<2,即函数的定义域为⎝ ⎛⎭⎪⎫12,2,故选B .5.已知函数f(x)=m+log2x2的定义域是[1,2],且f(x)≤4,则实数m的取值范围是(A)A.(-∞,2] B.(-∞,2)C.[2,+∞) D.(2,+∞)解析:本题考查函数的定义域、函数的单调性及参数取值范围的探求.因为f(x)=m+2log2x在[1,2]是增函数,且由f(x)≤4,得f(2)=m+2≤4,得m≤2,故选A.6.已知函数f(x)为奇函数,且在(0,+∞)上单调递增,则以下结论正确的是(D)A.函数|f(x)|为偶函数,且在(-∞,0)上单调递增B.函数|f(x)|为奇函数,且在(-∞,0)上单调递增C.函数f(|x|)为奇函数,且在(0,+∞)上单调递增D.函数f(|x|)为偶函数,且在(0,+∞)上单调递增解析:函数f(x)为奇函数,且在(0,+∞)上单调递增,不妨令f(x)=x,则|f(x)|=|x|,f(|x|)=|x|;∴函数|f(x)|为偶函数,且在(-∞,0)上单调递减,∴选项A,B错误;函数f(|x|)为偶函数,且在(0,+∞)上单调递增,∴选项C错误、D正确.故选D.7.设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b 为常数),则f(-1)=(A)A.-3 B.-1C.1 D.3解析:∵f(x)是R上的奇函数,∴f(0)=0.当x≥0时,f(x)=2x+2x+b,∴20+b=0,b=-1.当x≥0时,f(x)=2x+2x-1.∴f(1)=21+2×1-1=3.∵f(x)是定义在R上的奇函数,∴f (-1)=-f (1)=-3.8.函数f (x )=lg(|x |-1)的大致图象是( B )解析:由f (x )=lg(|x |-1),知x >1或x <-1.排除C ,D. 当x >1时,f (x )=lg(x -1)在区间(1,+∞)上为增函数.故选B. 9.函数y =x 2-3在区间(1,2)内的零点的近似值(精确度0.1)是( C )A .1.55B .1.65C .1.75D .1.85解析:经计算知函数零点的近似值可取为1.75.10.衣柜里的樟脑丸随着时间挥发而体积缩小,刚放进的新丸的体积为a ,经过t 天后体积V 与天数t 的关系式为V =a ·e -kt .已知新丸经过50天后,体积变为49a .若一个新丸体积变为827a ,则需经过的天数为( C )A .125B .100C .75D .50解析:由已知得49a =a ·e -50k ,即e -50k=49=⎝ ⎛⎭⎪⎫232.∴827a =⎝ ⎛⎭⎪⎫233·a =(e -50k )32·a =e -75k ·a , ∴t =75.11.设函数F (x )=f (x )-1f (x ),其中x -log 2f (x )=0,则函数F (x )是( A )A .奇函数且在(-∞,+∞)上是增函数B .奇函数且在(-∞,+∞)上是减函数C .偶函数且在(-∞,+∞)上是增函数D .偶函数且在(-∞,+∞)上是减函数 解析:由x -log 2f (x )=0,得f (x )=2x , ∴F (x )=2x-12x =2x -2-x .∴F (-x )=2-x -2x =-F (x ),∴F (x )为奇函数,易知F (x )=2x -2-x在(-∞,+∞)上是增函数.12.已知函数f (x )的定义域为(-∞,0)∪(0,+∞),f (x )是奇函数,且当x >0时,f (x )=x 2-x +a ,若函数g (x )=f (x )-x 的零点恰有两个,则实数a 的取值范围是( D )A .a <0B .a ≤0C .a ≤1D .a ≤0或a =1解析:由于f (x )为奇函数,且y =x 是奇函数,所以g (x )=f (x )-x 也应为奇函数,所以由函数g (x )=f (x )-x 的零点恰有两个,可得两零点必定分别在(-∞,0)和(0,+∞)上,由此得到函数g (x )=x 2-2x +a 在(0,+∞)上仅有一个零点,即函数y =-(x -1)2+1与直线y =a 在(0,+∞)上仅有一个公共点,数形结合易知应为a ≤0或a =1,选D.二、填空题(每小题5分,共20分)13.设U ={0,1,2,3},A ={x ∈U |x 2+mx =0},若∁U A ={1,2},则实数m =-3.解析:∵∁U A ={1,2},∴A ={0,3}. ∴0,3是方程x 2+mx =0的两根,∴m =-3.14.若函数f (x )=mx 2-2x +3只有一个零点,则实数m 的取值是0或13.解析:由题意得m =0或Δ=4-12m =0, 即m =0或m =13.15.已知函数f (x )=⎩⎪⎨⎪⎧2x -1,x >0,-x 2-2x ,x ≤0,若函数g (x )=f (x )-m 有三个零点,则实数m 的取值范围为(0,1).解析:如图,作出函数f (x )=⎩⎪⎨⎪⎧2x -1,x >0,-x 2-2x ,x ≤0的图象,作出直线y =m .由图可知,该函数的图象与直线y =m 有三个交点时,需m ∈(0,1),此时函数g (x )=f (x )-m 有三个零点.16.下列说法中:①y =a x +1(x ∈R )的图象可以由y =a x 的图象平移得到(a >0,且a ≠1);②y =2x 与y =log 2x 的图象关于y 轴对称; ③方程log 5(2x +1)=log 5(x 2-2)的解集是{-1,3}; ④函数f (x )=ln(1+x )-ln(1-x )为奇函数. 正确的是①④.解析:将函数y =a x 的图象向左平移1个单位即得函数y =a x +1的图象,故①正确;y =2x 与y =log 2x 互为反函数,图象关于直线y =x 对称,故②错;当x =-1时,log 5(x 2-2)无意义,故③错;由⎩⎪⎨⎪⎧1+x >0,1-x >0,得-1<x <1,且f (-x )=ln(1-x )-ln(1+x )=-f (x ),∴函数y =ln(1+x )-ln(1-x )是奇函数,故④正确.三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)设U =R ,A ={x |2x -3≤1},B ={x |2<x <5},C ={x |a ≤x ≤a +1}(a 为实数).(1)求A ∩B ;(2)若B ∪C =B ,求a 的取值范围. 解:(1)∵2x -3≤1,∴x ≤3. ∴A ∩B ={x |2<x ≤3}. (2)由B ∪C =B ,得C ⊆B .∴⎩⎪⎨⎪⎧a >2,a +1<5,即2<a <4. 18.(12分)已知f (x )是R 上的奇函数,且当x >0时,f (x )=-x 2+2x +2.(1)求f (x )的表达式;(2)画出f (x )的图象,并指出f (x )的单调区间. 解:(1)设x <0,则-x >0,∴f (-x )=-(-x )2-2x +2=-x 2-2x +2. 又∵f (x )为奇函数,∴f (-x )=-f (x ). ∴f (x )=x 2+2x -2.又f (0)=0,∴f (x )=⎩⎪⎨⎪⎧x 2+2x -2, x <0,0, x =0,-x 2+2x +2, x >0.(2)先画出y =f (x )(x >0)的图象,利用奇函数的对称性可得到相应y =f (x )(x <0)的图象,其图象如图所示.由图可知,其增区间为[-1,0)和(0,1],减区间为(-∞,-1]和[1,+∞).19.(12分)已知函数f (x )=2x 2+2x +a (-2≤x ≤2). (1)写出函数f (x )的单调区间;(2)若f (x )的最大值为64,求f (x )的最小值. 解:(1)f (x )=2(x +1)2+a -1(-2≤x ≤2), ∴在[-2,-1]上,f (x )为减函数; 在[-1,2]上,f (x )为增函数.即f (x )的减区间是[-2,-1],f (x )的增区间是[-1,2]. (2)设U (x )=(x +1)2+a -1(-2≤x ≤2),则U (x )的最大值为U (2)=8+a ,最小值为U (-1)=a -1.故f (x )的最大值为f (2)=28+a ,最小值为f (-1)=2a -1. ∵28+a =64, ∴a =-2.∴f (x )的最小值为f (-1)=2-2-1=18.20.(12分)已知函数f (x )=lg ⎝ ⎛⎭⎪⎫mx x +1+n (m ,n ∈R ,m >0)的图象关于原点对称.(1)求m ,n 的值;(2)若函数h (x )=f (2x)-lg ⎝ ⎛⎭⎪⎫b 2x +1-2x在(0,1)内存在零点,求实数b的取值范围.解:(1)函数f (x )=lg ⎝ ⎛⎭⎪⎫mx x +1+n (m ,n ∈R ,m >0)的图象关于原点对称,所以f (-x )+f (x )=0,所以lg ⎝ ⎛⎭⎪⎫-mx -x +1+n +lg ⎝ ⎛⎭⎪⎫mx x +1+n =0, 所以⎝⎛⎭⎪⎫-mx -x +1+n ⎝ ⎛⎭⎪⎫mx x +1+n =1, 即[(m +n )2-1]x 2+1-n 2x 2-1=0.所以⎩⎪⎨⎪⎧1-n 2=0,(m +n )2-1=0,m >0,解得⎩⎪⎨⎪⎧n =-1,m =2.(2)由h (x )=f (2x)-lg ⎝ ⎛⎭⎪⎫b 2x +1-2x =lg 2x -12x +1-lg ⎝ ⎛⎭⎪⎫b 2x +1-2x =lg 2x -1b -(2x )2-2x ,由题设知h (x )=0在(0,1)内有解,即方程2x-1=b -(2x )2-2x 在(0,1)内有解.b =(2x )2+2x +1-1=(2x +1)2-2在(0,1)内递增,得2<b <7.所以当2<b <7时,函数h (x )=f (2x)-lg ⎝ ⎛⎭⎪⎫b 2x +1-2x在(0,1)内存在零点.21.(12分)定义在(0,+∞)上的函数f (x ),对于任意的m ,n ∈(0,+∞),都有f (mn )=f (m )+f (n )成立,当x >1时,f (x )<0.(1)求证:1是函数f (x )的零点; (2)求证:f (x )是(0,+∞)上的减函数; (3)当f (2)=-12时,解不等式f (ax +4)>-1.解:(1)证明:对于任意的正实数m ,n 都有f (mn )=f (m )+f (n )成立,所以令m =n =1,则f (1)=2f (1).∴f (1)=0,即1是函数f (x )的零点. (2)证明:设0<x 1<x 2, ∵f (mn )=f (m )+f (n ), ∴f (mn )-f (m )=f (n ). ∴f (x 2)-f (x 1)=f (x 2x 1).因0<x 1<x 2,则x 2x 1>1.而当x >1时,f (x )<0,从而f (x 2)<f (x 1).所以f (x )在(0,+∞)上是减函数. (3)因为f (4)=f (2)+f (2)=-1,所以不等式f (ax +4)>-1可以转化为f (ax +4)>f (4). 因为f (x )在(0,+∞)上是减函数,所以0<ax +4<4. 当a =0时,解集为∅;当a >0时,-4<ax <0,即-4a <x <0, 解集为{x |-4a <x <0};当a <0时,-4<ax <0,即0<x <-4a , 解集为{x |0<x <-4a }.22.(12分)已知指数函数y =g (x )满足:g (3)=8,定义域为R 的函数f (x )=1-g (x )m +2g (x )是奇函数.(1)确定y =f (x )和y =g (x )的解析式; (2)判断函数f (x )的单调性,并用定义证明;(3)若对于任意x ∈[-5,-1],都有f (1-x )+f (1-2x )>0成立,求x 的取值范围.解:(1)设g (x )=a x (a >0,且a ≠1),则a 3=8, ∴a =2.∴g (x )=2x .∵f (x )=1-2x2x +1+m.又f (-1)=-f (1),∴1-12m +1=-1-24+m ⇒m =2;经检验,满足题意. ∴f (x )=1-2x 2+2x +1.(2)由(1)知f (x )=1-2x 2+2x +1=-12+12x +1.f (x )在定义域R 上是减函数.证明如下:任取x 1,x 2∈R ,设x 1<x 2, 则f (x 2)-f (x 1)=12x 2+1-12x 1+1=2x 1-2x 2(2x 1+1)(2x 2+1). ∵函数y =2x 在R 上是增函数,且x 1<x 2, ∴2x 1-2x 2<0, 又(2x 1+1)(2x 2+1)>0, ∴f (x 2)-f (x 1)<0,即f (x 2)<f (x 1). ∴f (x )在(-∞,+∞)上为减函数.(3)∵f (x )是奇函数,且f (x )在(-∞,+∞)上为减函数, 从而由不等式f (1-x )+f (1-2x )>0, 得f (1-x )>-f (1-2x ), 即f (1-x )>f (2x -1), ∴⎩⎪⎨⎪⎧1-x <2x -1,-5≤1-x ≤-1,-5≤1-2x ≤-1,解得2≤x ≤3.故x 的取值范围是[2,3].。

