沪科版九年级数学上册24.1《比例线段》教案5

合集下载

沪科版数学九年级上册22.1《比例线段》教学设计5

沪科版数学九年级上册22.1《比例线段》教学设计5

沪科版数学九年级上册22.1《比例线段》教学设计5一. 教材分析《比例线段》是沪科版数学九年级上册第22.1节的内容,主要讲述了比例线段的定义、性质和应用。

通过本节课的学习,学生能够理解比例线段的含义,掌握比例线段的性质,并能运用比例线段解决一些实际问题。

教材通过丰富的实例和练习,帮助学生逐步掌握比例线段的知识,培养学生的数学思维能力和解决问题的能力。

二. 学情分析九年级的学生已经具备了一定的数学基础,对线段的概念和性质有一定的了解。

但在比例线段的学习上,学生可能对比例线段的定义和性质理解不够深入,对比例线段的运用能力和解决实际问题的能力有待提高。

因此,在教学过程中,教师需要关注学生的认知水平,通过合适的教学方法激发学生的学习兴趣,引导学生主动探索和思考,提高学生的数学素养。

三. 教学目标1.知识与技能目标:使学生理解比例线段的定义,掌握比例线段的性质,能够运用比例线段解决一些实际问题。

2.过程与方法目标:通过观察、操作、探究等活动,培养学生的数学思维能力和解决问题的能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和勇于探索的精神。

四. 教学重难点1.重点:比例线段的定义和性质。

2.难点:比例线段的运用和解决实际问题。

五. 教学方法1.情境教学法:通过设置情境,引发学生的思考,激发学生的学习兴趣。

2.问题驱动法:提出问题,引导学生主动探究,培养学生的解决问题能力。

3.合作学习法:学生进行小组讨论和合作,培养学生的团队合作意识。

4.实践操作法:引导学生动手操作,加深对比例线段的理解。

六. 教学准备1.教学课件:制作精美的教学课件,帮助学生直观地理解比例线段的概念和性质。

2.教学素材:准备一些与比例线段相关的实例和练习题,供课堂练习和巩固使用。

3.教学工具:准备尺子、直尺等测量工具,方便学生进行实践操作。

七. 教学过程1.导入(5分钟)利用实例引入比例线段的概念,激发学生的学习兴趣。

沪科版数学九年级上册22.1《比例线段》(第1课时)教学设计

沪科版数学九年级上册22.1《比例线段》(第1课时)教学设计

沪科版数学九年级上册22.1《比例线段》(第1课时)教学设计一. 教材分析《比例线段》是沪科版数学九年级上册第22.1节的内容,主要介绍了比例线段的定义、性质和应用。

通过学习比例线段,学生能够理解和掌握比例线段的概念,能够运用比例线段解决实际问题,为后续学习相似三角形和勾股定理等内容打下基础。

二. 学情分析九年级的学生已经学习了平面几何的基本概念和性质,具备一定的逻辑思维能力和空间想象能力。

但是,对于比例线段这一概念,学生可能较为陌生,需要通过具体的实例和操作来理解和掌握。

同时,学生可能对于比例线段的性质和应用有一定的困难,需要通过大量的练习和实际问题来巩固和提高。

三. 教学目标1.知识与技能:学生能够理解比例线段的定义,掌握比例线段的性质,能够运用比例线段解决实际问题。

2.过程与方法:学生能够通过观察、操作、思考、交流等过程,培养自己的逻辑思维能力和空间想象能力。

3.情感态度与价值观:学生能够积极参与课堂活动,克服困难,自主学习,增强对数学的兴趣和自信心。

四. 教学重难点1.重点:比例线段的定义和性质。

2.难点:比例线段的运用和实际问题的解决。

五. 教学方法1.情境教学法:通过具体的实例和实际问题,引发学生的兴趣和思考,帮助学生理解和掌握比例线段的概念和性质。

2.操作教学法:通过学生的实际操作和观察,培养学生的空间想象能力和逻辑思维能力。

3.互助合作学习法:通过小组讨论和合作,促进学生之间的交流和互助,提高学生的学习效果。

六. 教学准备1.教学课件:制作相应的教学课件,展示比例线段的实例和实际问题。

2.教学素材:准备一些实际问题和相关练习题,用于巩固和拓展学生的知识。

3.教学工具:准备直尺、三角板等工具,用于学生的实际操作。

七. 教学过程1.导入(5分钟)教师通过展示一些实际问题,引发学生的兴趣和思考,引入比例线段的概念。

例如,展示两辆车的速度和时间的关系,让学生观察和思考它们之间的比例关系。

沪科版九上24.1《比例线段》word教案

沪科版九上24.1《比例线段》word教案

比例线段导学案(第一课时)1、复习巩固线段的比及其求值;2、学习理解成比例线段、比例项、比例的外项、比例的内项、比例的中项的定认识理解成比例线段中的项、外项、内项、中项等含义;学习过程:(一)知识回顾——开启记忆之门!1、教室的黑板长4.5米,宽150厘米,长与宽的比是2、正方形ABCD中AB:BC=3、将线段AB延长到点C,使BC=2AB,那么(1)AB :BC=___________(2)AC:AB=_________回答:上述各题中比例前项分别是___________,比例后项分别是_____________4、如图,在△ABC中,D,E分别为AB边和AC边上的点,AD=12,DB=6,AE=10,EC=5,问:线段AD与AE的比、DB与EC的比、AB与AC的比各是多少?它们相等吗?(二)自主探究——相信自己肯定行!1、快速运转你的大脑,并带着下列问题阅读课本:(1)什么是成比例线段(,,,a b c d),以及如何进行表示?(2)其中:____________是比例的项;______________是比例的外项;____________是比例的内项。