新教材人教B版高中数学选择性必修第一册各章综合测验及模块测验含答案解析

新教材人教B版高中数学选择性必修第一册各章综合测验及模块测验含答案解析

人教B 选择性必修第一册综合测验第一章 空间向量与立体几何............................................................................................ 1 第二章 平面解析几何 .................................................................................................... 15 模块综合测验 . (28)第一章 空间向量与立体几何一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在平行六面体ABCD-A'B'C'D'中,向量AB '⃗⃗⃗⃗⃗⃗ 、AD '⃗⃗⃗⃗⃗⃗ 、BD ⃗⃗⃗⃗⃗⃗ 是( ) A.有相同起点的向量 B .等长的向量C.共面向量 D .不共面向量AB '⃗⃗⃗⃗⃗⃗ 、AD '⃗⃗⃗⃗⃗⃗ 、BD⃗⃗⃗⃗⃗⃗ 显然不是有相同起点的向量,A 不正确; 由该平行六面体不是正方体可知,这三个向量不是等长的向量,B 不正确. 又∵AD '⃗⃗⃗⃗⃗⃗ −AB '⃗⃗⃗⃗⃗⃗ =B 'D '⃗⃗⃗⃗⃗⃗⃗ =BD ⃗⃗⃗⃗⃗⃗ , ∴AB '⃗⃗⃗⃗⃗⃗ ,AD '⃗⃗⃗⃗⃗⃗ ,BD⃗⃗⃗⃗⃗⃗ 共面,C 正确,D 不正确. 2.已知a =(-2,-3,1),b =(2,0,4),c =(-4,-6,2),则下列结论正确的是( ) A.a ∥c ,b ∥c B.a ∥b ,a ⊥c C.a ∥c ,a ⊥b D.以上都不对a =(-2,-3,1),b =(2,0,4),c =(-4,-6,2),∴a ·b =-4+0+4=0,∴a ⊥b .∵-4-2=-6-3=21,∴a ∥c .3.在长方体ABCD-A 1B 1C 1D 1中,BA ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +DD 1⃗⃗⃗⃗⃗⃗⃗⃗ = ( ) A.D 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ B.D 1B ⃗⃗⃗⃗⃗⃗⃗ C.DB 1⃗⃗⃗⃗⃗⃗⃗⃗ D.BD 1⃗⃗⃗⃗⃗⃗⃗⃗,长方体ABCD-A 1B 1C 1D 1中,BA ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +DD 1⃗⃗⃗⃗⃗⃗⃗⃗ =(BA ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ )+DD 1⃗⃗⃗⃗⃗⃗⃗⃗ =BD ⃗⃗⃗⃗⃗⃗ +DD 1⃗⃗⃗⃗⃗⃗⃗⃗ =BD 1⃗⃗⃗⃗⃗⃗⃗⃗ .4.如图所示,已知空间四边形ABCD ,连接AC ,BD.M ,G 分别是BC ,CD 的中点,则AB ⃗⃗⃗⃗⃗ +12BC ⃗⃗⃗⃗⃗ +12BD ⃗⃗⃗⃗⃗⃗ 等于 ( )A.AD ⃗⃗⃗⃗⃗B.GA ⃗⃗⃗⃗⃗C.AG ⃗⃗⃗⃗⃗D.MG ⃗⃗⃗⃗⃗⃗M ,G 分别是BC ,CD 的中点,∴12BC ⃗⃗⃗⃗⃗ =BM ⃗⃗⃗⃗⃗⃗ ,12BD ⃗⃗⃗⃗⃗⃗ =MG ⃗⃗⃗⃗⃗⃗ .∴AB ⃗⃗⃗⃗⃗ +12BC ⃗⃗⃗⃗⃗ +12BD ⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BM ⃗⃗⃗⃗⃗⃗ +MG ⃗⃗⃗⃗⃗⃗ =AM ⃗⃗⃗⃗⃗⃗ +MG ⃗⃗⃗⃗⃗⃗ =AG⃗⃗⃗⃗⃗ . 5.在四棱锥P-ABCD 中,AB ⃗⃗⃗⃗⃗ =(4,-2,3),AD ⃗⃗⃗⃗⃗ =(-4,1,0),AP ⃗⃗⃗⃗⃗ =(-6,2,-8),则这个四棱锥的高h 等于 ( )A.1 B .2C.13D .26ABCD 的法向量为n =(x ,y ,z ),则{n ·AB ⃗⃗⃗⃗⃗ =0,n ·AD ⃗⃗⃗⃗⃗ =0,即{4x -2y +3z =0,-4x +y =0.不妨令x=3,则y=12,z=4,可得n =(3,12,4), 四棱锥的高h=|AP ⃗⃗⃗⃗⃗ ·n ||n |=2613=2.6.已知两不重合的平面α与平面ABC ,若平面α的法向量为n 1=(2,-3,1),AB ⃗⃗⃗⃗⃗ =(1,0,-2),AC ⃗⃗⃗⃗⃗ =(1,1,1),则( ) A.平面α∥平面ABC B.平面α⊥平面ABCC.平面α、平面ABC 相交但不垂直D.以上均有可能,n 1·AB ⃗⃗⃗⃗⃗ =2×1+(-3)×0+1×(-2)=0,得n 1⊥AB ⃗⃗⃗⃗⃗ ,n 1·AC ⃗⃗⃗⃗⃗ =2×1+(-3)×1+1×1=0,得n 1⊥AC⃗⃗⃗⃗⃗ , 所以n 1⊥平面ABC ,所以平面α的法向量与平面ABC 的法向量共线,则平面α∥平面ABC.7.直线AB 与直二面角α-l-β的两个面分别交于A ,B 两点,且A ,B 都不在棱l 上,设直线AB 与α,β所成的角分别为θ和φ,则θ+φ的取值范围是( ) A.0°<θ+φ<90° B.0°<θ+φ≤90° C.90°<θ+φ<180° D.θ+φ=90°,分别过点A ,B 向平面β,α作垂线,垂足为A 1,B 1,连接BA 1,AB 1.由已知α⊥β,所以AA 1⊥β,BB 1⊥α,因此∠BAB 1=θ,∠ABA 1=φ.由最小角定理得∠BAA 1≥θ,而∠BAA 1+φ=90°,故θ+φ=θ+90°-∠BAA 1≤90°,当AB ⊥l 时,θ+φ=90°,应选B .8.长方体A 1A 2A 3A 4-B 1B 2B 3B 4的底面为边长为1的正方形,高为2,则集合{x|x=A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·A i B j ⃗⃗⃗⃗⃗⃗⃗⃗ ,i ∈{1,2,3,4},j ∈{1,2,3,4}}中元素的个数为( )A.1 B .2 C .3 D .4长方体A 1A 2A 3A 4-B 1B 2B 3B 4的底面为边长为1的正方形,高为2,∴建立如图的空间直角坐标系, 则A 1(1,1,0),A 2(0,1,0),A 3(0,0,0),A 4(1,0,0), B 1(1,1,2),B 2(0,1,2),B 3(0,0,2),B 4(1,0,2), 则A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-1,0,2),与A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(0,0,2)相等的向量为A 2B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =A 3B 3⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =A 4B 4⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,此时A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =2×2=4, 与A 1B 4⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(0,-1,2)相等的向量为A 2B 3⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,此时A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·A 1B 4⃗⃗⃗⃗⃗⃗⃗⃗⃗ =2×2=4, 与A 4B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(0,1,2)相等的向量为A 3B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,此时A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·A 4B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =2×2=4,与A 2B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(1,0,2)相等的向量为A 3B 4⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,此时A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·A 2B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =-1+4=3,与A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-1,0,2)相等的向量为A 4B 3⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,此时A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ =1+4=5,体对角线向量为A 1B 3⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-1,-1,2),此时A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·A 1B 3⃗⃗⃗⃗⃗⃗⃗⃗⃗ =1+4=5,A 2B 4⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(1,-1,2),A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·A 2B 4⃗⃗⃗⃗⃗⃗⃗⃗⃗ =-1+4=3,A 3B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(1,1,2),A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·A 3B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =-1+4=3, A 4B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-1,1,2),A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·A 4B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =1+4=5,综上集合{x|x=A 1B 2⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·A i B j ⃗⃗⃗⃗⃗⃗⃗⃗ ,i ∈{1,2,3,4},j ∈{1,2,3,4}}={3,4,5},集合中元素的个数为3个.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对得3分. 9.设向量a ,b ,c 可构成空间一个基底,下列选项中正确的是( ) A.若a ⊥b ,b ⊥c ,则a ⊥cB.则a,b,c两两共面,但a,b,c不可能共面C.对空间任一向量p,总存在有序实数组(x,y,z),使p=x a+y b+z cD.则a+b,b+c,c+a一定能构成空间的一个基底a,b,c是空间一个基底,知:在A中,若a⊥b,b⊥c,则a与c相交或平行,故A错误;在B中,a,b,c两两共面,但a,b,c不可能共面,故B正确;在C中,对空间任一向量p,总存在有序实数组(x,y,z),使p=x a+y b+z c,故C正确;在D中,a+b,b+c,c+a一定能构成空间的一个基底,故D正确.10.已知向量a=(1,2,3),b=(3,0,-1),c=(-1,5,-3),下列等式中正确的是()A.(a·b)c=b·cB.(a+b)·c=a·(b+c)C.(a+b+c)2=a2+b2+c2D.|a+b+c|=|a-b-c|左边为向量,右边为实数,显然不相等,不正确;B.左边=(4,2,2)·(-1,5,-3)=0,右边=(1,2,3)·(2,5,-4)=2+10-12=0,∴左边=右边,因此正确.C.a+b+c=(3,7,-1),左边=32+72+(-1)2=59,右边=12+22+32+32+0+(-1)2+(-1)2+52+(-3)2=59,∴左边=右边,因此正确.D.由C可得左边=√59,∵a-b-c=(-1,-3,7),∴|a-b-c|=√59,∴左边=右边,因此正确.故BCD正确.11.在正方体ABCD-A1B1C1D1中,E,F,G,H分别为AB,CC1,A1D1,C1D1的中点,则下列结论正确的是 ()A.A1E⊥AC1B.BF∥平面ADD1A1C.BF⊥DGD.A1E∥CH解析设正方体的棱长为1,以D 为原点,DA ,DC ,DD 1所在的直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则A 1(1,0,1),E (1,12,0),C (0,1,0),F (0,1,12),C 1(0,1,1),H 0,12,1,G (12,0,1),A (1,0,0),B (1,1,0),D (0,0,0),则A 1E ⃗⃗⃗⃗⃗⃗⃗ =(0,12,-1),AC 1⃗⃗⃗⃗⃗⃗⃗ =(-1,1,1),BF ⃗⃗⃗⃗⃗ =(-1,0,12),DG ⃗⃗⃗⃗⃗ =(12,0,1),CH ⃗⃗⃗⃗⃗ =(0,-12,1), 所以A 1E ⃗⃗⃗⃗⃗⃗⃗ ·AC 1⃗⃗⃗⃗⃗⃗⃗ =-12,所以A 1E 与AC 1不垂直,故A 错误; 显然平面ADD 1A 1的一个法向量v =(0,1,0), 有BF ⃗⃗⃗⃗⃗ ·v =0,所以BF ∥平面ADD 1A 1,故B 正确; BF ⃗⃗⃗⃗⃗ ·DG ⃗⃗⃗⃗⃗ =0,所以BF ⊥DG ,故C 正确; A 1E ⃗⃗⃗⃗⃗⃗⃗ =-CH⃗⃗⃗⃗⃗ ,所以A 1E ∥CH ,故D 正确. 12.将正方形ABCD 沿对角线BD 折成直二面角A -BD -C ,有如下四个结论:①AC ⊥BD ;②△ACD 是等边三角形;③AB 与平面BCD 所成的角为60°;④AB 与CD 所成的角为60°.其中正确的结论有( ) A.① B.②C.③D.④,建立空间直角坐标系Oxyz ,设正方形ABCD 的边长为√2,则D (1,0,0),B (-1,0,0),C (0,0,1),A (0,1,0),所以AC ⃗⃗⃗⃗⃗ =(0,-1,1),BD ⃗⃗⃗⃗⃗⃗ =(2,0,0),CD ⃗⃗⃗⃗⃗ =(1,0,-1),AD ⃗⃗⃗⃗⃗ =(1,-1,0),AB ⃗⃗⃗⃗⃗ =(-1,-1,0),AC ⃗⃗⃗⃗⃗ ·BD⃗⃗⃗⃗⃗⃗ =0,故AC ⊥BD ,①正确.又|AC ⃗⃗⃗⃗⃗ |=√2,|CD ⃗⃗⃗⃗⃗ |=√2,|AD ⃗⃗⃗⃗⃗ |=√2, 所以△ACD 为等边三角形,②正确. 对于③,OA ⃗⃗⃗⃗⃗ 为平面BCD 的一个法向量, cos <AB ⃗⃗⃗⃗⃗ ,OA ⃗⃗⃗⃗⃗ >=AB ⃗⃗⃗⃗⃗ ·OA ⃗⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗ ||OA⃗⃗⃗⃗⃗⃗ |=√2·√1=√2=-√22.因为直线与平面所成的角∈[0°,90°],所以AB 与平面BCD 所成的角为45°,故③错误.又cos <AB ⃗⃗⃗⃗⃗ ,CD ⃗⃗⃗⃗⃗ >=AB ⃗⃗⃗⃗⃗⃗ ·CD ⃗⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗⃗ ||CD⃗⃗⃗⃗⃗⃗ |=√2·√2=-12,因为异面直线所成的角为锐角或直角,所以AB 与CD 所成的角为60°,故④正确. 三、填空题:本题共4小题,每小题5分,共20分.13.在棱长为a 的正四面体中,AB ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ·BD ⃗⃗⃗⃗⃗⃗ = . -a 22a 的正四面体中,AB=BC=a ,且AB ⃗⃗⃗⃗⃗ 与BC ⃗⃗⃗⃗⃗ 的夹角为120°,AC ⊥BD.∴AB ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ·BD ⃗⃗⃗⃗⃗⃗ =a ·a cos120°+0=-a22.14.已知a =(1,2,-y ),b =(x ,1,2),且(a +2b )∥(2a -b ),则xy= .2a +2b =(1+2x ,4,-y+4),2a -b =(2-x ,3,-2y-2),因为(a+2b )∥(2a-b ),所以存在λ∈R 使得1+2x=λ(2-x )且4=3λ且-y+4=λ(-2y-2),所以λ=43,x=12,y=-4,所以xy=-2.15.设PA ⊥Rt △ABC 所在的平面α,∠BAC=90°,PB ,PC 分别与α成45°和30°角,PA=2,则PA 与BC 的距离是 ;点P 到BC 的距离是 . √3 √7AD ⊥BC 于点D ,∵PA ⊥面ABC ,∴PA ⊥AD.∴AD 是PA 与BC 的公垂线.易得AB=2,AC=2√3,BC=4,AD=√3,连接PD ,则PD ⊥BC ,P 到BC 的距离PD=√7. 16.已知向量m =(a ,b ,0),n =(c ,d ,1),其中a 2+b 2=c 2+d 2=1,现有以下命题:①向量n 与z 轴正方向的夹角恒为定值(即与c ,d 无关); ②m ·n 的最大值为√2;③<m ,n >(m ,n 的夹角)的最大值为3π4;④若定义u ×v =|u |·|v |sin <u ,v >,则|m×n |的最大值为√2. 其中正确的命题有 .(写出所有正确命题的序号)取z 轴的正方向单位向量a =(0,0,1),则cos <n ,a >=n ·a|n ||a |=√c 2+d 2+12×1=√2=√22,∴向量n 与z 轴正方向的夹角恒为定值π4,命题正确;②m ·n =ac+bd ≤a 2+c 22+b 2+d 22=a 2+c 2+b 2+d 22=1+12=1,当且仅当a=c ,b=d 时取等号,因此m ·n 的最大值为1,命题错误;③由②可得|m ·n |≤1,∴-1≤m ·n ≤1, ∴cos <m ,n >=m ·n|m ||n | =√a 2+b 2·√c 2+d 2+12≥-1×√2=-√22, ∴<m ,n >的最大值是3π4,命题正确; ④由③可知:-√22≤cos <m ,n >≤√22,∴π4≤<m ,n >≤3π4,√22≤sin <m ,n >≤1,∴m×n =|m|×|n|×sin <m ,n >≤1×√2×1=√2,命题正确.综上可知,正确的命题序号是①③④.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)如图所示,在四棱锥M-ABCD 中,底面ABCD 是边长为2的正方形,侧棱AM 的长为3,且AM 和AB ,AD 的夹角都是60°,N 是CM 的中点,设a =AB ⃗⃗⃗⃗⃗ ,b =AD ⃗⃗⃗⃗⃗ ,c =AM ⃗⃗⃗⃗⃗⃗ ,试以a ,b ,c 为基向量表示出向量BN⃗⃗⃗⃗⃗⃗ ,并求BN 的长.⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ +CN ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ +12CM ⃗⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ +12(AM ⃗⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ )=AD ⃗⃗⃗⃗⃗ +12[AM ⃗⃗⃗⃗⃗⃗ -(AD ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ )] =-12AB ⃗⃗⃗⃗⃗ +12AD ⃗⃗⃗⃗⃗ +12AM ⃗⃗⃗⃗⃗⃗ . 所以BN⃗⃗⃗⃗⃗⃗ =-12a+12b+12c , |BN ⃗⃗⃗⃗⃗⃗ |2=BN⃗⃗⃗⃗⃗⃗ 2=-12a+12b+12c 2 =14(a 2+b 2+c 2-2a ·b-2a ·c+2b ·c )=174. 所以|BN⃗⃗⃗⃗⃗⃗ |=√172,即BN 的长为√172.18.(12分)如图,正三棱柱ABC-A 1B 1C 1中,底面边长为√2. (1)设侧棱长为1,求证:AB 1⊥BC 1;(2)设AB 1与BC 1所成的角为π3,求侧棱的长.1=AB ⃗⃗⃗⃗⃗ +BB 1⃗⃗⃗⃗⃗⃗⃗ ,BC 1⃗⃗⃗⃗⃗⃗⃗ =BB 1⃗⃗⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ .因为BB 1⊥平面ABC , 所以BB 1⃗⃗⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ =0,BB 1⃗⃗⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =0. 又△ABC 为正三角形,所以<AB ⃗⃗⃗⃗⃗ ,BC ⃗⃗⃗⃗⃗ >=π-<BA ⃗⃗⃗⃗⃗ ,BC⃗⃗⃗⃗⃗ >=π-π3=2π3. 因为AB 1⃗⃗⃗⃗⃗⃗⃗ ·BC 1⃗⃗⃗⃗⃗⃗⃗ =(AB ⃗⃗⃗⃗⃗ +BB 1⃗⃗⃗⃗⃗⃗⃗ )·(BB 1⃗⃗⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ ) =AB ⃗⃗⃗⃗⃗ ·BB 1⃗⃗⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ +BB 1⃗⃗⃗⃗⃗⃗⃗ 2+BB 1⃗⃗⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =|AB ⃗⃗⃗⃗⃗ |·|BC ⃗⃗⃗⃗⃗ |·cos <AB ⃗⃗⃗⃗⃗ ,BC ⃗⃗⃗⃗⃗ >+BB 1⃗⃗⃗⃗⃗⃗⃗ 2=-1+1=0, 所以AB 1⊥BC 1.(1)知AB 1⃗⃗⃗⃗⃗⃗⃗ ·BC 1⃗⃗⃗⃗⃗⃗⃗ =|AB ⃗⃗⃗⃗⃗ |·|BC ⃗⃗⃗⃗⃗ |·cos <AB ⃗⃗⃗⃗⃗ ,BC ⃗⃗⃗⃗⃗ >+BB 1⃗⃗⃗⃗⃗⃗⃗ 2=BB 1⃗⃗⃗⃗⃗⃗⃗ 2-1.又|AB 1⃗⃗⃗⃗⃗⃗⃗ |=√AB ⃗⃗⃗⃗⃗ 2+BB 1⃗⃗⃗⃗⃗⃗⃗ 2=√2+BB 1⃗⃗⃗⃗⃗⃗⃗ 2=|BC 1⃗⃗⃗⃗⃗⃗⃗ |,所以cos <AB 1⃗⃗⃗⃗⃗⃗⃗ ,BC 1⃗⃗⃗⃗⃗⃗⃗ >=BB 1⃗⃗⃗⃗⃗⃗⃗⃗ 2-12+BB 1⃗⃗⃗⃗⃗⃗⃗⃗ 2=12,所以|BB 1⃗⃗⃗⃗⃗⃗⃗ |=2,即侧棱长为2.19.(12分)已知空间中三点A (2,0,-2),B (1,-1,-2),C (3,0,-4),设a =AB ⃗⃗⃗⃗⃗ ,b =AC ⃗⃗⃗⃗⃗ . (1)若|c |=3,且c ∥BC⃗⃗⃗⃗⃗ ,求向量c ; (2)已知向量k a +b 与b 互相垂直,求k 的值; (3)求△ABC 的面积.∵空间中三点A (2,0,-2),B (1,-1,-2),C (3,0,-4),设a =AB ⃗⃗⃗⃗⃗ ,b =AC⃗⃗⃗⃗⃗ , ∴BC⃗⃗⃗⃗⃗ =(3,0,-4)-(1,-1,-2)=(2,1,-2), ∵|c |=3,且c ∥BC⃗⃗⃗⃗⃗ , ∴c =m BC⃗⃗⃗⃗⃗ =m (2,1,-2)=(2m ,m ,-2m ), ∴|c |=√(2m )2+m 2+(-2m )2=3|m|=3,∴m=±1,∴c =(2,1,-2)或c =(-2,-1,2). (2)由题得a =(-1,-1,0),b =(1,0,-2),∴k a +b =k (-1,-1,0)+(1,0,-2)=(1-k ,-k ,-2),∵向量k a +b 与b 互相垂直,∴(k a +b )·b =1-k+4=0,解得k=5.∴k 的值是5. (3)AB ⃗⃗⃗⃗⃗ =(-1,-1,0),AC ⃗⃗⃗⃗⃗ =(1,0,-2),BC ⃗⃗⃗⃗⃗ =(2,1,-2), cos <AB ⃗⃗⃗⃗⃗ ,AC⃗⃗⃗⃗⃗ >=AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗ |·|AC⃗⃗⃗⃗⃗ |=√2×√5=-√10,sin <AB ⃗⃗⃗⃗⃗ ,AC⃗⃗⃗⃗⃗ >=√1-110=√10,∴S △ABC =12×|AB ⃗⃗⃗⃗⃗ |×|AC ⃗⃗⃗⃗⃗ |×sin <AB ⃗⃗⃗⃗⃗ ,AC⃗⃗⃗⃗⃗ >=12×√2×√5×√10=32.20.(12分)已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点.(1)用向量法证明E ,F ,G ,H 四点共面; (2)用向量法证明:BD ∥平面EFGH ;(3)设M 是EG 和FH 的交点,求证:对空间任一点O ,有OM ⃗⃗⃗⃗⃗⃗ =14(OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ +OD ⃗⃗⃗⃗⃗⃗ ).如图,连接BG ,BD ⃗⃗⃗⃗⃗⃗ =2EH ⃗⃗⃗⃗⃗⃗ ,BC ⃗⃗⃗⃗⃗ =2BF ⃗⃗⃗⃗⃗ ,则EG ⃗⃗⃗⃗⃗ =EB ⃗⃗⃗⃗⃗ +BG ⃗⃗⃗⃗⃗ =EB ⃗⃗⃗⃗⃗ +12(BC ⃗⃗⃗⃗⃗ +BD ⃗⃗⃗⃗⃗⃗ )=EB ⃗⃗⃗⃗⃗ +BF ⃗⃗⃗⃗⃗ +EH ⃗⃗⃗⃗⃗⃗ =EF ⃗⃗⃗⃗⃗ +EH⃗⃗⃗⃗⃗⃗ , 由共面向量定理的推论知E 、F 、G 、H 四点共面.(2)因为EH ⃗⃗⃗⃗⃗⃗ =AH ⃗⃗⃗⃗⃗⃗ −AE ⃗⃗⃗⃗⃗ =12AD ⃗⃗⃗⃗⃗ −12AB ⃗⃗⃗⃗⃗=12(AD ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=12BD⃗⃗⃗⃗⃗⃗ . 所以EH ∥BD ,又EH ⊂平面EFGH ,BD ⊄平面EFGH , 所以BD ∥平面EFGH.(3)连接OM ,OA ,OB ,OC ,OD ,OE ,OG , 由(2)知EH ⃗⃗⃗⃗⃗⃗ =12BD⃗⃗⃗⃗⃗⃗ , 同理FG ⃗⃗⃗⃗⃗ =12BD ⃗⃗⃗⃗⃗⃗ ,所以EH ⃗⃗⃗⃗⃗⃗ =FG⃗⃗⃗⃗⃗ , EH ∥FG ,EH=FG ,所以EG 、FH 交于一点M 且被M 平分,所以OM ⃗⃗⃗⃗⃗⃗ =12(OE ⃗⃗⃗⃗⃗ +OG ⃗⃗⃗⃗⃗ )=1212(OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ )+12(OC ⃗⃗⃗⃗⃗ +OD⃗⃗⃗⃗⃗⃗ ) =14(OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ +OD⃗⃗⃗⃗⃗⃗ ).21.(12分)(2021全国甲,理19)已知直三棱柱ABC-A 1B 1C 1中,侧面AA 1B 1B 为正方形,AB=BC=2,E ,F 分别为AC 和CC 1的中点,D 为棱A 1B 1上的点,BF ⊥A 1B 1. (1)证明:BF ⊥DE ;(2)当B 1D 为何值时,平面BB 1C 1C 与平面DFE 所成的二面角的正弦值最小?如图,连接A 1E ,取BC 中点M ,连接B 1M ,EM.∵E ,M 分别为AC ,BC 中点, ∴EM ∥AB.又AB ∥A 1B 1,∴A 1B 1∥EM ,则点A 1,B 1,M ,E 四点共面,故DE ⊂平面A 1B 1ME.又在侧面BCC 1B 1中,△FCB ≌△MBB 1,∴∠FBM=∠MB 1B. 又∠MB 1B+∠B 1MB=90°,∴∠FBM+∠B 1MB=90°,∴BF ⊥MB 1.又BF ⊥A 1B 1,MB 1∩A 1B 1=B 1,MB 1,A 1B 1⊂平面A 1B 1ME ,∴BF ⊥平面A 1B 1ME ,∴BF ⊥DE.(2)∵BF ⊥A 1B 1,∴BF ⊥AB ,∴AF 2=BF 2+AB 2=CF 2+BC 2+AB 2=9. 又AF 2=FC 2+AC 2,∴AC 2=8,则AB ⊥BC.如图,以B 为原点,BC ,BA ,BB 1为x 轴、y 轴、z 轴建立空间直角坐标系,则B (0,0,0),C (2,0,0),A (0,2,0),E (1,1,0),F (2,0,1).则EF ⃗⃗⃗⃗⃗ =(1,-1,1),ED ⃗⃗⃗⃗⃗ =(-1,t-1,2),设DB 1=t ,则D (0,t ,2),0≤t ≤2.则平面BB 1C 1C 的法向量为m =(0,1,0),设平面DEF 的法向量为n =(x ,y ,z ),∴{EF⃗⃗⃗⃗⃗ ·n =0,ED ⃗⃗⃗⃗⃗ ·n =0,即{x -y +z =0,-x +(t -1)y +2z =0,∴n =(1+t ,3,2-t ). 则cos <m ,n >=√(1+t )+32+(2-t )=√2t 2-2t+14.要求最小正弦值,则求最大余弦值.当t=1时二面角的余弦值最大,2时二面角正弦值最小.则B1D=1222.(12分)如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平AD=1,CD=√3.面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=2,BC=12(1)求证:平面PBC⊥平面PQB;(2)当PM的长为何值时,平面QMB与平面PDC所成的角的大小为60°?AD,AD∥BC,Q为AD的中点,BC=12∴BC∥QD,BC=QD,∴四边形BCDQ为平行四边形,∴BQ∥CD.∵∠ADC=90°,∴BC⊥BQ.∵PA=PD,AQ=QD,∴PQ⊥AD.又∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,∴PQ⊥平面ABCD,∴PQ ⊥BC.又∵PQ∩BQ=Q,∴BC⊥平面PQB.∵BC⊂平面PBC,∴平面PBC⊥平面PQB.(1)可知PQ⊥平面ABCD.如图,以Q为原点,分别以QA,QB,QP所在直线为x轴,y 轴,z轴,建立空间直角坐标系,则Q(0,0,0),D(-1,0,0),P(0,0,√3),B(0,√3,0),C(-1,√3,0),∴QB ⃗⃗⃗⃗⃗ =(0,√3,0),DC ⃗⃗⃗⃗⃗ =(0,√3,0),DP ⃗⃗⃗⃗⃗ =(1,0,√3),PC ⃗⃗⃗⃗⃗ =(-1,√3,-√3), PC=√(-1)2+(√3)2+(-√3)2=√7.