(3)当___________________时,______________称做______________的比例中项。

[跟踪训练]:1、如果23x y =,并回答第1题中的相关问题。

2、若a 、b 、c 、d 成比例,a=1,b=3,c=5,则d=3、试一试(小组合作学习) 试用解分式方程的方法,将a c b d=化简成为整式的形式。

环节小结:比例的基本性质:如果 ,那么 。

也就是说: 。

4、合作释疑[温馨提示]比例的基本性质中:若(,,,0a c ad bc a b c d b d==都不为),那么。

疑问:(1)为什么,,,a b c d 都不为0?(2)a d b c 与,与可否交换位置?(3)等积式ad=bc(a,b,c,d 都不为0),可以改写成的比例式有 个,分别是:5 、小试牛刀:(1)2a=3b,问a:b=(2)a:2=b:3,则a:b=(3)把mn=pq ,写成比例式,写错误的是( )A 、n q p m =B 、q n m p =C 、p n m q =D 、qp n m = (4)线段a 、b 、c 、d 长度如下:①10,15,8,12====d c b a②5,8.19,14,7====d c b a③3.0=dcb=a,9=,4,2.1=以上三组数据能构成比例线段的有(三)试一试:课本P27 例1 (活动方式:小组合作谈讨解决。

《 比例线段》word教案 (公开课获奖)2022沪科版 (9)

《 比例线段》word教案 (公开课获奖)2022沪科版 (9)

课题:24.1比例线段教学目的1. 了解线段的比和成比例线段的概念,知道两条线段的比与所采用的度量单位无关;2. 理解并掌握比例的基本性质,了解比例中项的概念;3. 了解黄金分割,能利用比例的基本性质解决一些简单的问题教学重点 比例性质及有关计算 黄金分割 教学难点比例性质的应用[单击此处输入知识重点] 教学过程设计意图 ::a ma b m n b n== 如果a cb d=,那么这四条线段成比例线段,简称比例线段。

比例性质:如果a cb d =,那么ad bc =。

如果a b b c=时,2b ac =。

b 叫作a,c 的比例中项。

课堂练习:1. 已知点c 在线段AB 上,且AC :CB =2:3,求AB :AC 的比值。

2. 已知线段a =4cm,b =9cm,求a ,b 的比例中项。

3. 如图,在Rt △ABC 中,∠C =30°,AB =1,求,,AB AB BCAC BC AC的值。

例1:如图,已知AB =m ,点C 在线段AB 上,并且AC BCAB AC=,求让学生知道线段的比与长度采用的单位无关,但度量单位要一致ABC线段AC 的长。

如点把C 线段分成两条线段,使AC BCAB AC=,那么点C 叫作线段AB 的黄金分割点,AC 与AB 的比叫做黄金比。

例2:已知(0)a c k b d b d ==+≠,试说明a ck b d+=+。

练习:已知a c b d =,说明,.a b c d a b c d b d b d++--==小结与作业课堂小结比例的性质,黄金分割的应用本课作业1.课本习题 12.通过各种途径,搜寻黄金分割的应用课后随笔(课堂设计理念,实际教学效果及改进设想)有理数的乘法和除法教学目标:1、了解有理数除法的意义,理解有理数的除法法则,会进行有理数的除法运算,会求有理数的倒数。

2、通过实例,探究出有理数除法法则。

会把有理数除法转化为有理数乘法,培养学生的化归思想。

沪科版九年级数学上册教案《比例线段》

沪科版九年级数学上册教案《比例线段》

《比例线段》教材分析本节是上海科技版义务教育教科书《数学》九年级上册第二十二章《相似形》的第1节《比例线段》的教学内容,主要研究相似的定义和性质。

成比例线段,平分线分线段成比例的有关知识.本节内容是在学生学习了全等三角形的有关知识以后深入研究一般的相似相关知识,相似是全等的拓展.首先由生活中的相似图形引出相似形的定义,再由相似比引出线段的比例关系,然后拓展到比例性质关系,最后得到平行线段定理,由本节内容研究图形的相似,成比例线段,体现了从特殊到一般的的证明思想.教学目标【知识与能力目标】理解并掌握相似形的定义,相似比的概念,比例性质,平行线分线段成比例定理及其推论【过程与方法】在对性质的探究中,学生经历“观察--猜想———论证———归纳”的过程,培养学生主动探究的态度,并能体会类比的数学思想,提高分析问题和解决问题的能力。

【情感态度与价值观】体会特殊到一般的认知规律,通过合作交流,提高解决问题的能力,树立自信心教学重难点【教学重点】成比例线段,比例线段的性质。

【教学难点】比例性质的推导,应用。

课前准备多媒体课件、教具等.教学过程请找出形状相同的图形实际生活中我们经常会看到许多形状相同的图形。

【设计意图】:从生活中的实际图形出发,直观感受相似。

六边形ABCDEF 与六边形 111111F E D C B A 是形状相同的图形;其中∠A 与1A ∠ ,∠B 与 1B ∠ , ∠C 与1C ∠ , ∠D 与 1D ∠ , ∠E 与 1E ∠ ,∠F 与1F ∠ 对应相等,称为对应角;AB 与 11B A , BC 与11C B ,CD 与11D C , DE 与 11E D ,EF 与11F E ,FA 与 11A F 的比都相等, 称为对应边.(2)正方形ABCD 与正方形EFGHA BC DEFA 1B 1C 1D 1E 1F 1由于正方形的每个角都是直角,所以︒=∠=∠︒=∠=∠︒=∠=∠︒=∠=∠90,90,90,90H D G C F B E A由于正方形四边相等,所以HE DAGH CD FG BC EF AB ===一般地,两个边数相同的多边形,如果它们的对应角相等、对应边长度的比相等,那么这两个多边形叫做相似多边形。

沪科版九年级数学上册241《比例线段》教案3.doc

沪科版九年级数学上册241《比例线段》教案3.doc

第三课时比例的性质 ( 二 )教学目的:1、能熟记比例的基本性质、合分比性质和等比性质. 及黄金分割2、能应用上述性质解决有关实际问题. 以及黄金分割的应用3、此外,通过结合图形,运用比例的性质来证明有关问题,培养学生数形相结合的思想和逻辑推理的能力 .重点:比例的性质应用及黄金分割难点:比例变形的书写 . 及黄金分割教学过程:一、复习引入:⑴、四条线段 m、n、p、q 在什么情况下是成比例线段?写出比例式.⑵、在此比例式中说出比例外项,比例内项,第四比例项.⑶、若线段是线段和的比例中项,试写出比例式.⑷说出比例的基本性质、合分比性质和等比性质,并用符号语言表示出来.二、新授:(一)思考并回答下列问题:1、已知 4a=7b,你能计算出下面各式的值吗?并说明你计算的根据是什么?2、“在相同时刻的物高与影长成比例”这句话的意义:“即在同一时刻,两物体高的比等于它们的的比 .(二)、例题评析与黄金分割例1:在相同时刻的物高与影长成比例 . 如果一古塔在地面上的影长为 50 米,同时,高为 1.5 米的测竿的影长为 2.5 米,那么古塔的高为多少米?例2:课本 57 页例 1例3:课本 58 页例 2例4:课本 58 页例 3把一条线段分成两部分,使其中较长线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,分割点叫做这条线段的黄金分割点,其中比值为5 1叫做黄金数2 0.618(三)课堂练习:课本 59 页练习(四)小结1、注意灵活应用比例的有关性质.2、认真观察图形,特别注意图形中线段的和、差,巧妙地与合比性质结合起来 .3、要运用方程的思想来认识比例式,设出未知数,列出比例式,化为方程来解.(五)课后练习:(六)作业。

沪科版数学九年级上册《比例线段》教学设计1

沪科版数学九年级上册《比例线段》教学设计1

沪科版数学九年级上册《比例线段》教学设计1一. 教材分析《比例线段》是沪科版数学九年级上册的一章内容。

本章主要引导学生探究比例线段的特点和性质,通过比例线段的理解和运用,培养学生对几何图形的认识和解决实际问题的能力。

本章内容包括比例线段的定义、比例线段的性质、比例线段的应用等。

二. 学情分析九年级的学生已经具备了一定的几何图形的认识和基本运算能力,对于比例的概念也有了一定的理解。

但是,对于比例线段的定义和性质可能还比较模糊,需要通过具体的例子和操作来加深理解。

同时,学生可能对于比例线段在实际问题中的应用还比较陌生,需要通过练习来培养解决实际问题的能力。

三. 教学目标1.知识与技能:使学生理解比例线段的定义和性质,能够运用比例线段解决实际问题。

2.过程与方法:通过观察、操作、探究等方法,培养学生的几何思维和解决问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和解决问题的决心。

四. 教学重难点1.重点:比例线段的定义和性质。

2.难点:比例线段在实际问题中的应用。

五. 教学方法1.引导发现法:通过提问和引导学生自主探究,发现比例线段的性质和应用。

2.实例分析法:通过具体的例子,让学生理解和运用比例线段。

3.小组合作法:通过小组讨论和合作,培养学生的团队合作意识和解决问题的能力。

六. 教学准备1.教学课件:制作相关的教学课件,用于展示和引导学生思考。

2.练习题:准备一些相关的练习题,用于巩固和拓展学生的知识。

3.教具:准备一些实际的线段模型,用于直观地展示比例线段的特点。

七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾比例的概念,为新课的学习做好铺垫。

2.呈现(10分钟)利用课件展示比例线段的定义和性质,让学生初步了解比例线段的概念。

3.操练(10分钟)让学生分组讨论,通过实际的线段模型和计算,探究比例线段的性质。

4.巩固(10分钟)利用练习题让学生巩固比例线段的性质,并及时给予解答和指导。

沪科版数学九年级上册22.1《比例线段》(第1课时)教学设计

沪科版数学九年级上册22.1《比例线段》(第1课时)教学设计

沪科版数学九年级上册22.1《比例线段》(第1课时)教学设计一. 教材分析《比例线段》是沪科版数学九年级上册第22.1节的内容,主要介绍了比例线段的定义、性质和应用。

比例线段是指在同一平行线束中,对应线段的比相等的两条线段。

这部分内容是学生继学习了相似三角形、相似多边形之后,进一步拓展相似形的知识,对于培养学生的空间想象能力和抽象思维能力具有重要意义。

二. 学情分析九年级的学生已经具备了一定的数学基础,掌握了相似三角形、相似多边形的知识,对于图形的观察和分析能力也有所提高。

但是,学生对于比例线段的定义和性质的理解还有待加强,尤其是对于比例线段在实际问题中的应用,需要通过实例进行引导和启发。

三. 说教学目标1.知识与技能目标:学生能够理解比例线段的定义,掌握比例线段的性质,并能够运用比例线段解决一些实际问题。

2.过程与方法目标:通过观察、分析、推理等数学活动,培养学生的空间想象能力和抽象思维能力。

3.情感态度与价值观目标:学生能够积极参与数学学习,克服困难,勇于探索,体验数学学习的乐趣,增强自信心。

四. 说教学重难点1.教学重点:比例线段的定义和性质。

2.教学难点:比例线段在实际问题中的应用。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等,引导学生主动探究,培养学生的数学思维能力。