设PM ⃗⃗⃗⃗⃗⃗ =λPC ⃗⃗⃗⃗⃗ ,则PM ⃗⃗⃗⃗⃗⃗ =(-λ,√3λ,-√3λ),且0≤λ≤1,得M (-λ,√3λ,√3−√3λ),∴QM ⃗⃗⃗⃗⃗⃗ =(-λ,√3λ,√3(1-λ)).设平面MBQ 的法向量为m =(x ,y ,z ),则{QM ⃗⃗⃗⃗⃗⃗ ·m =0,QB ⃗⃗⃗⃗⃗ ·m =0,即{-λx +√3λy +√3(1-λ)z =0,√3y =0.令x=√3,则y=0,z=λ1-λ,∴平面MBQ 的一个法向量为m =√3,0,λ1-λ. 设平面PDC 的法向量为n =(x',y',z'),则{DC ⃗⃗⃗⃗⃗ ·n =0,DP ⃗⃗⃗⃗⃗ ·n =0,即{√3y '=0,x '+√3z '=0.令x'=3,则y'=0,z'=-√3,∴平面PDC 的一个法向量为n =(3,0,-√3).∴平面QMB 与平面PDC 所成的锐二面角的大小为60°, ∴cos60°=|n ·m ||n ||m |=|3√3-√3·λ1-λ|√12·√3+(λ1-λ) 2=12,∴λ=12.∴PM=12PC=√72.即当PM=√72时,平面QMB 与平面PDC 所成的角大小为60°.第二章 平面解析几何一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在平面直角坐标系中,记d 为点P (cos θ,sin θ)到直线x-my-2=0的距离,当θ,m 变化时,d 的最大值为 ( ) A.1 B.2C.3D.4cos 2θ+sin 2θ=1,∴P 为单位圆上一点,而直线x-my-2=0过点A (2,0),∴d 的最大值为|OA|+1=2+1=3,故选C .2.已知点P (-2,4)在抛物线y 2=2px (p>0)的准线上,则该抛物线的焦点坐标是( ) A.(0,2) B.(0,4) C.(2,0) D.(4,0)P (-2,4)在抛物线y 2=2px 的准线上,所以-p2=-2,所以p=4,则该抛物线的焦点坐标是(2,0).3.已知直线l 1:x cos 2α+√3y+2=0,若l 1⊥l 2,则l 2倾斜角的取值范围是( ) A.[π3,π2) B.[0,π6] C.[π3,π2] D.[π3,5π6]l 1:x cos 2α+√3y+2=0的斜率k 1=-2√3∈[-√33,0],当cos α=0时,即k 1=0时,k 不存在,此时倾斜角为12π,由l 1⊥l 2,k 1≠0时,可知直线l 2的斜率k=-1k 1≥√3,此时倾斜角的取值范围为[π3,π2).综上可得l 2倾斜角的取值范围为[π3,π2].4.(2021全国乙,文11)设B 是椭圆C :x 25+y 2=1的上顶点,点P 在C 上,则|PB|的最大值为( ) A.52 B.√6 C.√5 D.2方法一)由椭圆方程可得a=√5,b=1,故椭圆的上顶点为B (0,1).设P (x ,y ),则有x 25+y 2=1, 故x 2=5(1-y 2),由椭圆的性质可得-1≤y ≤1.则|PB|2=x 2+(y-1)2=5(1-y 2)+(y-1)2=-4y 2-2y+6=-4y 2+y2+6=-4y+142+254.因为-1≤y ≤1,所以当y=-14时,|PB|2取得最大值,且最大值为254,所以|PB|的最大值为52. (方法二)由题意可设P (√5cos θ,sin θ)(θ∈R ),又B (0,1),则|PB|2=5cos 2θ+(sin θ-1)2=5cos 2θ+sin 2θ-2sin θ+1=-4sin 2θ-2sin θ+6,于是当sin θ=-14时,|PB|2最大,此时|PB|2=-4×116-2×(-14)+6=-14+12+6=254,故|PB|的最大值为52.5.在一个平面上,机器人到与点C (3,-3)的距离为8的地方绕C 点顺时针而行,它在行进过程中到经过点A (-10,0)与B (0,10)的直线的最近距离为( ) A.8√2-8 B.8√2+8C.8√2D.12√2C (3,-3)距离为8的地方绕C 点顺时针而行,在行进过程中保持与点C 的距离不变,∴机器人的运行轨迹方程为(x-3)2+(y+3)2=64,如图所示;∵A (-10,0)与B (0,10),∴直线AB 的方程为x-10+y10=1,即为x-y+10=0, 则圆心C 到直线AB 的距离为d=√1+1=8√2>8,∴最近距离为8√2-8.6.设P 是双曲线x 2a 2−y 2b 2=1(a>0,b>0)上的点,F 1,F 2是焦点,双曲线的离心率是43,且∠F 1PF 2=90°,△F 1PF 2的面积是7,则a+b 等于( ) A.3+√7 B.9+√7C.10D.16,不妨设点P 是右支上的一点,|PF 1|=m ,|PF 2|=n ,则{ 12mn =7,m -n =2a ,m 2+n 2=4c 2,c a =43,∴a=3,c=4.∴b=√c 2-a 2=√7.∴a+b=3+√7.7.位于德国东部萨克森州的莱科勃克桥(如图所示)有“仙境之桥”之称,它的桥形可近似地看成抛物线,该桥的高度为h ,跨径为a ,则桥形对应的抛物线的焦点到准线的距离为()A.a 28ℎ B.a 24ℎC.a 22ℎD.a 2ℎ,以桥顶为坐标原点,桥形的对称轴为y 轴建立如图所示的平面直角坐标系,该抛物线方程可写为x 2=-2py (p>0).∵该抛物线经过点(a2,-ℎ),代入抛物线方程可得a 24=2hp ,解得p=a 28ℎ.∴桥形对应的抛物线的焦点到准线的距离即为p=a 28ℎ.8.平面直角坐标系中,设A (-0.98,0.56),B (1.02,2.56),点M 在单位圆上,则使得△MAB 为直角三角形的点M 的个数是( ) A.1 B.2C.3D.4,如图,若△MAB为直角三角形,分3种情况讨论:①∠MAB=90°,则点M在过点A与AB垂直的直线上,设该直线为l1,又由A(-0.98,0.56),B(1.02,2.56),则k AB=2.56-0.561.02-(-0.98)=1,则k l1=-1,直线l1的方程为y-0.56=-(x+0.98),即x+y+0.42=0,此时原点O到直线l1的距离d=√2=21√2100<1,直线l1与单位圆相交,有2个公共点,即有2个符合题意的点M;②∠MBA=90°,则点M在过点B与AB垂直的直线上,设该直线为l2,同理可得,直线l2的方程为y-2.56=-(x-1.02),即x+y-3.58=0,此时原点O到直线l2的距离d=√2=179√2100>1,直线l2与单位圆相离,没有公共点,即没有符合题意的点M;③∠AMB=90°,此时点M在以AB为直径的圆上,又由A(-0.98,0.56),B(1.02,2.56),设AB的中点为C,则C的坐标为(0.02,1.56),|AB|=√4+4=2√2,则以AB为直径的圆的圆心C为(0.02,1.56),半径r=12|AB|=√2,此时|OC|=√(0.02)2+(1.56)2=√2.4340,则有√2-1<|OC|<√2+1,两圆相交,有2个公共点,即有2个符合题意的点M.综合可得,共有4个符合条件的点M.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对得3分.9.已知圆C1:x2+y2=r2,圆C2:(x-a)2+(y-b)2=r2(r>0)交于不同的A(x1,y1),B(x2,y2)两点,下列结论正确的有()A.a(x1-x2)+b(y1-y2)=0B.2ax1+2by1=a2+b2C.x1+x2=aD.y1+y2=2bAB的方程为a2+b2-2ax-2by=0,即2ax+2by=a2+b2,故B正确;分别把A(x1,y1),B(x2,y2)两点代入2ax+2by=a2+b2得2ax1+2by1=a2+b2,2ax2+2by2=a2+b2,两式相减得2a(x1-x2)+2b(y1-y2)=0,即a(x1-x2)+b(y1-y2)=0,故A正确;由圆的性质可知,线段AB与线段C1C2互相平分,∴x1+x2=a,y1+y2=b,故C正确,D错误.10.若P是圆C:(x+3)2+(y-3)2=1上任一点,则点P到直线y=kx-1距离的值可以为()A.4B.6C.3√2+1D.8y=kx-1恒过定点A(0,-1)点,当直线与AC垂直时,点P到直线y=kx-1距离最大,等于AC+r,圆心坐标为(-3,3),所以为√(-3)2+(3+1)2+1=6,当直线与圆有交点时,点P到直线的距离最小为0,所以点P到直线y=kx-1距离的范围为[0,6].11.在平面直角坐标系中,曲线C上任意点P与两个定点A(-2,0)和点B(2,0)连线的斜率之和等于2,则关于曲线C的结论正确的有()A.曲线C是轴对称图形B.曲线C上所有的点都在圆x2+y2=2外C.曲线C是中心对称图形D.曲线C上所有点的横坐标x满足|x|>2P(x,y),则k PA+k PB=2,即yx+2+yx-2=2(x≠±2),整理得x2-xy=4(x≠±2),所以曲线C 是中心对称图形,不是轴对称图形,故C 正确,A 错误;由x 2-xy=4>2=x 2+y 2,所以曲线C 上所有的点都在圆x 2+y 2=2外,故B 正确; 由x 2-xy=4可知,x ∈R 且x ≠0,x ≠±2,故D 错误. 12.已知P 是椭圆E :x 28+y 24=1上一点,F 1,F 2为其左右焦点,且△F 1PF 2的面积为3,则下列说法正确的是 ( )A.P 点纵坐标为3B.∠F 1PF 2>π2C.△F 1PF 2的周长为4(√2+1)D.△F 1PF 2的内切圆半径为32(√2-1)P 点坐标为(x ,y ),S=12×2c×|y|=12×4×|y|=3,得y=32或y=-32,故A 错误;椭圆中焦点三角形面积为S=b 2tan θ2(θ为焦点三角形的顶角),S=4tan θ2=3,得tan θ2=34,则θ2<π4,∠F 1PF 2<π2,故B 错误;C △F 1PF 2=2a+2c=4(√2+1),故C 正确;设△F 1PF 2的内切圆半径为R ,12R (4√2+4)=3,得R=32(√2-1),故D 正确. 三、填空题:本题共4小题,每小题5分,共20分.13.经过点P (1,4),且在两坐标轴上的截距相反的直线方程是 .4x 或y=x+3,分2种情况讨论:①直线经过原点,则直线l 的方程为y=4x ;②直线不经过原点,设直线方程为x-y=a ,把点P (1,4)代入可得1-4=a ,解得a=-3,即直线的方程为y=x+3.综上可得,直线的方程为y=4x 或y=x+3.14.若双曲线x 2m −y 2m -5=1的一个焦点到坐标原点的距离为3,则m 的值为 .或-2c=3,当双曲线的焦点在x 轴上时,m>5,c 2=m+m-5=9,所以m=7;当双曲线的焦点在y 轴上时,m<0,c 2=-m+5-m=9,所以m=-2.综上,m=7或m=-2.15.如图,过抛物线y 2=4x 的焦点F 作直线,与抛物线及其准线分别交于A ,B ,C 三点,若FC ⃗⃗⃗⃗⃗ =3FB ⃗⃗⃗⃗⃗ ,则直线AB 的方程为 ,|AB|= .√3(x-1)163F (1,0),准线方程为x=-1,设C (-1,m ),B (a ,b ),∵FC ⃗⃗⃗⃗⃗ =3FB⃗⃗⃗⃗⃗ ,∴(-2,m )=3(a-1,b )=(3a-3,3b ),则3a-3=-2,m=3b ,即a=13,此时b 2=4×13,得b=-√43=-2√33,即m=-2√3,则C (-1,-2√3),则AB 的斜率k=2√32=√3,则直线方程为y=√3(x-1),代入y 2=4x ,得3x 2-10x+3=0,得x 1+x 2=103,即|AB|=x 1+x 2+2=103+2=163.16.已知点O (0,0),A (4,0),B (0,4).若从点P (1,0)射出的光线经直线AB 反射后过点Q (-2,0),则反射光线所在直线的方程为 ;若从点M (m ,0),m ∈(0,4)射出的光线经直线AB 反射,再经直线OB 反射后回到点M ,则光线所经过的路程是 (结果用m 表示).2y+2=0 √2m 2+32,设点P 1(a ,b )与点P (1,0)关于直线AB 对称,则P 1在反射光线所在直线上,又由A (4,0),B (0,4),则直线AB 的方程为x+y=4,则有{ba -1=1,a+12+b2=4,解得{a =4,b =3,即P 1(4,3), 反射光线所在直线的斜率k=3-04-(-2)=12, 则其方程为y-0=12(x+2),即x-2y+2=0;设点M 1(a 0,b 0)与点M 关于直线AB 对称,点M 2与M 关于y 轴对称,易得M 2(-m ,0); 线段M 1M 2的长度就是光线所经过的路程,则有{b 0a 0-m=1,m+a2+b 02=4,解得{a 0=4,b 0=4-m ,即M 1(4,4-m ),又由M 2(-m ,0),则|M 1M 2|=√(4+m )2+(4-m )2=√2m 2+32.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知△ABC 三个顶点的坐标分别为A (2,4),B (0,-5),C (10,0),线段AC 的垂直平分线为l.(1)求直线l 的方程;(2)点P 在直线l 上运动,当|AP|+|BP|最小时,求此时点P 的坐标.直线AC 的斜率为k AC =4-02-10=-12,所以直线l 的斜率为k 1=2,直线AC 的中点为(6,2),所以直线l 的方程为y-2=2(x-6),即2x-y-10=0.(2)由(1)得点A 关于直线l 的对称点为点C ,所以直线BC 与直线l 的交点即为|AP|+|BP|最小的点.由B (0,-5),C (10,0)得直线BC 的方程为x10+y-5=1,即x-2y-10=0,联立方程{x -2y -10=0,2x -y -10=0,解得{x =103,y =-103,所以点P 的坐标为(103,-103). 18.(12分)已知直线l :ax-y-3a+1=0恒过定点P ,过点P 引圆C :(x-1)2+y 2=4的两条切线,设切点分别为A ,B.(1)求直线AB 的一般式方程;(2)求四边形PACB 的外接圆的标准方程.∵直线l :y-1=a (x-3).∴直线l 恒过定点P (3,1).由题意可知直线x=3是其中一条切线,且切点为A (3,0). 由圆的性质可知AB ⊥PC ,∵k PC =1-03-1=12,∴k AB =-2,所以直线AB 的方程为y=-2(x-3),即2x+y-6=0. (2)由题意知|PC|=√(3-1)2+(1-0)2=√5.∵PA ⊥AC ,PB ⊥BC ,所以四边形PACB 的外接圆是以PC 为直径的圆,PC 的中点坐标为(2,12),所以四边形PACB 的外接圆为(x-2)2+(y -12)2=54.19.(12分)已知F 1,F 2分别是双曲线E :x 2a 2−y 2b 2=1(a>0,b>0)的左、右焦点,P 是双曲线上一点,F 2到左顶点的距离等于它到渐近线距离的2倍, (1)求双曲线的渐近线方程;(2)当∠F 1PF 2=60°时,△PF 1F 2的面积为48√3,求此双曲线的方程.因为双曲线的渐近线方程为bx ±ay=0,则点F 2到渐近线距离为√b 2+a 2=b (其中c 是双曲线的半焦距),所以由题意知c+a=2b.又因为a 2+b 2=c 2,解得b=43a ,故所求双曲线的渐近线方程是4x ±3y=0.(2)因为∠F 1PF 2=60°,由余弦定理得|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|cos60°=|F 1F 2|2,即|PF 1|2+|PF 2|2-|PF 1|·|PF 2|=4c 2. 又由双曲线的定义得||PF 1|-|PF 2||=2a ,平方得|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|=4a 2,相减得|PF 1|·|PF 2|=4c 2-4a 2=4b 2.根据三角形的面积公式得S=12|PF 1|·|PF 2|sin60°=√34·4b 2=√3b 2=48√3,得b 2=48. 由(1)得a 2=916b 2=27,故所求双曲线方程是x 227−y 248=1.20.(12分)已知过抛物线x 2=2py (p>0)的焦点,斜率为√24的直线交抛物线于A (x 1,y 1),B (x 2,y 2)(x 1<x 2)两点,且|AB|=9. (1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OC ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +λOB ⃗⃗⃗⃗⃗ ,求λ的值.抛物线x 2=2py 的焦点为(0,p2),所以直线AB 的方程为y=√24x+p 2, 联立{y =√24x +p2,x 2=2py ,消去x ,得4y 2-5py+p 2=0,所以y 1+y 2=5p4,由抛物线定义得|AB|=y 1+y 2+p=9,即5p4+p=9,所以p=4.所以抛物线的方程为x 2=8y. (2)由p=4知,方程4y 2-5py+p 2=0, 可化为y 2-5y+4=0,解得y 1=1,y 2=4,故x 1=-2√2,x 2=4√2. 所以A (-2√2,1),B (4√2,4).则OC ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +λOB ⃗⃗⃗⃗⃗ =(-2√2,1)+λ(4√2,4)=(-2√2+4√2λ,1+4λ).因为C 为抛物线上一点,所以(-2√2+4√2λ)2=8(1+4λ),整理得λ2-2λ=0,所以λ=0或λ=2.21.(12分)(2021全国乙,文20)已知抛物线C :y 2=2px (p>0)的焦点F 到准线的距离为2. (1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足PQ ⃗⃗⃗⃗⃗ =9QF ⃗⃗⃗⃗⃗ ,求直线OQ 斜率的最大值.在抛物线C 中,焦点F 到准线的距离为p ,故p=2,C 的方程为y 2=4x.(2)设点P (x 1,y 1),Q (x 2,y 2).又F (1,0),则PQ ⃗⃗⃗⃗⃗ =(x 2-x 1,y 2-y 1),QF ⃗⃗⃗⃗⃗ =(1-x 2,-y 2). 因为PQ ⃗⃗⃗⃗⃗ =9QF ⃗⃗⃗⃗⃗ ,所以x 2-x 1=9(1-x 2),y 2-y 1=-9y 2, 得x 1=10x 2-9,y 1=10y 2.又因为点P 在抛物线C 上,所以y 12=4x 1,所以(10y 2)2=4(10x 2-9), 则点Q 的轨迹方程为y 2=25x-925. 易知直线OQ 的斜率存在.设直线OQ 的方程为y=kx ,当直线OQ 和曲线y 2=25x-925相切时,斜率取得最大值、最小值.由{y =kx ,y 2=25x -925,得k 2x 2=25x-925,即k 2x 2-25x+925=0,(*)当直线OQ 和曲线y 2=25x-925相切时,方程(*)的判别式Δ=0,即(-25)2-4k 2·925=0,解得k=±13,所以直线OQ 斜率的最大值为13. 22.(12分)如图所示,取同离心率的两个椭圆成轴对称内外嵌套得一个标志,为美观考虑,要求图中标记的①,②,③三个区域面积彼此相等.已知椭圆面积为圆周率与长半轴、短半轴长度之积,即椭圆x 2a 2+y 2b 2=1(a>b>0)面积为S 椭圆=πab(1)求椭圆的离心率的值;(2)已知外椭圆长轴长为6,用直角角尺两条直角边内边缘与外椭圆相切,移动角尺绕外椭圆一周,得到由点M 生成的轨迹将两椭圆围起来,整个标志完成.请你建立合适的坐标系,求出点M 的轨迹方程.建立如图平面直角坐标系.设外椭圆的方程为x 2a 2+y 2b 2=1(a>b>0),∵内外椭圆有相同的离心率且共轴,可得内椭圆长轴为b ,设内椭圆短轴长为b',焦距长为c',得ca =c 'b ,c'=bca ,b'2=b 2-c'2=b 2-b 2c2a 2=b 2(a 2-c 2)a 2=b 4a 2.∴内椭圆的方程为y 2b 2+x 2b 4a 2=1.图中标记的①,②,③三个区域面积彼此相等,由对称性只需S 外=3S 内,即πab=3πb ·b 2a 得a 2=3b 2,即a 2=3(a 2-c 2),故e=√63.(2)同(1)建立如图平面直角坐标系,由于外椭圆长轴为6,∴a=3,又e=√63,∴c=√6,b 2=3. 则外椭圆方程为x 29+y 23=1.设点M (x 0,y 0),切线方程为y-y 0=k (x-x 0),代入椭圆方程得,(1+3k 2)x 2+6k (y 0-kx 0)x+3(y 0-kx 0)2-9=0.∴Δ=36k 2(y 0-kx 0)2-4(1+3k 2)[3(y 0-kx 0)2-9]=0.化简得(x 0-9)k 2-2x 0y 0k+y 02-3=0.∵两条切线互相垂直,∴k 1k 2=-1,即y 02-3x 02-9=-1,即x 02+y 02=12(x 0≠±3).当两切线与坐标轴垂直时,四点(3,±√3),(-3,±√3)也满足方程,∴轨迹方程为x 2+y 2=12.模块综合测验一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.“ab=4”是“直线2x+ay-1=0与直线bx+2y-2=0平行”的( ) A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件两直线平行,∴斜率相等.即可得ab=4,又因为不能重合,当a=1,b=4时,满足ab=4,但是重合,故“ab=4”是“直线2x+ay-1=0与直线bx+2y-2=0平行”的必要不充分条件.2.如图,四面体S-ABC 中,D 为BC 中点,点E 在AD 上,AD=3AE ,则SE ⃗⃗⃗⃗⃗ =( ) A.13SA ⃗⃗⃗⃗⃗ +12SB ⃗⃗⃗⃗⃗ +13SC ⃗⃗⃗⃗B.23SA ⃗⃗⃗⃗⃗ +16SB ⃗⃗⃗⃗⃗ +16SC ⃗⃗⃗⃗ C.12SA ⃗⃗⃗⃗⃗ +14SB ⃗⃗⃗⃗⃗ +14SC ⃗⃗⃗⃗ D.12SA ⃗⃗⃗⃗⃗ +13SB ⃗⃗⃗⃗⃗ +16SC ⃗⃗⃗⃗S-ABC 中,D 为BC 中点,点E 在AD 上,AD=3AE ,∴SE ⃗⃗⃗⃗⃗ =SA ⃗⃗⃗⃗⃗ +13AD ⃗⃗⃗⃗⃗ =SA⃗⃗⃗⃗⃗ +13×12(AC ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ )=SA ⃗⃗⃗⃗⃗ +16AC ⃗⃗⃗⃗⃗ +16AB ⃗⃗⃗⃗⃗ =SA ⃗⃗⃗⃗⃗ +16(SC ⃗⃗⃗⃗ −SA ⃗⃗⃗⃗⃗ )+16(SB ⃗⃗⃗⃗⃗ −SA ⃗⃗⃗⃗⃗ )=23SA ⃗⃗⃗⃗⃗ +16SB ⃗⃗⃗⃗⃗ +16SC ⃗⃗⃗⃗ .3.圆P :(x+3)2+(y-4)2=1关于直线x+y-2=0对称的圆Q 的标准方程是( ) A.(x+2)2+(y-1)2=1 B.(x+2)2+(y-5)2=1 C.(x-2)2+(y+5)2=1 D.(x-4)2+(y+3)2=1P :(x+3)2+(y-4)2=1,圆心(-3,4),半径1,关于直线x+y-2=0对称的圆半径不变,设对称圆的圆心为(a ,b ),则{a -32+b+42-2=0,b -4a+3=1,解得{a =-2,b =5,所求圆Q 的标准方程为(x+2)2+(y-5)2=1.4.(2021新高考Ⅰ,5)已知F 1,F 2是椭圆C :x 29+y 24=1的两个焦点,点M 在C 上,则|MF 1|·|MF 2|的最大值为( ) A.13 B.12 C.9 D.6|MF 1|+|MF 2|=2a=6,则√|MF 1|·|MF 2|≤|MF 1|+|MF 2|2=3,则|MF 1|·|MF 2|≤9,当且仅当|MF 1|=|MF 2|=3时,等号成立. 故|MF 1|·|MF 2|的最大值为9.故选C .5.坐标原点O (0,0)在动直线mx+ny-2m-2n=0上的投影为点P ,若点Q (-1,-1),那么|PQ|的取值范围为( ) A.[√2,3√2] B.[√2,2√2] C.[2√2,3√2] D.[1,3√2]mx+ny-2m-2n=0,可化为m (x-2)+n (y-2)=0,故直线过定点M (2,2),坐标原点O (0,0)在动直线mx+ny-2m-2n=0上的投影为点P ,故∠OPM=90°,所以P 在以OM 为直径的圆上,圆的圆心N为(1,1),半径为√2,根据点与圆的关系,|NQ|=√(1+1)2+(1+1)2=2√2, 故√2=2√2−√2≤|PQ|≤√2+2√2=3√2.6.正确使用远光灯对于夜间行车很重要.已知某家用汽车远光灯(如图)的纵断面是抛物线的一部分,光源在抛物线的焦点处,若灯口直径是20 cm,灯深10 cm,则光源到反光镜顶点的距离是()A.2.5 cmB.3.5 cmC.4.5 cmD.5.5 cmxOy,如图所示,设对应抛物线的标准方程为y2=2px,由题意知抛物线过点(10,10),得100=2p×10,得p=5,=2.5,即焦点坐标为(2.5,0),则p2则光源到反光镜顶点的距离是2.5cm.7.如图,四棱锥S-ABCD 中,底面是正方形,各棱长都相等,记直线SA 与直线AD 所成角为α,直线SA 与平面ABCD 所成角为β,二面角S-AB-C 的平面角为γ,则( ) A.α>β>γ B.γ>α>β C.α>γ>β D.γ>β>αAC ,BD ,交于点O ,连接OS ,则OA ,OB ,OS 两两垂直,以O 为原点,OA 为x 轴,OB 为y 轴,OS 为z 轴,建立空间直角坐标系,设|AB|=2,则S (0,0,√2),A (√2,0,0),D (0,-√2,0),B (0,√2,0),SA ⃗⃗⃗⃗⃗ =(√2,0,-√2),AD ⃗⃗⃗⃗⃗ =(-√2,-√2,0),SB ⃗⃗⃗⃗⃗ =(0,√2,-√2),cos α=|SA ⃗⃗⃗⃗⃗ ·AD⃗⃗⃗⃗⃗⃗ ||SA⃗⃗⃗⃗⃗ |·|AD ⃗⃗⃗⃗⃗⃗ |=√4×√4=12,平面ABCD 的法向量n =(0,0,1),cos β=|n ·SA ⃗⃗⃗⃗⃗ ||n |·|SA⃗⃗⃗⃗⃗ |=√2√4=√22,设平面SAB 的法向量m =(x ,y ,z ),则{m ·SA ⃗⃗⃗⃗⃗ =√2x -√2z =0,m ·SB⃗⃗⃗⃗⃗ =√2y -√2z =0,取x=1,得m =(1,1,1),cos γ=|m ·n ||m |·|n |=√3=√33,∵cos α<cos γ<cos β,∴α>γ>β.8.设F 1,F 2是双曲线C :x 2a 2−y 2b 2=1(a>0,b>0)的左、右焦点,O 是坐标原点,过F 2作C 的一条渐近线的垂线,垂足为P.若|PF 1|=√6|OP|,则C 的离心率为( ) A.√5 B.√3 C.2 D.√2|PF 2|=b ,|OF 2|=c ,∴|PO|=a.在Rt △POF 2中,cos ∠PF 2O=|PF 2||OF 2|=bc ,∵在△PF 1F 2中,cos ∠PF 2F 1=|PF 2|2+|F 1F 2|2-|PF 1|22|PF 2||F 1F 2|=bc ,∴b 2+4c 2-(√6a )22b ·2c=bc ⇒c 2=3a 2,∴e=√3.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对得3分. 9.(2021新高考Ⅰ,11)已知点P 在圆(x-5)2+(y-5)2=16上,点A (4,0),B (0,2),则( ) A.点P 到直线AB 的距离小于10 B.点P 到直线AB 的距离大于2 C.当∠PBA 最小时,|PB|=3√2 D.当∠PBA 最大时,|PB|=3√2,记圆心为M ,半径为r ,则M (5,5),r=4.由条件得,直线AB 的方程为x4+y2=1,整理得x+2y-4=0,过点M 作MN 垂直于直线AB ,垂足为N ,直线MN 与圆M 分别交于点P 1,P 2,圆心M (5,5)到直线AB 的距离|MN|=√12+22=√5,于是点P 到直线AB 的距离最小值为|P 2N|=|MN|-r=√5-4,最大值为|P 1N|=|MN|+r=√5+4.又√5-4<2,√5+4<10,故A 正确,B 错误;过点B 分别作圆的两条切线BP 3,BP 4,切点分别为点P 3,P 4,则当点P 在P 3处时∠PBA 最大,在P 4处时∠PBA 最小.又|BP 3|=|BP 4|=√|BM |2-r 2=√52+(5-2)2-42=3√2,故C,D 正确.故选A,C,D .10.若a =(-1,λ,-2),b =(2,-1,1),a 与b 的夹角为120°,则λ的值为( ) A.17 B.-17 C.-1 D.1a =(-1,λ,-2),b =(2,-1,1),a 与b 的夹角为120°,∴cos120°=a ·b|a |·|b |=√5+λ2·√6,解得λ=-1或λ=17.11.已知P是椭圆C:x 26+y2=1上的动点,Q是圆D:(x+1)2+y2=15上的动点,则()A.C的焦距为√5B.C的离心率为√306C.圆D在C的内部D.|PQ|的最小值为2√55c=√6-1=√5,则C的焦距为2√5,e=√5√6=√306.设P(x,y)(-√6≤x≤√6),则|PD|2=(x+1)2+y2=(x+1)2+1-x 26=56(x+65)2+45≥45>15,所以圆D在C的内部,且|PQ|的最小值为√45−√15=√55.12.已知直线l过点P(1,0,-1),平行于向量a=(2,1,1),平面α过直线l与点M(1,2,3),则平面α的法向量可能是()A.(1,-4,2)B.(14,-1,12)C.(-14,1,-12) D.(0,-1,1),所研究平面的法向量垂直于向量a=(2,1,1)和向量PM⃗⃗⃗⃗⃗⃗ , 而PM⃗⃗⃗⃗⃗⃗ =(1,2,3)-(1,0,-1)=(0,2,4),选项A,(2,1,1)·(1,-4,2)=0,(0,2,4)·(1,-4,2)=0满足垂直,故正确;选项B,(2,1,1)·(14,-1,12)=0,(0,2,4)·(14,-1,12)=0满足垂直,故正确;选项C,(2,1,1)·(-14,1,-12)=0,(0,2,4)·(-14,1,-12)=0满足垂直,故正确;选项D,(2,1,1)·(0,-1,1)=0,但(0,2,4)·(0,-1,1)≠0,故错误.三、填空题:本题共4小题,每小题5分,共20分.13.过点(1,√2)的直线l将圆x2+y2-4x=0分成两段弧,当劣弧所对圆心角最小时,直线l的斜率k=.。