2.教学手段:利用多媒体课件、实物模型、几何画板等辅助教学,增强学生对比例线段的理解和直观感受。

六. 说教学过程1.导入新课:通过展示一些实际问题,引发学生对比例线段的思考,激发学生的学习兴趣。

2.探究新知:引导学生通过观察、分析、推理等数学活动,探索比例线段的定义和性质。

3.应用拓展:通过实例引导学生运用比例线段解决实际问题,巩固所学知识。

4.总结提升:教师引导学生总结比例线段的定义、性质和应用,提高学生的抽象思维能力。

5.布置作业:布置一些有关比例线段的练习题,巩固所学知识,提高学生的解题能力。

九年级上数学教案:4.1比例线段

九年级上数学教案:4.1比例线段

第二十五章图形的相似§25.1比例线段教学目标:(一)知识目标:1.理解比例的基本性质。

2.能根据比例的基本性质求比值。

3.能根据条件写出比例式或进行比例式的简单变形。

(二)能力目标:巩固比例的基本性质,并能熟练运用求比值。

(三)情感目标:1、激发学习兴趣,培养想象力,挖掘学习动力。

2、落实新课程“合作学习,主动探究”思想。

教学重点、难点:教学重点:比例的基本性质教学难点:例2根据条件判断一个比例式是否成立,不仅要运用比例的基本性质,还要运用等式的性质等方法是本节教学的难点。

知识要点:1.如果两个数的比值与另两个数的比值相等,那么这四个数成比例。

2.a 、b 、c 、d 四个实数成比例,可表示成a:b =c:d 或a b =cd ,其中b 、c 叫做内项,a 、d叫做外项。

3.基本性质:a b =cd <=>ad =bc(a 、b 、c 、d 都不为零)重要方法:1.判断四个数a 、b 、c 、d 是否成比例,方法1:计算a:b 和c:d 的值是否相等;方法2:计算ad 和bc 的值是否相等,(利用ad =bc 推出a b =cd )2.“a c =b d <=>a b =cd ”的比例式之间的变换是抓住实质ad =bc 。

3.记住一些常用的结论: a b =c d =>a +b b =c +d d ,a b =a +cb +d。

教学过程:一、复习引入1、举例说明生活中大量存在形状相同,但大小不同的图形。

如:照片、放电影中的底片中的图与银幕的象、不同大小的国旗、两把不同大小都含有30°角的三角尺等。

2、美丽的蝴蝶身长与双翅展开后的长度之比约为0.618.一些长方形的画框,宽与长之比也设计成0.618,许多美丽的形状都与0.618这个比值有关。

你知道0.618这个比值的来历吗?说明学习本章节的重要意义。

3.如何求两个数的比值? 二、自学新课,探究结论 阅读思考题(1)什么是两个数的比?2与—3的比;—4与6 的比。

沪教版数学九年级上册24.2《比例线段》教学设计

沪教版数学九年级上册24.2《比例线段》教学设计

沪教版数学九年级上册24.2《比例线段》教学设计一. 教材分析《比例线段》是沪教版数学九年级上册第24章第2节的内容。

本节内容是在学生已经掌握了线段的基本知识,以及比例的基本概念的基础上进行教学的。

本节课主要让学生了解比例线段的定义,会求解比例线段,并能够运用比例线段解决实际问题。

教材通过例题和练习题的形式,帮助学生理解和掌握比例线段的知识。

二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和数学基础,对于线段和比例的概念已经有了一定的了解。

但是,对于比例线段的运用和解决实际问题可能还存在一定的困难。

因此,在教学过程中,需要注重学生的实际操作和实践,通过具体的例题和练习题,让学生理解和掌握比例线段的知识。

三. 教学目标1.知识与技能:理解比例线段的定义,掌握求解比例线段的方法,能够运用比例线段解决实际问题。

2.过程与方法:通过观察、操作、思考、交流等过程,培养学生的逻辑思维能力和解决问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和积极的学习态度。

四. 教学重难点1.重点:比例线段的定义和求解方法。

2.难点:运用比例线段解决实际问题。

五. 教学方法1.情境教学法:通过具体的例题和练习题,让学生在实际情境中理解和掌握比例线段的知识。

2.合作学习法:通过小组讨论和合作,培养学生的团队合作意识和解决问题的能力。

3.引导发现法:教师引导学生观察和思考,发现比例线段的规律和方法。

六. 教学准备1.教学PPT:制作相关的教学PPT,展示例题和练习题。

2.练习题:准备一些相关的练习题,用于巩固和拓展学生的知识。

3.教学工具:准备尺子、直尺等教学工具,方便学生实际操作。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾线段和比例的知识,为新课的学习做好铺垫。

2.呈现(10分钟)教师通过PPT展示比例线段的定义和例题,让学生观察和思考,引导学生发现比例线段的规律和方法。

比例线段-沪科版九年级数学上册教案

比例线段-沪科版九年级数学上册教案

比例线段-沪科版九年级数学上册教案一、教学目标1.了解比例线段的概念和性质。

2.学习比例线段的计算方法。

3.掌握应用比例线段解决实际问题的方法。

二、教学重点1.比例线段的概念和性质。

2.比例线段的计算方法。

三、教学难点应用比例线段解决实际问题的方法。

四、教学过程1. 导入环节(5分钟)教师通过黑板、投影等方式,介绍比例线段的概念和性质,并与学生一起探讨比例线段与比例关系的联系。

2. 讲解过程(30分钟)(1)比例线段的概念和性质教师通过示意图和例题,讲解比例线段的定义和基本性质,并引导学生思考比例线段的特点和规律。

(2)比例线段的计算方法教师通过例题和练习题,讲解比例线段的计算方法,并帮助学生理解计算过程和方法步骤。

3. 练习环节(20分钟)教师在课堂上进行练习题的讲解和指导,然后让学生在课堂上完成相应的练习题。

4. 拓展环节(10分钟)教师通过实际应用例题,引导学生将比例线段的知识应用到实际问题的解决中,并加深学生的理解。

5. 总结环节(5分钟)教师对本节课的重点和难点进行总结,并引导学生回顾本节课的知识点和方法步骤。

五、教学方法1.讲解与练习相结合的教学方法。

2.同步演示和个别辅导的教学方法。

六、教学评估1.在课堂练习中进行教学评估。

2.通过作业和考试进行教学评估。

七、板书设计•比例线段的概念和性质•比例线段的计算方法八、教学资源准备1.教材。

2.讲义、作业、练习题。

九、教学反思本课采用了讲解、练习、拓展和总结等多种教学方法,让学生在实践中学习掌握比例线段的知识和方法,提高了教学效果。

同时,还需要在课堂中针对学生的不同情况进行差异化教学,提高教学质量和效果。

沪教版数学九年级上册24.2《比例线段》教学设计

沪教版数学九年级上册24.2《比例线段》教学设计

沪教版数学九年级上册24.2《比例线段》教学设计一. 教材分析《比例线段》是沪教版数学九年级上册第24章的一部分,主要介绍了比例线段的概念、性质和应用。

本节内容是在学生已经掌握了相似三角形的性质和坐标与图形的性质的基础上进行学习的,对于学生来说,比例线段是一个比较抽象的概念,需要通过具体实例和实践活动来理解和掌握。