20192020学年人教版A版高中数学必修一模块综合检测一Word版含解析

20192020学年人教版A版高中数学必修一模块综合检测一Word版含解析

模块综合检测〔一〕(时间120 分钟,总分值150 分)一、选择题(本大题共12小题,每题4分,共48分)2+1,x∈A},那么A∩B为( ) 1.会集A={x |y=1-x2,x∈Z} ,B={ y|y=xA.?B.{1}C.[0,+∞) D.{(0,1)}剖析:选 B 由1-x2≥0 得,-1≤x≤1,∵x∈Z ,∴A={-1,0,1}.当x∈A 时,y=x2+1∈{2,1},即B={1,2},∴A∩B={1}.x+3x的零点所在的一个区间是( )2.函数f(x)=2A.(-2,-1) B.(-1,0)C.(0,1) D.(1,2)剖析:选 B ∵f (x)=2x+3x,∴f(-1)=-5<0,f(0)=1>0,应选B.23.假设函数f(x)=错误!那么f(log43)=( )1 3 A.1 4 B.C.3 D.4剖析:选 C ∵log43∈(0,1),∴f(log43)=4 log 3 =3,应选 C.44.高为H、满缸水量为V的鱼缸的轴截面以以下图,其底部碰了一个小洞,满缸水从洞中流出,假设鱼缸水深为h时水的体积为v,那么函数v=f(h)的大体图象是( )剖析:选 B 水流速度恒定,开始鱼缸中水的高度下降快,逐渐越来越慢,到达中间,尔后高度下降又越来越快,故消除选项A,C,D,选 B.5.实数a=2,b=log 2,c=( 2)的大小关系正确的选项是( ) A.a<c<b B.a<b<cC.b<a<c D.b<c<a剖析:选 C 依照指数函数和对数函数的性质,b=log 20.2<0< a=2<1< c=( 2).6.设α∈{-1,1,12,3},那么使函数y=xα的定义域为R且为奇函数的所有α的值为( )α的定义域为R且为奇函数的所有α的值为( )A.1,3 B.-1,1C.-1,3 D.-1,1,3-1=1剖析:选 A 当α=-1 时,y=x ,定义域不是R;x当α=1,3 时,满足题意;当α=12时,定义域为[0,+∞).7.函数y=f(x)是R上的偶函数,且在(-∞,0]上是增函数,假设f(a)≤f(2),那么实数a的取值范围是( ) A.(-∞,2]B.[-2,+∞)C.[-2,2]D.(-∞,-2]∪[2,+∞)剖析:选 D ∵y=f(x)是偶函数,且在(-∞,0]上是增函数,∴y=f (x)在[0,+∞)上是减函数,由f( a)≤f(2),得f(| a|)≤f(2).∴|a|≥2,得a≤- 2 或a≥2.8.函数f(x)=4x+ 1的图象( ) 2xA.关于原点对称B.关于y=x对称C.关于x轴对称D.关于y轴对称剖析:选 D ∵f(x)=4x+ 1=2x+2-x,x+2-x,2x∴f(-x)= 2-x+2x=f(x).∴f(x)为偶函数.1 9.函数f(x)=log x,那么方程2 12|x |=|f(x)|的实根个数是( )A.1 B. 2 C.3 D.2 006剖析:选 B 在同一平面直角坐标系中作出函数y=12 |x |及y=|log12x|的图象如图,易得B.10.定义在R上的偶函数f(x)在[0,+∞)上递加,且f 13 =0,那么满足f(log18x)>0的x的取值范围是( )12A.(0,+∞) B. 0,∪(2,+∞)18 C. 0,∪12,2 D. 0,12剖析:选B 由题意知f(x)=f(-x)=f(|x|),所以f(|log18 x|)>f13 ,由于f(x)在[0,+∞)上递加,所以|log18 x|>1 1,解得0<x<或x>2.3 211.函数f(x)=|log3x|,0<x≤9,-x+11,x>9,假设a,b,c均不相等,且f(a)=f( b)=f( c),那么abc的取值范围是( )A.(0,9) B.(2,9)C.(9,11) D.(2,11)剖析:选C 作出f(x)的图象,可知f(x)在(0,1)上是减函数,在(1,9)上是增函数,在(9,+∞)上是减函数.∵a,b,c 互不相等,且f(a)=f(b)=f( c),且f(1)=0,∴不如设a<b<c,那么0<a<1<b<9<c<11,又∵f(a)=f (b),∴-log3a=log3b,∴ab=1,∴abc=c∈(9,11),应选C.12.某商店迎来店庆,为了吸引顾客,采用“满一百送二十,连环送〞的酬宾促销方式,即顾客在店内花销满100元(能够是现金,也能够是奖励券或二者合计),就送20元奖励券;满200元,就送40元奖励券;满300元,就送60元奖励券⋯⋯当日花销最多的一位顾客共花现金70040元,若是依照酬宾促销方式,他最多能获取优惠( )A.17 000元B.17 540元C.17 500元D.17 580元剖析:选C这位顾客花的70 000 元可得奖励券700×20=14 000(元),只有这位顾客连续把奖励券消费掉,才能获取最多优惠,当他把14 000 元奖励券花销掉可得140×20=2 800(元)奖励券,再花销又可获取28×20=560(元)奖励券,560 元花销再加上先前70 040 中的40 元共花销600 元应得奖励券6×20=120(元),120 元奖励券花销时又得20 元奖励券.所以他总合会获取14 000+2 800+560+120+20=17 500(元)优惠.二、填空题(本大题共6小题,每题5分,共30分)2+3,g(x+1)=f(x),那么g(3)=________.13.设f( x)=2x剖析:∵g(x+1)=f(x)=2x2+3∴g(3)=f(2)=2×22+3=11.答案:111,那么f(x)=________,g(x)=________. 14.设f( x)为奇函数,g( x)为偶函数,又f(x)+g(x)=x- 1剖析:∵f( x)为奇函数,∴f(-x)=-f( x),g(x)为偶函数,∴g(-x)=g(x).又∵f(x)+g(x )=1,①x-1∴f(-x)+g(-x)=1-x- 1即-f(x)+g(x )=错误!②1①+②得2g(x)=- x- 11 2=,x+1 x2-1∴g(x )=1. x2-1①-②得2f(x)=1 1+=x-1 x+12x,x2-1∴f(x)=x. x2-1答案:xx2-11x2-115.设P,Q是两个非空会集,定义会集间的一种运算“⊙〞:P ⊙Q={ x|x ∈P ∪Q,且x ?x,x>0},那么P⊙Q=________.P∩Q},若是P={ y|y=4-x2},Q={ y|y= 4剖析:P=[0,2],Q=(1,+∞),∴P⊙Q=[0,1]∪(2,+∞).答案:[0,1]∪(2,+∞)16.函数f (x)=2x+1,x<1,x2+ax,x≥1,假设f( f(0))=4a,那么实数a等于________.剖析:∵0<1,∴f(0)=20+1=2. ∵2>1,∴f(2)=4+2a,∴f(f(0))=f(2)=4+2a=4a,∴a=2.答案: 217.如图是偶函数y=f(x)的局部图象,依照图象所给信息,有以下结论:①函数必然有最小值;②f(-1)-f(2)>0;③f(-1)-f(2)=0;④f(-1)-f(2)<0;⑤f(-1)+f(2)>0.其中正确的结论有________(填序号).剖析:由于所给图象为函数的局部图象,所以不能够确定函数必然有最小值;由图象知函数y=f(x)在区间[1,3]上是增函数,那么f(1)-f(2)<0.又∵函数y=f(x)是偶函数,∴f(-1)=f(1),∴f(-1)-f(2)<0.∵f(-1)=f(1)>0,f(2)>0 ,∴f(-1)+f(2)>0.答案:④⑤x-b)( b为常数),假设x ∈18.函数f (x)=lg(2[1,+∞)时,f (x)≥0恒成立,那么b的取值范围是________.剖析:∵要使f(x)=lg(2x-b)在x∈[1,+∞)上,恒有f(x)≥0,∴有2x-b≥1 在x∈[1,+∞)上恒成立,即 2x≥b+1 恒成立.又∵指数函数g(x)=2x在定义域上是增函数.∴只要2≥b+1 成马上可,解得b≤1.答案:(-∞,1]三、解答题(本大题共6小题,共72分.解答时应写出文字说明、证明过程或运算步骤.)19.(12分)全集为实数集R,会集A={ x|y=x-1+3-x},B={ x|log2x>1}.(1)求A∩B,(?R B)∪A;(2)会集C={ x|1<x<a},假设C?A,求实数a的取值范围.解:(1)由得A={ x|1≤x≤3},B={ x|log2x>1}={ x|x>2},所以A∩B={x|2<x≤3},(?R B)∪A={ x|x≤2}∪{ x|1≤x≤3}={ x|x≤3}.(2)①当a≤1 时,C=?,此时C?A;②当a>1 时,假设C?A,那么1<a≤3.综合①②,可得 a 的取值范围是(-∞,3].x+2,x≤-1,x2,-1<x<2,20.(12分)函数f(x)=2x,x≥2.(1)求f[ f( 3)]的值;(2)假设f( a)=3,求a的值.解:(1)∵-1< 3<2,∴f( 3)=( 3) 2=3.而3≥2,∴f[f ( 3)]=f (3)=2×3=6.(2)当a≤-1 时,f(a)=a+2,又f(a)=3,∴a=1(舍去);当-1<a<2 时,f(a)=a2,又f(a)=3,∴a=±3,其中负值舍去,∴a=3;当a≥2 时,f(a)=2a,又f(a)=3,3∴a=(舍去).综上所述,a=3.21+2x+4xa,且当x∈(-∞,1]时,f(x)有意义,求实数a的取值范围.21.(12分)设f( x)=lg3解:当x∈(-∞,1]时,f(x)有意义,须1+2x+4x a>0 恒成立,也就是a>-x+4x a>0 恒成立,也就是a>-12x+14x (x≤1)恒成立.令u(x)=-12 x+14 x .∵u( x)=-12x+14x 在(-∞,1]上是增函数,∴当x=1 时,[u(x)]max=-3 4.3于是可知,当a>-时,满足题意,43即 a 的取值范围为-,+∞.422.(12分)设函数f(x)的定义域为(-3,3),满足f(-x)=-f(x),且对任意x,y,都有f(x)-f(y)=f (x-y),当x<0时,f(x)>0,f(1)=-2.(1)求f(2)的值;(2)判断f(x)的单调性,并证明;(3)假设函数g(x)=f(x-1)+f(3-2x),求不等式g(x)≤0的解集.解:(1)在f(x)-f(y)=f (x-y)中,令x=2,y=1,代入得:f(2)-f (1)=f(1),所以f(2)=2f(1) =-4.(2) f(x)在(-3,3)上单调递减.证明以下:设-3< x1<x2<3,那么x1-x2<0,所以f( x1)-f(x2)=f(x1-x2)>0,即f( x1)> f(x2),所以f(x)在(-3,3)上单调递减.(3)由g(x)≤0 得f(x-1)+f(3-2x)≤0,所以f( x-1)≤-f(3-2x).又f( x)满足f(-x)=-f(x),所以f( x-1)≤f(2x-3),又f( x)在(-3,3)上单调递减,-3<x-1<3,-3<2x-3<3,所以解得0<x≤2,x-1≥2-x 3,故不等式g(x)≤0 的解集是(0,2].23.(12分)设函数y=f(x)的定义域为R,并且满足f( x+y)=f(x)+f(y),f 13 =1,当x>0时,f(x)>0.(1)求f(0)的值;(2)判断函数的奇偶性;(3)若是f(x)+f(2+x)<2,求x的取值范围.解:(1)令x=y=0,那么f(0)=f(0)+f(0),∴f(0)=0.(2)令y=-x,得f(0) =f(x)+f(-x)=0,∴f(-x)=-f(x),故函数f(x)是R 上的奇函数.(3)任取x1,x2∈R,x1<x2,那么x2-x1>0.∵f(x2)-f(x1)=f( x2-x1+x1)-f(x1)=f(x2-x1)+f( x1)-f(x1)=f(x2-x1)>0,∴f(x1)< f(x2).故f( x)是R 上的增函数.∵ f 13 =1,∴ f 23 = f13+13 =f13 +f13 =2,∴f(x)+f(2+x)=f[x+(2+x)]=f(2x+2)< f 23 .又由y=f(x)是定义在R 上的增函数,2 2得2x+2< ,解之得x<-.3 3故x∈-∞,-2 3 .24.(12分)为了保护环境,睁开低碳经济,某单位在国家科研部门的支持下,进行技术攻关,采用新工艺,把二氧化碳转变成一种可利用的产品.该单位每个月办理二氧化碳最少为400吨,最多为600吨,月办理本钱y(元)与月办理量x(吨)之间的函数关系可近似表示为y=122-200x+80x000,且每办理1吨二氧化碳获取可利用的化工产品价值为100元.(1)假设该单位每个月本钱支出不高出105 000元,求月办理量x的取值范围.(2)该单位每个月能否盈利?若是盈利,求出最大利润;若是不盈利,那么国家最少需要补贴多少元才能使该单位不损失?解:(1)设月办理量为x 吨,那么每个月办理x 吨二氧化碳可获化工产品价值为100x 元,那么每个月本钱支出 f (x) 为12-200x+80 000-100x,x∈[400,600].f(x)=2x假设f( x)≤105 000,即122-300x-25 000≤0,x即(x-300)2≤140 000,∴300-100 14≤x≤100 14+300.∵100 14+300≈674>600,且x∈[400,600],∴该单位每个月本钱支出不高出105 000 元时,月办理量x 的取值范围是{x|400≤x≤600}.(2) f(x)=122-300x+80 000 x=12-600x+90 000)+35 000 (x2=12+35 000,x∈[400,600],(x-300)2∵12+35 000>0,(x-300)2∴该单位不盈利.由二次函数性质适合x=400 时,f( x)获取最小值.f(x)min=12+35 000=40 000. 2(400-300)∴国家最少需要补贴40 000 元才能使该单位不损失.。

2020_2021学年高中数学模块综合测评含解析新人教A版必修1

2020_2021学年高中数学模块综合测评含解析新人教A版必修1

模块综合测评(满分:150分 时间:120分钟)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设U ={1,2,3,4,5},A ={1,2,3},B ={2,3,4},则下列结论中正确的是( )A .A ⊆BB .A ∩B ={2}C .A ∪B ={1,2,3,4,5}D .A ∩(∁U B )={1}D [A 显然错误;A ∩B ={2,3},B 错;A ∪B ={1,2,3,4},C 错,故选D.]2.设f (x )=⎩⎪⎨⎪⎧2e x -1,x <2,log 3(2x -1),x ≥2,则f (f (2))等于( ) A .0B .1C .2D .3C [∵f (2)=log 3(22-1)=1,∴f (f (2))=f (1)=2e 1-1=2.] 3.函数f (x )=2x +x 的零点所在的一个区间是( )A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2)B [∵f (-1)=12-1=-12<0,f (0)=20=1>0,且f (x )单调递增,故零点在(-1,0)内,选B.]4.函数y =log 2|1-x |的图象是( )A B C DD [函数y =log 2|1-x |可由下列变换得到:y =log 2x →y =log 2|x |→y =log 2|x -1|→y =log 2|1-x |.故选D.]5.下列函数中,在(0,+∞)上为增函数的是( )A .f (x )=1xB .f (x )=lg xC .f (x )=12xD .f (x )=x 2-2x +1B [f (x )=lg x 在(0,+∞)上为增函数,故选B.]6.若10m =2,10n =6,则n -2m =( )A .-lg 2B .lg 2C .-lg 3D .lg 3D [∵10m =2,10n =6,∴m =lg 2,n =lg 6,∴n -2m =lg 6-2lg 2=lg 6-lg 2=lg 62=lg 3,故选D.] 7.设f (x )=ax 2+bx +2是定义在[1+a,2]上的偶函数,则(-3)b +3-1-a 的值为( )A.109B.19 C .10 D .不能确定 A [由偶函数的定义知,1+a =-2,即a =-3.由f (x )=f (-x )恒成立,得b =0.所以(-3)b +3-1-a =(-3)0+3-1-(-3)=109.故选A.] 8.设x >y >1,0<a <1,则下列关系正确的是( )A .x -a >y -aB .ax <ayC .a x <a yD .log a x >log a yC [对于A ,由0<a <1,可知-1<-a <0,因此函数y =x -a 为减函数,所以由x >y >1得到x -a <y -a ,A 不正确;对于B ,由x >y >1,0<a <1,得ax >ay ,B 不正确;对于C 、D ,由于0<a <1,所以函数y =a x 以及y =log a x 均为减函数,所以由x >y >1可得a x <a y 及log a x <log a y ,所以C 正确,D 不正确.所以选C.]9.已知函数f (x )=1+x 21-x 2,则有( ) A .f (x )是奇函数,且f ⎝⎛⎭⎫1x =-f (x )B .f (x )是奇函数,且f ⎝⎛⎭⎫1x =f (x )C .f (x )是偶函数,且f ⎝⎛⎭⎫1x =-f (x )D .f (x )是偶函数,且f ⎝⎛⎭⎫1x =f (x )C [∵f (-x )=f (x ),∴f (x )是偶函数,排除A 、B.又f ⎝⎛⎭⎫1x =1+⎝⎛⎭⎫1x 21-⎝⎛⎭⎫1x 2=1+x 2x 2-1=-f (x ),故选C.] 10.用二分法求函数f (x )=3x -x -4的零点时,其参考数据如表所示.A .1.55B .1.56C .1.57D .1.58B [由表可知,f (1.562 5)=0.003>0,f (1.556 2)=-0.002 9<0,所以函数f (x )=3x -x -4的一个零点在区间(1.556 2,1.562 5)上,故函数的一个零点的近似值(精确到0.01)为1.56.]11.已知函数f (x )=⎩⎪⎨⎪⎧(3-a )x ,x ≤2,log a (x -1)+3,x >2是R 上的单调增函数,则a 的取值范围是( ) A .(1,3)B .(5-1,3)C .[3-3,2)D .(1,3-3)C [若函数f (x )= ⎩⎪⎨⎪⎧(3-a )x ,x ≤2log a (x -1)+3,x >2是R 上的单调增函数,则 ⎩⎪⎨⎪⎧ 3-a >1,a >1,(3-a )2≤log a (2-1)+3,解得3-3≤a <2.故选C.]12.若函数f (x )=a x -x -a 有两个零点,则实数a 的取值范围是( )A .(0,1)B .(0,2)C .(1,+∞)D .(0,+∞)C [函数f (x )的零点的个数就是函数y =a x 与函数y =x +a 的图象的交点的个数,如图,a >1时,两函数图象有两个交点;0<a <1时,两函数图象有一个交点.故a >1.]二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.设A ∪{-1,1}={-1,1},则满足条件的集合A 共有________个.4 [∵A ∪{-1,1}={-1,1},∴A ⊆{-1,1},满足条件的集合A 为:∅,{-1},{1},{-1,1},共4个.]14.计算:lg 12-lg 58+lg 252-log 89×log 278=________. 13 [lg 12-lg 58+lg 252-log 89×log 278 =lg ⎝⎛⎭⎫12×85×252-2lg 33lg 2×3lg 23lg 3=lg 10-23=1-23=13.] 15.若函数f (x )=2|x -a |(a ∈R )满足f (1+x )=f (1-x ),且f (x )在[m ,+∞)上是增函数,则实数m 的最小值等于________.1 [由f (1+x )=f (1-x ),知f (x )的对称轴为x =1,∴a =1,∴f (x )=2|x -1|,又∵f (x )在[1,+∞)上是单调递增的,∴m ≥1.]16.若函数f (x )是定义在R 上的偶函数,在(-∞,0]上是减函数,且一个零点是2,则使得f (x )<0的x 的取值范围是________.(-2,2) [因为函数f (x )是定义在R 上的偶函数且一个零点是2,则还有一个零点为-2.又函数f (x )在(-∞,0]上是减函数,则f (x )<0的x 的取值范围是(-2,2).]三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知集合A ={x |3≤3x ≤27},B ={x |log 2x >1}.(1)分别求A ∩B ,(∁R B )∪A ;(2)已知集合C ={x |1<x <a },若C ⊆A ,求实数a 的取值范围.[解] (1)A ={x |3≤3x ≤27}={x |1≤x ≤3},B ={x |log 2x >1}={x |x >2}.A ∩B ={x |2<x ≤3},(∁R B )∪A ={x |x ≤2}∪{x |1≤x ≤3}={x |x ≤3}.(2)①当a ≤1时,C =∅,此时C ⊆A ;②当a >1时,C ⊆A ,则1<a ≤3.综合①②,可得a 的取值范围是(-∞,3].18.(本小题满分12分)已知函数f (x )=2a ·4x -2x -1.(1)当a =1时,求函数f (x )的零点;(2)若f (x )有零点,求a 的取值范围.[解] (1)当a =1时,f (x )=2·4x -2x -1.令f (x )=0,即2·(2x )2-2x -1=0,解得2x =1或2x =-12(舍去). 所以x =0,所以函数f (x )的零点为x =0.(2)若f (x )有零点,则方程2a ·4x -2x -1=0有解,于是2a =2x +14x =⎝⎛⎭⎫12x +⎝⎛⎭⎫14x =⎣⎡⎦⎤⎝⎛⎭⎫12x +122-14.因为⎝⎛⎭⎫12x >0,所以2a >14-14=0,即a >0. 19.(本小题满分12分)已知函数f (x )=1-2x. (1)若g (x )=f (x )-a 为奇函数,求a 的值;(2)试判断f (x )在(0,+∞)内的单调性,并用定义证明.[解] (1)由已知得g (x )=1-a -2x, ∵g (x )是奇函数,∴g (-x )=-g (x ),即1-a -2-x=-⎝⎛⎭⎫1-a -2x ,解得a =1. (2)函数f (x )在(0,+∞)内是单调增函数.证明如下:任取x 1,x 2∈(0,+∞),且x 1<x 2,则f (x 1)-f (x 2)=1-2x 1-⎝⎛⎭⎫1-2x 2=2(x 1-x 2)x 1x 2.∵0<x 1<x 2,∴x 1-x 2<0,x 1x 2>0,从而2(x 1-x 2)x 1x 2<0,即f (x 1)<f (x 2). ∴函数f (x )在(0,+∞)内是单调增函数.20.(本小题满分12分)已知函数y =2-x 2+x +2x -2的定义域为M . (1)求M ;(2)当x ∈M 时,求函数f (x )=2(log 2x )2+a log 2x 的最大值.[解] (1)由题意知⎩⎪⎨⎪⎧ (2-x )(x +2)≥0,2x -2≥0,x ≠-2.解得1≤x ≤2,故M ={x |1≤x ≤2}.(2)f (x )=2(log 2x )2+a log 2x ,令t =log 2x ,t ∈[0,1],可得g (t )=2t 2+at ,t ∈[0,1],其对称轴为直线t =-a 4, 当-a 4≤12,即a ≥-2时,g (t )max =g (1)=2+a , 当-a 4>12,即a <-2时,g (t )max =g (0)=0. 综上可知,f (x )max =⎩⎪⎨⎪⎧2+a ,a ≥-2,0,a <-2.21.(本小题满分12分)已知函数f (x )=log a (2x +1),g (x )=log a (1-2x )(a >0且a ≠1).(1)求函数F (x )=f (x )-g (x )的定义域;(2)判断F (x )=f (x )-g (x )的奇偶性,并说明理由;(3)确定x 为何值时,有f (x )-g (x )>0.[解] (1)要使函数有意义,则有 ⎩⎪⎨⎪⎧ 2x +1>0,1-2x >0,解得-12<x <12. ∴函数F (x )的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪-12<x <12. (2)F (x )=f (x )-g (x )=log a (2x +1)-log a (1-2x ),F (-x )=f (-x )-g (-x )=log a (-2x +1)-log a (1+2x )=-F (x ).∴F (x )为奇函数.(3)∵f (x )-g (x )>0,∴log a (2x +1)-log a (1-2x )>0,即log a (2x +1)>log a (1-2x ).①当0<a <1时,有0<2x +1<1-2x ,∴-12<x <0. ②当a >1时,有2x +1>1-2x >0,∴0<x <12. 综上所述,当0<a <1时,有x ∈⎝⎛⎭⎫-12,0,使得f (x )-g (x )>0; 当a >1时,有x ∈⎝⎛⎭⎫0,12,使得f (x )-g (x )>0. 22.(本小题满分12分)某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比.已知投资1万元时,两类产品的收益分别为0.125万元和0.5万元(如图).(1)分别写出两种产品的收益与投资额的函数解析式;(2)该家庭现有20万元资金,全部用于理财投资,问:怎么分配资金能使投资获得最大利益,其最大利益是多少万元?[解] (1)设f (x )=k 1x ,g (x )=k 2x ,所以f (1)=18,得k 1=18,g (1)=12,得k 2=12, 即f (x )=18x (x ≥0),g (x )=12x (x ≥0). (2)设投资债券类产品为x 万元,则投资股票类产品为(20-x )万元,依题意得y =f (x )+g (20-x )=x 8+1220-x (0≤x ≤20). 令t =20-x (0≤t ≤25),则y =20-t 28+12t =-18(t -2)2+3, 所以当t =2,即x =16万元时,收益最大,y max =3万元.则投资债券类产品16万元,股票类产品4万元,能使投资获得最大利益,其最大收益是3万元.。

高一数学必修模块1综合考试卷(人教A版)附答案.doc

高一数学必修模块1综合考试卷(人教A版)附答案.doc

一、 选择题(每小题5分,共60分)1.设集合A 二{3的倍数}, B 二{2的倍数}・则AUB 是( ).A. {偶数}B. {被2或3整除的数}C. {6的倍数}D. {2和3的公倍 数}2•若 U 二 R,集合 A 二{x I xNl,或 x<-l},B 二{x I xW-l}・则 BQ (C L A )为( ).A. 0B. {x | x<-l}C. {x | —lWx 〈l}D. {-1}3.已知集合A={x | aTWxWa+2}, B={x | 3<x<5}.则能使AoB 成立的实数a p 二 07. 若集合A 二{x | kx?+4x+4二0, XGR}只有一个元素.则集合A 中实系数k 的值为 ( )・A. 1B. 0C. 0或1D.以上答案 都不对8. 已知集合A={x | -2<x<4) ,B={x | x^a},若AGB 二0,且AUB 中不含元素6•则 下列值中a 可能是( ).A. 4B. 5C. 6D. 7 9•已知集合A, B, C 满足A 尝古则下列各式中错误的是( ).A. (AUB^ CB. AAC $C. A (BPC) 隅(AUC) B的取值范圉是(A. {a I 3<aW4} 4. 满足条件MU {2, 3} = {1, 2, 3}的集合M 的个数是(A. 1B. 25. 下列集合中,只有一个子集的集合是( A. {x | x'WO} B. {x I x'WO}6•已知集合A 、B 、C 为非空集合,M 二AQC, A. 一定有 c n p=c B . 一定有 c n P =P)・ B. {a I C ・{a I 3<a<4}C. 3 )・C. {x | x 2<0} N=BAC, P=MU Nc. 一定有 cnp=cup )・ D. 0 D. 4 D. {x | x 3<0} ( )・ D.—定有CQ 10.设全集I 二{(x, y) I x, yWR},集合 M 二{(x, y) N 二{(x, y) | y Hx+1}・那么Ci (M UN)等于(A. 0B. {(2, 3)}D. {(x, y) | y 二x+1} ). C. (2, 3)11.已知1]二匕 A={x | x>3 V2 }, a=—— ・贝lj (2-V3 ).A. a c Ci AB. Ci AC. {a} G A C.A12 •设A,B非空集合,且A QB二0,若M二{A的子集},W二{x | x 15}・则().A.MPW= 0B. APB^MUW c.Mnw={ 0 } D. AUB^MnW二、填空题(每小题4分,共16分)13•方程x2-3ax + 2a2=0 (aHO)的解集为______________________________ 。

2020-2021学年北师大版高中数学必修一模块综合测评(二)及答案解析

2020-2021学年北师大版高中数学必修一模块综合测评(二)及答案解析

最新(新课标)北师大版高中数学必修一模块综合测评(二)(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合M ={y|y =2x},P ={y|y =x -1},则M ∩P =( ) A .{y|y >1} B .{y|y ≥1} C .{y|y >0}D .{y|y ≥0}【解析】 M ={y|y =2x }={y|y >0}, P ={y|y =x -1}={y|y ≥0}. 故M ∩P ={y|y >0}. 【答案】 C2.(2016·江西南昌二中高一期中)设f(x)=⎩⎪⎨⎪⎧2x +1,(x ≤1),log 2x ,(x >1).则f(1)+f(4)=( )A .5B .6C .7D .8【解析】 f(1)+f(4)=21+1+log 24=5. 【答案】 A3.(2016·天津市南开大附中高一期中)已知幂函数y =f(x)的图像经过点⎝⎛⎭⎪⎫2,22,则f(4)的值为( )A .16B .2C.12D.116【解析】 设幂函数为y =x α,∵幂函数y =f(x)的图像经过点⎝ ⎛⎭⎪⎫2,22,∴22=2α, 解得α=-12.y =x -12.f(4)=4-12=12.故选C.【答案】 C4.(2016·河南南阳市五校高一联考)已知集合A ={x|ax 2+2x +a =0,a ∈R},若集合A 有且仅有2个子集,则a 的取值是( )A .1B .-1C .0或1D .-1,0或1【解析】 由题意可得,集合A 为单元素集,(1)当a =0时,A ={x|2x =0}={0},此时集合A 的两个子集是{0},∅, (2)当a ≠0时,则Δ=0解得a =±1, 当a =1时,集合A 的两个子集是{1},∅, 当a =-1,此时集合A 的两个子集是{-1},∅. 综上所述,a 的取值为-1,0,1.故选D. 【答案】 D5.(2016·河南南阳市五校高一联考)下列各组函数表示相同函数的是( ) A .f(x)=x 2,g(x)=(x)2 B .f(x)=1,g(x)=x 2C .f(x)=⎩⎪⎨⎪⎧x ,x ≥0,-x ,x <0,g(t)=|t|D .f(x)=x +1,g(x)=x 2-1x -1【解析】 A 选项中的两个函数的定义域分别是R 和[0,+∞),不相同;B 选项中的两个函数的对应法则不一致;D 选项中的两个函数的定义域分别是R 和{x|x ≠1},不相同,尽管它们的对应法则一致,但也不是相同函数;C 选项中的两个函数的定义域都是R ,对应法则都是g(x)=|x|,尽管表示自变量的字母不同,但它们依然是相同函数.故选C.【答案】 C6.(2016·山东滕州市高一期中)令a =60.7,b =0.76,c =log 0.76,则三个数a ,b ,c 的大小顺序是( )A .b <c <aB .b <a <cC .c <a <bD .c <b <a【解析】 a =60.7>60=1,b =0.76>0且b =0.76<0.70=1,c =log 0.76<log 0.71=0.【答案】 D7.(2016·湖南长沙一中高一期中)当a >1时,在同一坐标系中,函数y =a-x与y =log a x 的图像( )A . B.C . D.【解析】 ∵函数y =a -x可化为y =(1a)x,其底数大于0小于1,是减函数,又y =log a x ,当a >1时是增函数,两个函数是一增一减,前减后增.故选A.【答案】 A8.设函数f(x)是定义在R 上的奇函数,当x ∈(0,+∞)时,f(x)=lg x ,则满足f(x)<0的x 的取值范围是( )A .(-∞,0)B .(0,1)C .(-∞,1)D .(-∞,-1)∪(0,1)【解析】 由题意f(x)的图像如图所示, 故f(x)<0的取值范围是(-∞,-1)∪(0,1). 【答案】 D9.已知函数f(x)=⎩⎪⎨⎪⎧|log 3x|(0<x ≤9),-x +11(x >9),若a ,b ,c 均不相等,且f(a)=f(b)=f(c),则abc 的取值范围是( )【导学号:04100087】A .(0,9)B .(2,9)C .(9,11)D .(2,11)【解析】 作出f(x)的图像:则log 3a =-log 3b , ∴ab =1.设f(a)=f(b)=f(c)=t , 则a =3-t ,b =3t , c =11-t.由图可知0<t <2, ∴abc =11-t ∈(9,11). 【答案】 C10.(2016·吉林延边州高一期末)函数f(x)=4x -3·2x +3的值域为[1,7],则f(x)的定义域为( )A .(-1,1)∪[2,4]B .(0,1)∪[2,4]C .[2,4]D .(-∞,0)∪[1,2]【解析】 设t =2x,则t >0,且y =t 2-3t +3=⎝ ⎛⎭⎪⎫t -322+34≥34.∵函数f(x)=4x -3·2x +3的值域为[1,7], ∴函数y =t 2-3t +3的值域为[1,7].由y =1得t =1或2,由y =7得t =4或-1(舍去),则0<t ≤1或2≤t ≤4,即0<2x ≤1或2≤2x ≤4,解得x <0或1≤x ≤2, ∴f(x)的定义域是(-∞,0]∪[1,2],故选D. 【答案】 D11.(2016·黑龙江哈尔滨高一期末)已知函数f(x)=2x -P ·2-x ,则下列结论正确的是( )A .P =1,f(x)为奇函数且为R 上的减函数B .P =-1,f(x)为偶函数且为R 上的减函数C .P =1,f(x)为奇函数且为R 上的增函数D .P =-1,f(x)为偶函数且为R 上的增函数【解析】 当P =1时,f(x)=2x -2-x ,定义域为R 且f(-x)=2-x -2x =-f(x),∴f(x)为奇函数.∵2x 是R 上增函数,2-x 是R 的减函数,∴f(x)=2x -2-x 为R 上的增函数.因此选项C 正确.当P =1时,f(x)=2x +2-x ,定义域为R 且f(-x)=2-x +2x =f(x),∴f(x)为偶函数.根据1<2,f(1)<f(2)可知f(x)在R 上不是减函数;根据-2<-1,f(-2)>f(-1)可知f(x)在R 上不是增函数.因此选项B 、D 不正确.故选C.【答案】 C12.若关于x 的方程⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12|x|-22-a -2=0有实数根,则实数a 的取值范围是( )A .[-2,+∞)B .(-1,2]C .(-2,1]D .[-1,2)【解析】 令f(x)=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12|x|-22-2,∵0<⎝ ⎛⎭⎪⎫12|x|≤1,∴-2<⎝ ⎛⎭⎪⎫12|x|-2≤-1,则1≤⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12|x|-22<4,故f(x)∈[-1,2).由方程⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12|x|-22-a -2=0有实数根,得a ∈[-1,2).故选D. 【答案】 D二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.(2016·湖南长沙一中高一期中)函数f(x)=ax 2+(b +13)x +3是偶函数,且定义域为[a -1,2a],则a +b =__________.【解析】 ∵函数f(x)=ax 2+⎝⎛⎭⎪⎫b +13x +3是偶函数,且定义域为[a -1,2a],由偶函数的定义域关于原点对称可得(a -1)+2a =0,解得a =13,所以函数f(x)=13x 2+⎝⎛⎭⎪⎫b +13x +3.由题意可得f(-x)=f(x)恒成立,即13(-x)2+(b+13)(-x)+3=13x2+⎝⎛⎭⎪⎫b+13x+3对任意的实数x都成立,所以有b+13=0,解得b=-13,所以a+b=0.【答案】014.(2016·福建龙岩高一期末)函数f(x)=log 12(x2-2x-3)的单调递增区间为________.【解析】函数f(x)的定义域为{x|x>3或x<-1}.令t=x2-2x-3,则y=log 1 2 t.因为y=log 12t在(0,+∞)单调递减,t=x2-2x-3在(-∞,-1)单调递减,在(3,+∞)单调递增,由复合函数的单调性可知函数的单调增区间为(-∞,-1).【答案】(-∞,-1)15.(2016·安徽合肥八中高一段考)将长度为1的铁丝分成两段,分别围成一个正方形和一个圆形,要使正方形与圆的面积之和最小,正方形的周长应为__________. 【导学号:04100088】【解析】设正方形周长为x,则圆的周长为1-x,半径r=1-x 2π,∴S正=(x4)2=x216,S圆=π·(1-x)24π2,∴S正+S圆=(π+4)x2-8x+416π(0<x<1),∴当x=4π+4时有最小值.【答案】4π+416.(2016·内蒙古杭锦后旗奋斗中学高一月考)已知定义在实数集R 上的偶函数f(x)在区间(-∞,0]上是单调减函数,则不等式f(-1)<f(ln x)的解集是________.【解析】 由已知f(x)在区间(-∞,0]上是单调减函数,在区间(0,+∞)上是单调增函数,当ln x >0,f(1)<f(ln x),则1<ln x ,有x >e ,当ln x <0,f(-1)<f(ln x),则-1>ln x ,有0<x <1e综上,不等式f(-1)<f(ln x)的解集是⎝ ⎛⎭⎪⎫0,1e ∪(e ,+∞).【答案】 ⎝⎛⎭⎪⎫0,1e ∪(e ,+∞)三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)(2016·山东滕州市高一期中)计算下列各式的值: (1)⎝ ⎛⎭⎪⎫21412-(-9.6)0-⎝ ⎛⎭⎪⎫338-23+(1.5)-2 (2)log 34273+lg25+lg4+7log 72.【解】(1)原式=⎝ ⎛⎭⎪⎫942-1-⎝ ⎛⎭⎪⎫278-23+⎝ ⎛⎭⎪⎫32-2 =⎝ ⎛⎭⎪⎫322×12-1-⎝ ⎛⎭⎪⎫32-3×23+⎝ ⎛⎭⎪⎫32-2=32-1-⎝ ⎛⎭⎪⎫32-2+⎝ ⎛⎭⎪⎫32-2 =12.(2)原式=log 33343+lg(25×4)+2=log 33-14+lg102+2=-14+2+2=154.18.(本小题满分12分)(2016·江西南昌二中高一期中)已知集合A =⎩⎨⎧⎭⎬⎫x | 2≤2x≤16,B =⎩⎨⎧⎭⎬⎫x | log 3x >1.(1)分别求A ∩B ,(∁R B)∪A ;(2)已知集合C ={x|1<x <a},若C ⊆A ,求实数a 的取值范围. 【解】 (1)由已知得A ={x|1≤x ≤4}, B ={x|x >3},∴A ∩B ={x|3<x ≤4},∴(∁R B)∪A ={x|x ≤3}∪{x|1≤x ≤4}={x|x ≤4}. (2)①当a ≤1时,C =∅,此时C ⊆A ; ②当a >1时,由C ⊆A 得1<a ≤4. 综上,a 的取值范围为(-∞,4].19.(本小题满分12分)(2016·河南许昌市四校高一联考)已知函数f(x)=x -2m 2+m +3(m ∈Z)为偶函数,且f(3)<f(5).(1)求函数f(x)的解析式;(2)若g(x)=log a [f(x)-ax](a >0且a ≠1)在区间[2,3]上为增函数,求实数a 的取值范围.【解】 (1)∵f(x)为偶函数, ∴-2m 2+m +3为偶数.又f(3)<f(5),∴3-2m 2+m +3<5-2m 2+m +3,即有⎝ ⎛⎭⎪⎫35-2m 2+m +3<1,∴-2m 2+m +3>0,∴-1<m <32.又m ∈Z ,∴m =0或m =1.当m =0时,-2m 2+m +3=3为奇数(舍去); 当m =1时,-2m 2+m +3=2为偶数,符合题意. ∴m =1,f(x)=x 2.(2)由(1)知,g(x)=log a [f(x)-ax]=log a (x 2-ax)(a >0且a ≠1)在区间[2,3]上为增函数.令u(x)=x 2-ax ,y =log a u ,①当a >1时,y =log a u 为增函数,只需u(x)=x 2-ax 在区间[2,3]上为增函数,即⎩⎨⎧ a 2≤0,u (2)=4-2a >0,1<a <2;②当0<a <1时,y =log a u 为减函数,只需u(x)=x 2-ax 在区间[2,3]上为减函数,即⎩⎨⎧a 2≥3,u (3)=9-3a >0,a ∈∅,综上可知,a 的取值范围为(1,2).20.(本小题满分12分)(2016·江西南昌二中高一期中)设函数f(x)=a x -a -x(a>0且a ≠1),(1)若f(1)<0,试判断函数单调性并求使不等式f(x 2+tx)+f(4-x)<0恒成立的t 的取值范围;(2)若f(1)=32,g(x)=a 2x +a -2x -2mf(x)且g(x)在[1,+∞)上的最小值为-2,求m 的值.【解】 (1)f(x)=a x -a -x (a>0且a ≠1),∵f(1)<0,∴a -1a <0,又a>0,且a ≠1,∴0<a<1.∵a x 单调递减,a -x 单调递增,故f(x)在R 上单调递减. 不等式化为f(x 2+tx)<f(x -4),∴x 2+tx>x -4,即x 2+(t -1)x +4>0恒成立, ∴Δ=(t -1)2-16<0,解得-3<t<5.(2)∵f(1)=32,∴a -1a =32,2a 2-3a -2=0,∴a =2或a =-12(舍去),∴g(x)=22x +2-2x -2m(2x -2-x )=(2x -2-x )2-2m(2x -2-x )+2. 令t =f(x)=2x -2-x ,由(1)可知f(x)=2x -2-x 为增函数.∵x ≥1,∴t ≥f(1)=32,令h(t)=t 2-2mt +2=(t -m)2+2-m 2⎝ ⎛⎭⎪⎫t ≥32.若m ≥32,当t =m 时,h(t)min =2-m 2=-2,∴m =2.若m<32,当t =32时,h(t)min =174-3m =-2,解得m =2512>32,舍去.综上可知,m =2.21.(本小题满分12分)(2016·山东滕州市高一期中)设函数f(x)=log 3(9x)·log 3(3x),且19≤x ≤9.(1)求f(3)的值;(2)令t =log 3x ,将f(x)表示成以t 为自变量的函数,并由此求函数f(x)的最大值与最小值及与之对应的x 的值. 【导学号:04100089】【解】 (1)f(3)=log 327·log 39=3×2=6.(2)因为t =log 3x ,又∵19≤x ≤9,∴-2≤log 3x ≤2,即-2≤t ≤2.由f(x)=(log 3x +2)·(log 3x +1)=(log 3x)2+3log 3x +2=t 2+3t +2. 令g(t)=t 2+3t +2=⎝ ⎛⎭⎪⎫t +322-14,t ∈[-2,2].①当t=-32时,g(t)min=-14,即log3x=-32,则x=3-32=39,∴f(x)min =-14,此时x=39;②当t=2时,g(t)max =g(2)=12,即log3x=2,x=9,∴f(x)max=12,此时x=9.22.(本小题满分12分)(2016·山东青州市高一期中)已知指数函数y=g(x)满足:g(3)=8,定义域为R的函数f(x)=1-g(x)m+2g(x)是奇函数.(1)确定y=f(x)和y=g(x)的解析式;(2)判断函数f(x)的单调性,并用定义证明;(3)若对于任意x∈[-5,-1],都有f(1-x)+f(1-2x)>0成立,求x的取值范围.【解】(1)设g(x)=a x(a>0且a≠1),则a3=8,∴a=2,∴g(x)=2x.因为f(x)=1-2x2x+1+m,又f(-1)=-f(1),∴1-12m+1=1-24+m⇒m=2,经检验,满足题意,所以f(x)=1-2x2+2x+1=-12+12x+1.(2)f(x)为减函数,证明如下:由(1)知f(x)=1-2x2+2x+1=-12+12x+1.任取x1,x2∈R,设x1<x2则f(x2)-f(x1)=12x2+1=12x1+1=2x1-2x2(2x1+1)(2x2+1),因为函数y=2x在R上是增函数且x1<x2,∴2x1-2x2<0.又(2x 1+1)(2x 2+1)>0∴f(x 2)-f(x 1)<0即f(x 2)<f(x 1), ∴f(x)在(-∞,+∞)上为减函数.(3)因f(x)是奇函数,且f(x)在(-∞,+∞)上为减函数, 从而由不等式f(1-x)+f(1-2x)>0得 f(1-x)>-f(1-2x)即f(1-x)>f(2x -1), 所以⎩⎪⎨⎪⎧1-x <2x -1,-5≤1-x ≤-1,-5≤1-2x ≤-1,解得2≤x ≤3,即x 的取值范围是[2,3].。

2019版高中数学人教A版必修1:模块综合检测 含解析

2019版高中数学人教A版必修1:模块综合检测 含解析

1.A.{1,4}:由已知可得U={1,2,3,4,5},A ∪B={1,3,5},故∁U (A ∪B )={2,4}.:C2.函数y=-1+l ≥4)的值域是( )og 14x (xA.(-∞,-2]B.(-∞,0]C.[-2,+∞)D.[2,+∞):∵函数y=-1+l [4,+∞)上单调递减,og 14x 在≤-1+log 144=‒2,所求函数的值域为(-∞,-2].:A3.A.(-∞4.5.(12) B .(12,1) C .(1,32) D .(32,2):∵f(12)=e 12‒2<0,f (1)=e ‒1>0,·f (1)<0,∴函数f (x )=e x12)‒1x 的零点所在的区间是(12,1).:B6.设a=70.3,b=0.37,c=log 70.3,则a ,b ,c 的大小关系是( )A.a<b<cB.c<b<aC.c<a<bD.b<c<a:∵a=70.3>1,0<b=0.37<1,c=log 70.3<0,7.A.f (∴f(x)的图象关于y轴对称.又当x<0时,y=f(x)是减函数,∴当x>0时,y=f(x)是增函数.∴当|x1|<|x2|时,f(|x1|)<f(|x2|),即f(x1)<f(x2),即f(x1)-f(x2)<0.答案:A8.已知一次函数f(x)=kx+b的图象过第一、第二、第三象限,且f(f(x))=9x+8,则f(2)等于( )A.-10B.-4C.2D.8解析:∵f(x)=kx+b,∴f(f(x))=k(kx+b)+b=k2x+kb+b.又f(f(x))=9x+8,∴{k2=9,kb+b=8,解得{k=3,b=2或{k=-3,b=-4.∴f(x)=3x+2或f(x)=-3x-4.又f(x)的图象过第一、二、三象限,∴f(x)=3x+2,∴f(2)=8.答案:D9.已知函数f(x)=log a(2x+b-1)(a>0,且a≠1)的图象如图所示,则a,b满足的关系是( )A.0<a-1<b<1B.0<b<a-1<1C.0<b-1<a<1D.0<a-1<b-1<1解析:由题图,可知函数f(x)在R上单调递增,故a>1.函数图象与y轴的交点坐标为(0,log a b),由题图可知-1<log a b<0,得a-1<b<1.综上,0<a-1<b<1,选A.答案:A10.给出下列集合A到集合B的几种对应:其中,是从A到B的映射的有( )A.①②B.①②③C.①②④D.①②③④解析:根据映射的定义知,③中集合A中的元素a对应集合B中的两个元素x,y,则此对应不是映射;④中集合A中的元素b在集合B中没有对应元素,则此对应也不是映射.仅有①②符合映射的定义,故①②是映射.答案:A11.某企业去年销售收入1 000万元,年成本为生产成本500万元与年广告成本200万元两部分.若年利润必须按p%纳税,且年广告费超出年销售收入2%的部分也按p%纳税,其他不纳税.已知该企业去年共纳税120万元,则税率p%为( )A.10%B.12%C.25%D.40%解析:利润300万元,纳税300·p%万元,年广告费超出年销售收入2%的部分为200-1 000×2%=180(万元),纳税180·p%万元,12.①② B.②③ C.③④ D.①④:分别画出它们的图象,可知函数y y=log 2x 满y=x 2与函数=x 与函数足f(x 1+x 22)>f (x 1)+f (x 2)2;函数满足f(x 1+x 22)<f (x 1)+f (x 2)2.:B二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.若幂函数f (x )的图象过点(3,427),则f (x )的解析式是____________________.:设f (x )=x α,则由已知得3α=427=334,=3,∴f (x )=x 34.14.解析15.x<0时,f (x )=-1-ln(-x ).:-1-ln(-x )16.已知函数f (x )={log 2x ,x >0,3x ,x ≤0,且函数ℎ(x )=f (x )+x ‒a 有且只有一个零点,则实数a 的取值范围是___________________.:由题意可画出函数f (x ),如图所示,函数h (x )=f (x )+x-a 有且只有一个零点,={log 2x ,x >0,3x ,x ≤0的图象)的图象与y=a-x 的图象有且只有一个交点,显然当a>1时满足条件.解答时应写出文字说明、证明过程或演算步骤17.18.(1)当若(∁R A )∩B=B ,求实数m 的取值范围.(1)1<x ≤3,即集合A=(1,3];由{x -1>0,3-x ≥0,得-4≤0,得2x ≤22,x ≤2,即集合B=(-∞,2].∩B=(1,2],A ∪B=(-∞,3].由(1)得∁R A={x|x>3,或x ≤1}.R A )∩B=B ,∴B ⊆∁R A.B=⌀,则m ≥0;B ≠⌀,则m<0,∴2x ≤-m.∴x ≤log 2(-m ).19.680(0≤x ≤210).(x ‒220)2+1f (x )在区间[0,210]上是增函数,所以当x=210时,f (x )有最大值680=1 660.故当年产量为210吨时,可获得最大利为‒15(210‒220)2+11 660万元.20.(12分)已知函数f (x )是定义在区间[-1,1]上的奇函数,若当x ,y ∈[-1,1],x+y ≠0时,有(x+y )·[f (x )+f (0.比较f(12)与f (13)的大小;判断f (x )的单调性,并加以证明;0≤x{-1≤x +12≤1,-1≤1-2x ≤1,x +12<1-2x ,解得<16.即不等式f (x +12)<f (1‒2x )的解集为[0,16).21.(12分)设f (x )=l .og 121-ax x-1为奇函数,a 为常数(1)求a 的值;证明f (x )在区间(1,+∞)内单调递增;若对于区间[3,4]上的每一个x 的值,不等式f (x )>+m 恒成立,求实数m 的取值范围.(12)x (1)∵f (-x )=-f (x ),<0,1)(x 2+1)0<<1,lo >0,(x 1+1)(x 2-1)(x 1-1)(x 2+1)g 12(x 1+1)(x 2-1)(x1-1)(x 2+1)x 1)>f (x 2).x )在区间(1,+∞)内单调递增.设g (x )=lo,则g (x )在区间[3,4]上为增函数.∴g (x )>m 对x ∈[3,4]恒成立,g 12x +1x-1‒(12)x m<g (3)=-.98实数m 的取值范围是m<-.9822.①有且仅有故只需{Δ=4m 2-4(3m +4)>0,(x 1+1)+(x 2+1)>0,(x 1+1)(x 2+1)>0⇔{m 2-3m -4>0,-2m +2>0,3m +4+(-2m )+1>0⇔{m <-1或m >4,m <1,m >-5.故m 的取值范围是-5<m<-1.(2)F (x )=|4x-x 2|+a 有4个零点,即|4x-x 2|+a=0有4个实数根,即|4x-x 2|=-a 有4个实数根.令g (x )=|4x-x 2|,h (x )=-a.在同一坐标系中作出g (x )和h (x )的图象,如图所示.由图象可知要使|4x-x 2|=-a 有4个实数根,则需g (x )的图象与h (x )的图象有4个交点,故0<-a<4,即-4<a<0.所以实数a 的取值范围为-4<a<0.。