教材通过丰富的例题和练习题,帮助学生逐步理解和运用比例线段的知识,为后续学习相似三角形和解析几何打下基础。

二. 学情分析九年级的学生已经具备了一定的数学基础,对于相似三角形的性质和坐标与图形的性质有一定的了解。

但是,比例线段作为一个新的概念,对学生来说还是相对抽象的,需要通过具体实例和实践活动来理解和掌握。

此外,学生的学习兴趣和动机也是影响教学效果的重要因素,因此,在教学过程中,需要通过设计有趣的教学活动和实例,激发学生的学习兴趣和动机。

三. 教学目标1.知识与技能:使学生理解比例线段的概念,掌握比例线段的性质,能够运用比例线段的知识解决实际问题。

2.过程与方法:通过观察、操作、交流等活动,培养学生的观察能力、动手能力和表达能力。

3.情感态度与价值观:激发学生对数学的兴趣和好奇心,培养学生的合作意识和创新精神。

四. 教学重难点1.重点:比例线段的概念和性质。

2.难点:比例线段的运用和实际问题的解决。

五. 教学方法1.启发式教学:通过设计有趣的问题和实例,激发学生的思考和探索兴趣,引导学生主动学习和参与。

2.实践活动:通过观察、操作、交流等活动,让学生在实践中学习和体验,提高学生的动手能力和观察能力。

3.合作学习:鼓励学生之间进行合作和交流,共同解决问题,培养学生的合作意识和团队精神。

六. 教学准备1.教学PPT:制作相关的教学PPT,包括教材内容、实例、练习题等。

2.教学素材:准备一些相关的图片和实例,用于引导学生观察和操作。

3.练习题:准备一些练习题,用于巩固和检验学生的学习效果。

七. 教学过程1.导入(5分钟)通过一个实际问题引入比例线段的概念,例如:“在一条直线上,有两点A和B,点A到直线的距离是6cm,点B到直线的距离是8cm,请问点A和点B之间的距离是多少?”让学生思考和讨论,引出比例线段的概念。

九年级数学上册 24.1 比例线段教案 沪科版

九年级数学上册 24.1 比例线段教案 沪科版

第24章相似形单元目标1、了解比例的基本性质,了解线段的比,成比例线段。

2、了解黄金分割比及黄金数。

3、了解图形的相似,掌握相似图形的性质以及相似多边形的性质。

4、了解两个三角形相似的概念,掌握两个三角形相似的条件。

5、了解图形的位似,能够利用位似将一个图形放大或缩小。

6、会利用相似解决生活中的实际问题。

单元导读本章重点难点:重点:相似三角形的性质及判定。

难点:相似三角形的性质及应用。

24.1 比例线段学习目标要求1、了解相似图形、相似多边形、相似比及比例线段等概念。

2、了解比例线段的性质。

3、了解黄金分割比及黄金数。

教材内容点拨知识点1相似多边形:从几何直观上来说,两个图形如果形状一致,而大小不同,则称这两个图形相似,具体到多边形,称之为相似多边形。

从严谨定义上来说,如果两个多边形各边成比例,各角相等,则称这两个多边形为相似多边形。

知识点2比例线段:1、线段的比:如果用同一长度单位量得两条线段a、b的长度分别为m,n,则m∶n就是线段a ,b 的比,记作a ∶b =m ∶n 或a m b n=,其中a 叫做比例前项,b 叫做比例后项。

2、比例线段:四条线段,如果其中两条线段的比与另外两条线段的比相同,则称这四条线段成比例线段,简称比例线段。

例如线段a 、b 、c 、d ,如果a cb d=,则称线段a 、b 、c 、d 成比例线段,这里要注意,a 、b 、c 、d 必须按顺序写出,不能写成b c a d =或a d b c =。

3、比例外项、比例内项、第四比例项、比例中项: 若a c b d=,则称a 、d 为比例外项,b 、c 、为比例内项,d 为第四比例项,如果b =c ,则称b 为a 、c 的比例中项。

知识点3比例性质:1、基本性质:如果a cb d=,则根据等式的基本性质,两边同时乘以bd 得ad bc =。

2、合比性质:如果a c b d =,则根据等式的基本性质,两边同时加上1或-1得a b c d b d±±=。

比例线段教案8篇

比例线段教案8篇

比例线段教案8篇比例线段教案8篇作为一位优秀的人民教师,就不得不需要编写教案,教案是教学蓝图,可以有效提高教学效率。

那么应当如何写教案呢?下面是小编精心整理的比例线段教案,欢迎阅读,希望大家能够喜欢。

比例线段教案1知识结构重难点分析本节的重点是线段的比和比例线段的概念以及比例的性质.以前的平面几何主要研究线段的位置关系和相等关系,从本章开始研究线段及相关图形的比例关系――相似三角形,这些内容的研究都离不开线段的比和比例性质的应用.本节的难点是比例性质及应用,虽然小学时已经接触过比例性质的一些知识,但由于内容比较简单,而且间隔时间较长,学生印象并不深刻,而本节涉及到的比例基本性质变式较多,合分比性质以及等比性质学生又是初次接触,内容不但多,而且轻易混淆,作题不知应用哪条性质,不知如何应用是常有的.教法建议1.生活中比例的例子比比皆是,在新课引入时最好从生活实例引入,可使学生感觉轻松自然,轻易产生爱好,增加学生学习的主动性2.小学时曾学过数的比及相关概念,学习时也可以复习引入,从数的比过渡到线段的比,渗透类比思想3.这一节概念比较多,也比较轻易混淆,教学中可设计不同层次的题组来进行巩固,非凡是要举一些反例,同时要注重对相近概念的比较4.黄金分割的内容要求学生理解,主要体现数学美,可由学生从生活中寻找实例,激发学生的爱好和参与感5.比例性质由于变式多,理解和应用上轻易出现错误,教学时可利用等式性质和分式性质来处理教学设计示例1(第1课时)一、教学目标1.理解线段的比的概念.2.通过与小学知识到比较,初步培养学生“类比”的数学思想.3.通过线段的比的有关计算,培养学习的计算能力.4.通过“引言”及“例1”的教学,激发学生学习爱好,对学生进行热爱爱国主义教育.二、教学设计先学后做,启发引导三、重点及难点1.教学重点两条线段比的概念.2.教学难点正确理解两条线段的比及应用.四、课时安排1课时五、教具学具预备股影仪、胶片、常用画图工具六、教学步骤复习提问找学生回答小学学过的比、比的前项和后项的概念.(两个数相除又叫做两数的比,记作或a:b,其中a叫比的前项,b叫比的后项)讲解新课把学生分成三组,分别以米、厘米、毫米作为长度单位,量一下几何教材的长与宽(令长为a,宽为b).再求出长与宽的比.然后找三名同学把结果写在黑板上.如:等.可以看出,在同一长度单位下,两条线段长度的比就是两条线段的比.一般地:若a、b的长度分别是、n(单位相同),那么就说这两条线段的比是 ,或写成 ,和数的比一样,a叫比的前项,b叫比的后项.关于两条线段比的概念,教学中要揭示它的实质,即表示a是b的倍,这是学生已有的知识,较易理解,也轻易使学生注重到求比时,长度单位要一致.另外,可组织学生举例实际生活中两条线段的比的问题,充分调动学生联系实际和积极思维的能力,对活跃课堂气氛也很有利,但教师需注重尺度.就刚才三组学生做过的练习及问题回答,在教师启发和点拨下,让学生讨论或试述两条线段的比应注重的问题,归纳出:(l)两条线段的比就是它们的长度的比.(2)比与所选线段的长度单位无关,求比时,两条线段的长度单位要一致.(3)两条线段的比值总是正数.(并不都是正数)(4)除了a=b之外, . 与互为倒数.例1 见教材P202.讲解完例1后:(l)提问学生AB是的多少倍, 是AB的多少倍,以加深学生对线段比的逾义的理解.(2)给出:比例尺= ,就例1的图上,若图距是8c的两地,实际距离是多少?另外,还可鼓励学生课后根据地图上的比例尺,测量并计算出你所在省会与首都北京的直线距离,从而丰富了知识,激发了学习爱好.例2 见教材P202.讲解完例2后:(l)可改变线段AB的长度,或给出AC、BC的长度,再求这些比,使学生熟悉这种三角形中边的比与长度无关.(2)常识1:有一锐角是30°的直角三角形中,三边(从小到大)的比为 .常识2:等腰直角三角形三边(从小到大)的比为1:1: .学生把握了这些常识可有两点好处:①知道例2中“ ”以及习题5.l第2题(1)中“边长为4”.(2)中的“对角线AC=a”这些条件实际上都是多余的.②这些题目若改成“填空题”,可避免一些不必要的计算.从而提高做题速度.这样不仅培养了能力,而且在考试中也受益匪浅.因此,今后如碰到和此常识有关的知识要反复渗透,反复给学生强调,让它扎根于学生的下意识中。