高中数学 模块综合测评(含解析)北师大版必修第一册-北师大版高一第一册数学试题

高中数学 模块综合测评(含解析)北师大版必修第一册-北师大版高一第一册数学试题

模块综合测评(时间:120分钟,满分150分)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A ={1,2,6},B ={2,4},C ={x ∈R |-1≤x ≤5},则(A ∪B )∩C =( ) A .{2}B .{1,2,4}C .{1,2,4,6}D .{x ∈R |-1≤x ≤5}B [由题意知A ∪B ={1,2,4,6},所以(A ∪B )∩C ={1,2,4}.] 2.函数y =x 2-5x -6在区间[2,4]上是( ) A .递减函数 B .递增函数 C .先递减再递增函数D.先递增再递减函数C [作出函数y =x 2-5x -6的图象(图略)知图象开口向上,且对称轴为x =52,在[2,4]上先减后增.故选C.]3.函数f (x )=-x 2-3x +4lg (x +1)的定义域为( )A .(-1,0)∪(0,1]B .(-1,1]C .(-4,-1]D .(-4,0)∪(0,1]A [由⎩⎪⎨⎪⎧-x 2-3x +4≥0,lg (x +1)≠0,x +1>0,得-1<x <0或0<x ≤1,所以函数f (x )的定义域为(-1,0)∪(0,1],故选A.]4.当前,国家正分批修建经济适用房以解决低收入家庭住房紧X 问题,已知甲、乙、丙三个社区现分别有低收入家庭360户、270户、180户,若第一批经济适用房中有90套住房用于解决这三个社区中90户低收入家庭的住房问题,先采用分层抽样的方法决定各社区户数,则应从甲社区中抽取低收入家庭的户数为( )A .40B .30C .20D .36A [由题意,每个个体抽到的概率为90360+270+180=19,其中甲社区有360户低收入家庭,所应从甲社区抽取低收入家庭的户数为360×19=40户.]5.2019年10月1日在庆祝中华人民某某国成立70周年大阅兵的徒步方队中,被誉为“最强大脑”的院校科研方队队员分别由军事科学院、国防大学、国防科技大学三所院校联合抽组,已知军事科学院的甲、乙、丙三名同学被选上的概率分别为13,14,16,这三名同学中至少有一名同学被选上的概率为( )A .13 B .512 C .712D .23C [由题知三名同学都没有被选上的概率为23×34×56=512,所以这三名同学中至少有一名同学被选上的概率为1-512=712.]6.函数y =⎩⎪⎨⎪⎧x 2,x <0,2x -1,x ≥0的大致图象是( )A B C DB [当x <0时,函数的图象是抛物线;当x ≥0时,只需把y =2x的图象在y 轴右侧的部分向下平移1个单位即可,故大致图象为B.]7.“x >2”是“x 2+2x -8>0”成立的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件D .既不充分也不必要条件B [记集合A ={x |x >2},由x 2+2x -8>0,得x <-4或x >2,记集合B ={x |x <-4,或x >2}.因为A B ,所以“x >2”是“x 2+2x -8>0”成立的充分不必要条件.故选B.]8.已知f (x )是定义在R 上的偶函数,且在区间(-∞,0]上单调递增,若实数a 满足f (2log 3a )>f (-2),则a 的取值X 围是( )A .(-∞,3)B .(0,3)C .(3,+∞)D .(1,3)B [因为f (x )是定义在R 上的偶函数,且在区间(-∞,0]上单调递增,所以f (x )在区间[0,+∞)上单调递减.根据函数的对称性,可得f (-2)=f (2),所以f (2log 3a )>f (2).因为2log 3a >0,f (x )在区间[0,+∞)上单调递减,所以0<2log 3a <2⇒log 3a <12⇒0<a < 3.故选B.]二、多项选择题:本题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求.全部选对得5分,部分选对得3分,有选错的得0分.9.在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据每个都加2后所得数据,则A ,B 两样本的下列数字特征对应不同的是( )A .众数B .平均数C .中位数D .标准差ABC [只有标准差不变,众数、平均数和中位数都加2.]10.已知奇函数f (x )在R 上是增函数.若a =-f ⎝ ⎛⎭⎪⎫log 215,b =f (log 24.1),c =f (20.8),则a ,b ,c 的大小关系不可能为( )A .a <b <cB .b <a <cC .c <b <aD .c <a <bABD [由f (x )是奇函数可得,a =-f ⎝ ⎛⎭⎪⎫log 215=f (log 25),因为log 25>log 24.1>log 24=2>20.8,且函数f (x )是增函数,所以c <b <a .]11.已知函数f (x )=⎝ ⎛⎭⎪⎫13x-log 2x ,0<a <b <c ,f (a )f (b )f (c )<0,实数d 是函数f (x )的一个零点.给出下列四个判断,其中可能成立的是( )A .0<d <aB .c >d >bC .d >cD .b <d <cABD [由y =⎝ ⎛⎭⎪⎫13x在(0,+∞)上单调递减,y =log 2x 在(0,+∞)上单调递增,可得f (x )=⎝ ⎛⎭⎪⎫13x-log 2x 在定义域(0,+∞)上是单调减函数,当0<a <b <c 时,f (a )>f (b )>f (c ),又因为f (a )f (b )f (c )<0,f (d )=0,所以①f (a ),f (b ),f (c )都为负值,则a ,b ,c 都大于d ,②f (a )>0,f (b )>0,f (c )<0,则a ,b 都小于d ,c 大于d .综合①②可得d >c 不可能成立.]12.某同学在研究函数f (x )=x1+|x |(x ∈R )时,分别得出下面几个结论,其中正确的结论是( )A .等式f (-x )+f (x )=0在x ∈R 时恒成立B .函数f (x )的值域为(-1,1)C .若x 1≠x 2,则一定有f (x 1)≠f (x 2)D .函数g (x )=f (x )-x 在R 上有三个零点ABC [易知函数的定义域为R ,且f (-x )=-f (x ),故函数为奇函数,故A 正确;当x>0时,f (x )=x 1+x =11+1x,该函数在(0,+∞)上递增,且当x →0时,f (x )→0;当x →+∞时,f (x )→1.结合奇偶性,作出f (x )的图象如图所示:易知函数的值域是(-1,1),故B 正确;结合函数f (x )为定义域内的增函数,所以C 正确;当x ≥0时,g (x )=f (x )-x =x1+x -x =-x 21+x ,令g (x )=0得x =0,故此时g (x )只有一个零点0,g (x )显然是奇函数,故该函数只有一个零点,所以D 错误.]三、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上) 13.命题“∃x ∈Z ,使x 2+2x +m ≤0”的否定是________. ∀x ∈Z ,使x 2+2x +m >0 [特称命题的否定为全称命题.]14.已知函数f (x )是定义在R 上的奇函数,当x ∈(-∞,0)时,f (x )=2x 3+x 2,则f (2)=________.12 [依题意得,f (-2)=2×(-2)3+(-2)2=-12,由函数f (x )是奇函数,得f (2)=-f (-2)=12.]15.计算:(0.027)-13-log 32·log 83=________.3 [ (0.027)-13-log 32·log 83=(0.3)-13×3-log 32·1log 38=103-log32·13log32=103-13=3.]16.已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是________.0.1[这组数据的平均数x=4.7+4.8+5.1+5.4+5.55=5.1,则方差s2=(4.7-5.1)2+(4.8-5.1)2+(5.1-5.1)2+(5.4-5.1)2+(5.5-5.1)25=0.16+0.09+0+0.09+0.165=0.1.]四、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)某初级中学共有学生2 000名,各年级男、女生人数如下表:(1)求x的值;(2)现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名?[解](1)因为x2 000=0.19,所以x=380.(2)初三年级人数为y+z=2 000-(373+377+380+370)=500,现用分层抽样的方法在全校抽取48名学生,应在初三年级抽取的人数为:482 000×500=12(名).18.(本小题满分12分)某市为鼓励企业发展“低碳经济”,真正实现“低消耗、高产出”,实行奖惩制度.通过制定评分标准,每年对本市50%的企业抽查评估,评出优秀、良好、合格和不合格四个等级,并根据等级给予相应的奖惩(如下表).某企业投入100万元改造,由于自身技术原因,能达到以上四个等级的概率分别为12,13,18,124,且由此增加的产值分别为60万元、40万元、20万元、-5万元.(1)在抽查评估中,该企业能被抽到且被评为合格及其以上等级的概率是多少? (2)求该企业当年因改造而增加的利润为0的概率.[解](1)设该企业能被抽到且被评为合格及其以上等级的概率为P ,则P =⎝ ⎛⎭⎪⎫12+13+18×12=2348.(2)依题意,该企业当年因改造而增加的利润为0的概率为13×12=16.19.(本小题满分12分)某商场举行购物抽奖促销活动,规定每位顾客从装有编号为0,1,2,3四个相同小球的抽奖箱中,每次取出一球,记下编号后放回,连续取两次,若取出的两个小球相加之和等于6,则中一等奖,等于5中二等奖,等于4或3中三等奖.(1)求中三等奖的概率; (2)求中奖的概率.[解] 设“中三等奖”为事件A ,“中奖”为事件B ,从四个小球中有放回地取两个有(0,0),(0,1),(0,2),(0,3),(1,0),(1,1),(1,2),(1,3),(2,0),(2,1),(2,2),(2,3),(3,0),(3,1),(3,2),(3,3),共16种不同的结果.(1)取出的两个小球相加之和等于4或3的取法有:(1,3),(2,2),(3,1),(0,3),(1,2),(2,1),(3,0),共7种结果,则中三等奖的概率为P (A )=716.(2)由(1)知两个小球相加之和等于3或4的取法有7种; 两个小球相加之和等于5的取法有2种:(2,3),(3,2). 两个小球相加之和等于6的取法有1种:(3,3). 则中奖概率为P (B )=7+2+116=58.20.(本小题满分12分)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)某某数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,某某数a 的取值X 围. [解](1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x . 又f (x )为奇函数,所以f (-x )=-f (x ),于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2. (2)要使f (x )在[-1,a -2]上单调递增,结合f (x )的图象(如图所示 )知⎩⎪⎨⎪⎧a -2>-1,a -2≤1,所以1<a ≤3,故实数a 的取值X 围是(1,3].21.(本小题满分12分)已知二次函数f (x )=ax 2+bx +1(a ,b ∈R ),x ∈R . (1)若函数f (x )的最小值为f (-1)=0,求f (x )的解析式,并写出单调区间; (2)在(1)的条件下,f (x )>x +k 在区间[-3,-1]上恒成立,试求k 的取值X 围.[解](1)由题意知⎩⎪⎨⎪⎧-b 2a =-1,f (-1)=a -b +1=0,解得⎩⎪⎨⎪⎧a =1,b =2.所以f (x )=x 2+2x +1,由f (x )=(x +1)2知,函数f (x )的单调递增区间为[-1,+∞),单调递减区间为(-∞,-1].(2)由题意知,x 2+2x +1>x +k 在区间[-3,-1]上恒成立,即k <x 2+x +1在区间[-3,-1]上恒成立,令g (x )=x 2+x +1,x ∈[-3,-1],由g (x )=⎝ ⎛⎭⎪⎫x +12+34知g (x )在区间[-3,-1]上是减函数,则g (x )min =g (-1)=1,所以k <1,故k 的取值X 围是(-∞,1).22.(本小题满分12分)“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度v (单位:千克/年)是养殖密度x (单位:尾/立方米)的函数.当x 不超过4尾/立方米时,v 的值为2千克/年;当4≤x ≤20时,v 是x 的一次函数,当x 达到20尾/立方米时,因缺氧等原因,v 的值为0千克/年.(1)当0<x ≤20时,求函数v 关于x 的函数解析式;(2)当养殖密度x 为多大时,鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.[解](1)由题意得当0<x ≤4时,v =2;当4≤x ≤20时,设v =ax +b ,显然v =ax +b 在[4,20]内是减函数,由已知得⎩⎪⎨⎪⎧20a +b =0,4a +b =2,解得⎩⎪⎨⎪⎧a =-18,b =52,所以v =-18x +52,故函数v =⎩⎪⎨⎪⎧2,0<x ≤4,-18x +52,4<x ≤20.(2)设年生长量为f (x )千克/立方米,依题意并由(1)可得f (x )=⎩⎪⎨⎪⎧2x ,0<x ≤4,-18x 2+52x ,4<x ≤20,当0<x ≤4时,f (x )为增函数, 故f (x )max =f (4)=4×2=8;当4<x ≤20时,f (x )=-18x 2+52x =-18(x 2-20x )=-18(x -10)2+252,f (x )max =f (10)=12.5.所以当0<x ≤20时,f (x )的最大值为12.5.即当养殖密度为10尾/立方米时,鱼的年生长量可以达到最大,最大值为12.5千克/立方米.。

2019-2020学年高一数学人教A版必修1练习:模块综合测评(A) Word版含解析

2019-2020学年高一数学人教A版必修1练习:模块综合测评(A) Word版含解析
21
f(x) a - 1.58 b - - -
-
1
5.68 39.42 109.19 227
(1)计算上述表格中的对应值 a 和 b. (2)从上述对应值表中,可以发现函数 f(x)在哪几个区间内有零点?说明理由. 解(1)由题意可知 a=f(-2)=log2(-2+3)-2×(-2)3+4×(-2)=0+16-8=8,b=f(1)=log24-2+4=4.
( ) 解析 log28+lg 0.01+ln
e + 2 - 1 + log23+lg52+2lg
2-
1 2
-1
11
=3-2+2 + 2×3+1-2=2.
答案 2
14.函数 f(x)=log1(x2-2x-3)的单调递增区间为 .
2
解析函数 f(x)的定义域为{x|x>3 或 x<-1}.
∴f(-1)=-f(1)=-3.
答案 A 9.函数 f(x)=lg(|x|-1)的大致图象是( )
解析由 f(x)=lg(|x|-1),知 x>1 或 x<-1.排除 C,D.
当 x>1 时,f(x)=lg(x-1)在区间(1,+∞)上为增函数.故选 B.
答案 B
10.衣柜里的樟脑丸随着时间挥发而体积缩小,刚放进的新丸的体积为 a,经过 t 天后体积 V 与天数 t
4
8
的关系式为 V=a·e-kt.已知新丸经过 50 天后,体积变为9a.若一个新丸体积变为27a,则需经过的天数为
( )
A.125
B.100
C.75
D.50
( ) 4

高中数学 模块综合测评(含解析)新人教B版必修第一册-新人教B版高一第一册数学试题

高中数学 模块综合测评(含解析)新人教B版必修第一册-新人教B版高一第一册数学试题

模块综合测评(满分:150分 时间:120分钟)一、单选题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={x |2x 2-x ≥0},B ={y |y >-1},则A ∩B =( ) A .(-1,0] B .(-1,0]∪⎣⎢⎡⎭⎪⎫12,+∞C .⎝ ⎛⎦⎥⎤-1,12D .⎣⎢⎡⎭⎪⎫12,+∞B [A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≤0或x ≥12,∴A ∩B =(-1,0]∪⎣⎢⎡⎭⎪⎫12,+∞.故选B.]2.命题p :∀x ∈N ,x 3>x 2的否定形式¬p 为( ) A .∀x ∈N ,x 3≤x 2 B .∃x ∈N ,x 3>x 2 C .∃x ∈N ,x 3<x 2D .∃x ∈N ,x 3≤x 2D [全称量词命题的否定是存在量词命题,不等号要改变,故选D.]3.已知p :x -a >0,q :x >1,若p 是q 的充分条件,则实数a 的取值X 围为( )A .(-∞,1)B .(-∞,1]C .(1,+∞)D .[1,+∞)D [已知p :x -a >0,x >a ,q :x >1,若p 是q 的充分条件,根据小X 围推出大X 围得到a ≥1.故选D.]4.已知f ⎝ ⎛⎭⎪⎫12x -1=2x +3,f (m )=6,则m 等于( )A .-14B .14C .32D .-32A [令12x -1=t ,则x =2t +2,所以f (t )=2×(2t +2)+3=4t +7.令4m +7=6,得m =-14.故选A.]5.函数f (x )=x +1+1x -3的定义域为( ) A .(-3,0]B .(-3,1]C .[-1,3)∪(3,+∞)D .[-1,3)C [由条件知⎩⎨⎧x +1≥0x -3≠0,∴x ≥-1且x ≠3,故选C.]6.函数f (x )=mx 2+(m -1)x +1在区间(-∞,1]上为减函数,则m 的取值X 围为( )A .⎝ ⎛⎦⎥⎤0,13 B .⎣⎢⎡⎭⎪⎫0,13 C .⎣⎢⎡⎦⎥⎤0,13D .⎝ ⎛⎭⎪⎫0,13C [当m =0时,f (x )=1-x ,满足在区间(-∞,1]上为减函数,当m ≠0时,因为f (x )=mx 2+(m -1)x +1的图像的对称轴为直线x =1-m2m ,且函数在区间(-∞,1]上为减函数,所以⎩⎪⎨⎪⎧m >0,1-m 2m ≥1,解得0<m ≤13.综上,0≤m ≤13.故选C.]7.某商店有方形、圆形两种巧克力,小明如果购买3块方形和5块圆形巧克力,他带的钱会差8元,如果购买5块方形和3块圆形巧克力,他带的钱会剩下8元.若他只购买8块方形巧克力,则他会剩下多少钱( )A .8元B .16元C .24元D .32元D [设方形巧克力每块x 元,圆形巧克力每块y 元,小明带了a 元钱, ⎩⎨⎧3x +5y =a +8,①5x +3y =a -8,②①+②,得8x +8y =2a ,∴x +y =14a , ∵5x +3y =a -8,∴2x +(3x +3y )=a -8, ∴2x +3×14a =a -8,∴2x =14a -8,∴8x =a -32, 即他只购买8块方形巧克力,则他会剩下32元,故选D.]8.已知函数f (x )=mx +1的零点在区间(1,2)内,则m 的取值X 围是( ) A .⎝ ⎛⎭⎪⎫-∞,-12B .⎝ ⎛⎭⎪⎫-1,-12C .⎝ ⎛⎭⎪⎫-12,+∞D .()-∞,-1∪⎝ ⎛⎭⎪⎫-12,+∞B [根据题意,函数f (x )=mx +1,当m =0时,f (x )=1,没有零点, 当m ≠0时,f (x )为单调函数,若其在区间(1,2)内存在零点, 必有f (1)f (2)<0,即(m +1)(2m +1)<0,解得-1<m <-12,即m 的取值X 围为⎝ ⎛⎭⎪⎫-1,-12,故选B.]二、多选题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分)9.下列命题中是真命题的是( ) A .∀x ∈R ,2x 2-3x +4>0 B .∀x ∈{1,-1,0},2x +1>0 C .∃x ∈N ,使x ≤xD .∃x ∈N *,使x 为29的约数 ACD [对于A ,这是全称量词命题,由于Δ=(-3)2-4×2×4<0,所以2x 2-3x +4>0恒成立,故A 为真命题;对于B ,这是全称量词命题,由于当x =-1时,2x +1>0不成立,故B 为假命题;对于C ,这是存在量词命题,当x =0时,有x ≤x 成立,故C 为真命题; 对于D ,这是存在量词命题,当x =1时,x 为29的约数成立,所以D 为真命题.]10.有以下说法,其中正确的为( ) A .“m 是有理数”是“m 是实数”的充分条件 B .“x ∈A ∩B ”是“x ∈A ”的必要条件 C .“x 2-2x -3=0”是“x =3”的必要条件 D .“x >3”是“x 2>4”的充分条件ACD[A正确,由于“m是有理数”⇒“m是实数”,所以“m是有理数”是“m是实数”的充分条件;B不正确.因为“x∈A”“x∈A∩B”,所以“x∈A∩B”不是“x∈A”的必要条件;C正确.由于“x=3”⇒“x2-2x-3=0”,故“x2-2x-3=0”是“x =3”的必要条件;D正确.由于“x>3”⇒“x2>4”,所以“x>3”是“x2>4”的充分条件.]11.已知f(x)是定义在(-∞,0)∪(0,+∞)上的偶函数,当x∈(-∞,0)时,f(x)=x-1,若f(a)·f(-a)=4,则实数a的值可为()A.-3 B.-1C.1 D.3BC[∵f(x)是定义在(-∞,0)∪(0,+∞)上的偶函数,当x∈(-∞,0)时,f(x)=x-1,①当a>0时,f(a)·f(-a)=[f(-a)]2=(-a-1)2=4,解得,a=1或a=-3(舍);②当a<0时,f(a)·f(-a)=[f(a)]2=(a-1)2=4,解可得,a=-1或a=3(舍),综上可得,a=-1或1,故选BC.]12.设c<0,f(x)是区间[a,b]上的减函数,下列命题中正确的是()A.f(x)在区间[a,b]上有最小值f(a)B.1f(x)在[a,b]上有最小值f(a)C.f(x)-c在[a,b]上有最小值f(b)-cD.cf(x)在[a,b]上有最小值cf(a)CD[A中,f(x)是区间[a,b]上的减函数,在区间[a,b]上有最小值f(b),A错误;B中,f(x)是区间[a,b]上的减函数,而函数1f(x)在[a,b]上单调性无法确定,其最小值无法确定,B错误;C中,f(x)是区间[a,b]上的减函数,f(x)-c在区间[a,b]上也是减函数,其最小值f(b)-c,C正确;D中,f(x)是区间[a,b]上的减函数,且c<0,则cf(x)在区间[a,b]上是增函数,则在[a ,b ]上有最小值cf (a ),D 正确.]二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上) 13.不等式-2x 2+x +3<0的解集为________.(-∞,-1)∪⎝ ⎛⎭⎪⎫32,+∞[化-2x 2+x +3<0为2x 2-x -3>0,解方程2x 2-x-3=0得x 1=-1,x 2=32,所以不等式2x 2-x -3>0的解集为(-∞,-1)∪⎝ ⎛⎭⎪⎫32,+∞,即原不等式的解集为(-∞,-1)∪⎝ ⎛⎭⎪⎫32,+∞.]14.已知函数f (x )=5-xx ,则f (1)=________,函数y =f (x )的定义域为________.(本题第一空2分,第二空3分)2 (-∞,0)∪(0,5][函数f (x )=5-x x ,则f (1)=5-11=2,令⎩⎨⎧5-x ≥0,x ≠0,解得x ≤5且x ≠0, ∴函数y =f (x )的定义域为(-∞,0)∪(0,5].]15.直线y =1与曲线y =x 2-|x |+a 有四个交点,则a 的取值X 围为________. ⎝ ⎛⎭⎪⎫1,54[y =⎩⎨⎧x 2-x +a ,x ≥0,x 2+x +a ,x <0, 作出图像,如图所示.此曲线与y 轴交于(0,a )点,最小值为a -14,要使y =1与其有四个交点,只需a -14<1<a ,∴1<a <54.]16.设函数f (x )=|x 2-2ax +b |(x ∈R ),给出下列命题: ①f (x )一定是偶函数;②当f (0)=f (2)时,f (x )的图像一定关于直线x =1对称;③若a 2-b ≤0,则f (x )在区间[a ,+∞)上是增函数; ④f (x )有最大值|a 2-b |.其中正确命题的序号是________.③[若a =1,b =1,则f (x )=|x 2-2x +1|=x 2-2x +1,显然f (x )不是偶函数,所以①错误;若a =-1,b =-4,则f (x )=|x 2+2x -4|,满足f (0)=f (2),但显然f (x )的图像不关于直线x =1对称,所以②错误;若a 2-b ≤0,则f (x )=|x 2-2ax +b |=x 2-2ax +b ,此时函数f (x )的图像是开口向上的抛物线,且抛物线的对称轴是直线x =a ,所以f (x )在区间[a ,+∞)上是增函数,所以③正确;显然函数f (x )=|x 2-2ax +b |(x ∈R )没有最大值,所以④错误.故填③.]四、解答题(本大题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪4-2x x -7>0,B ={x |x 2-4x +4-m 2≤0,m >0}.(1)若m =3,求A ∩B ;(2)若A ∪B =B ,某某数m 的取值X 围.[解](1)若m =3,解得:A =(2,7),B =[-1,5], 所以A ∩B =(2,5];(2)由题意得:B =[2-m ,2+m ], 又因为A ∪B =B ,有A ⊆B ,则有:2-m ≤2①;2+m ≥7②;m >0③;同时成立. ∴m ≥5.18.(本小题满分12分)已知关于x 的方程x 2-2(k -1)x +k 2=0有两个实数根x 1,x 2.(1)求k 的取值X 围;(2)若|x 1+x 2|=x 1x 2-1,求k 的值. [解](1)依题意,得Δ=b 2-4ac ≥0, 即[-2(k -1)]2-4k 2≥0,解得k ≤12.(2)法一:依题意,得x1+x2=2(k-1),x1x2=k2.以下分两种情况讨论:①当x1+x2≥0时,则有x1+x2=x1x2-1,即2(k-1)=k2-1,解得k1=k2=1.因为k≤1 2,所以k1=k2=1不合题意,舍去.②当x1+x2<0时,则有x1+x2=-(x1x2-1),即2(k-1)=-(k2-1).解得k1=1,k2=-3.因为k≤12,所以k=-3.综合①②可知k=-3.法二:依题意,可知x1+x2=2(k-1).由(1)可知k≤12,所以2(k-1)<0,即x1+x2<0.所以-2(k-1)=k2-1,解得k1=1,k2=-3.因为k≤12,所以k=-3.19.(本小题满分12分)已知函数f(x)=x+1x+1,g(x)=ax+5-2a(a>0).(1)判断函数f(x)在[0,1]上的单调性,并用定义加以证明;(2)若对任意m∈[0,1],总存在m0∈[0,1],使得g(m0)=f(m)成立,某某数a 的取值X围.[解](1)函数f(x)在[0,1]上单调递增,证明如下:设0≤x1<x2≤1,则f(x1)-f(x2)=x1+1x1+1-x2-1x2+1=(x1-x2)+x2-x1(x1+1)(x2+1)=(x1-x2)(x1x2+x1+x2)(x1+1)(x2+1).因为x 1-x 2<0,(x 1+1)(x 2+1)>0,x 1x 2+x 1+x 2>0, 所以f (x 1)-f (x 2)<0, 即f (x 1)<f (x 2),所以函数f (x )在[0,1]上单调递增. (2)由(1)知,当m ∈[0,1]时,f (m )∈⎣⎢⎡⎦⎥⎤1,32.因为a >0,g (x )=ax +5-2a 在[0,1]上单调递增, 所以m 0∈[0,1]时,g (m 0)∈[5-2a ,5-a ]. 依题意,只需⎣⎢⎡⎦⎥⎤1,32⊆[5-2a ,5-a ]所以⎩⎪⎨⎪⎧5-2a ≤1,5-a ≥32,解得2≤a ≤72, 即实数a 的取值X 围为⎣⎢⎡⎦⎥⎤2,72.20.(本小题满分12分)已知函数f (x )=x 2-mx +2m -4(m ∈R ). (1)当m =1时,求不等式f (x )≥0的解集;(2)当x >2时,不等式f (x )≥-1恒成立,求m 的取值X 围. [解](1)因为m =1,所以f (x )=x 2-x -2. 所以x 2-x -2≥0,即(x -2)(x +1)≥0, 解得x ≤-1或x ≥2.故不等式f (x )≥0的解集为{x |x ≤-1或x ≥2}.(2)当x >2时,不等式f (x )≥-1恒成立等价于m ≤x 2-3x -2在(2,+∞)上恒成立.因为x >2,所以x -2>0,则x 2-3x -2=(x -2)2+4(x -2)+1x -2=(x -2)+1x -2+4≥2(x -2)·1x -2+4=6.当且仅当x -2=1x -2,即x =3时,等号成立. 故m 的取值X 围为(-∞,6].21.(本小题满分12分)某商场将进价为2 000元的冰箱以2 400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施,调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x 元,商场每天销售这种冰箱的利润是y 元,请写出y 与x 之间的函数表达式;(不要求写自变量的取值X 围)(2)商场要想在这种冰箱销售中每天盈利4 800元,同时又要使消费者得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?[解](1)根据题意,得y =(2400-2000-x )⎝ ⎛⎭⎪⎫8+4×x 50,即y =-225x 2+24x +3 200.(2)由题意,得-225x 2+24x +3 200=4 800, 整理得x 2-300x +20 000=0, 解得x =100或x =200,又因为要使消费者得到实惠,所以应取x =200, 所以每台冰箱应降价200元.(3)y =-225x 2+24x +3 200=-225(x -150)2+5 000, 由函数图像可知,当x =150时,y max =5 000,所以每台冰箱降价150元时,商场每天销售这种冰箱的利润最高,最高利润是5 000元.22.(本小题满分12分)已知函数y =f (x )的定义域为D ,且f (x )同时满足以下条件:①f (x )在D 上是单调递增或单调递减函数;②存在闭区间[a ,b ]D (其中a <b ),使得当x ∈[a ,b ]时,f (x )的取值集合也是[a ,b ].那么,我们称函数y =f (x )(x ∈D )是闭函数.(1)判断f (x )=-x 3是不是闭函数?若是,找出条件②中的区间;若不是,说明理由;(2)若f (x )=k +x +2是闭函数,某某数k 的取值X 围.(注:本题求解中涉及的函数单调性不用证明,直接指出是增函数还是减函数即可)[解](1)f (x )=-x 3在R 上是减函数,满足①;设存在区间[a ,b ],f (x )的取值集合也是[a ,b ],则⎩⎨⎧-a 3=b ,-b 3=a ,解得a =-1,b=1,所以存在区间[-1,1]满足②, 所以f (x )=-x 3(x ∈R )是闭函数.(2)f (x )=k +x +2是[-2,+∞)上的增函数,由题意知,f (x )=k +x +2是闭函数,存在区间[a ,b ]满足② 即:⎩⎪⎨⎪⎧k +a +2=a ,k +b +2=b .即a ,b 是方程k +x +2=x 的两根, a ,b 是方程x 2-(2k +1)x +k 2-2=0的两根. 且a ≥k ,b >k .令f (x )=x 2-(2k +1)x +k 2-2,得⎩⎪⎨⎪⎧f (k )≥0,Δ>0,2k +12>k ,解得-94<k ≤-2,所以实数k 的取值X 围为 ⎝ ⎛⎦⎥⎤-94,-2.。