沪科版九上数学第1课时 比例线段教案

沪科版九上数学第1课时 比例线段教案

沪科版九上数学第22章相似形21.1 比例线段第1课时比例线段【知识与技能】1.了解相似多边形的概念和性质.2.在简单情形下,能根据定义判断两个多边形相似.3.会用相似多边形的性质解决简单的几何问题.【过程与方法】理解相似多边形的概念和性质,并能熟练运用.【情感态度】激发学习兴趣,培养想象力,挖掘学习动力.【教学重点】相似多边形的定义和性质.【教学难点】判断两个多边形是否相似.一、情景导入,初步认知如图:四边形A1B1C1D1是四边形ABCD经过相似变换所得的像.请分别求出这两个四边形的对应边的长度,并分别量出这两个四边形各个内角的度数,然后与你的同伴议一议;这两个四边形的对应角之间有什么关系?对应边之间有什么关系?【教学说明】培养学生从图片直观地获得信息的读图能力,并通过亲身体验归纳总结相似图形的共同特点.而且由此自然引出课题:“相似多边形”.二、思考探究,获取新知1.如图,由同一底片直接印出来的照片与扩印出来的照片,它们的形状相同吗?2.如图,在制作大小尺寸不同的国旗时,所画的两个五角星图形,它们的形状相同吗?【归纳结论】我们把形状相同的两个图形说成是相似的图形.3.下图是两个正方形、两个等边三角形.观察图形,回答下列问题.(1)每组的两个图形的形状相同吗?(2)每组的两个图形相似吗?(3)计算每组的两个图形的对应边的长度的比、对应角有什么关系?(4)你能归纳上面的结论吗?【归纳结论】两个边数相同的多边形,如果它们的对应角相等,对应边长度的比相等,那么这两个多边形叫做相似多边形.相似多边形的对应边长度的比叫作相似比或相似系数.4.根据相似多边形的概念,你知道相似多边形的性质吗?【归纳结论】相似多边形的对应角相等,对应边长度的比相等.【教学说明】通过对各种相似图形特点的一个自然感知的过程,使学生都能用自己的语言归纳总结出相似多边形的特点.三、运用新知,深化理解1.下列每组图形的形状相同,它们的对应角有怎样的关系?对应边呢?(1) 正三角形ABC与正三角形DEF;(2) 正方形ABCD与正方形EFGH.解:(1)由于正三角形每个角等于60°,所以∠A=∠D= 60°,∠B=∠E=60°,∠C=∠F= 60°.由于正三角形三边相等,所以AB∶DE=BC∶EF=CA∶FD(2)由于正方形的每个角都是直角,所以∠A=∠E= 90°,∠B=∠F=90°,∠C=∠G= 90°, ∠D=∠H= 90°由于正方形的四边相等,所以AB∶EF=BC∶FG=CD∶GH=DA∶HE2.两个相似的五边形,一个各边长分别为1,2,3,4,5,另一个最大边长为10,则后一个五边形的最短边的长为 2 .【分析】根据相似多边形的对应边的比相等可得.解:两个相似的五边形,最长的边是5,另一个最大边长为10,则相似比是5∶10=1∶2,根据相似五边形的对应边的比相等,因而设后一个五边形的最短边的长为x,则1∶x=1∶2,解得x=2,后一个五边形的最短边的长为2.3.如图,四边形ABCD∽四边形A′B′C′D′,则∠1= 76°,AD= 28 .【分析】根据相似多边形对应边之比相等,对应角相等可得.解:四边形ABCD∽四边形A′B′C′D′,则∠1=∠B=70°,A′D′∶AD=D′C′∶DC,即21∶AD=18∶24.解得AD=28,∠1=70°.4.设四边形ABCD与四边形A1B1C1D1是相似的图形,且A与A1、B与B1、C与C1是对应点,已知AB=12,BC=18,CD=18,AD=9,A1B1=8,则四边形A1B1C1D1的周长为38 .【分析】四边形ABCD与四边形A1B1C1D1是相似的图形,则根据相似多边形对应边的比相等,就可求得A1B1C1D1的其它边的长,就可求得周长.解:∵四边形ABCD与四边形A1B1C1D1是相似的图形,∴AB∶A1B1=BC∶B1C1=CD∶C1D1=DA∶D1A1.又∵AB=12,BC=18,CD=18,AD=9,A1B1=8,∴12∶8=18∶B1C1=18∶C1D1=9∶D1A1,∴B1C1=12,C1D1=12,D1A1=6,∴四边形A1B1C1D1的周长=8+12+12+6=38.【教学说明】学生在应用中更深层次认识相似多边形的基本涵义;初步掌握相似多边形的对应角相等,对应边成比例的性质.四、师生互动、课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题22.1”中第2 题.本节课是在探索相似多边形的过程中,进一步发展学生归纳、类比、反思、交流、论证等方面的能力,提高数学思维水平.。

沪科版数学九年级上册22.1《比例线段》(第2课时)教学设计

沪科版数学九年级上册22.1《比例线段》(第2课时)教学设计

沪科版数学九年级上册22.1《比例线段》(第2课时)教学设计一. 教材分析《比例线段》是沪科版数学九年级上册第22.1节的内容,主要介绍了比例线段的定义、性质和应用。

比例线段是初中数学中的重要概念,它在解决实际问题和进一步学习几何中起着重要作用。

本节内容通过讲解和实例分析,使学生掌握比例线段的性质和应用,培养学生的几何思维和解决问题的能力。

二. 学情分析九年级的学生已经具备了一定的数学基础,对线段、比例等概念有一定的了解。

但学生在理解和运用比例线段方面还存在一定的困难,需要通过实例分析和练习来进一步巩固。

此外,学生对几何图形的直观认识和空间想象能力还有待提高,需要在教学过程中给予引导和培养。

三. 教学目标1.知识与技能目标:使学生掌握比例线段的定义、性质和应用,能够运用比例线段解决实际问题。

2.过程与方法目标:通过实例分析、合作交流和动手操作,培养学生的几何思维和解决问题的能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和积极进取的精神。