2019秋高中数学 模块综合评价(一)(含解析)新人教A版必修1.doc

2019秋高中数学 模块综合评价(一)(含解析)新人教A版必修1.doc

模块综合评价(一)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若a >b ,则下列正确的是( ) A .a 2> b 2B .ac > bcC .ac 2> bc 2D .a -c > b -c解析:A 选项不正确,因为若a =0,b =-1,则不成立;B 选项不正确,c ≤0时不成立;C 选项不正确,c =0时不成立;D 选项正确,因为不等式的两边加上或者减去同一个数,不等号的方向不变.答案:D2.在△ABC 中,A =60°,a =43,b =42,则B 等于( ) A .45°或135° B .135° C .45°D .30°解析:因为A =60°,a =43,b =42, 由正弦定理a sin A =bsin B,得sin B =b sin Aa=42×3243=22. 因为a >b ,所以A >B , 所以B =45°. 答案:C3.数列1,-3,5,-7,9,…的一个通项公式为( ) A .a n =2n -1 B .a n =(-1)n +1(2n -1)C .a n =(-1)n(2n -1) D .a n =(-1)n(2n +1)解析:将a 1=1,a 2=-3,a 3=5,a 4=-7,a 5=9代入各选项中的通项公式验证,可知B 选项正确.答案:B4.若集合M ={x |x 2>4},N =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪3-x x +1>0,则M ∩N =( ) A .{x |x <-2}B .{x |2<x <3}C .{x |x <-2或x >3}D .{x |x >3}解析:由x 2>4,得x <-2或x >2, 所以M ={x |x 2>4}={x |x <-2或x >2}. 又3-xx +1>0,得-1<x <3, 所以N ={x |-1<x <3};所以M ∩N ={x |x <-2或x >2}∩{x |-1<x <3}={x |2<x <3}. 答案:B5.下列各函数中,最小值为2的是( ) A .y =x +1xB .y =sin x +1sin x ,x ∈⎝⎛⎭⎪⎫0,π2C .y =x 2+3x 2+2D .y =x -2x +3解析:A 中,当x <0时,y <0,不合题意;B 中,y =sin x +1sin x ≥2,等号成立时,sinx =1sin x ,即sin x =1,与x ∈⎝ ⎛⎭⎪⎫0,π2矛盾;C 中,y =x 2+3x 2+2=x 2+2+1x 2+2≥2,等号成立时,x 2+2=1x 2+2,得x 2=-1,不合题意;D 中,y =(x -1)2+2≥2.答案:D6.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若a cos B =b cos A ,则△ABC 是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形解析:因为a sin A =bsin B =2R ,即a =2R sin A ,b =2R sin B ,所以a cos B =b cos A 变形得:sin A cos B =sin B cos A , 整理得:sin A cos B -cos A sin B =sin(A -B )=0. 又A 和B 都为三角形的内角, 所以A -B =0,即A =B ,则△ABC 为等腰三角形. 答案:A7.若实数x ,y 满足⎩⎪⎨⎪⎧x ≤2,y ≤3,x +y ≥1,则S =2x +y -1的最大值为( )A .6B .4C .3D .2解析:作出不等式组对应的平面区域(如图阴影部分),由图可知,当目标函数过图中点(2,3)时取得最大值6.答案:A8.公差不为零的等差数列{a n }的前n 项和为S n ,若a 4是a 3与a 7的等比中项,S 8=32,则S 10等于( )A .18B .24C .60D .90解析:因为a 4是a 3与a 7的等比中项,所以a 24=a 3a 7, 即(a 1+3d )2=(a 1+2d )(a 1+6d ),整理得2a 1+3d =0.① 又因为S 8=8a 1+562d =32,整理得2a 1+7d =8.②由①②联立,解得d =2,a 1=-3, 所以S 10=10a 1+902d =60.答案:C9.在坐标平面内,不等式组⎩⎪⎨⎪⎧y ≥x -1,y ≤-3|x |+1所表示的平面区域的面积为( )A. 2B.32C.322D .2解析:该不等式组所表示的平面区域是如图所示的阴影部分,可求得A (0,1),B (0,-1),C ⎝ ⎛⎭⎪⎫12,-12,D (-1,-2),所以S △ACD =S △ABD +S △ABC =12·|AB |·|x D |+12|AB |·|x C |=32.答案:B10.已知数列{a n }满足:a 1=2,a n +1=3a n +2,则{a n }的通项公式为( ) A .a n =2n -1 B .a n =3n-1 C .a n =22n -1D .a n =6n -4解析:a n +1=3a n +2⇒a n +1+1=3(a n +1)⇒a n +1+1a n +1=3. 所以数列{a n +1}是以首项为a 1+1=3,公比为3的等比数列.所以a n +1=3×3n -1=3n,所以a n =3n-1.答案:B11.一轮船从A 点沿北偏东70°的方向行驶10海里至海岛B ,又从B 沿北偏东10°的方向行驶10海里至海岛C ,若此轮船从A 点直接沿直线行驶至海岛C ,则此船沿________方向行驶________海里至海岛C .( )A .北偏东50°;10 2B .北偏东40°;10 3C .北偏东30°;10 3D .北偏东20°;10 2解析:由已知得在△ABC 中,∠ABC =180°-70°+10°=120°,AB =BC =10,故∠BAC =30°,所以从A 到C 的航向为北偏东70°-30°=40°,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC cos ∠ABC =102+102-2×10×10×⎝ ⎛⎭⎪⎫-12=300,所以AC =10 3.答案:B12.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,若a =4,A =π3,则该三角形面积的最大值是( )A .2 2B .3 3C .4 3D .4 2解析:a 2=b 2+c 2-2bc cos A ≥2bc -bc =bc ,即bc ≤16,当且仅当b =c =4时取等号, 所以S △ABC =12bc sin A ≤12×16×sin π3=8×32=4 3.答案:C二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.若△ABC 的内角A 满足sin 2A =23,则sin A +cos A =________.解析:由sin 2A =2sin A cos A >0,可知A 是锐角,所以sin A +cos A >0,又(sin A +cos A )2=1+sin 2A =53,所以sin A +cos A =153. 答案:15314.已知a <b ∈R ,且ab =50,则|a +2b |的最小值为________.解析:因为ab =50>0,所以a 、b 同号,从而|a +2b |=|a |+2|b |≥2|a |·|2b |=22·|ab |=20,其中“=”成立的条件是⎩⎪⎨⎪⎧a =10,b =5.或⎩⎪⎨⎪⎧a =-10,b =-5. 又因为a <b ∈R ,所以a =-10,b =-5. 所以|a +2b |的最小值为20. 答案:2015.不等式组⎩⎪⎨⎪⎧y ≤-x +2,y ≤x -1,y ≥0所表示的平面区域的面积为________.解析:作出不等式组对应的区域为△BCD ,由题意知x B =1,x C =2.由⎩⎪⎨⎪⎧y =-x +2,y =x -1,得y D=12, 所以S △BCD =12×(x C -x B )×12=14.答案:1416.对于使-x 2+2x ≤M 成立的所有常数M 中,我们把M 的最小值1叫做-x 2+2x 的上确界,则函数y =2-3x -4x(x >0)的上确界为________.解析:因为x >0,所以3x +4x≥23x ·4x =43(当且仅当⎩⎪⎨⎪⎧3x =4x ,x >0,即x =233时取等号).所以y =2-3x -4x=2-⎝ ⎛⎭⎪⎫3x +4x ≤2-43,当且仅当x =233时取等号.故y 的上确界为2-4 3.答案:2-4 3三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知实数a >0,解关于x 的不等式a (x -1)x -3>1.解:原不等式可转化为[(a -1)x -(a -3)](x -3)>0. 因为a -3a -1-3=a -3-3a +3a -1=-2aa -1,且a >0, 所以当0<a <1时,a -1<0,-2a a -1>0,即a -3a -1-3>0, 所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪3<x <a -3a -1. 当a =1时,原不等式的解集为{x |x >3}.当a >1时,a -1>0,-2a a -1<0,即a -3a -1-3<0,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >3或x <a -3a -1. 18.(本小题满分12分)已知数列{a n }是公差为2的等差数列,它的前n 项和为S n ,且a 1+1,a 3+1,a 7+1成等比数列.(1)求{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫1S n 的前n 项和T n .解:(1)由题意,得a 3+1=a 1+5,a 7+1=a 1+13,所以由(a 3+1)2=(a 1+1)·(a 7+1)得(a 1+5)2=(a 1+1)·(a 1+13), 解得a 1=3,所以a n =3+2(n -1), 即a n =2n +1.(2)由(1)知a n =2n +1,则S n =n (n +2),1S n =12⎝ ⎛⎭⎪⎫1n -1n +2,T n =12⎝ ⎛⎭⎪⎫1-13+12-14+13-15+…+1n -1n +2=12⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2=34-2n +32(n +1)(n +2). 19.(本小题满分12分)小王在年初用50万元购买一辆大货车,第一年因缴纳各种费用需支出6万元,从第二年起,每年都比上一年增加支出2万元,假定该车每年的运输收入均为25万元.小王在该车运输累计收入超过总支出后,考虑将大货车作为二手车出售,若该车在第x 年年底出售,其销售价格为25-x 万元(国家规定大货车的报废年限为10年).(1)大货车运输到第几年年底,该车运输累计收入超过总支出?(2)在第几年年底将大货车出售,能使小王获得的年平均利润最大(利润=累计收入+销售收入-总支出)?解:(1)设大货车到第x 年年底的运输累计收入与总支出的差为y 万元, 则y =25x -⎣⎢⎡⎦⎥⎤6x +x (x -1)2·2-50,(0<x ≤10,x ∈N),即y =-x 2+20x -50,(0<x ≤10,x ∈N),由-x 2+20x -50>0,解得10-52<x <10+52, 而2<10-52<3,故从第3年开始运输累计收入超过总支出. (2)因为利润=累计收入+销售收入-总支出. 所以销售二手货车后,小王的年平均利润为y -=1x [y +(25-x )]=1x (-x 2+19x -25)=19-⎝⎛⎭⎪⎫x +25x ,而19-⎝⎛⎭⎪⎫x +25x ≤19-2x ·25x=9,当且仅当x =5时取得等号.即小王应当在第5年年底将大货车出售,才能使年平均利润最大.20.(本小题满分12分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且满足(2a -c )cos B =b cos C .(1)求内角B 的大小;(2)设m =(sin A ,cos 2A ),n =(4k ,1)(k >1),m·n 的最大值为5,求k 的值. 解:(1)由正弦定理及(2a -c )cos B =b cos C ,得 (2sin A -sin C )cos B =sin B cos C ,整理得2sin A cos B =sin B cos C +sin C cos B =sin(B +C )=sin A , 因为A ∈(0,π),所以sin A ≠0,故cos B =12,所以B =π3.(2)m·n =4k sin A +cos 2A =-2sin 2A +4k sin A +1,其中A ∈⎝⎛⎭⎪⎫0,2π3,设sin A =t ,t ∈(0,1], 则m·n =-2t 2+4kt +1=-2(t -k )2+1+2k 2. 由于k >1,故当t =1时,m·n 取得最大值. 由题意得-2+4k +1=5,解得k =32.21.(本小题满分12分)已知x ,f (x )2,3(x ≥0)成等差数列.又数列{a n }(a n >0)中,a 1=3 ,此数列的前n 项的和S n (n ∈N *)对所有大于1的正整数n 都有S n =f (S n -1).(1)求数列{a n }的第n +1项; (2)若b n 是1a n +1,1a n的等比中项,且T n 为{b n }的前n 项和,求T n .解:因为x ,f (x )2,3(x ≥0)成等差数列,所以f (x )2×2=x + 3.所以f (x )=(x +3)2. 因为S n =f (S n -1)(n ≥2), 所以S n =f (S n -1)=(S n -1+3)2. 所以S n =S n -1+3,S n -S n -1= 3. 所以{S n }是以3为公差的等差数列. 因为a 1=3,所以S 1=a 1=3.所以S n =S 1+(n -1)3=3+3n -3=3n . 所以S n =3n 2(n ∈N *).所以a n +1=S n +1-S n =3(n +1)2-3n 2=6n +3. (2)因为数列b n 是1a n +1,1a n的等比中项,所以(b n )2=1a n +1·1a n,所以b n =1a n +1a n=13(2n +1)·3(2n -1)=118(12n -1-12n +1).所以T n =b 1+b 2+…+b n =118[⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1]=118⎝ ⎛⎭⎪⎫1-12n +1=n9(2n +1).22.(本小题满分12分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且a 2-(b-c )2=(2-3)bc ,sin A sin B =cos 2C2.(1)求角B 的大小;(2)若等差数列{a n }的公差不为零,且a 1cos 2B =1,a 2,a 4,a 8是等比数列,求数列⎩⎨⎧⎭⎬⎫4a n a n +1的前n 项和S n .解:(1)由a 2-(b -c )2=(2-3)bc ,得a 2-b 2-c 2=-3bc ,所以cos A =b 2+c 2-a 22bc =32.因为0<A <π,所以A =π6.所以由sin A sin B =cos 2C2,得12sin B =1+cos C 2, 所以sin B =1+cos C ,所以cos C <0,则C ∈⎝ ⎛⎭⎪⎫π2,π.又因为B +C =π-A =56π,所以sin ⎝ ⎛⎭⎪⎫56π-C =1+cos C , 所以cos ⎝⎛⎭⎪⎫C +π3=-1.解得C =23π.故B =π-A -C =π6.(2)设数列{a n }的公差为d .由已知得a 1=1cos 2B =2.因为a 2,a 4,a 8是等比数列,所以a 24=a 2·a 8, 所以(a 1+3d )2=(a 1+d )(a 1+7d ), 整理,得d (d -2)=0.又因为d ≠0,所以d =2,所以a n =2n , 所以4a n a n +1=1n (n +1)=1n -1n +1,所以S n =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=n n +1.。