四. 教学重难点1.重点:比例线段的定义、性质和应用。

2.难点:比例线段的性质的证明和运用。

五. 教学方法1.启发式教学:通过提问、引导和讨论,激发学生的思维,培养学生的解决问题的能力。

2.实例分析:通过具体的例子,使学生理解比例线段的定义和性质。

3.合作交流:鼓励学生之间相互讨论、合作,共同解决问题。

4.动手操作:让学生通过实际操作,加深对比例线段的理解。

六. 教学准备1.教学PPT:制作详细的PPT,展示比例线段的定义、性质和应用。

2.实例材料:准备一些实际的例子,用于讲解和分析比例线段。

3.练习题:准备一些练习题,用于巩固所学内容。

七. 教学过程1.导入(5分钟)通过一个实际问题引入比例线段的概念,激发学生的兴趣。

2.呈现(15分钟)讲解比例线段的定义、性质和应用,结合实例进行分析,让学生直观地理解比例线段的概念。

3.操练(10分钟)让学生分组讨论,合作解决一些关于比例线段的练习题,巩固所学内容。

九年级数学上册《比例线段》教案、教学设计

九年级数学上册《比例线段》教案、教学设计
(2)运用启发式教学法,引导学生自主探究比例线段的性质,培养学生的创新精神;
(3)利用小组合作、讨论交流的方式,促进学生之间的互动,提高学生的团队协作能力;
(4)设计不同类型的练习题,巩固学生对比例线段知识的掌握,提高解决问题的能力。
2.教学过程:
(1)导入:通过实际问题导入,让学生感知比例线段在实际生活中的应用,激发学习兴趣;
(1)教师通过实例解释比例线段的概念,引导学生理解并掌握;
(2)教师通过几何图形和具体数值,演示比例线段的性质,让学生从直观上感受并理解;
(3)教师引导学生运用交叉相乘法来判断两条线段是否成比例,并通过实例进行讲解。
(三)学生小组讨论,500字
1.教学活动设计:
教师将学生分成小组,针对以下问题进行讨论:
(一)导入新课,500字
1.教学活动设计:
在课堂开始时,教师可以通过一个生活实例来导入新课。例如,教师可以展示一张地图,上面标注了两地之间的实际距离和比例尺。然后提问:“同学们,你们知道如何根据比例尺来计算两地之间的实际距离吗?”通过这个问题,引导学生思考比例线段在实际生活中的应用。
2.教学目标:
(1)激发学生对比例线段的学习兴趣;
5.培养学生团结协作、互相帮助的精神,增强集体荣誉感。
在教学过程中,教师应关注学生的个体差异,因材施教,使每位学生都能在原有基础上得到提高,达到教学目标。同时,注重培养学生的数学思维和解决问题的能力,为学生的终身发展奠定基础。
二、学情分析
九年级的学生已经具备了一定的数学基础,对比例的概念有初步的了解,但在比例线段的应用和深入理解方面仍有待提高。在此基础上,学情分析如下:
4.设计不同难度的练习题,使学生在巩固基础知识的同时,提高运算和逻辑思维能力。

九级数学上册比例线段教案沪教版五四制讲义

九级数学上册比例线段教案沪教版五四制讲义

比例线段教学内容: 一、比例线段1、比:选用同一长度单位量得两条线段a 、b 的长度分别是m 、n ,那么就说这两条线段的比是::a b m n =(或a mb n=) 2、比的前项,比的后项:两条线段的比:a b 中,a 叫做比的前项,b 叫做比的后项。

说明:求两条线段的比时,对这两条线段要用同一单位长度。

3、比例:两个比相等的式子叫做比例,如a c b d= 4、比例外项:在比例a cb d =(或::a bcd =)中a 、d 叫做比例外项。

5、比例内项:在比例a cb d =(或::a bcd =)中b 、c 叫做比例内项。

6、第四比例项:在比例a cb d=(或::a b c d =)中,d 叫a 、b 、c 的第四比例项。

7、比例中项:如果比例中两个比例内项相等,即比例为ca bb =(或::a b bc =时,我们把b 叫做a 和c 的比例中项。

8、比例线段:在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么,这四条线段叫做成比例线段,简称比例线段。

9、比例的基本性质:如果::a b c d =那么ad bc =逆命题也成立,即如果ad bc =,那么::a b c d = 10、比例的基本性质推论:如果::a b b d =那么2b ad =,逆定理是如果2b ad =那么::a b b d =。

说明:两个论是比积相等的式子叫做等积式。

比例的基本性质及推例式与等积式互化的理论依据。

11、合比性质:如果a cb d =,那么a b c d b d ±±= 12.等比性质:如果a c m b d n ===K ,(0b d m +++≠L ),那么a c m ab d n b+++=+++L L说明:应用等比性质解题时常采用设已知条件为k ,这种方法思路单一,方法简单不易出错。

13、如果点P 把线段AB 分割成AP 和PB (AP >PB )两段,其中AP 是AB 和PB 的比例中项,那么称这种分割为黄金分割,点P 为线段AB 的黄金分割点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五课时比例线段练习(本节练习)
选择题
1、若x:y=6:5,则下列等式中不正确的是()
A、
5
11
=
+
y
y
x
B、
5
1
=
-
y
y
x
C、
6
=
-y
x
x
D、
5
=
-x
y
y
2、已知线段a=4,b=9,线段x是a,b的比例中项,则x等于()
A、36
B、6
C、-6
D、6或-6
3、在比例尺1:38000的南京交通游览图上,玄武湖隧道长约7cm,它的实际长度约为()
A、0.226km
B、2.66km
C、26.6km
D、266km
4、已知点C是线段AB的黄金分割点(AC﹥BC),若AB=4cm,则AC的长为()
A、
cm
)2
5
2(- B、cm
)5
2
6(-
C、
cm
)1
5
(-
D、
cm
)5
3(-
5、若a:b=3:5,且b是a、c的比例中项,那么b:c的值是()
A、3:2
B、5:3
C、3:5
D、2:3
6、若三角形三边长之比为a:b:c=3:4:5,且a-b+c=12.则这个三角形的周长等于()
A、12
B、 24
C、 18
D、36
二、填空题
7、已知1,5,5三个数,再添一个数,使之与已知的三个数成比例,则这个
数可以是 .
8、一本书的长与宽之比为黄金比,已知它的长14,则宽为 .
9、若
=
+
+
+
=
=
z
y
z
y
x
z
y
x

,
9
8
10
.
10、已知线段b是a,c的比例中项,且
1
2
,1
2-
=
+
=c
a
,则
b= .
11、据有关实验测定,当气温与人体正常体温(37°C)的比是黄金比时,人体感到最舒适,这个气温约为°C.
12、已知P是线段AB延长线上一点,且AP:PB=2 则AB:PB= .
三、解答题
13、已知
4
3
2

=
=
z
y
x
求下列式的值.
(1)
3
2
+
+
y
x
(2)
x
z
y
x+
+
14、朝阳中学请张工程师设计学校的矩形花坛的平面图,这个花坛长为20m,宽
为12m.(1)在玻璃尺为1:100的平面图上,这个矩形的长和宽各是多少cm?(2)在平面图上,这个花坛的长和宽的比是多少?(3)花坛的长和宽实际比是
多少?(4)你发现这两个比有什么关系?
15、已知正方形ABCD的边长为1,请你以CD为短边,用尺规作一个黄金矩形,要求保留作图痕迹并简要写出作法,不需要证明.。

相关文档
最新文档