新教材高中数学模块综合测评含解析北师大版必修第一册

新教材高中数学模块综合测评含解析北师大版必修第一册

模块综合测评(时间:120分钟,满分150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪y =12-x ,B ={x ∈N |x 2-5x -6<0},则A ∩B 中元素的个数为( )A .0B .1C .2D .3C [因为A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪y =12-x={x |2-x >0}={x |x <2},B ={x ∈N |x 2-5x -6<0}={x ∈N |-1<x <6}={0,1,2,3,4,5},所以A ∩B ={0,1},所以A ∩B 中元素的个数为2,故选C.]2.命题“∀x ∈R ,sin x +1≥0”的否定是( ) A .∃x ∈R ,sin x +1<0 B .∀x ∈R ,sin x +1<0 C .∃x ∈R ,sin x +1≥0D .∀x ∈R ,sin x +1≤0A [把全称量词改为存在量词,并否定结论,则原命题的否定为“∃x ∈R ,sin x +1<0”,故选A.]3.已知a ,b 均为非零实数,则“ab >0且a <b ”是“1a -1b>0”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件A [由ab >0且a <b ,得1a >1b ,得1a -1b >0,反之,1a -1b>0ab >0且a <b ,反例为a >0,b <0,所以“ab >0且a <b ”是“1a -1b>0”的充分不必要条件.故选A.]4.已知函数f (x )=⎩⎪⎨⎪⎧1+log 22+x,-2<x <1,2x,x ≥1,则f (-1)+f (log 25)=( )A .3B .4C .5D .6D [因为f (-1)=1+log 2(2-1)=1,f (log 25)=2log 25=5,所以f (-1)+f (log 25)=6.]5.洛书,古称龟书,是阴阳五行术数之源,在古代传说中有神龟出于洛水,其甲壳上有此图象,结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五方白圈皆阳数,四隅黑点为阴数,其各行各列及对角线点数之和皆为15.如图,若从4个阴数中随机抽取2个数,则能使这两数与居中阳数之和等于15的概率是( )A .12B .23C .14D .13D [从4个阴数中随机抽取2个数,共有6种取法,其中满足题意的取法有两种:4,6和2,8,∴能使这2个数与居中阳数之和等于15的概率P =26=13.故选D.]6.某建材商场国庆期间搞促销活动,规定:顾客购物总金额不超过800元,不享受任何折扣;如果顾客购物总金额超过800元,则超过800元的部分享受一定的折扣优惠,并按下表的折扣率累计计算.可以享受折扣优惠的金额 折扣率 不超过500元的部分 5% 超过500元的部分10%若某顾客在此商场获得的折扣金额为50元,则该顾客购物实际所付金额为( )A .1 500元B .1 550元C .1 750元D .1 800元A [设顾客在此商场购物总金额为x 元,可以获得的折扣金额为y 元, 由题设可知y =⎩⎪⎨⎪⎧0,0<x ≤800,0.05x -800,800<x ≤1 300,0.1x -1 300+25,x >1 300,因为y =50>25,所以x >1 300,所以0.1(x -1 300)+25=50,解得x =1 550,故该顾客购物实际所付金额为1 550-50=1 500(元),故选A.]7.定义在R 上的函数f (x )满足f (x +1)=f (x ),且x ∈[0,1)时,f (x )=log 2(x +1).若a =f ⎝ ⎛⎭⎪⎫-12,b =f ⎝ ⎛⎭⎪⎫23,c =f ⎝ ⎛⎭⎪⎫43,则a ,b ,c 的大小关系是( )A .a >b >cB .b >a >cC .c >b >aD .a >c >bB [由f (x +1)=f (x )可得,a =f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫-12+1=f ⎝ ⎛⎭⎪⎫12,c =f ⎝ ⎛⎭⎪⎫43=f ⎝ ⎛⎭⎪⎫1+13=f ⎝ ⎛⎭⎪⎫13.易知函数f (x )在x ∈[0,1)上是增函数,由13<12<23,可得f ⎝ ⎛⎭⎪⎫13<f ⎝ ⎛⎭⎪⎫12<f ⎝ ⎛⎭⎪⎫23,即c <a <b ,故选B.]8.已知定义在R 上的函数f (x )满足f (-x )=f (x ),当x 1,x 2∈(-∞,0]且x 1≠x 2时,(x 2-x 1)[f (x 2)-f (x 1)]<0成立.若f (2ax )<f (2x 2+3)对任意的x ∈R 恒成立,则实数a 的取值范围为( )A .(-6,6)B .(-∞,6)C .(-∞,6)D .(6,+∞)A [∵定义在R 上的函数f (x )满足f (-x )=f (x ),∴f (x )是偶函数.∵x 1,x 2∈ (-∞,0]且x 1≠x 2时,(x 2-x 1)[f (x 2)-f (x 1)]<0成立,∴f (x )在(-∞,0]上是减函数,∴f (x )在[0,+∞)上是增函数.f (2ax )<f (2x 2+3)对任意的x ∈R 恒成立,等价于|2ax |<2x2+3对任意的x ∈R 恒成立,当x =0时,不等式成立;当x ≠0时,|a |<2x 2+32|x |=|x |+32|x |恒成立,∵|x |+32|x |≥2|x |×32|x |=6,∴|a |<6,解得-6<a < 6.故选A.]二、选择题:本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.某学校为了调查学生在一周生活方面的支出情况,抽出了一个容量为n 的样本,其频率分布直方图如图所示,其中支出在[50,60)元的学生有60人,则下列说法正确的是( )A .样本中支出在[50,60)元的频率为0.03B .样本中支出不少于40元的人数为132C .n 的值为200D .若该校有2 000名学生,则一定有600人支出在[50,60)元BC [样本中支出在[50,60)元的频率为1-(0.01+0.024+0.036)×10=0.3,故A 错误;样本中支出不少于40元的人数为0.0360.03×60+60=132,故B 正确;n =600.3=200,故C正确;若该校有2 000名学生,则可能有0.3×2 000=600人支出在[50,60)元,故D 错误.故选BC.]10.从甲袋中摸出一个红球的概率是13,从乙袋中摸出一个红球的概率是12,从两袋各摸出一个球,下列结论正确的是( )A .2个球都是红球的概率为16B .2个球不都是红球的概率为13C .至少有1个红球的概率为23D .2个球中恰有1个红球的概率为12ACD [设“从甲袋中摸出一个红球”为事件A 1,“从乙袋中摸出一个红球”为事件A 2,则P (A 1)=13,P (A 2)=12,且A 1,A 2独立.在A 中,2个球都是红球为A 1A 2,其概率为13×12=16,A 正确;在B 中,“2个球不都是红球”是“2个球都是红球”的对立事件,其概率为56,B错误;在C 中,2个球中至少有1个红球的概率为1-P (A -)P (B -)=1-23×12=23,C 正确;2个球中恰有1个红球的概率为13×12+23×12=12,D 正确.故选ACD.]11.若f (x )是奇函数,则下列说法正确的是( ) A .|f (x )|一定是偶函数 B .f (x )·f (-x )一定是偶函数 C .f (x )·f (-x )≥0 D .f (-x )+|f (x )|=0AB [∵f (x )是奇函数,∴f (-x )=-f (x ).A 中,|f (-x )|=|-f (x )|=|f (x )|,∴|f (x )|是偶函数,故A 正确;B 中,令g (x )=f (x )·f (-x ),则g (-x )=f (-x )·f (x )=g (x ),∴f (x )·f (-x )是偶函数,故B 正确;C 中,f (x )·f (-x )=-[f (x )]2≤0,故C 错误;D 中,f (-x )+|f (x )|=|f (x )|-f (x )=0不一定成立,故D 错误.故选AB.]12.关于函数f (x )=x 2-x 4|x -1|-1,下列描述正确的是( )A .f (x )的定义域为[-1,0)∪(0,1]B .f (x )的值域为(-1,1)C .f (x )在定义域上是增函数D .f (x )的图象关于原点对称ABD [由题设有⎩⎪⎨⎪⎧|x -1|-1≠0,x 21-x 2≥0,解得-1≤x <0或0<x ≤1,故函数的定义域为[-1,0)∪(0,1],故A 正确.当x ∈[-1,0)∪(0,1]时,f (x )=|x |1-x2-x,此时f (-x )=-f (x ),所以f (x )为[-1,0)∪(0,1]上的奇函数,故其图象关于原点对称,故D 正确.f (x )=⎩⎨⎧1-x 2,x ∈[-1,0,-1-x 2,x ∈0,1],当x ∈[-1,0)时,0≤f (x )<1;当x ∈(0,1]时,-1<f (x )≤0,故f (x )的值域为(-1,1),故B 正确.由f (-1)=f (1)=0可得f (x )不是定义域上的增函数,故C 错误.故选ABD.]三、填空题:本大题共4小题,每小题5分,共20分.将答案填在题中的横线上. 13.某高中共有学生900人,其中高一年级240人,高二年级260人,为做某项调查,拟采用分层随机抽样法抽取容量为45的样本,则在高三年级抽取的人数是________.20 [高三年级的人数为900-240-260=400,所以在高三抽取的人数为45900×400=20.]14.在如图所示的图形中,每个三角形上各有一个数字,若六个三角形上的数字之和为20,则称该图形是“和谐图形”.已知其中四个三角形上的数字之和为14.现从1,2,3,4,5中任取两个数字标在另外两个三角形上,则恰好使该图形为“和谐图形”的概率为________.15[由题意,可知若该图形为“和谐图形”,则另外两个三角形上的数字之和恰为20-14=6.从1,2,3,4,5中任取两个数字的所有情况有(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10种,而其中数字之和为6的情况有(1,5),(2,4),共2种,所以所求概率P =15.]15.已知函数f (x )=log 2(x 2+1-x ),若对任意的正数a ,b ,满足f (a )+f (3b -1)=0,则3a +1b的最小值为________.12 [因为x 2+1-x >x 2-x ≥x -x =0,所以函数f (x )的定义域为R .因为f (-x )=log 2(x 2+1+x )=-f (x ),所以f (x )为奇函数.又f (a )+f (3b -1)=0,所以f (a )=f (1-3b ),a =1-3b ,即a +3b =1,所以3a +1b=⎝ ⎛⎭⎪⎫3a +1b (a +3b )=9b a +a b +6.因为9b a +ab≥29b a ·a b =6⎝ ⎛⎭⎪⎫当且仅当a =12,b =16时,等号成立,所以3a +1b ≥12.] 16.已知λ∈R ,函数f (x )=⎩⎪⎨⎪⎧x -4,x ≥λ,x 2-4x +3,x <λ.当λ=2时,不等式f (x )<0的解集是________.若函数f (x )恰有2个零点,则λ的取值范围是________.(1,4) (1,3]∪(4,+∞) [若λ=2,则当x ≥2时,令x -4<0,得2≤x <4;当x <2时,令x 2-4x +3<0,得1<x <2,综上可知1<x <4,所以当λ=2时,不等式f (x )<0的解集为(1,4).令x -4=0,解得x =4;令x 2-4x +3=0,解得x =1或x =3.因为函数f (x )恰有2个零点,结合函数的图象(图略)可知1<λ≤3或λ>4.]四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)已知集合A ={x |x 2+2x -3≤0},B ={x |x 2-2mx +m 2-4≤0,x ∈R ,m ∈R }.(1)若A ∩B =[0,1],求实数m 的值; (2)若A ⊆∁R B ,求实数m 的取值范围.[解] 集合A ={x |-3≤x ≤1},B ={x |m -2≤x ≤m +2,m ∈R }. (1)因为A ∩B =[0,1], 所以m -2=0且m +2≥1, 解得m =2.(2)∁R B ={x |x <m -2或x >m +2,m ∈R },由于A ⊆∁R B ,从而m -2>1或m +2<-3,解得m >3或m <-5, 故m 的取值范围是(-∞,-5)∪(3,+∞).18.(本小题满分12分)p :函数y =lg(-x 2+4ax -3a 2)(a >0)有意义,q :实数x 满足x -3x -2<0.(1)当a =1时,若p ,q 都是真命题,求实数x 的取值范围; (2)若q 是p 的充分不必要条件,求实数a 的取值范围. [解] (1)由-x 2+4ax -3a 2>0得x 2-4ax +3a 2<0, 即(x -a )(x -3a )<0,其中a >0, 得a <x <3a ,a >0,则p :a <x <3a ,a >0. 若a =1,则p :1<x <3. 由x -3x -2<0得2<x <3, 即q :2<x <3.因为p ,q 都是真命题,所以⎩⎪⎨⎪⎧ 1<x <3,2<x <3,解得2<x <3,所以实数x 的取值范围是(2,3). (2)因为q 是p 的充分不必要条件, 所以(2,3)是(a,3a )的真子集.所以⎩⎪⎨⎪⎧3a ≥3,a ≤2,且3a =3,a =2不能同时成立,解得1≤a ≤2,故实数a 的取值范围为[1,2].19.(本小题满分12分)已知a >2,函数f (x )=log 4(x -2)-log 4(a -x ). (1)求f (x )的定义域;(2)当a =4时,求不等式f (2x -5)≤f (3)的解集.[解] (1)由题意得⎩⎪⎨⎪⎧x -2>0,a -x >0,解得⎩⎪⎨⎪⎧x >2,x <a .因为a >2,所以2<x <a , 故f (x )的定义域为(2,a ).(2)因为a =4,所以f (2x -5)=log 4(2x -7)-log 4(9-2x ),f (3)=log 41-log 41=0. 因为f (2x -5)≤f (3),所以log 4(2x -7)-log 4(9-2x )≤0, 即log 4(2x -7)≤log 4(9-2x ), 从而⎩⎪⎨⎪⎧2x -7>0,9-2x >0,2x -7≤9-2x ,解得72<x ≤4,故不等式f (2x -5)≤f (3)的解集为⎝ ⎛⎦⎥⎤72,4. 20.(本小题满分12分)为了了解甲、乙两个工厂生产的轮胎的宽度是否达标,分别从两厂随机选取了10个轮胎,将每个轮胎的宽度(单位:mm)记录下来并绘制出折线图:(1)分别计算甲、乙两厂提供10个轮胎宽度的平均值; (2)若轮胎的宽度在[194,196]内,则称这个轮胎是标准轮胎.①若从甲厂提供的10个轮胎中随机选取1个,求所选的轮胎是标准轮胎的概率; ②试比较甲、乙两厂分别提供的10个轮胎中所有标准轮胎宽度的方差的大小,根据两厂的标准轮胎宽度的平均水平及其波动情况,判断这两个工厂哪个厂的轮胎相对更好.[解] (1)甲厂这批轮胎宽度的平均值为x -甲=195+194+196+193+194+197+196+195+193+19710=195(mm).乙厂这批轮胎宽度的平均值为 x -乙=195+196+193+192+195+194+195+192+195+19310=194(mm).(2)甲厂这批轮胎宽度在[194,196]内的数据为195,194,196,194,196,195. ①所选的轮胎是标准轮胎的概率P =610=35.②甲厂标准轮胎宽度的平均数为195,方差为23.乙厂这批轮胎宽度在[194,196]内的数据为195,196,195,194,195,195,平均数为195,方差为13.由于两厂标准轮胎宽度的平均数相等,但乙的方差较小,所以乙厂的轮胎相对更好. 21.(本小题满分12分)某水果经销商销售某种水果,售价为每千克25元,成本为每千克15元.销售宗旨是当天进货当天销售.如果当天卖不出去,未售出的全部降价以每千克10元处理完.根据以往的销售情况,按[0,100),[100,200),[200,300),[300,400),[400,500]进行分组,得到如图所示的频率分布直方图.(1)根据频率分布直方图计算该种水果日需求量的平均数x -(同一组中的数据用该组区间中点值代表);(2)该经销商某天购进了250千克该种水果,假设当天的需求量为x 千克(0≤x ≤500),利润为y 元.求y 关于x 的函数关系式,并结合频率分布直方图估计利润y 不小于1 750元的概率.[解] (1)x -=50×0.001 0×100+150×0.002 0×100+250×0.003 0×100+350×0.002 5×100+450×0.001 5×100=265.故该种水果日需求量的平均数为265千克.(2)当日需求量不低于250千克时,利润y =(25-15)×250=2 500(元),当日需求量低于250千克时,利润y =(25-15)x -(250-x )×5=15x -1 250(元),所以y =⎩⎪⎨⎪⎧15x -1 250,0≤x <250,2 500,250≤x ≤500.由y ≥1 750,得200≤x ≤500, 所以P (y ≥1 750)=P (200≤x ≤500)=0.003 0×100+0.002 5×100+0.001 5×100=0.7. 故估计利润y 不小于1 750元的概率为0.7.22.(本小题满分12分)已知函数f (x )=ax 2-4x +2,函数g (x )=⎝ ⎛⎭⎪⎫13f (x ).(1)若函数f (x )在(-∞,2]和[2,+∞)上的单调性相反,求f (x )的解析式;(2)若a <0,不等式g (x )≤9在x ∈⎝ ⎛⎦⎥⎤0,12上恒成立,求a 的取值范围; (3)已知a ≤1,若函数y =f (x )-log 2x8在区间[1,2]内有且只有一个零点,试确定实数a的范围.[解] (1)由题意知,函数f (x )=ax 2-4x +2为二次函数, 其图象的对称轴为直线x =--42a =2,解得a =1,所以f (x )=x 2-4x +2.(2)依题意得⎝ ⎛⎭⎪⎫13f (x )≤9=⎝ ⎛⎭⎪⎫13-2,即⎝ ⎛⎭⎪⎫13ax 2-4x +2≤⎝ ⎛⎭⎪⎫13-2在x ∈⎝ ⎛⎦⎥⎤0,12上恒成立,转化为ax 2-4x +2≥-2在x ∈⎝ ⎛⎦⎥⎤0,12上恒成立,即ax 2-4x +4≥0在x ∈⎝ ⎛⎦⎥⎤0,12上恒成立,转化为a ≥4x -4x 2=4x -4x 2在x ∈⎝ ⎛⎦⎥⎤0,12上恒成立. 令1x=t (t ≥2),则问题可转化为a ≥4t -4t 2在t ∈[2,+∞)上恒成立,即a ≥(4t -4t 2)max (t ∈[2,+∞)),所以a ≥-8,所以a 的取值范围是[-8,0). (3)y =f (x )-log 2x8=ax 2-4x +5-log 2x ,设r (x )=ax 2-4x +5,s (x )=log 2x (x ∈[1,2]),则由题意知函数r (x )与s (x )的图象在区间[1,2]内有唯一交点.当a =0时,r (x )=-4x +5在[1,2]上为减函数,s (x )=log 2x 在[1,2]上为增函数, 且r (1)=1>s (1)=0,r (2)=-3<s (2)=1,所以函数r (x )与s (x )的图象在区间[1,2]内有唯一的交点.当a <0时,r (x )的图象开口向下,对称轴为直线x =2a<0,所以r (x )在[1,2]上为减函数, 又s (x )=log 2x 在[1,2]上为增函数, 由题意知,需⎩⎪⎨⎪⎧r 1≥s 1,r2≤s 2,得⎩⎪⎨⎪⎧a +1≥0,4a -3≤1,得-1≤a ≤1,所以-1≤a <0.当0<a ≤1时,r (x )的图象开口向上,对称轴为直线x =2a≥2,所以r (x )在[1,2]上为减函数, 又s (x )=log 2x 在[1,2]上为增函数,由题意知,需⎩⎪⎨⎪⎧r1≥s 1,r 2≤s 2,得⎩⎪⎨⎪⎧a +1≥0,4a -3≤1,得-1≤a ≤1,所以0<a ≤1.综上,a 的取值范围为[-1,1].。

2020-2021学年新教材北师大版数学必修第一册模块综合测评 Word版含解析

2020-2021学年新教材北师大版数学必修第一册模块综合测评 Word版含解析

模块综合测评(时间:120分钟,满分150分)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={1,2,6},B={2,4},C={x∈R|-1≤x≤5},则(A∪B)∩C=()A.{2}B.{1,2,4}C.{1,2,4,6} D.{x∈R|-1≤x≤5}B[由题意知A∪B={1,2,4,6},所以(A∪B)∩C={1,2,4}.]2.函数y=x2-5x-6在区间[2,4]上是( )A.递减函数B.递增函数C.先递减再递增函数 D.先递增再递减函数C[作出函数y=x2-5x-6的图象(图略)知图象开口向上,且对称轴为x=错误!,在[2,4]上先减后增.故选C。

]3.函数f (x)=错误!的定义域为( )A.(-1,0)∪(0,1] B.(-1,1]C.(-4,-1]D.(-4,0)∪(0,1]A[由错误!得-1<x〈0或0〈x≤1,所以函数f (x)的定义域为(-1,0)∪(0,1],故选A。

]4.当前,国家正分批修建经济适用房以解决低收入家庭住房紧张问题,已知甲、乙、丙三个社区现分别有低收入家庭360户、270户、180户,若第一批经济适用房中有90套住房用于解决这三个社区中90户低收入家庭的住房问题,先采用分层抽样的方法决定各社区户数,则应从甲社区中抽取低收入家庭的户数为()A.40 B.30C.20 D.36A[由题意,每个个体抽到的概率为错误!=错误!,其中甲社区有360户低收入家庭,所应从甲社区抽取低收入家庭的户数为360×错误!=40户.]5.2019年10月1日在庆祝中华人民共和国成立70周年大阅兵的徒步方队中,被誉为“最强大脑"的院校科研方队队员分别由军事科学院、国防大学、国防科技大学三所院校联合抽组,已知军事科学院的甲、乙、丙三名同学被选上的概率分别为错误!,错误!,错误!,这三名同学中至少有一名同学被选上的概率为( )A.错误!B.错误!C.错误!D.错误!C[由题知三名同学都没有被选上的概率为错误!×错误!×错误!=错误!,所以这三名同学中至少有一名同学被选上的概率为1-错误!=错误!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学必修一模块综合检测(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U={x|x<6,且x∈N*},集合A={1,3},B={3,5},则∁U(A∪B)等于()A.{1,4}B.{1,5}C.{2,4}D.{2,5}U={1,2,3,4,5},A∪B={1,3,5},故∁U(A∪B)={2,4}.2.函数y=-1+lo x(x≥4)的值域是()A.(-∞,-2]B.(-∞,0]C.[-2,+∞)D.[2,+∞)函数y=-1+lo x在[4,+∞)上单调递减,∴y≤-1+lo4=-2,∴所求函数的值域为(-∞,-2].3.函数y=--的定义域为()A.(-∞,0]B.[1,+∞)C.[0,1)D.[0,1)∪(1,+∞)--解得x≥0,且x≠1.故函数定义域为[0,1)∪(1,+∞).4.下列函数中,在区间(0,+∞)内是增函数的是()A.y=x2-2xB.y=C.y=logπxD.y=-A,函数y=x2-2x在区间(0,1)内递减,在(1,+∞)内递增,故A不正确,B,D在(0,+∞)内为减函数;对于C,因为π>1,所以y=logπx在(0,+∞)内为增函数.5.函数f(x)=e x-的零点所在的区间是()A. B. C. D.f-2<0,f(1)=e-1>0,∴f·f(1)<0,∴函数f(x)=e x-的零点所在的区间是.6.设a=70.3,b=0.37,c=log70.3,则a,b,c的大小关系是()A.a<b<cB.c<b<aC.c<a<bD.b<c<aa=70.3>1,0<b=0.37<1,c=log70.3<0,∴c<b<a.7.已知函数f(x)是定义在R上的偶函数,当x<0时,y=f(x)是减函数,若|x1|<|x2|,则()A.f(x1)-f(x2)<0B.f(x1)-f(x2)>0C.f(x1)+f(x2)<0D.f(x1)+f(x2)>0f(x)是定义在R上的偶函数,∴f(x)的图象关于y轴对称.又当x<0时,y=f(x)是减函数,∴当x>0时,y=f(x)是增函数.∴当|x1|<|x2|时,f(|x1|)<f(|x2|),即f(x1)<f(x2),即f(x1)-f(x2)<0.8.已知一次函数f(x)=kx+b的图象过第一、第二、第三象限,且f(f(x))=9x+8,则f(2)等于()A.-10B.-4C.2D.8f(x)=kx+b,∴f(f(x))=k(kx+b)+b=k2x+kb+b.又f(f(x))=9x+8,∴解得或--∴f(x)=3x+2或f(x)=-3x-4.又f(x)的图象过第一、二、三象限,∴f(x)=3x+2,∴f(2)=8.9.已知函数f(x)=a x,g(x)=log a x(a>0,且a≠1).若f(1)g(2)<0,则f(x)与g(x)在同一坐标系内的图象可能是()f(1)=a>0,f(1)g(2)<0,∴g(2)<0,∴0<a<1.∴f(x)与g(x)在定义域内都为减函数,故选C.10.给出下列集合A到集合B的几种对应:其中,是从A到B的映射的有()A.①②B.①②③C.①②④D.①②③④,③中集合A中的元素a对应集合B中的两个元素x,y,则此对应不是映射;④中集合A中的元素b在集合B中没有对应元素,则此对应也不是映射.仅有①②符合映射的定义,故①②是映射.11.某企业去年销售收入1 000万元,年成本为生产成本500万元与年广告成本200万元两部分.若年利润必须按p%纳税,且年广告费超出年销售收入2%的部分也按p%纳税,其他不纳税.已知该企业去年共纳税120万元,则税率p%为()A.10%B.12%C.25%D.40%300万元,纳税300·p%万元,年广告费超出年销售收入2%的部分为200-1 000×2%=180(万元),纳税180·p%万元,共纳税300·p%+180·p%=120(万元),故p%=25%.12.如果函数f(x)对其定义域内的任意两个实数x1,x2都满足不等式f,那么称函数f(x)在定义域上具有性质M.给出函数:①y=;②y=x2;③y=2x;④y=log2x.其中具有性质M的是() A.①② B.②③ C.③④ D.①④,可知函数y=与函数y=log2x满足f;函数y=x2与函数y=2x满足f.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.若幂函数f(x)的图象过点(3,),则f(x)的解析式是.f(x)=xα,则由已知得3α=,∴α=,∴f(x)=.(x)=14.已知集合A={-1,3,6m-9},集合B={3,m2},若B⊆A,则实数m=.m2=6m-9,∴(m-3)2=0,∴m=3.15.已知f(x)=-则f(f(1))=.f(1)=-2,∴f(f(1))=f(-2)=(-2)2+1=5.16.已知函数f(x)是定义在R上的奇函数,并且当x∈(0,+∞)时,f(x)=1+ln x,则当x<0时,f(x)=.t<0,则-t>0.∵当x∈(0,+∞)时,f(x)=1+ln x,∴f(-t)=1+ln(-t).又f(x)是定义在R上的奇函数,∴-f(t)=1+ln(-t),∴f(t)=-1-ln(-t).∴当x<0时,f(x)=-1-ln(-x).1-ln(-x)三、解答题(本大题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤)17.(10分)计算下列各式的值:(1)---;(2)log3+lg 25+lg 4++(-9.8)0.原式=----+1-1=2×-=2.(2)原式=log3+lg 100+2+1=+2+2+1=.18.(12分)设全集是实数集R,集合A={x|y=log a(x-1)+-},B={x|2x+m≤0}.(1)当m=-4时,求A∩B和A∪B;(2)若(∁R A)∩B=B,求实数m的取值范围.由--得1<x≤3,即集合A=(1,3];由2x-4≤0,得2x≤22,x≤2,即集合B=(-∞,2].故A∩B=(1,2],A∪B=(-∞,3]. (2)由(1)得∁R A={x|x>3,或x≤1}.∵(∁R A)∩B=B,∴B⊆∁R A.①若B=⌀,则m≥0;②若B≠⌀,则m<0,∴2x≤-m.∴x≤log2(-m).∵B⊆∁R A,∴log2(-m)≤1,即log2(-m)≤log22,因此0<-m≤2,-2≤m<0.综上所述,实数m的取值范围是[-2,+∞).19.(12分)某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y(单位:万元)与年产量x(单位:吨)之间的函数关系式可以近似地表示为y=-48x+8 000,已知此生产线年产量最大为210吨.(1)求年产量为多少吨时,其生产的总成本最低?最低成本是多少?(2)如果每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?由y=-48x+8 000=(x-120)2+5 120(0≤x≤210),所以当年产量为120吨时,其生产的总成本最低,最低成本为5 120万元.(2)设该工厂年获得总利润为f(x)万元,则f(x)=40x-y=40x-+48x-8 000=-+88x-8 000=-(x-220)2+1 680(0≤x≤210).因为f(x)在[0,210]上是增函数,所以当x=210时,f(x)有最大值为-(210-220)2+1 680=1 660.故当年产量为210吨时,可获得最大利润1 660万元.20.(12分)设f(x)=lo--为奇函数,a为常数.(1)求a的值;(2)证明f(x)在区间(1,+∞)内单调递增;(3)若对于区间[3,4]上的每一个x的值,不等式f(x)>+m恒成立,求实数m的取值范围.∵f(-x)=-f(x),∴lo--=-lo--=lo--.∴----,即(1+ax)(1-ax)=-(x+1)(x-1),∴a=-1.(2)由(1)可知f(x)=lo-.任取x1>x2>1,则f(x1)-f(x2)=lo--lo-=lo--.由x1>x2>1易知(x1+1)(x2-1)>0,(x1-1)·(x2+1)>0,现比较--与1的大小.---1=----=--<0,所以0<--<1,lo-->0,即f(x1)>f(x2).故f(x)在区间(1,+∞)内单调递增.(3)设g(x)=lo-,则g(x)在[3,4]上为增函数.∴g(x)>m对x∈[3,4]恒成立, ∴m<g(3)=-.∴实数m的取值范围是m<-.21.(12分)已知函数f(x)是定义在[-1,1]上的奇函数,若当x,y∈[-1,1],x+y≠0时,有(x+y)·[f(x)+f(y)]>0.(1)比较f与f的大小;(2)判断f(x)的单调性,并加以证明;(3)解不等式f<f(1-2x).令x=,y=-,因为-≠0,由-->0,得f>-f-,所以f>f.(2)f(x)在[-1,1]上是增函数.证明如下:在[-1,1]上任取x1,x2,且x1<x2,则x2-x1>0.由题意(x2-x1)[f(x2)+f(-x1)]>0,因为f(x)为奇函数,所以(x2-x1)[f(x2)-f(x1)]>0.所以f(x2)-f(x1)>0,即f(x2)>f(x1).所以f(x)在[-1,1]上是增函数.(3)由(2)知,f(x)在[-1,1]上是增函数,所以----解得0≤x<.即不等式f<f(1-2x)的解集为.22.(12分)(1)当m为何值时,f(x)=x2+2mx+3m+4.①有且仅有1个零点?②有2个零点,且均比-1大?(2)若函数F(x)=|4x-x2|+a有4个零点,求实数a的取值范围.①若函数f(x)=x2+2mx+3m+4有且仅有1个零点,则等价于Δ=4m2-4(3m+4)=0,即4m2-12m-16=0,即m2-3m-4=0,解得m=4或m=-1.②设2个零点分别为x1,x2,且x1>-1,x2>-1,x1≠x2,则x1+x2=-2m,x1·x2=3m+4,故只需-⇔ ----⇔-或-故m的取值范围是-5<m<-1.(2)若F(x)=|4x-x2|+a有4个零点,即|4x-x2|+a=0有4个实数根,即|4x-x2|=-a有4个实数根.令g(x)=|4x-x2|,h(x)=-a.则在同一坐标系中作出g(x)和h(x)的图象,如图所示.由图象可知要使|4x-x2|=-a有4个实数根,则需g(x)的图象与h(x)的图象有4个交点, 故0<-a<4,即-4<a<0.所以实数a的取值范围为-4<a<0.。

相关文档
最新文档